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Abstract

We report on results of Kraśkiewicz and the author, and Watanabe on
KP modules materializing Schubert polynomials, and filtrations having
KP modules as their subquotients. We discuss applications of the bundles
Sw(E) for filtered ample bundles E and KP filtrations to positivity due
to Fulton and Watanabe respectively.
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1 Introduction
In the present article, we survey a recent chapter of representation theory of
U(b)-modules: the theory of KP modules.

∗Supported by National Science Center (NCN) grant No. 2014/13/B/ST1/00133.
2010 Mathematics Subject Classification. Primary 14C17, 14M15, 20C12, 20G15, 20J85.
Keywords. U(b)-module, Demazure module, KP module, KP filtration, cyclic module,

character, Schur function, Schur functor, Schubert polynomial, subquotient, positivity, ample
bundle.

1



There is a really famous family of U(b)-modules: these are Demazure mod-
ules (see [7, 8], [14], [2], and [15]). They are given by the spaces of sections of
line bundles on the Schubert varieties in flag manifolds. Invented in the 1970s
by Demazure, the theory was developed in the 1980s by Joseph, Andersen, Polo,
Mathieu, van der Kallen et al.

The origins of KP modules, though also related to Schubert varieties, are
different. In the beginning of the 1980s, Lascoux and Schützenberger [20] dis-
covered Schubert polynomials — certain polynomial lifts of cohomology classes
of Schubert varieties in flag manifolds (see [3]). Schubert polynomials are de-
scribed in Sect. 3. It was a conjecture of Lascoux (Oberwolfach, June 1983)
that there should exist a functorial version of this construction (similarly as
to Schur functions there correspond Schur functors, cf. Sect. 2). The Lascoux
conjecture was solved affirmatively by Kraśkiewicz and the author [16, 17]. The
so-obtained modules were called Kraśkiewicz–Pragacz modules, in short KP mod-
ules by Watanabe, who is the author of further developments of the theory of
the KP modules and KP filtrations in the spirit of highest weight categories [5].
His work [33, 34, 35, 36] is surveyed in Sect. 5. The aforementioned KP modules
and related modules, e.g., Schur flagged modules are discussed in Sect. 4.

The last two sections are devoted to studying positivity.
In Section 6, we discuss a recent result of Watanabe, showing that a Schur

function specialized with the monomials xα1
1 xα2

2 . . . of a Schubert polynomial is
a nonnegative combination of Schubert polynomials. The method relies on KP
filtrations.

For a monomial xα = xα1
1 xα2

2 . . ., set l(xα) := α1x1+α2x2+. . .. In Section 7,
we discuss a result of Fulton from the 1990s, asserting that a Schur function
(or Schubet polynomial) specialized with the expressions l(xα) associated to
the monomials xα of a Schubert polynomial is a nonnegative combination of
Schubert polynomials. The method relies on ample vector bundles.

Perhaps a couple of words about comparison of Demazure and KP mod-
ules is in order. KP modules are in some way similar to Demazure modules
(of type (A)), the modules generated by an extremal vector in an irreducible
representation of gln: they are both cyclic U(b)-modules parametrized by the
weights of the generators, and if the permutation is vexillary, then the KP mod-
ule coincides with Demazure module with the same weight of the generator. If
a permutation is not vexillary, then there exists a strict surjection from the KP
module to the Demazure module of the corresponding lowest weight.

This article is a written account of the talk given by the author during the
conference “IMPANGA 15” at the Banach Center in Będlewo in April 2015.

Acknowledgments
The author is greatly indebted to Witold Kraśkiewicz for collaboration on [16,
17], and for a critical comment on the first draft of this paper. His sincere
thanks go to Masaki Watanabe for helpful discussions, and for pointing out a
mistake in the previous version of this article. Finally, the author thanks the
organizers of the conference “IMPANGA 15” for their devoted work.

2



2 Schur functors
Throughout this paper, let K be a field of characteristic zero.

In his dissertation [30] (Berlin, 1901), Schur gave a classification of irre-
ducible polynomial representations of the general linear group GLn(K), i.e.,
homomorphisms

GLn(K) → GLN (K)

sending an n×n-matrix X to an N ×N -matrix [Pij(X)], where Pij is a polyno-
mial in the entries of X. Let Σn denotes the symmetric group of all bijections
of {1, . . . , n}. Consider the following two actions on E⊗n, where E is a finite
dimensional vector space over K:

• of the symmetric group Σn via permutations of the factors;

• the diagonal action of GL(E).

Irreductible representations Sλ of the symmetric group Σn are labeled by
partitions of n, see, e.g., [4]. By a partition of n, we mean a sequence

λ = (λ1 ≥ . . . ≥ λk ≥ 0)

of integers such that |λ| = λ1 + . . . + λk = n. A partition is often represented
graphically by its diagram with λi boxes in the ith row (cf. [24]).

Example 1. The diagram of the partition (8, 7, 4, 2) is

Let R be a commutative ring at let E be an R-module. We define the Schur
module associated with a partition λ as follows:

Vλ(E) := HomZ[Σn](S
λ, E⊗n) ,

where Z[Σn] denotes the group ring of Σn with integer coefficients (cf. [27]).
In fact, Vλ(−) is a functor: if E,F are R-modules over a commutative ring R,

and f : E → F is an R-homomorphism, then f induces an R-homomorphism
Vλ(E) → Vλ(F ). In this way, we get all irreducible polynomial representations
of GLn(K).

