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0. INTRODUCTION

In the very late eighties a new identity for symmetric polynomials was
discovered. In the form presented here the identity is a generalization
of the Jacobi-Trudi identity. The latter identity expresses the Schur
polynomials in a finite set of variables as a certain symmetrizing operator
applied to monomials in the variables. The new identity involves two
sets of variables. It expresses the super Schur polynomials as a certain
symmetrizing operator applied to very simple polynomials in the two
sets of variables.

It is a classical result that the Schur polynomials are the characters of
the polynomial representations of SL,,. Hence the Jacobi~Trudi identity
may be viewed as a character formula for SL,,. This approach was
generalized to other algebraic groups by H. Weyl in his character formula.

The new identity was in fact discovered as a Weyl-type formula for
the characters of polynomial representations of the Lie superalgebra
sl(m/n). From one side the formula was conjectured by J. van der
Jeugt, J. W. B. Hughes, R. C. King and J. Thierry-Mieg [J-H-K-T,

p.2291]. On the other side the identity was communicated without proof
by A. Serge’ev to the first author who gave a proof of its validity in [P].
The proof, though elementary, rested on the characterization by J. Stem-
bridge of super Schur polynomials via a certain cancellation property;
therefore, the proof in [P] was not self-contained.

The aim of present note is to give a self-contained and elementary
proof of the new identity. The method used gives a simple insight in the
space of supersymmetric polynomials. Byproducts of the proof are the
above mentioned characterization of super Schur polynomials given by
J. Stembridge [S], the basis theorem and the factorization formula for
super Schur polynomials given by A. Berele and A. Regev [B-R], and
the duality formula.




1. PRELIMINARIES

SETUP (1.1). We use throughout for partitions the notation described
in Macdonald’s book [M]. In particular, a partition

A=(A1,A2,...)
is assumed to be decreasing,
At 2 A >,

and the Ferrers’ diagram of A is the set of points (7,7) € N2 such that
1 <7 £ )i, The diagram of A will be denoted D). The diagram will
always be pictured in a system of matrix coordinates where the first
index ¢ is a row index and the second j is a column index.

DEFINITION (1.2). Let m,n be non-negative integers. A partition A will
be said to be contained in the (m,n)-hook, if A4y < n, or, equivalently,
if the diagram D) is contained in the ‘hook’,

{(5,/)) e N’ |i<morj <n}.
Denote by DY"'" the following subset of D,:
DY™:={(1,4) [i<m, j<n, j <A}

Assume that A is contained in the (m,n)-hook. Then the part of D,
outside DY"'™ consists of two parts which — up to a translation — are
diagrams of partitions: The first part consists of the points to the right
of the line j = n, that is, of points (i,7) € Dy such that J > n, and
the second part consists of the points below the line : = m, that is, of
points (¢,7) € Dy such that ¢ > m. Up to a translation of the i-axis, the
first part is the diagram of a partition y; more precisely, the non-zero
parts of u are defined by u; = A; —n  for A\; > n. Similarly, the second
part is up to a translation the transpose of the diagram of a partition v,
whose non-zero parts are defined by v; = Aj —m  for AY > m. Here A’
denotes the conjugate of A, defined by transposing the diagram of A, or,
equivalently, by A\; = Card{i | A; > j}. Note that the partitions u and
v obtained from A depend on m and n.
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The three parts of Dy are pictured in the figure below, where each
point (i, ) is represented by a unit square with (4, j) as its lower right
vertex. ‘

J

? j=n

DEFINITION (1.3). Let X,,, = (z1,...,2m)and Y, = (y1,...,yn) be two
independent sets of indeterminates. Define polynomials Si(X m/Yy) for
all integers k by the following equation of power series in the variable T

[[a-2D)? T +4T) = 3 Si(Xm/Ya)T*.
=1

Jj=1 k

In particular, Sy = 0 when & < 0. Clearly, the polynomial Sy is homo-
geneous of degree equal to k.

