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Summary. In this note we give a formula for the cohomology class of the Brill Noether loci V7 introduced
by Welters for Prym varieties in {9]. The strategy of our computation is similar to the one used by Kempf and
Kleiman-Laksov (see {1, Chap.VII]} to compute the cohomology class of classical Brill-Noether loci in Jacobians.
The main difference is that using a resnlt of Mumford [6] our computation can be reduced to the computation of
the class of a suitable degeneracy locus associated with a pair of maximal isotropic subbundles in a vector bundle
endowed with a non degenerate quadratic form. For this we can use formulas from (7] and [8]. In particular

r+1) + 1, thus giving another proof of

our method implies the non-emptiness of the V7, in the range g > (
the existence theorem for V" conjectured by Welters in i9] and first proved by Bertram in [2] using different

methods.

Let k be an algebraically closed field of characteristic different from 2. Let n : ¢ — C
be an étale double cover of a smooth algebraic curve C over k of genus ¢ = g(C). Then
9(C) = 2¢g — 1 and we have a norm map Nm : Pic?9~ 2(C) — Pic*9=%(C). We consider
the scheme Nm™!(w¢), we being the canonical class. This scheme has two connected
components P and P~ depending on the parity of A°(—) [9]. We recall the definition of
the loci V™ = V7(C, x) from (9, Def.(1.2)]. For every integer r > —1, we set

"={LeP*RY(L)y>r+1and K(L)=r+ 1(mod2)}.
Of course V" C PY (resp. V" C P7) iff r is odd (resp. even).

Let £ be a Poincaré line bundle on Pic?9~2(C) x €. Consider the double cover 1 x 7 :
Pic?=2(C) x C — Pic*9=*(C) x C. Let £ = (1 x 7)+(L). Then by the construction in [6,
p.185], if we restrict the rank 2 vector bundle £ to P¥ x C, we get a rank 2 vector bundle
which is endowed with a non degenerate quadratic form (corresponding to the form 7Q”
in the notation of loc.cit.) with values in the restriction to P* x ' of the invertible sheaf
g*(we), g: Pic?9=%(C) x C — C being the projection on the second factor.

Let D be an effective divisor of sufficiently positive degree on C. Consider the projection
p Pic?9=%((C) x C — Pic*9~2(C) and let V = p{E(D)/E(—=D)), W = p.(E(D)) and

= px(€/E(—D)). Due to the very positive degree of D we have that V , W and U
are locally free sheaves and we shall denote by the same letters the corresponding vector
bundles. Furthermore (see {6, p.183] both W and U are in a natural way subbundles of
V. Take now Vps (resp.Wpz, Upx ) to be the restriction to P of V (resp. W, U). Then,
by [6, p.184], Vpz is endowed with a non degenerate quadratic form (corresponding to the
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2
form 7¢” in the notation of loc.cit.) with values in Op+. The bundles Wps and Ups are
maximal 1sotropic subbundles of Vpx with respect to this form.

If we fix now a line bundle L of degree 29—2 on C and let E = 7,(L) we get [6, p.183] that
T(C,L) = T(C, E) = T(C, E(D)) n I'(C, E/E(—D)) as subspaces in I'(C, E(D)/E(-D)).
This clearly defines our locus V" as the locus of points in P* where the two subbundles
Wps and Upz intersect fiberwise in dimension at least » + 1. In particular this endows
the loci V" with a canonical structure of a subscheme of P* (induced by the subscheme
structure of the appropriate Schubert subschemes in the orthogonal Grassmannian).

To give a general formula for the class of V" in terms of Chern classes of the various
bundles involved we shall first put ourselves in a general situation.

Let X be a smooth variety and let E be a vector bundle over X. Let ¢;E be its i-th
Chern class. We set P,FE = 5‘22 and for: > j, P, ;E = P,E - P;E + 22;;;(—1)3’13,;4_,,15‘-
P;_,E 4 (—1)Piy;E. In general, for a strict partition = (¢; > ... > 1)) , { even (by
putting 2; = 0 if necessary), we set PrE equal to the Pfaffian of the antisymmetric matrix
with P;_; E as (p,q)-entry for p < q.

pilg

We now record the following result (extracted from (7] and [8]) which is accompanied
by a proof for the reader’s convenience.

1. Proposition. Let V — X be a rank 2n vector bundle over X, endowed with a non
degenerate quadratic form. Let W and U be two rank n isotropic subbundles of V. There
exists a polynomial P(cy, ..., cn, ¢}, ...,¢,) with the following properties:

1. If the locus

{z € X|dim(W, NU) 2> r+1and dim(W, NU,) =7 + 1(mod2)}

is either empty or of codimension (Hz“l), then P{e.W*, cd*) evaluates its fundamental
class in the Chow ring.

2. Under the substitution ¢, = ... = ¢/, = 0 and ¢; := ;W* , 1 <4 < n; the value of
this polynomial becomes P, W* where p, is the partition {r,r — 1,...,1).

Proof. We prove first the assertion 1 for the locus D defined as follows. For V — X as
above let U be an isotropic rank n subbundle of V, W be the tautological subbundle on the
Grassmannian G of such subbundles where rank(WNU) = r + 1(mod2) and D consists of
those points in G where rank(WNU) > r + 1.