Let us label the boxes of the diagram of a partition of n with numbers
1, . . . , n, and call such an object a tableau. For example, a tableau for the
diagram of the partition (8, 7, 4, 2) is

16

7

11

1

2

20

8

15

12

18

19

16

9

3

6

10

17

5

4

21 13

Consider the following two elements of Z[Σn] associated with a tableau:
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• P := sum of w ∈ Σn preserving the rows of the tableau ;

• N := sum of w ∈ Σn with their signs, preserving the columns of the
tableau .

The following element of Z[Σn]:

e(λ) := N ◦ P

is called a Young symmetrizer. For more on Young symmetrizers, see [4]. We
have an alternative presentation of Schur module:

Vλ(E) = e(λ)E⊗n.

There is still another way of getting Schur modules Vλ(E) (see [18] and [1]) as
the images of natural homomorphisms between the tensor products of symmetric
and exterior powers of a module:

Sλ1
(E)⊗ . . .⊗ Sλk

(E) → E⊗|λ| → ∧µ1(E)⊗ . . .⊗ ∧µl(E). (1)

(here µ = λ∼ is the conjugate partition of λ, see [24], where a different notation
is used; the first map is the diagonalization in the symmetric algebra, and the
second map is the multiplication in the exterior algebra), and

∧µ1(E)⊗ . . .⊗ ∧µl(E) → E⊗|λ| → Sλ1
(E)⊗ . . .⊗ Sλk

(E)

(here the first map is the diagonalization in the exterior algebra, and the second
map is multiplication in the symmetric algebra).

Example 2. We have V(n)(E) = Sn(E) and V(1n)(E) = ∧n(E), the nth sym-
metric and exterior power of E.

Let T be the subgroup of diagonal matrices in GLn(K):
x1

x2 0
x3

0
. . .

 . (2)

Let E be a finite dimensional vector space over K. Consider the action of T on
the Schur module Vλ(E) associated with a partition λ = (λ1, . . . , λk), induced
from the action of GLn(K) via restriction.

Theorem 3 (Main result of Schur’s Thesis). The trace of the action of T on
Vλ(E) is equal to the Schur function:

sλ(x) = det
(
sλp−p+q(x1, . . . , xn)

)
1≤p,q≤k

,

where si(x1, . . . , xn), i ∈ Z, is the complete symmetric function of degree i if
i ≥ 0, and zero otherwise.

For more on Schur functions, see [24] and [19].
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Among the most important formulas in the theory of symmetric functions,
they are the following Cauchy formulas:∏

i,j

(1− xiyj)
−1 =

∑
λ

sλ(x)sλ(y)

and ∏
i,j

(1 + xiyj) =
∑
λ

sλ(x)sλ∼(y) .

Schur functors were brought to the attention of algebraists in [18] together with
the materializations1 of the Cauchy formulas: for free R-modules E,F one has:

Sn(E ⊗ F ) =
⊕
|λ|=n

Vλ(E)⊗ Vλ(F ) ,

and
∧n(E ⊗ F ) =

⊕
|λ|=n

Vλ(E)⊗ Vλ∼(F ) .

Whereas the former formula gives the irreducible GL(E) × GL(F )-representa-
tions of the decomposition of the space of polynomial functions on the space
of dim(E)× dim(F )-matrices, the importance of the latter comes from the fact
that it describes the Koszul syzygies of the ideal generated by the entries of a
generic dim(E)×dim(F )-matrix. Then, using suitable derived functors (follow-
ing a method introduced in Kempf’s 1971 Thesis), this allows one to describe
syzygies of determinantal ideals [18]. In fact, there is a natural extension of
Schur functors to complexes with many applications (see [27] and [1]).

3 Schubert polynomials
In the present article, by a permutation w = w(1), w(2), . . . , we shall mean a
bijection N → N, which is the identity off a finite set. The group of permutations
will be denoted by Σ∞. The symmetric group Σn is identified with the subgroup
of Σ∞ consisting of permutations w such that w(i) = i for i > n. We set

A := Z[x1, x2, . . . ] .

We define a linear operator ∂i : A → A as follows:

∂i(f) :=
f(x1, . . . , xi, xi+1, . . . )− f(x1, . . . , xi+1, xi, . . . )

xi − xi+1
.

These are classical Newton’s divided differences. For more on divided differ-
ences, see [20, 21], [23], and [19].

For a simple reflection si = 1, . . . , i− 1, i+ 1, i, i+ 2, . . . , we put ∂si := ∂i.

Lemma 4. Suppose that w = s1 . . . sk = t1 . . . tk are two reduced words for a
permutation w. Then we have ∂s1 ◦ . . . ◦ ∂sk = ∂t1 ◦ . . . ◦ ∂tk .

(See [3] and [6].)
1We say that a formula on the level of representations “materializes” a polynomial formula

if the latter is the character of the former.
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Figure 1: Schubert polynomials for Σ4
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Thus for any w ∈ Σ∞, we can define ∂w as ∂s1 ◦ . . . ◦ ∂sk independently of a
reduced word of w.

