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The Wilson orthonormal basis was constructed in 1991 by Daubechies, Jaffard and
Journé using combinations of elements of Gabor tight frame with redundancy 2. In
1994, Auscher gave a characterization of the atoms for which the Wilson system is
an orthonormal basis. Recently, Kutyniok and Strohmer generalized the notion of the
Wilson system to the lattices whose generator matrix is in Hermite normal form.

We extend their result to the full characterization of Wilson orthonormal bases on
the general lattice of volume 1/2. Moreover, we generalize this result to other forms of
Wilson systems differing from the classical one by the appropriate sign modification.
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1. Introduction

Wilson systems were introduced in 1991 by Daubechies, Jaffard and Journé as the
way to obtain an orthonormal basis from the elements of Gabor tight frame whose
generating atom would have both good time — and frequency — localization.7

From Balian–Low Theorem2,16,3 it is known that the generating atom of any Gabor
system at the critical density, i.e. in the only case when the Gabor system itself
can be an orthonormal basis, cannot have both good time — and frequency —
localization. Thus, the process of choosing the system of double redundancy and
replacing the pairs of its elements by their linear combinations yielded effective
reduction of the underlying tight frame into the orthonormal basis. In Ref. 7 also the
example was given of the smooth and fast decaying function for which the obtained
Wilson system was an orthonormal basis. All such atoms were characterized in 1994
by Auscher.1 The effect of reducing the frame bound of the underlying Gabor tight
frame when passing to the Wilson system by factor 2 was observed also for higher
even redundancies.5,6
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Motivated by applications for OFDM-QAM coding, Strohmer and Kutyniok
generalized the notion of Wilson system to the lattices whose generator matrix is
in Hermite normal form.15 They proved that if Fourier transform of the image of
an atom under metaplectic representation operator related to the lattice genera-
tor is real-valued, then the appropriately defined Wilson system is an orthonor-
mal basis for L2(R). From their proof one can infer this result for all lattices of
volume 1/2.

In the present paper we extend Kutyniok–Strohmer result to the full characteri-
zation of the atoms for which Wilson system on such lattice is an orthonormal basis
for L2(R). Moreover, this result covers for instance the case when the sign sequence
(−1)m+n in the classical Wilson system definition is replaced with (−1)m.

The paper is organized as follows: in Sec. 2 we introduce the necessary notation
and the properties of symplectic matrices and metaplectic representation; in Sec. 3
the definition of Wilson system is introduced and the results for rectangular lattices
are summarized, while in Sec. 4 we demonstrate how to extend the characterization
from Ref. 17 to the case of the general lattices. We provide also the examples of
a function for which the modified Wilson system is an orthonormal basis in the
cases of rectangular and hexagonal lattices as well as new pairings resulting from
our approach in the rectangular case.

2. Preliminaries

N,Z,R,C are, respectively, the set of all natural, integer, real, and complex num-
bers. The set of all matrices k × k with real entries is Mk(R). The general linear
group is the subset of invertible matrices in Mk(R) being denoted by GL(k,R)
and the special linear group being its subset with determinant 1 by SL(k,R). We
refer to the entries of the matrix X ∈ Mk(R) in ith row and jth column by Xij .
In the forthcoming presentation we limit ourselves to the case of one-dimensional
Heisenberg group and Schrödinger representations. For the validity of the results in
higher dimension cf. Remark 4.1. Let us also distinguish three families of matrices
in SL(2,R):

J =
[

0 1
−1 0

]
, Na =

[
1 0
a 1

]
, Db =




b 0

0
1
b


 .

and introduce notation A′ := J−1AJ .
Heisenberg group H (cf. Ref. 9, p. 19 and Ref. 10, Definition 9.1.2) is the set R3

equipped with the multiplication ◦:

(p, q, t) ◦ (p′, q′, t′) =
(

p + p′, q + q′, t + t′ +
1
2
(pq′ − qp′)

)
.

For p = (p, q) ∈ R2 we shall denote an element (p, q, t) of H by (p, t). It is known
that for an arbitrary matrix A ∈ SL(2,R) a map αA(p, t) = (Ap, t) is an auto-
morphism of H (cf. Ref. 9, Theorem 1.22, p. 21). Let us denote also by ε(p) = pq,
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δA(p) = ε(Ap)−ε(p), κA(p) := e−πiδA(p), for m,n ∈ Z let λA(m,n) := κA(m/2,n)
κA(m/2,−n) .

