Mykola Bratiichuk Silesian University of Technology Department of Applied Mathematics

Optimization problems for retrial systems with changeable service rate

We deal with a finite retrial queueing systems of the type E/E/1 in which customers arrive in a Poisson process with rate λ . The retrial time distribution is exponential with parameter ν . The service time distribution function is an exponential for both primary and repeated calls and the parameter of that distribution is defined in the following way. If at the instant a customer (primary or repeated) gets to service we have j customers in the system, then the parameter of service time is equal to μ_j . The number of places in the orbit is supposed to be equal to $m < \infty$.

Let $\xi(t)$ denote the number of customers in the orbit at the time t. If at the time t the server is busy and service rate is equal to μ_i , $i \ge 1$, then we say that the server is in the phase i. If at the time t the server is free we say that the server is in the phase 0. Let $\eta(t) \in \{0, 1, 2, ..., m + 1\}$ denote the phase of the server at time t. The process $(\eta(t), \xi(t))$ is a homogeneous Markov process with state space $E = \{(i, j) : 0 \le j \le m, 0 \le i \le j + 1\}.$

Theorem. The ergodic distribution of the process $(\eta(t), \xi(t))$ can be presented as follows

$$\pi_{ij} = \pi_{00} \frac{\beta_i^{j-i+1} A_i}{(i-1)!\mu_i}, \qquad 0 \le i-1 \le j \le m-1,$$

$$\pi_{0j} = \pi_{00} \frac{\lambda}{j\nu} \sum_{k=1}^{j} \frac{\beta_k^{j-k} A_k}{(k-1)!\mu_k}, \qquad 1 \le j \le m,$$

$$\pi_{im} = \pi_{00} \frac{\lambda \beta_i^{m-i} A_i}{(i-1)!\mu_i^2}, \qquad 1 \le i \le m,$$

$$\pi_{00} = \left(1 + \sum_{k=1}^{m} d(k,m) A_k\right)^{-1}, \qquad \pi_{m+1m} = \frac{\pi_{00} \lambda^2}{m\nu\mu_{m+1}} \sum_{k=1}^{m} \frac{\beta_k^{m-k} A_k}{(k-1)!\mu_k},$$

where

$$\beta_i = \frac{\lambda}{\lambda + \mu_i}, \quad d(k, m) = \frac{1}{(k-1)!\mu_k} \left[\frac{\lambda + \mu_k}{\mu_k} + \frac{\lambda^2 \beta_k^{m-k}}{m\nu\mu_{m+1}} + \frac{\lambda}{\nu} \sum_{l=0}^{m-k} \frac{\beta_k^l}{l+k} \right],$$

and the function H(i,k) is defined in the process of proof.

Some optimization problems for such systems are considered.

References

[1] G. I. Falin, J. G. C. Templeton, Retrial Queues, Chapman and Hall, London, 1997.