Let w ∈ S∞ and let n be a natural number such that w(k) = k for k > n.
We define the Schubert polynomial of Lascoux and Schützenberger [20] associated
with a permutation w, by setting

Sw := ∂w−1w0
(xn−1

1 xn−2
2 . . . x1

n−1x
0
n) ,

where w0 is the permutation (n, n− 1, . . . , 2, 1), n+ 1, n+ 2, . . . . Observe that
this definition does not depend on the choice of n, because

∂n ◦ . . . ◦ ∂2 ◦ ∂1(xn
1x

n−1
2 . . . xn) = xn−1

1 xn−2
2 . . . xn−1 .

In the picture of Schubert polynomials for the symmetric group Σ4, displayed
in Figure 1, we have: a = x1, b = x2, c = x3; to a permutation there is attached
its Schubert polynomial; the line ∼∼∼ means ∂1, the straight continuous line
means ∂2, and the line − − − means ∂3. (The author got this picture from
Lascoux in February 1982 together with a preliminary version of [20].)

Also, we define the kth inversion set of a permutation w as follows:

Ik(w) := {l : l > k, w(k) > w(l)} k = 1, 2, . . . .

By the code of w (notation: c(w)), we shall mean the sequence (i1, i2, . . . ),
where ik = |Ik(w)|, k = 1, 2, . . . . A code determines the corresponding permu-
tation in a unique way.

Example 5. The code c(4, 2, 1, 6, 3, 5, 7, 8, . . . ) is equal to (3, 1, 0, 2, 0, . . . ).

Let us mention the following properties of Schubert polynomials:

• A Schubert polynomial Sw is symmetric in xk and xk+1 if and only if
w(k) < w(k + 1) (or equivalently if ik ≤ ik+1);

• If w(1) < w(2) < . . . < w(k) > w(k+1) < w(k+2) < . . . (or equivalently
i1 ≤ i2 ≤ . . . ≤ ik, 0 = ik+1 = ik+2 = . . .), then Sw is equal to the Schur
function sik,...,i2,i1(x1, . . . , xk).

• If i1 ≥ i2 ≥ . . . , then Sw = xi1
1 xi2

2 . . . is a monomial.

Example 6. The Schubert polynomials of degree 1 are Ssi = x1 + . . . + xi,
i = 1, 2, . . . .

For properties of Schubert polynomials, including those mentioned above,
the reader may consult [23] and [19].

Note that the Schubert polynomials indexed by Σn do not generate addi-
tively Z[x1, . . . , xn]. We have (see [23])∑

w∈Σn

ZSw =
⊕

0≤αi≤n−i

Zxα1
1 xα2

2 . . . xαn
n .

If the sets Ik(w) form a chain (with respect to the inclusion), then the
permutation w is called vexillary. Equivalently, there are no i < j < k < l with
w(j) < w(i) < w(l) < w(k) (see, e.g., [23]).

The following result stems from [20] and [32]:
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Theorem 7 (Lascoux–Schützenberger, Wachs). If w is a vexillary permutation
with code (i1, i2, . . . , in > 0, 0, . . . ), then

Sw = s(i1,...,in)≥ (min I1(w)− 1, . . . ,min In(w)− 1)
≤

.

(By (−)≥ and (−)≤, we mean the respectively ordered sets.)
Here, for two sequences of natural numbers

i1 ≥ . . . ≥ ik and 0 < b1 ≤ . . . ≤ bk ,

si1,...,ik(b1, . . . , bk) := det
(
sip−p+q(x1, . . . , xbp)

)
1≤p,q≤k

is a flagged Schur function (see [23]).

4 Functors asked by Lascoux
Let R be a commutative Q-algebra, and E• : E1 ⊂ E2 ⊂ . . . a flag of R-modules.
Suppose that I = [ik,l], k, l = 1, 2, . . . , is a matrix of 0’s and 1’s such that

• ik,l = 0 for k ≥ l;

•
∑

l ik,l is finite for any k;

• I has a finite number of nonzero rows.

Such a matrix I is called a shape. We shall represent a shape graphically
by replacing each unit by “×” and by omitting zeros on the diagonal and under
it. Moreover, we shall omit all the columns which are right to the last nonzero
column. For example, the matrix

0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 1 0 . . .
0 0 0 1 0 0 0 0 0 . . .
0 0 0 0 1 0 1 0 0 . . .
0 0 0 0 0 0 1 0 0 . . .
0 0 0 0 0 0 0 0 0 . . .

......

will be represented as

0 0 0 0 0 0 0
0 0 0 0 0 ×

× 0 0 0 0
× 0 × 0

0 × 0
0 0

.

Let ik :=
∑∞

l=1 ik,l , ĩl :=
∑∞

k=1 ik,l . We define SI(E•) as the image of the
following composition:

ΦI(E•) :
⊗
k

Sik(Ek)
∆S−→

⊗
k

⊗
l

Sik,l
(Ek)

m∧−→
⊗
l

∧ĩl
El , (3)

where ∆S is the diagonalization in the symmetric algebra and m∧ is the multi-
plication in the exterior algebra.

For example, if all the 1’s occur in I only in the kth row, then we get Sp(Ek),
where p is the number of 1’s. Also, if all the 1’s occur in I in one column in
consecutive p rows, then we get ∧p(Ek), where k is the number of the lowest
row with 1.