Denote by I(p, q) = (p,−q). Then λA(m,n) = eπi(δA(I(m/2,n))−δA(m/2,n)) and also
ε(Ip) = −ε(p).

The symmetric quadratic form ε can be identified with matrix

Q =

[
0 1/2

1/2 0

]
,

while the form δA(Ip)− δA(p) with the matrix IT AT QAI −AT QA + 2Q.

Proposition 2.1. For all m,n ∈ Z and for any A ∈ SL(2,R) it holds that
λA(m,n) = e−2πiA12A21mn. In particular, λA(m, n) = 1 for all m,n ∈ Z if and
only if A12A21 ∈ Z.

Note that for a matrix A being in Hermite normal form it holds that A21 = 0, so
λA(m,n) = 1 for all m,n ∈ Z.

Proof. The symmetric quadratic form ε ◦ A can be identified with matrix C =
AT QA whose anti-diagonal entries C12 = C21 = (A11A22 +A12A21)/2. One verifies
that for an arbitrary B ∈ M2(R) in the matrix IT BI−B only anti-diagonal terms do
not vanish and are equal to −2B21 and −2B12, respectively. Plugging in B = AT QA

together with the fact that A has determinant 1 yields that the matrix defining the
quadratic form δA(Ip)− δA(p) is equal to −4A12A21Q. The assertion follows.

Fourier transform F : L2(R) → L2(R) is a unitary operator defined as

F f(ξ) =
∫

R
f(x) e−2πixξ dx.

Unitary operators Tp and Mq in L2(R), called modulation and translation, respec-
tively, are defined for p, q ∈ R as

Tph(x) = h(x− p), Mqh(x) = e2πiqxh(x), for any h ∈ L2(R).

Let unitary operator J in L2(R) be defined as

Jh(x) = h(x− 2[x] + 1) for all h ∈ L2(R),

where [x] is the largest integer smaller than x.
Schrödinger representation ρS — a unitary representation of H in L2(R) — is

defined as (cf. Ref. 10, Example 9.2.1, p. 182, see also Ref. 9, Sec. 1.3, p. 19)

ρS(p, q, t)f = e2πite−πipq Mq T−p f.

To shorten the notation we shall write π(p) for MpTq.
For B ∈ SL(2,Z), we shall call B(Z/2 × Z) a lattice and Gabor system GB(f)

of redundancy 2 shall be defined as (π(B(m/2, n)f))m,n∈Z. Let SB be the set of
all such normalized f ∈ L2(R) that GB(f) is a tight frame. When B is omitted, we
shall understand that B = Id, i.e. we deal with the standard rectangular lattice.
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The representations ρS and ρS ◦αA are equivalent and the equivalence is estab-
lished by the image of A under metaplectic representation (cf. Ref. 9, Sec. 4.2,
pp. 177–179) denoted by µ(A). The equivalence between the representations ρS

and ρS ◦ αA translates into

Mq′T−p′ = κA(p, q) µ(A) Mq T−p µ(A)−1

where p′ = (p′, q′) = Ap. Expressed in terms of π this relation reads as follows:

π(Ap) = κA′(p)µ(A′)π(p)µ(A′)−1. (2.1)

Note that the seeming discrepancy between the last two formulas is due to the
different order and signs of coordinates in the Heisenberg group.

The metaplectic representation µ is a mapping from SL(2,R) into unitary oper-
ators of L2(R) becoming a representation when we allow ambiguity of sign up to ±1,
or when we consider a double-valued covering of SL(2,R) known as the metaplectic
group.

As each element of SL(2,R) can be decomposed into the product of the matrices
J , Na, Db, the operators µ(A) are the products of the respective operators (cf.
Ref. 9, pp. 177–179):

µ(J )f(x) = F−1f(x), µ(Na)f(x) = e2πiax2
f(x), µ(Db)f(x) = |b|1/2f(bx).

