Tymoteusz Chojecki Instytut Matematyczny PAN

A probabilistic proof of a priori L^p estimates for a class of divergence form elliptic operators

Suppose that \mathcal{L} is a divergence form differential operator of the form $\mathcal{L}f(x) := e^{U(x)}/2\nabla_x \cdot \left[e^{-U(x)}(I+H(x))\nabla_x f(x)\right]$, where U(x) is scalar valued and H(x) is an anti-symmetric matrix valued function. We assume that they are C^2 regular but need not be bounded. We show that if $Z = \int_{\mathbb{R}^d} e^{-U(x)} dx < +\infty$ and there exists $\gamma_0 > 0$ such that $\int_{\mathbb{R}^d} e^{\gamma_0 \mathfrak{u}(x) \vee 0} \mu(dx) < +\infty$, where $\mathfrak{u}(x)$ is the supremum of the numerical range of matrix $-\nabla_x^2 U(x) + \nabla_x (\nabla_x \cdot H(x))$, then for any $1 \leq p < q < +\infty$ we have $\|\nabla_x f\|_{L^p(\mu)} \leq C(\|\mathcal{L}f\|_{L^q(\mu)} + \|f\|_{L^q(\mu)})$ for $f \in C_0^\infty(\mathbb{R}^d)$. Here $d\mu = Z^{-1}e^{-U}dx$ and constant C depends only on p, q, the dimension d and γ_0 . In addition, we give estimates on the spatial gradient of a semigroup $(P_t)_{t\geq 0}$ that corresponds to \mathcal{L} . Namely, there exist $C, t_* > 0$, depending only on p, q, the dimension d and γ_0 , such that $\|\nabla_x P_t f\|_{L^p(\mu)} \leq C(t \wedge t_*)^{-1/2} \|P_{(t-t_*)+}f\|_{L^q(\mu)}, t > 0$.