Remark 8. Note that SI(−) is a functor: if E• and F• are flags of R-modules,

f :
∪
n

En →
∪
n

Fn

is an R-homomorphism such that f(En) ⊂ Fn, then f induces an R-homomorphism
SI(E•) → SI(F•).
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Let w ∈ Σ∞. By the shape of w we mean the matrix:

Iw = [ik,l] := [χk(l)] , k, l = 1, 2, . . . ,

where χk is the characteristic function of Ik(w).
Example 9. For w = 4, 2, 1, 6, 3, 5, 7, 8, . . . , the shape Iw is equal to

× × 0 × 0
× 0 0 0

0 0 0
× ×

0

We define a module Sw(E•), associated with a permutation w and a flag
E• as SIw

(E•); this leads to a functor Sw(−). These modules were defined by
Kraśkiewicz and the author in [16, 17].
Example 10. Invoking the previous example, we see that S42163578...(E•) is the
image of the map

ΦI42163578... : S3(E1)⊗ S1(E2)⊗ S2(E4) → E1 ⊗ ∧2(E2)⊗ ∧2(E4)⊗ E5 .

From now on, let E• be a flag of K-vector spaces with dimEi = i. Let
B be the Borel group of linear endomorphisms of E :=

∪
Ei, which preserve

E•. The modules used in the definition of SI(E•) are Z[B]-modules, and the
maps are homomorphisms of Z[B]-modules. Let {ui : i = 1, 2, . . . } be a basis
of E such that u1, u2, . . . , uk span Ek. Then the module SI(E•) as a cyclic
Z[B]-submodule in

⊗
l

∧ĩl El, is generated by the element

uI :=
⊗
l

uk1,l
∧ uk2,l

∧ . . . ∧ ukil,l
,

where k1,l < k2,l < . . . < kil,l are precisely those indices for which ikr,l,l = 1. In
particular, Sw(E•) is a cyclic Z[B]-module generated by uw = uIw

. The modules
Sw(E•) were called by Watanabe Kraśkiewicz–Pragacz modules, in short KP
modules [33, v3].
Example 11. The KP module S42163578...(E•) is generated over Z[B] by the
element

u42163578... = u1 ⊗ u1 ∧ u2 ⊗ u1 ∧ u4 ⊗ u4 .

KP modules give a substantial generalization of Schur modules discussed
in Sect. 2. Note that any Schur module Vλ(Em), where λ = (λ1, . . . , λk >
0) and k ≤ m, can be realized as Sw(E•) for some w. We claim that the
permutation w with the code (0m−k, λk, . . . , λ1, 0, . . . ) determines the desired
KP module. Take for example m = 4, λ = (4, 3, 1). The permutation with the
code (0, 1, 3, 4, 0, . . . ) is 1, 3, 6, 8, 2, 4, 5, 7, 9, . . . , and has the shape

0 0 0 0 0 0 0
0 0 × 0 0 0

0 × × × 0
× × × ×

0 0 0
0 0

0
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Its KP module is given by the image of the map

ΦI136824579...
: E2 ⊗ S3(E3)⊗ S4(E4) → ∧3(E4)⊗ ∧2(E4)⊗ ∧2(E4)⊗ E4 .

We invoke at this point a standard basis theorem for Schur modules (see [1] and
[31]), which allows us to replace the flag E1 ⊂ . . . ⊂ Em by Em = . . . = Em

without change of the image of ΦIw
. We obtain that the image of ΦI136824579...

is equal to the image of the map (1)

E4 ⊗ S3(E4)⊗ S4(E4) → ∧3(E4)⊗ ∧2(E4)⊗ ∧2(E4)⊗ E4,

defining V(4,3,1)(E4).
We shall now study the character of Sw(E•). In Section 7, we shall show an

application of the following theorem to algebraic geometry. In fact, this theorem
will tell us what are the Chern roots of the bundle Sw(E) as functions of the
Chern roots of the original bundle E.

Consider the maximal torus (2) T ⊂ B consisting of diagonal matrices with
x1, x2, . . . on the diagonal, with respect to the basis {ui : i = 1, 2, . . . }.

Theorem 12 (Kraśkiewicz–Pragacz). Let w ∈ Σ∞. The trace of the action of
T on Sw(E•) is equal to the Schubert polynomial Sw.

About the proof: we study the multiplicative properties of Sw(E•)’s, com-
paring them with those of the Sw’s.

Let tp,q be the permutation:

1, . . . , p− 1, q, p+ 1, . . . , q − 1, p, q + 1, . . . .

We now record the following formula for multiplication by Ssk :

Theorem 13 (Monk). Let w ∈ Σ∞. We have

Sw · (x1 + . . .+ xk) =
∑

Sw◦tp,q ,

where the sum is over p, q such that p ≤ k, q > k and l(w ◦ tp,q) = l(w) + 1.

(See [26], [21], and [23].)

Example 14. We have

S135246... · (x1 + x2) = S235146... +S153246... +S145236... .

In fact, we shall use more efficiently the following result of Lascoux and
Schützenberger (see [22]).