Let Z : L2(R) → L2([0, 1)2) be the Zak transform with the parameter 2 (for the
detailed discussion of properties and applications of Zak transform see, for instance,
Refs. 12–14 and 18) defined as:

Zf(t, ω) = 21/2
∑

n∈Z
f(2(t− n))e2πinω

with the following quasi-periodicity properties:

Zf(t + 1, ω) = e2πiωZf(t, ω), Zf(t, ω + 1) = Zf(t, ω).

Zak transform has the following properties for operators M1 and T2:

Z[M1f ](t, ω) = e4πitZf(t, ω), Z[T2f ](t, ω) = e−2πiωZf(t, ω).

One directly verifies that

Z [Jf ] (t, ω) = Zf(ζt, 1− ω),

for t, ω ∈ [0, 1], where ζt = t− [2t] + 1
2 , and that ζ cycles the points t and t + 1

2 for
any t ∈ [

0, 1
2

]
.

Let us define an isomorphism Φ between L2(R) and L2([0, 1)× [0, 1/2),C2) by

Φf(t, ω) =
(
Zf(t, ω), Zf

(
t +

1
2
, ω

))
. (2.2)

Note that Φ is a particular case of Piecewise Zak Transform.18
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3. Rectangular Lattices

The theorem below combines Proposition 5.27 and Theorem 5.5.1

Theorem 3.1. Let f ∈ L2(R), ‖f‖ = 1. If (MmTn/2f)m,n∈Z is a tight frame in
L2(R), then the system composed of (M2mf)m∈Z and

[2−1/2
(
MmTn/2f + (−1)m+nM−mTn/2f

)
]n≥1,m∈Z (3.1)

is an orthonormal basis in L2(R) if and only if

Ek(x) =
∑

n∈Z
(−1)nf(x− k − n/2− 1/2)f(−x− n/2) = 0 (3.2)

for almost all x ∈ [0, 1/2). In particular, if Ff is real-valued, the condition (3.2) is
satisfied. Moreover, the system composed of (M2m+1f)m∈Z and

[2−1/2(MmTn/2f − (−1)m+nM−mTn/2f)]n≥1,m∈Z (3.3)

is an orthonormal basis in L2(R) if and only if the same condition holds.

We shall be using in the sequel the following definition of a Wilson system:

Definition 3.1. Given f ∈ S and for each choice of α, β, γ ∈ {0, 1} the (α, β, γ)-
Wilson system Wα,β,γ(f) = V0 ∪ V1, where

V0 =





(Mm+γ/2f)m∈Z α = 1

(Mm/2f)m∈Z α = 0, γ = 0

∅ α = 0, γ = 1,

V1 = (vmn)m∈Z,n>0,

vmn = 2−1/2(Mm/2Tnf + (−1)mα+nβ+γMm/2T−nf).

Note that the classical Wilson system (3.1) is obtained as FW1,1,0(f) and (3.3)
as FW1,1,1(f). Let us consider the subset Vα,β,γ of S consisting of these f that
Wα,β,γ(f) is an orthonormal basis in L2(R).

We shall summarize Theorems 2.1 and 4.1, and Corollaries 5.1 and 6.1.17

Theorem 3.2. Let f ∈ S. Then f ∈ Vα,β,γ if and only if for all m, n ∈ Z
〈M β

2
T1−αJf,MmT2nf〉 = 0.

Example 3.1. Let us start with a Gabor tight frame atom f = S−1/2ϕ, ϕ(x) =
21/4e−πx2

being the Gaussian function and S the frame operator related to G(ϕ).
Then define a function g by means of Zak transform:

Zg(t, ω) =





Zf(t, ω) for (t, ω) ∈ [0, 1/2)× [0, 1/2),

Zf(t, ω) for (t, ω) ∈ [1/2, 1)× [0, 1/2),

Zf(t, 1− ω) for (t, ω) ∈ [0, 1/2)× [1/2, 1),

−Zf(t, 1− ω) for (t, ω) ∈ [1/2, 1)× [1/2, 1).
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Isomorphism Φ defined in (2.2) diagonalizes the operators (MmT2n)m,n∈Z and
one verifies that the characterization condition in Theorem 3.2 is equivalent to

〈Φ[Jg](t, ω),Φg(t, ω)〉C2 = 0

for almost all (t, ω) ∈ [0, 1/2) × [0, 1) and that the system W1,0,0g by means of
Theorem 3.2 is indeed an orthonormal basis for L2(R).