Let A be a partition. Denote by I the length of A, that is, the number of
non-zero parts of A. Define the polynomial Sx(X,,/Y,) as the following
! x I determinant:

Sy = det[Sx;—i+;(Xm/Ya)l1<i i<t -

The polynomial S)(X,,/Yn) will be called the super Schur polynomial
corresponding to the partition A. It is homogeneous of degree equal to
the weight [A] = Ay + -+ 4+ X\ of .

Note that the polynomials Sx\(X,/Y,) specialize as m and n varies:
If m < 7 and n < A, then the substitution of z; = 0 for m < i <m
and y; = 0 for n < j < 7 in the polynomial Sy(X,;/Y:) yields the
polynomial Sx(Xn/Y5).

Note also that if n = 0, then the super Schur polynomial is the usual
Schur polynomial Sx(Xr,) in the single set of indeterminates X,,,.
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DEFINITION (1.4). Let A be a partition. Assume that the length of A is
less than or equal to m. Define

mi\1+m—1$;\2+m—2 B

(1.4.1) FA(Xm) =) w A(Xm) -

w

The sum is over all w in the group Aut(X,,) of all permutations of the
indeterminates X,,. The denominator A = A(X,,) is the Vandermonde

determinant
A= H (zi —z;).
1<i<j<m
When the length of A is greater than m, define F)\(X,,) := 0.

The sum on the right hand side of (1.4.1) is the result of applying a
symmetrizing operator. Note that the sum may be rewritten as follows:

1 . m— m-—
m Zs1gn(w)w[xi\‘+ Tgy2t 2---xﬁ;"].
w .

Clearly, the sum in the latter expression is an alternating polynomial.
Hence the sum is divisible by A(X,,). Thus Fy is indeed a symmetric
polynomial.

LEMMA (1.5). (1) For any partition X the following equation holds:
(15.1) Sx(Xm) = Fy(Xn).

(2) The polynomials F\(X,,) for all partitions A of length less than or

equal to m form a basis of the Z-module of symmetric polynomials in
Xm.

PROOF: The identity (1.5.1) is the Jacobi-Trudi identity. The reader
is referred Jacobi [J] for the classical proof or to Macdonald [M] for a
modern proof.

To prove (2), note that the polynomials of the form

Z sign(w)w [z z5? -+ - zom],
w

where the sequence of exponents is strictly decreasing, form a basis of
the Z-module of alternating polynomials. The latter statement implies
the assertion in (2), because multiplication by A(X,,) is an isomorphism
from the Z-module of symmetric polynomials onto the Z-module of al-
ternating polynomials.



DEFINITION (1.6). Let A be a partition. Assume that A is contained in
the (m, n)-hook. Define

Fax(Xn/Y,) =

m+m-1 n+n-1
1

Z T o m#lm Y t y;” H(i,j)ED;"'"(l'i + y])
w 3

where the partitions y and v are obtained from A as in (1.2). The sum is
over all permutations w = uxv in the product group Aut(X,,)x Aut(Yy).
When A is not contained in the (m, n)-hook, define F\(X,,/Y,) := 0.

LEMMA (1.7). (1) The polynomial F\(X,,/Y,) is homogeneous of de-
gree equal to |A|.

(2) If X is fixed, then the polynomials Fx\(Xm/Yy) for varying m and
n specialize, that is, if hn > m and A > n, then the substitution of
Tjp =+ = Tm41 = 0 and y4 = -+ = yp41 = 0 in the polynomial
F\(X/Y4) yields the polynomial F\(X,/Yy).