Theorem 15 (Transition formula). Let w ∈ Σ∞. Suppose that (j, s) is a pair
of positive integers such that

1) j < s and w(j) > w(s),

2) for any i ∈]j, s[, w(i) /∈ [w(s), w(j)]

3) for any r > j, if w(s) < w(r) then there exists i ∈]j, r[ such that w(i) ∈
[w(s), w(r)].
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Then
Sw = Sv · xj +

m∑
p=1

Svp
,

where v = w ◦ tj,s, vp = w ◦ tj,s ◦ tkp,j , p = 1, . . . ,m, say. Here the numbers kp
are such that

4) kp < j and w(kp) < w(s),

5) if i ∈]kp, j[ then w(i) /∈ [w(kp), w(s)].

Note that if (j, s) is the maximal pair (in the lexicographical order) satis-
fying 1), then conditions 2)–3) are also fulfilled. A transition corresponding to
this pair will be called maximal. In particular, for any nontrivial permutation,
there is at least one transition.

Example 16. For the permutation 521863479 . . .,

S521843679... · x5 +S524813679... +S541823679...

is the maximal transition, and other transitions are

S521763489... · x4 +S527163489... +S571263489... +S721563489...

and
S512864379... · x2 .

We prove that for the maximal transition for w, there exists a filtration of
Z[B]-modules

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm ⊂ F = Sw(E•)

together with isomorphisms

F/Fm ≃ Sv(E•)⊗ Ej/Ej−1 and Fp/Fp−1 ≃ Svp(E•)

where p = 1, . . . ,m. This implies an isomorphism of T -modules

Sw(E•) ≃ Sv(E•)⊗ Ej/Ej−1 ⊕
m⊕

p=1

Svp(E•) .

By comparing this with the transition formula for Schubert polynomials, the
assertion of Theorem 12 follows by a suitable induction.
(For details see [17, Sect. 4].)

There exist flagged Schur modules Sλ(−), associated with suitable shapes
(see [17, p. 1330]). Suppose that E• is a flag of free R-modules with E1 = R
and such that the ith inclusion in the flag is given by Ei ↪→ Ei⊕R ≃ Ei+1. We
record

Theorem 17 (Kraśkiewicz–Pragacz). If w is a vexillary permutation with code
(i1, i2, . . . , in > 0, 0, . . . ), then

Sw(E•) = S(i1,...,in)≥
(
Emin I1(w)−1, . . . , Emin In(w)−1

)≤
.

(See [16, 17].)
There is a natural extension of KP modules to complexes with interesting

applications (see [29]).
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5 KP filtrations of weight modules
All the results of this section (with just a few exceptions) are due to Watanabe
in [33, 34]. In [33], the author studied the structure of KP modules using the
theory of highest weight categories [5]. From the results in [33], in particular,
one obtains a certain highest weight category whose standard modules are KP
modules. In [34], the author investigated the tensor multiplication properties of
KP modules. At the end of this section, we shall summarize [35, 36].

In this section, we shall use the language and techniques of enveloping alge-
bras, see, e.g., [9].

Let b be the Lie algebra of n× n upper matrices over K, t that of diagonal
matrices, and U(b) the enveloping algebra of b. Suppose that M is a U(b)-
module and λ = (λ1, . . . , λn) ∈ Zn, Denote by

Mλ = {m ∈ M : hm = ⟨λ, h⟩m}

the weight space of λ, ⟨λ, h⟩ =
∑

λihi. If M is a direct sum of its weight spaces
and each weight space has finite dimension, then M is called a weight module.
For a weight module, we set

ch(M) :=
∑
λ

dimMλx
λ ,

where xλ = xλ1
1 . . . xλn

n .
Let eij be the matrix with 1 at the (i, j)-position and 0 elsewhere.
Let Kλ be a one-dimensional U(b)-module, where h acts by ⟨λ, h⟩ and the

matrices eij , where i < j, acts by zero. Any finite-dimensional weight module
admits a filtration by these one-dimensional modules.

Fix n ∈ N. In this section, we shall mainly work with permutations from

Σ(n) := {w : w(n+ 1) < w(n+ 2) < . . .} .

Observe that the codes of permutations in Σ(n) are in Zn
≥0; in fact, they exhaust

Zn
≥0. Moreover, we have ∑

w∈Σ(n)

ZSw = Z[x1, . . . , xn] .

Write E =
⊕

1≤i≤n Kui. For each j ∈ N, let lj = lj(w) be the cardinality of
the set

{i < j : w(i) > w(j)} = {i1 < . . . < ilj} ,
and write

u(j)
w = ui1 ∧ . . . ∧ uilj

∈ Λlj (E) .

We have uw = u
(1)
w ⊗ u

(2)
w ⊗ . . . and Sw = U(b)uw. The weight of uw is c(w).

Observe that Theorem 12 can be restated as

Theorem 18. For any w ∈ Σ(n), Sw is a weight module and ch(Sw) = Sw.

A natural question arises: What is the annihilator of uw?
Let w ∈ Σ(n). Consider the following assignment:

(1 ≤ i < j ≤ n) −→ mij(w) = #{k > j : w(i) < w(k) < w(j)} .

12



Then e
mij+1
ij annihilates uw. Let Iw ⊂ U(b) be the ideal generated by h −

⟨c(w), h⟩, h ∈ t, and e
mij(w)+1
ij , i < j. Then there exists a surjection

U(b)/Iw � Sw

such that 1 mod Iw 7→ uw.

Theorem 19 (Watanabe). This surjection is an isomorphism.