To ascertain that g as f is a Gabor tight frame atom it is enough to verify
that ‖Φ(f)‖2 = ‖Φ(g)‖2 which holds because |Zg| = |Zf | for almost all (t, ω) ∈
[0, 1)× [0, 1) by definition. As Zf(t, 1− ω) = Zf(t, ω), one can alternatively define
g by

Zg(t, ω) =





Zf(t, ω) for (t, ω) ∈ [0, 1/2)× [0, 1/2),

Zf(t, ω) for (t, ω) ∈ [1/2, 1)× [0, 1/2),

Zf̄(t, ω) for (t, ω) ∈ [0, 1/2)× [1/2, 1),

−Zf̄(t, ω) for (t, ω) ∈ [1/2, 1)× [1/2, 1).

4. General Lattices

In this section we define a Wilson system for all choices α, β, γ for the general lattice
and characterize the atoms for which such a Wilson system is an orthonormal basis
for L2(R). In the sequel we shall be using the notation π(p) rather than MpTq used
previously.

Definition 4.1. A Wilson system WB
α,β,γ(f) for a lattice B(Z/2×Z) is the union

V0 ∪ V1, where

V0 =





(π(B(m + γ/2, 0))f)m∈Z α = 1

(π(B(m/2, 0))f)m∈Z α = 0, γ = 0

∅ α = 0, γ = 1,

(4.1)

V1 = (vmn)m∈Z,n>0, (4.2)

vmn = 2−1/2(π(B(m/2, n))f + λB′(m,n)(−1)mα+nβ+γπ(B(m/2,−n))f),

(4.3)

Note that the above definition coincides with Definition 3.1 when B = Id. The
below proposition is a core of the argument in Theorem 2.515 which we extend
from WB

1,1,0(f) to the arbitrary choice of (α, β, γ).

Proposition 4.1. Let f ∈ SB. Then WB
α,β,γ(f) is isometric with

Wα,β,γ(µ(B′)−1f).

Proof. By the definition of metaplectic representation µ (see Ref. 9, p. 177,
compare (2.1) above)

π(B(m/2, n)) = κB′(m/2, n)µ(B′)Mm/2Tnµ(B′)−1. (4.4)
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Applying it to (4.3), we obtain by Proposition 2.1 that

vmn = 2−1/2(κB′(m/2, n)µ(B′)Mm/2Tnµ(B′)−1f

+ κB′(m/2,−n)λB′(m, n)(−1)mα+nβ+γµ(B′)Mm/2T−nµ(B′)−1f)

= 2−1/2κB′(m/2, n)µ(B′)
(
Mm/2Tn + (−1)mα+nβ+γMm/2T−n

)
µ(B′)−1f

and analogously for the elements of V0. Since µ(B′) is unitary, system WB
α,β,γ(f) is

isometric to Wα,β,γ(µ(B′)−1f).

The below useful corollary follows immediately from the above proposition.

Corollary 4.1. Let f ∈ SB. Then f ∈ VB
α,β,γ if and only if µ(B′)−1f ∈ Vα,β,γ .

Theorem 2.515 can be restated as:

Theorem 4.1. Let f ∈ SB. If µ(B′)−1f is real-valued, then f ∈ VB
1,1,0.

Proof. By Proposition 4.1 the system WB
1,1,0(f) is isometric to W1,1,0(µ(B′)−1f),

which by Theorem 3.1 is an orthonormal basis for L2(R) from the assumption about
real-valuedness of µ(B′)−1f .

By Proposition 4.1 and using Theorem 3.2 we are able to obtain the characterization
of VB

1,1,0 together with similar results for VB
α,β,γ .

Theorem 4.2. Let f ∈ SB. Then f ∈ VB
α,β,γ if and only if for all m,n ∈ Z

〈
µ(B′)Jµ(B′)−1f, π (B(m− β/2, 2n + α− 1)) f

〉
= 0.