PROOF: The assertion in (1) is trivial.
Clearly, it suffices to prove the assertion in (2) for » = m + 1 and
n = n. Moreover, it may be assumed that A is contained in the (m+1, n)-

hook. Then, by definition,

(1.7.1) FA(Xm1/Ys) =

Bm+1 o +n-—1 Un , .
T T Tm1 Ui " Yn H(i,j)el);““'"(zz + ;)

A(Xm+1)A(Yr)

w

where the sum is over all permutations % = 4 x v, where @ € Aut(Xm4r)
and v € Aut(Y,). The partitions y and © are those obtained from A using
the (m + 1,n)-hook.

Note first that the numerator of the fraction in (1.7.1) contains as a
factor a power of the indeterminate z; with an exponent that is positive
for i < m + 1. Therefore, to evaluate the sum (1.7.1) for z,,p; = 0
it suffices to evaluate the terms corresponding to permutations 4 x v
such that 4(m 4 1) = m + 1. In other words, evaluation is performed
by evaluating the fraction in (1.7.1) and then forming the sum over all
permutations u X v in Aut(X,,) x Aut(Yy,).
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To prove the assertion of the Lemma, assume first that ) is not con-
tained in the (m, n)-hook. Then, by definition, F)\(X,,/Y,) = 0. On the
other hand, the assumption implies that A+, > n. Hence 2,4, ap-
pears with the non-zero exponent g+ in the numerator of the fraction
in (1.7.1). Therefore, evaluation of the sum (1.7.1) yields zero. Hence
the assertion holds under the first assumption.

Assume next that A is contained in the (m, n)-hook. Then F)\(X,,/Y;)
is given by the formula in (1.6). As noted above, it suffices to prove that
evaluation at T,m41 = 0 of the fraction in (1.7.1) yields the fraction in
(1.6). Evaluate each factor in the fraction of (1.7.1) and divide the result
by the corresponding factor of the fraction of (1.6). Clearly, the result
is the following fraction: '

oLy .
1 Tm Yy Yn" H15j5)\m+1 Yj

14 14
ml.-.a;m.l.yll...yn"

It follows from the definition of © and v that the latter fraction is equal to
1. Hence the assertion of the Lemma holds under the second assumption.
Thus the lemma has been proved.

2. SUPER SYMMETRIC POLYNOMIALS

SETUP (2.1). Fix as in Section 1 two independent sets of indeterminates
Xm=(z1,...,2m)and Yy, = (y1,...,Yn)-

DEFINITION (2.2). A polynomial F in the m + n variables X,, and Y,
will be called supersymmetric if F is symmetric with respect to X,, and
with respect to Y, , and the substitution z,, = t, y, = —t in F yields a
polynomial independent of ¢.

It follows immediately from the definition in (1.3) that the super Schur
polynomials Sx(X,,/Y,) are supersymmetric.

Note that if the polynomial F is supersymmetric, then the polynomial
F;,. =y.=0 obtained by substitution of z,, = 0 = y,, in F is supersym-
metric in X,,—; and Y,_;. Moreover, if F is supersymmetric, then the
polynomial Fy -, =¢ is equal to zero if and only if F is divisible by the

product P(Xm,Ys) = [[; [1;(zi + y;)-

PROPOSITION (2.3). (1) Every polynomial FA(X,,/Yy) is supersymmet-
ric.



(2) The family of polynomials Fx(Xm/Yy), where A ranges over the
partitions contained in the (m,n)-hook, forms a basis for the Z-module
of supersymmetric polynomials in X,, and Y,,.

PROOF: (1) The polynomial F\(X,,/Y,) is the result of symmetrizing,
and hence symmetric in X,, and Y,,.

Denote by Ny the numerator in the fraction appearing in the definition
of Fy. Then F) is the quotient obtained by dividing the following sum

(2.3.1) ) " sign(w) w(N»)

by the product A(Xm)A(Y;). Clearly, the substitution z,, = t, y, =
—t in the latter product yields a polynomial of degree m + n — 2 in ¢.
Therefore, to prove that F) is supersymmetric, it suffices to prove for
each term of the sum (2.3.1) that the substitution z,, = ¢, y, = —t in
it yields a polynomial of degree less than or equal to m +n — 2 in t.
Equivalently, it suffices to prove for every ¢ = 1,...,mand j =1,...,n
the following assertion: The substitution z; = t, y; = —t in N yields a
polynomial of degree less than or equal to m +n — 2 in t.