Let v : F — X be the flag scheme of pairs of subbundles A C B of ranks r + 1,n in
V such that A C U, B is isotropic and rank(i N B) = r + 1(mod2). Let D be the rank
n tautological bundle on F. The map « : F — G defined by a(A,B) = B, i.e. such that
oW = D, induces a section 6:F - GF =G xx F' of the projection on F. Then
Z := ¢(F) is a desingularization of D. The class of Z is the image via (1 x a)* in the
Chow ring A(GF) of the class of the diagonal of G x x G.

It follows from [7, Thm 6.17'] that A(G) is a free A(X)-module with a basis given by
PrW* (for all strict partitions I C pn_;) that correspond to Schubert cycles. Given a strict
partition I C pg, let px\I denote the strict partition whose parts complement the parts of
I'in {k,k—1,...,1}. Since (over a point) the Poincaré dual to PyW* is P, _ \/W"* (see
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loc. cit.}, one gets that the class of the above diagonal in A(GF)is Y PWEp P, \uDip
(the sum over all strict I C pp—1). Denoting by n: G xx F — G the projection we have

(D] =nu[2] =) PW* - (P, \iDp)-

To compute 9, P;DE, it suffices to calculate v, P;D* and use a base change. Recall
that v : F — X is a composition of a Grassmannian bundle G' = Gr+1(V) and the
Grassmannian of rank (n — r — 1)-isotropic subbundles in Vg /(C @& C*) where C is the
tautological bundle on G' and C* is its dual "materialized” in Ve with the help of the
quadratic form (which then induces a form on Vg /(C @ C*)). For such Grassmannian
bundles one has formulas asserting that the associated Gysin push forward of a polynomial
in the Chern classes of the tautological bundle is a polynomial in the Chern classes of the
initial bundle (for the usual Grassmannian such a formula is e.g. recalled in [7, Sect. 3], for
the orthogonal case such a formula is given in [8]). By (the existence of) those formulas
we get that v, P;D* is a polynomial in the Chern classes of * and V*(~ U* @ U), which
implies the existence of polynomial P such that [D] = P(c.W*, cU*). (In general, by the
assumptions of the assertion 1 and standard arguments, there exists a morphism s : X — G
such that the class of the locus in question is s*[D] i.e. it is given by P.) This proves the
assertion 1.

Specializing X to a point we get by [7, Thm 6.17"] applied to G that [D] = P, W*; this
implies the assertion 2. O

2. Remark. The above result and the method of its proof stems from [8] where we
refer for more details and for the following precise formula. If the locus considered in the
proposition is either empty or of codimension (r;'l), then its class in the Chow ring equals
> PyW* . P, \ jU*, the sum over all strict I C p,.

We want to apply the proposition to the above situation so, from now on, the role of
the bundles V, W and U will be played by Vpx, Wpz and Ups

Before stating the next lemma we need two comments. Since the proof of the lemma
will use the Poincaré formula (see [1, p.25}, for instance), we must specify the cohomology
theory where this formula holds. These are : the singular cohomology with coefficients in C
for the ground field k = C (see loc.cit.), and the numerical equivalence ring for an arbitrary
ground field k (see [5]). In those cohomology rings will be located the Chern classes in the
next lemma. Note that, in general, one can replace here the numerical equivalence neither
by the rational equivalence nor by the algebraic one. This is because, by [3, Cor.(3.13})],
the Poincaré formula is not valid in the algebraic equivalence ring of a Jacobian of a generic
curve. We are indebted to A.Collino for this reference.

Moreover, assuming the defihition (see e.g. [1, Chap.l.3]) of the theta divisor on the
Jacobian of a curve C (which is canonically isomorphic to Pic’(C)), we will understand
by the theta divisor on Pic™(C) the image of the theta divisor on Pic®(C) under the
translation a : Pic®(C) — Pic®(C) defined by o(L) = L ® O(D) where D is a divisor
of degree n. Obviously the cohomology class of this theta divisor on Pie¢™(C) does not
depend on the choise of D. Note that this convention was assumed in the calculations in
(1, pp.318-319] which we will use in the following lemma.
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3. Lemma. For sufficiently positive D one has

1) Ci(Up:l:) =0 for 1 >0 )

2) ci(Wpi) = %—1 where ©' is the restriction to P% of the class © of the theta divisor
on Pic*%(C).

Proof. 1)1In [1, p.309)] it is shown that if D is an effective divisor on € of sufficiently positive
degree and p : Pic*~2(C) x C — Pic?=2(C) is the projection on the first factor, then
P«(L/L(=D)) has vanishing Chern classes. But U = P(E/E(—D)) = pu(L/L(~7*D)).
It follows that U has vanishing Chern classes, hence also Upt has, and the assertion 1)
follows.