(See [33], Sect. 4.)
For α, β ∈ Zn, we shall write α± β for (α1 ± β1, . . . , αn ± βn).
For λ ∈ Zn

≥0, we set Sλ := Sw, where c(w) = λ. For λ ∈ Zn take k such that
λ + k1 ∈ Zn

≥0 (1 = (1, . . . , 1) n times), and set Sλ = K−k1 ⊗ Sλ+k1. We shall
use a similar notation for Schubert polynomials.

A KP fitration of a weight module is a sequence

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr = M

of weight modules such that each subquotient Mi/Mi−1 is isomorphic to some
KP module.

One can ask the following questions:
1. When a weight module admits a KP filtration?
2. Does Sλ ⊗ Sµ have a KP filtration?

Write ρ = (n − 1, n − 2, . . . , 1, 0). The module Kρ will play a role of a
“dualizing module”.

Let C denote the category of all weight modules. For Λ ⊂ Zn, let CΛ be the
full subcategory of C consisting of all weight modules whose weights are in Λ.
If |Λ| < ∞ and Λ′ = {ρ − λ : λ ∈ Λ}, then the map M 7→ M∗ ⊗Kρ yields an
isomorphism CΛ′ ∼= Cop

Λ .

Lemma 20. For any Λ ⊂ Zn, CΛ has enough projectives.

(See [33, Sect. 6].)
We now define some useful orders on Σ∞. For w, v ∈ Σ∞, w ≤lex v if w = v

or there exists i > 0 such that w(j) = v(j) for j < i and w(i) < v(i).
For λ ∈ Zn, define |λ| =

∑
λi. If λ = c(w), µ = c(v), we write λ ≥

µ if |λ| = |µ| and w−1 ≤lex v−1. For general λ, µ ∈ Zn take k such that
λ+ k1, µ+ k1 ∈ Zn

≥0, and define λ ≥ µ iff λ+ k1 ≥ µ+ k1.
For λ ∈ Zn, set C≤λ := C{ν:ν≤λ}.

Proposition 21. For λ ∈ Zn, the modules Sλ and S∗
ρ−λ ⊗ Kρ are in C≤λ.

Moreover, Sλ is projective and S∗
ρ−λ ⊗Kρ is injective.

(See [33, Sect. 6].)
For the definitions and properties of Ext’s, we refer to [25]. All Ext’s will be

taken over U(b), in C≤λ.

Theorem 22 (Watanabe). For µ, ν ≤ λ, Exti(Sµ, S
∗
ρ−ν ⊗Kρ) = 0 if i ≥ 1.

(See [33, Sect. 7]. This can be regarded a “Strong form of Polo’s theorem” [15,
Theorem 3.2.2].)

13



Theorem 23 (Watanabe). Let M ∈ C≤λ. If Ext1(M,S∗
ρ−µ ⊗ Kρ) = 0 for

all µ ≤ λ, then M has a KP filtration such that each of its subquotients is
isomorphic to some Sν with ν ≤ λ.

(See [33, Sect. 8] and also [34, Theorem 2.5].)

Corollary 24.
(1) If M = M1 ⊕ . . .⊕Mr, then M has a KP filtration iff each Mi does.
(2) If 0 → L → M → N → 0 is exact and M,N have KP filtrations, then L

also does.

Proof. Assertion (1) follows from Ext1(M,N) = ⊕Ext1(Mi, N) for any N .
Assertion (2) follows from the exactness of the sequence

Ext1(M,A) → Ext1(L,A) → Ext2(N,A)

for any A.

Proposition 25. Let w ∈ Σ(n), 1 ≤ k ≤ n − 1. Then Sw ⊗ Ssk has a KP
filtration.

This result was established in [17, Sect. 5] for k = 1 and in [34, Sect. 3] in
general.

Theorem 26 (Watanabe). Sw ⊗ Sv has a KP filtration for any w, v ∈ Σ(n).

In order to outline a proof, set li = li(w) and consider an U(b)-module

Tw =
⊗

2≤i≤n

Λli(Ki−1) .

The module Tw is a direct sum component of⊗
2≤i≤n

(
Ssi−1 ⊗ . . .⊗ Ssi−1

)
,

where Ssi−1
appears li times.

Proposition 27. Suppose that w ∈ Σn. Then there is an exact sequence

0 → Sw → Tw → N → 0 ,

where N has a filtration whose subquotients are Su with u−1 >lex w−1.

Granting this proposition, a proof of the theorem consists of considering the
following exact sequence of U(b)-modules

0 → Sw ⊗ Sv → Tw ⊗ Sv → N ⊗ Sv → 0 .

Here, the middle module has a KP filtration by the proposition and the
module on the right one by induction on lex(w). Consequently the module on
the left has a KP filtration by Corollary 24.

To show the proposition, we need the following

14



Lemma 28.
(i) If the coefficient of xc(v) in Sw is nonzero, then we have v−1 ≥lex w−1.
(ii) If Ext1(Sw, Su) ̸= (0), then u−1 <lex w−1.