The proof of the latter assertion is divided in two cases. Assume
first that j < A;, that is, (4,7) belongs to the diagram D{"". Then
N contains the factor z; + y;. Consequently the substitution z; = ¢,
y; = —t in N} yields the zero polynomial.

Assume next that j > );, or, equivalently, that 7 > A, where X is
the conjugate partition of A. Then, in particular, \; < m and Y
Hence, in the notation of Definition (1.2), u; = 0 and v; = 0. Therefore
the factors in N that contain either z; or y; are the following:

((Ei +y1)a"'1(mi +y/\;)7 (‘Tl +yj),---,(33,\;. +y])a 3 y? J'

The number of factors is the degree of their product. Hence the degree
is equal to

(2.3.2) Ai4+ A+ (m—1) + (n— ).

Consequently, the substitution z; = ¢, y; = —t in N, yields a polynomial
of degree equal to (2.3.2) in t. By assumption, j > \; and 7 > A;. Hence
the degree (2.3.2) is less than or equal to m + n — 2. Thus (1) has been
proved.
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The assertion (2) will be proved by induction. The assertion holds
when m = 0 or n = 0. Indeed, if n = 0, then the condition on ) is
that its length is less than or equal to m. Moreover, the polynomial
F\(X:m/Y3) for n = 0 is the polynomial

(X P I g

where the sum is over all permutations of X,,. By Lemma (1.5)(2), the
polynomials Fi(X,), where the length of \ is less then or equal to m,
form a basis of the Z-module of symmetric polynomials in X,,. Similarly,
if n = 0, then the condition on A is that the conjugate partition A’ has
length less than or equal to n, and the polynomial F(X,,/Y;) forn =0
is the polynomial F\/(Y,,).

Assume next that m > 0 and n > 0. Denote by Hopn,n the set of
partitions contained in the (m,n)-hook. Divide the set H,, , into the
subset Hm_1,n-1 consisting of partitions contained in the (m —1,n —1)-
hook and its complement H°. Clearly, a partition A in H,, , belongs to
H® if and only if the part D} of its diagram consists of all points in
the rectangle 1 <i < m, 1 < j < n. It follows that partitions \ in H°
correspond bijectively to pairs (u,v), where . and » are partitions of
lengths at most m and n respectively. Clearly, if A € H? is the partition
corresponding to (u,v), then

(2.3.3) F\(Xm/Ys) = P(Xm,Ya)Fu( X0 )F,(Ya),

where P(Xp,Yy) is the product considered in Definition (2.2). More-
over, by Lemma (1.5)(2), the products F,(X,)F,(Y,), where 1 and v
are partitions of lengths at most m and n respectively, form a basis of the
Z-module of polynomials that are symmetric in X,,, and in ¥,. There-
fore, the polynomials Fy(X,,/Y,), where A € H°, form a basis of the Z-
module of polynomials that are symmetric in X,, and in Y;, and divisible
by P(Xm,Yy,). Clearly, the latter set of polynomials is equal to the set
of supersymmetric polynomials for which the substitution z,, = 0 = y,,
yields the zero polynomial. »

To finish the inductive proof of (2), let F be a given supersymmetric
polynomial. Substitute z,, = 0 = y, in F. The resulting polynomial
1s supersymmetric in Xp,—; and Y,_;, and may therefore uniquely be
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written as a linear combination of the F\(X,—1,Y,-1), where A belongs
to Hm—1,n-1. Subtract the same linear combination of the F)\(X,,/Y,)
from F. By construction, the substitution z,, = 0 = y, in the differ-
ence yields 0. Moreover, the difference is supersymmetric. Therefore,
as proved above, the difference is uniquely a linear combination of the
F\(Xm/Yy), where ) belongs to H°. Hence F is uniquely a linear com-
bination of the F\(X,/Y,), where A belongs to Hp, ,. Thus (2) has
been proved.
Thus the proposition is proved.