2) We have p,(&(D)) = p.(L(m*D)). Let a : Pic¥2(C) — Pic*9~2+4(C) be the
translation by the divisor class of 7*D where d = degD. Then L(n*D) = (a x 1)*(£;)
where £, is a Poincaré line bundle on Pic?¥~2+4(C) x C. By {1, pp.318-319] applied to
the projection r : Pic*9™2%4(C) x €' — Pic?9=2%4(() and the Poincaré line bundle £,
we get that ¢(r.(L1)) = e™®* where O is the class of the theta divisor on Pic29—-2+4((),
Since at this point we use the Poincaré formula, for the numerical equivalence ring we must
invoke [5, Formula (4) p.84]. Since ap = r(a x 1), we infer that f,(a x 1)*(£1) = a*r,(L,).
Consequently we have

(W) = c(p«(E(D))) = e(p+(£(=*DY)) = o(pu(a x 1)*(£1)) =
c{a*r.(L1)) = a*(e(ro(L£1))) = a*(e™®) = e7°,
Restricting to PE, the assertion 2) follows. L[]

By this Lemma and Proposition 1 we then immediately get that the class of V" is
r41

P, (Wps). Then by the given formula for (W3, ) we obtain that P, (Why) = o’ )a,

where « is a rational number. In order to compute a more explicitly (in particular to show

that a # 0) we need some preliminary considerations.

Let Q; 1 =1,2,... be a sequence of variables. We define @, ;, for 7 > j, by

J
Qi =QiQ; +2> (~1QispQjp.

p=1

More generally, for a strict partition I = (t1 > ... > t;) , I even (by putting ¢; = 0 if

necessary), we set @ equal to the Pfaffian of the antisymmetric matrix with Qi, i, as
(p, q)-entry if p < g. We then state:
4. Proposition. Under the specialization Q; := %, one has for a strict partition I =

(T1,...,11),

I= 7 s 5 —.
21122!"'3;! <q tp +%q
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Proof. For @); the formula is obvious. We prove it for Q;; by induction on j. Since, by
the definition of Q; ;, we have

Qi = QiQ; — Qin1Qj—1 — Qiz15-1,
the assertion follows from the identity

1 2—3

1 1 1 1 1 P— 42
i+ :

JGEHEDIG -0 G+ DG - g

a verification of which is straightforward.

1
il

In the general case we can assume ! even (by putting 7; = 0 if necessary). After

our substitution the antisymmetric matrix used in the definition of @y is the product of

matrices ABA where A is the diagonal matrix having 27 as its (p, p)-entry while B is the

2!
ip:

antisymmetric matrix whose (p, q)-entry equals %E?:f It is well known that the Pfaffian
kd

of B equals
iy~ g

p<y le + iq ,
which, together with Q7 = Det(A)- Pf(B), implies the claimed formula. O

5. Remark. The above given formula for Q; can be expressed combinatorially as the
inverse of the product of all hook lengths of boxes in the shifted diagram associated
with I embedded in the shift symmetric diagram of I (i.e. the diagram of the partition
(t1,--. 4581 — 1,... ,4;— 1) in Frobenius’ notation).

We are now ready to compute a.

6. Lemma. The rational number a defined above equals

—r - (2“1)1
> =

i=1

Proof. For a vector bundle F it is immediate from the definitions that if we specialize
Qi 1= ¢;E, we obtain that PrE = 2749Q;, where £(I) is the number of non zero parts in
I. Applying this identity to the bundles W}, and using the expression:

r 1 s
Qp.—IHi_‘ H ':':__}__%1

i =1 1<j<i<r

given by Proposition 4, we get the asserted formula by an easy induction on . Observe that
the Lemma follows also from the hook length interpretation of Proposition 4 mentioned
in Remark 5. Note that this remark gives an alternative expression for a in the form

—r71yr=1 {2i)
27" [Tizo (f';i)!- = '

We can summarize the above considerations in the following theorem.



7. Theorem. Assume that either V" is empty or has pure codimension (r';l) in P%. Then
its fundamental class in the numerical equivalence ring of P* (for an arbitrary ground field

k with char(k) # 2), or the cohomology dual to its fundamental class in H.(P*,Z) (for
k = C), is equal to

ey G- e
2 H(Qi_i')!@( ’

=1

where @' is the restriction to P of the class of the theta divisor on Pic=2(C).

In particular, if ¢ > ("}') + 1, then V7" is not empty of dimension at least g—1—("t1.

Proof. Everything follows from our previous computations once we recall that the theta
divisor on Pic*97%(C) (and thus also its restriction to P*)is ample. 0O

8. Remark. 1) The last assertion of the theorem i.e. the existence theorem for V™ was
proved originally by Bertram in [2], as C.Keem has pointed out to us. Qur approach offers
a new proof of this result.

2) In the case of the Prym variety Pt we know that ©' = 2=, £ being the class of the
theta divisor on P*. Thus, if the reader wishes he can express our formula in terms of
E. After the first version of this note was written, we have learned from Welters that a
particular case of our formula for P*, namely the case r=3, was a subject of [4, Théoréme
1.1(i)] whose derivation used methods quite different from ours.

3) In [9] Welters showed that if C is a general curve and if 7 : € — C is any irreducible
étale double cover, then V7", if non-empty, has indeed pure codimension (T“;I).
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