Grzegorz M. Sługocki

Warsaw University of Technology, Faculty of Power and Aeronautical Engineering E-mail: gmsh@wp.pl

On the numerical solution of an ODE using an orthogonal expansion

We treat here a differential equation of an arbitrary order m

$$
\begin{equation*}
\sum_{r=0}^{m} a_{m-r}(x) y^{(m-r)}(x)=f(x) \tag{1}
\end{equation*}
$$

where we expand both the known function $f(x)$ and the unknown function $y(x)$ by orthogonal polynomials

$$
\begin{gather*}
f(x)=\sum_{j=0}^{n} f_{j} \phi_{j}(x) m \leqslant n \tag{2}\\
f_{j}=\frac{\left(f, \phi_{j}\right)_{L^{2}}}{\left\|\phi_{j}\right\|_{L^{2}}^{2}} \quad \forall 0 \leqslant j \leqslant n \tag{3}\\
y(x)=\sum_{j=0}^{n} y_{j} \phi_{j}(x) \tag{4}\\
y_{j}=\frac{\left(y, \phi_{j}\right)_{L^{2}}}{\left\|\phi_{j}\right\|_{L^{2}}^{2}} \quad \forall 0 \leqslant j \leqslant n \tag{5}
\end{gather*}
$$

After setting these expansions to the differential equation (1) and using the Galerkin Method we reduce the problem to a linear algebraic problem easy to treat it numerically. Such expansions leads us to an equations system of order at least $m+1$, where the RHS is very easy to obtain. In general case it is not necessary to impose any conditions to the solution of (1).