3. THE FORMULA AND ITS CONSEQUENCES
THEOREM (3.1). For every partition A the following equation holds:

S\ Xm/Yn) = Fx(Xi/Ya).

PROOF: The two sides of the equation specialize when m and n varies.
Indeed, the assertion for F holds by Lemma (1.7)(2), and the assertion
for Sy follows immediately from the definition in (1.3). Therefore, it
suffices to prove that the equation holds when m is large. Thus, without
loss of generality, it will be assumed that the weight |\| of the partition
A is less than or equal to m.

It is clear from the definition that the polynomial Sx(X.,/Ys) is su-
persymmetric. Therefore, by Proposition (2.3)(2), Sx(Xm/Y,) is a finite
linear combination

(311) S,\(Xm/Yn) = Z auFu(Xm/Yn)s
VEHm,n

where a, € Z and the sum is over all partitions v contained in the (m, n)-
hook. It has to be proven that ay = 1 and a, = 0 for v # A. The left
hand side of (3.1.1) has degree equal to the weight |A|. Therefore, for
any term on the right hand side appearing with a non-zero coefficient a,
the weight of v is equal to the weight of A. In particular, the length of
a partition v corresponding to a non-zero term in (3.1.1) is less than or
equal to m. Consequently, it may be assumed that the sum in (3.1.1) is
over partitions of length less than or equal to m.
Substitute y; = --- = y, = 0 in Equation (3.1.1). It follows that

(3.1.2) S\ Xm) =) a,Fy(Xnm),
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where the sum is over partitions v of length less than or equal to m. The
polynomial on the left hand side of Equation (3.1.2) is the usual Schur
polynomial. Therefore, by Lemma (1.5), (1) and (2), Equation (3.1.2)
implies that ay =1 and a, = 0 for v # .

Thus the Theorem has been proved.

COROLLARY (8.2). The polynomials Sx(Xm/Y»), where X ranges over
all partitions contained in the (m,n)-hook, form a basis of the Z-module
of supersymmetric polynomials in X,, and Y,,.

PROOF: The assertion holds, because the parallel assertion for the poly-
nomials F holds by Proposition (2.3)(2).

COROLLARY (3.3). Let X be a partition contained in the (m,n)-hook
such that A\, > n. Denote by u and v the partitions obtained from A
using the (m, n)-hook as in Definition (1.2). Then the following factor-
ization formula holds:

Sa(Xm/Yy) = Sp(Xm) Su(Ya) H H(“’z + ¥;)-

=1 j=1
In particular,
m n

S(n,...,n)(Xm/Yn) = H H(xt + yj),
=1 j=1
where the partition (n,...,n) has m non-zero parts.

PROOF: The first formula holds, because the parallel formula for the
polynomials F) is immediate from their definition, cf. Equation (2.3.3).
Clearly, the second equation is a special case.

COROLLARY (3.4). For every partition )\ the following equation holds:
Sx(Xm/Yn) = Sx(Yn/X0m).

PROOF: The equation holds, because the parallel equation for the poly-
nomials F) is obvious from their definition.

NOTE (3.5). Corollary (3.2) is a refinement of both the main result of
[S] and of Lemma 6.4 in [B-R]. The factorization formula was proven
originally in [B-R, Theorem 6.20]. Recently, N. Bergeron and A. Gar-

sia [B-G] and, independently, J.Van Der Jeugt and V.Fack [J-F]
have used the formula in (3.1) to give a new derivation of the
Littlewood-Richardson rule describing the coefficients in pro-
ducts of Schur polynomials.
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