(See [33, Sect. 6].)
We come back to the proposition. Define the integers mwu by∑

u∈Σn

mwuSu =
∏

2≤i≤n

eli(x1, . . . , xi−1) ,

where ek denotes the elementary symmetric function of degree k. Thus mwu is
the number of times Su appears as a subquotient of any KP filtration of Tw.
Let us invoke the following Cauchy-type formula:∏

i+j≤n

(xi + yj) =
∑

w∈Σn

Sw(x)Sww0
(y) (4)

(see [23] and [19]). Consider the bilinear form ⟨, ⟩ on the free abelian group
generated by Schubert polynomials Sw, where w ∈ Σn, corresponding to this
Cauchy identity, i.e., such that ⟨Su,Su′w0

⟩ = δuu′ for any u, u′ ∈ Σn. We have

mwu =
⟨
Suw0 ,

∏
2≤i≤n

eli(x1, . . . , xi−1)
⟩
.

We now use an additional property of the bilinear form: for any α, β ∈ Zn
≥0

with αi, βi ≤ n− i,⟨
xρ−α,

∏
1≤i≤n−1

eβi(x1, . . . , xn−i)
⟩
= δα,β .

Using these two mutually orthogonal bases of monomials and products of ele-
mentary symmetric functions, we infer that mwu is the coefficient of xn−1−ln

1 x
n−2−ln−1

2 . . .
in Suw0

. It is not hard to see that for any k,

n− k − ln+1−k = c(ww0)k ,

and thus mwu is equal to the coefficient of xc(ww0) in Suw0 . By Lemma 28(i),
this coefficient is nonzero only if

u−1 ≥lex w−1 .

If u = w, then mwu = 1; thus the subquotients of any KP filtration of Tw are
the KP modules Su, where u−1 >lex w−1, together with Sw which occurs just
once. Since, by Lemma 28(ii), Ext1(Sw, Su) = 0 if u−1 >lex w−1, one can take
a filtration such that Sw occurs as a submodule of Tw.

The proposition gives a materialization of (4).

Theorem 29 (Watanabe). Let λ ∈ Zn and M ∈ C≤λ. Then we have

ch(M) ≤
∑
ν≤λ

dimKHomU(b)(M,S∗
ρ−ν ⊗Kρ)Sν .

(Here
∑

aαx
α ≤

∑
bαx

α means that aα ≤ bα for any α.) The equality holds if
and only if M has a KP filtration with all subquotients isomorphic to Sµ, where
µ ≤ λ.
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(See [33, Sect. 8].)
As a byproduct, we get a formula for the coefficient of Sw in SuSv:

Corollary 30. This coefficient is equal to the dimension of

HomU(b)(Su ⊗ Sv, S
∗
w0w ⊗Kρ) = HomU(b)(Su ⊗ Sv ⊗ Swow,Kρ) .

Proof. We use ch together with its multiplicativity property, and infer

SuSv = ch(Su ⊗ Sv) =
∑
w

dimKHomU(b)(Su ⊗ Sv, S
∗
ρ−λ ⊗Kρ)Sw .

Note 31. In [35], Watanabe showed that the highest weight category from [33] is
self Ringel-dual and that the tensor product operation on U(b)-modules is com-
patible with Ringel duality functor. Also, an interesting formula: Exti(Sw, Sv) ≃
Exti(Sw0vw0

, Sw0ww0
) was established there. In a recent paper [36], Watanabe

gave explicit KP filtrations materializing Pieri-type formulas for Schubert poly-
nomials.

6 An application of KP filtrations to positivity
Let Vσ denote the Schur functor associated to a partition σ (cf. Sect. 2), and
let Sλ be the KP module associated with a sequence λ.

Proposition 32 (Watanabe). The module Vσ(Sλ) has a KP filtration.

Proof. The module S⊗k
λ has a KP filtration for any λ and any k. Hence

Ext1(S⊗k
λ , S∗

ν ⊗Kρ) = 0

for any ν by Theorem 23. The module Vσ(Sλ) is a direct sum factor of S⊗|σ|
λ .

Hence
Ext1(Vσ(Sλ), S

∗
ν ⊗Kρ) = 0

for any ν, and Vσ(Sλ) has a KP filtration.

Corollary 33. If Sw is a sum of monomials xα + xβ + . . ., then the following
specialization of a Schur function: sσ(x

α, xβ , . . . ) is a sum of Schubert polyno-
mials with nonnegative coefficients.

7 An application of the bundles Sw(E) to posi-
tivity

A good reference for the notions of algebraic geometry needed in this section
is [13]. For simplicity, by X, we shall denote a nonsingular projective variety.

Given a vector bundle E on X and a partition λ, by the Schur polynomial
of E, denoted by sλ(E), we shall mean sλ(α1, . . . , αn), where αi are the Chern
roots of E.

Let us recall that a vector bundle E on X is ample if for any coherent sheaf
F on X there exists a positive integer m0 = m0(F) such that for any m ≥ m0

the sheaf Sm(E)⊗ F is generated by its global sections (cf. [12]). Let O(1) be
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the twisting sheaf of Serre on P(E) (cf. [13, II]). Then the ampleness of E is
equivalent to the ampleness of the line bundle O(1) (see [12, Sect. 3]).

In [10, p. 632], Fulton showed that a Schur (or Schubert) polynomial of the
bundle Sw(E) associated to a filtered bundle E is a nonnegative combination of
Schubert polynomials of E. The method relies on ample vector bundles.