Proof. Since WB
α,β,γ(f) is isometric with Wα,β,γ(µ(B′)−1f), by Theorem 3.2 such

a system is an orthonormal basis if for all m,n ∈ Z
〈M β

2
T1−αJµ(B′)−1f,MmT2nµ(B′)−1f〉 = 0

or

〈Jµ(B′)−1f,M− β
2
Tα−1MmT2nµ(B′)−1f〉 = 0,

which is equivalent to

〈Jµ(B′)−1f, Mm− β
2
T2n+α−1µ(B′)−1f〉 = 0. (4.5)

Again using (4.4), we get by linearity of B and unitarity of µ(B′)
〈
Jµ(B′)−1f, µ(B′)−1π

(
B

(
m− β

2
, 2n + α− 1

))
f

〉
= 0,

〈
µ(B′)Jµ(B′)−1f, π

(
B

(
m− β

2
, 2n + α− 1

))
f

〉
= 0.
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The result in Theorem 4.2 embraces the case of the hexagonal lattice discussed
as an example in Ref. 15 and also yields new facts about Wilson systems on the
rectangular lattice. Indeed, notice that picking symplectic B that preserves the
lattice Z/2 × Z we obtain different pairings of time-frequency shifts that are also
orthonormal bases for L2(R).

Example 4.1. Consider g defined in Example 3.1 and the hexagonal lattice
B(Z/2× Z) for

B =




1
h

1
4h

0 h


 , B′ =




h 0

− 1
4h

1
h


 , h =

4
√

3√
2
.

As B′ = N− 1
4h2
Dh = N− 1

2
√

3
D 4√3√

2

, one finds µ(B′) to be equal

µ(B′) = µ(N− 1
2
√

3
)µ(D 4√3√

2

),

µ(B′)g(x) =

√
4
√

3√
2
e−πix2/

√
3g

(
4
√

3√
2
x

)
.

Then by Theorem 4.2 µ(B′)g ∈ VB
1,0,0 and WB

1,0,0(g) is an orthonormal basis in
L2(R).

Example 4.2. Let us start again with a Gabor tight frame atom f = S−1/2ϕ from
Example 3.1. Consider

B =
[

1 0
2 1

]
and B′ =

[
1 −2
0 1

]
.

Note that B preserves the lattice Z/2× Z and that in this case

µ(B′) = Fµ(N2)F−1.

Let g(x) = µ(B′)f(x). Definition 4.1 of the Wilson system in the case of non-
rectangular lattices yields that the system WB

1,1,0(g) composed of (MmT2mg)m∈Z
and

[2−1/2
(
Mm/2Tm+ng + (−1)m+nMm/2Tm−ng

)
]n≥1,m∈Z (4.6)

is an orthonormal basis in L2(R).

Example 4.3. Using the same function f as in the previous example, consider

B =


1

1
2

0 1


 and B′ =




1 0

−1
2

1


 .

Again B preserves the lattice Z/2× Z and

µ(B′) = µ(N−1/2).
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Let

g(x) = µ(B′)f(x) = e−πix2
S−1/2ϕ(x).

Definition 4.1 yields in this case the system WB
1,1,0(g) composed of (Mmg)m∈Z and

[2−1/2
(
Mm/2+n/2Tng + (−1)m+nMm/2−n/2T−ng

)
]n≥1,m∈Z (4.7)

that is an orthonormal basis in L2(R). So one can pick the time-frequency shifts
that are symmetric with respect to the point Mm/2 and the obtained Wilson system
can still be an orthonormal basis for L2(R), but the interval that connects them is
no longer perpendicular to the axis referring to the modulations.

Remark 4.1. Theorem 4.2 holds in the higher dimensions d as well with the only
limitation that the lattice generating matrix B has to be symplectic of the order d

i.e. B ∈ Sp(d,R). The definition of the symplectic lattice for which the statements
hold i.e. B(Z/2× Z) is a bit different from one in the literature, where the lattice
is considered symplectic if it is of the form αAZ2, where A is symplectic and α 6= 0
(see Ref. 10, Definition 9.4.2, p. 198). One can however easily see that for lattices
of volume 1/2 these settings can be switched picking A = B diag(1/

√
2,
√

2) and
α = 1/

√
2.
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8. H. G. Feichtinger, K. Gröchenig and D. Walnut, Wilson bases and modulation spaces,
Math. Nachr. 155 (1992) 7–17.

9. G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Studies, Vol. 122
(Princeton University Press, Princeton, 1989).
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