We shall say that a weighted homogeneous polynomial P (c1, c2, . . . ) of de-
gree d, where the variables ci are of degree i, is numerically positive for ample
vector bundles if for any variety X of dimension d and any ample vector bundle
E on X, ∫

X

P (c1(E), c2(E), . . . ) > 0 .

(Here
∫
X

denotes the degree of zero-cycles.)
Note that under the identification of ci with the ith elementary symmetric

function in x1, x2, . . . , any weighted homogeneous polynomial P (c1, c2, . . . ) of
degree d is a Z-combination of Schur polynomials

∑
|λ|=d aλsλ. In their study of

numerically positive polynomials for ample vector bundles, the authors of [11]
showed

Theorem 34 (Fulton–Lazarsfeld). Such a nonzero polynomial
∑

|λ|=d aλsλ is
numerically positive for ample vector bundles if and only if all the coefficients
aλ are nonnegative.

Schur functors give rise to Schur bundles Vλ(E) associated to vector bun-
dles E. In [28, Cor. 7.2], the following result was shown

Corollary 35 (Pragacz). In a Z-combination sλ(Vµ(E)) =
∑

ν aνsν(E) of
Schur polynomials, all the coefficients aν are nonnegative.

Indeed, assuming that E is ample, combining the theorem and the fact that
the Schur bundle of an ample bundle is ample (see [12]), the assertion follows.

To proceed further, we shall need a variant of functors SI(−) associated
with sequences of surjections of modules. Suppose that

F0 = F � F1 � F2 � . . . (5)

is a sequence of surjections of R-modules, where R is a commutative ring. Let
I = [ik,l] be a shape (see Sect. 4), ik :=

∑∞
l=1 ik,l, and ĩl :=

∑∞
k=1 ik,l . We

define S′
I(F•) as the image of the following composition:

ΨI(F•) :
⊗
k

∧ik(Fk)
∆∧−→

⊗
k

⊗
l

∧ik,l(Fk)
mS−→

⊗
l

Sĩl
(Fl) , (6)

where ∆∧ is the diagonalization in the exterior algebra and mS is the multipli-
cation in the symmetric algebra. For w ∈ Σ∞, we define

S′
w(F•) = S′

Iw
(F•) .

Suppose that R is K, and Fi is spanned by f1, f2, . . . , fn−i. Consider the max-
imal torus (2) T ⊂ B consisting of diagonal matrices with x1, x2, . . . on the
diagonal, with respect to the basis {fi : i = 1, 2, . . . }. If w ∈ Σn, then the
character of S′

w, i.e., the trace of the action of T on S′
w(F•), is equal to Sw0ww0 .
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We now pass to filtered vector bundles. By a filtered bundle, we shall mean
a vector bundle E of rank n, equipped with a flag of subbundles

0 = En ⊂ En−1 ⊂ . . . ⊂ E0 = E ,

where rank(Ei) = n− i for i = 0, 1, . . . , n.
For a polynomial P of degree d, and a filtered vector bundle E on a variety X,

by substituting c1(E0/E1) for x1, c1(E1/E2) for x2,…, c1(Ei−1/Ei) for xi, . . . ,
we get a codimension d class denoted P (E•). Such a polynomial P will be called
numerically positive for filtered ample vector bundles, if for any filtered ample
vector bundle E on any d-dimensional variety X,∫

X

P (E•) > 0 .

Write P as a Z-combination of Schubert polynomials P =
∑

awSw with the
unique coefficients aw. We then have (see [10])

Theorem 36 (Fulton). Such a nonzero polynomial P =
∑

awSw is numeri-
cally positive for filtered ample bundles if and only if all the coefficients aw are
nonnegative.

In [10], in fact, a more general result for r-filtered ample vector bundles is
proved.

Suppose that (5) is a sequence of vector bundles of ranks n, n− 1, . . . , 1. We
record

Lemma 37. If F is an ample vector bundle, then the bundle S′
w(F•) is ample.

Proof. The bundle S′
w(F•) is the image of the map (6), thus it is a quotient of

a tensor product of exterior powers of the bundles Fk which are quotients of
F . The assertion follows from the facts (see [12]) that a quotient of an ample
bundle is ample, an exterior power of an ample vector bundle is ample, and the
tensor product of ample bundles is ample.

Let xi = c1(Ker(Fn−i → Fn−i+1)). Write sλ(S
′
w(F•)) as a Z-combination

sλ(S
′
w(F•)) =

∑
v

avSv(x1, x2, . . . ) . (7)

Then assuming that F is ample, and observing that F admits a filtration by
Ker(F � Fi), i = 0, . . . , n, the following result holds true by the theorem and
the lemma.

Corollary 38 (Fulton). The coefficients av in (7) are nonnegative.

Let E be a filtered vector bundle with Chern roots x1, x2, . . . and w be a
permutation. Then using the notation from the introduction, the Chern roots
of the vector bundle Sw(E•) are expressions of the form l(xα), where xα are
monomials of Sw. This follows from the character formula for KP modules (cf.
Theorem 12). Therefore we can restate the corollary in the following way.

Corollary 39. A Schur function specialized with the expressions l(xα) associ-
ated to the monomials xα of a Schubert polynomial is a nonnegative combination
of Schubert polynomials.
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Note 40. In [17, Sect. 6], the reader can find a discussion of some developments
related to KP modules. It would be interesting to find further applications of
KP modules and construct analogues of KP modules for other types.
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