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There are many formulas for Gysin maps. Those for
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Introduction

(This is a version of July 2021)

Let f : X — Y be a proper map of varieties.

f gives rise to a map f. : A(X) — A(Y) of the Chow groups
induced by push-forward of cycles. It is called push-forward or
Gysin map.

There are many formulas for Gysin maps. Those for
degeneracy loci often involve determinants and Pfaffians.

We shall use them simultaneously by means of Hall-Littlewood
polynomials associated with a vector bundle E — X of rank n
with Chern roots xq, ... x,.
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Let s;(E) denotes the ith complete symmetric function in
X1, ...y Xy, of (—1)" (i-th Segre class from Fulton’s IT).
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Let s;(E) denotes the ith complete symmetric function in
X1, ...y Xy, of (—1)" (i-th Segre class from Fulton’s IT).

Given a partition A = (A\; > ... > A, > 0), we set

s\(E) = ‘s/\i*iJrj(E)‘lgi,jgn :
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Let s;(E) denotes the ith complete symmetric function in
X1, ...y Xy, of (—1)" (i-th Segre class from Fulton’s IT).

Given a partition A = (A\; > ... > A, > 0), we set

s\(E) = ‘s/\f*"JFj(E)‘lgi,an :

For g < n, let m: GI(E) — X be the Grassmann bundle
parametrizing rank g quotients of E. It is endowed with the
universal exact sequence of vector bundles

0—S—1"E— Q@ —0,

where rank(Q) = q. Let r=n—gq.
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Let s;(E) denotes the ith complete symmetric function in
X1, ...y Xy, of (—1)" (i-th Segre class from Fulton’s IT).

Given a partition A = (A\; > ... > A, > 0), we set

s\(E) = ‘s/\f*"JFj(E)‘lgi,an :

For g < n, let m: GI(E) — X be the Grassmann bundle
parametrizing rank g quotients of E. It is endowed with the
universal exact sequence of vector bundles

0—S—1"E— Q@ —0,
where rank(Q) = q. Let r=n—gq.
Then for any partitions A = (A1, ..., Ag), pt = (p1, -, ptr),
T (SA(Q) : Su(s)) = 5/\1—r7---7/\q—r,u1,---7ur(E) .



Want: degeneracy loci formulas for maps with symmetries.
We shall use Pfaffians.
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Want: degeneracy loci formulas for maps with symmetries.
We shall use Pfaffians.

Consider Schur P-functions Py(E) = P, defined as follows.
For a strict partition A = (A; > ... > A > 0) with odd k,

Px=Px Py — PuPrsoan T PuPa s
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Want: degeneracy loci formulas for maps with symmetries.
We shall use Pfaffians.

Consider Schur P-functions Py(E) = P, defined as follows.
For a strict partition A = (A; > ... > A > 0) with odd k,

Px=Px Py — PuPrsoan T PuPa s

and with even k,

Px = PrxaPrsn = PusProsan 0+ Py P -
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Consider Schur P-functions Py(E) = P, defined as follows.
For a strict partition A = (A; > ... > A > 0) with odd k,

Px=Px Py — PuPrsoan T PuPa s

and with even k,

Px = PrxaPrsn = PusProsan 0+ Py P -

Here, P; = Zs“, the sum over all hook partitions p of i,
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Want: degeneracy loci formulas for maps with symmetries.
We shall use Pfaffians.

Consider Schur P-functions Py(E) = P, defined as follows.
For a strict partition A = (A; > ... > A > 0) with odd k,

Px=Px Py — PuPrsoan T PuPa s

and with even k,

Px = PrxooPra e = PaasProa o+ Py Paooa

Here, P; = Zs“, the sum over all hook partitions p of i,

and for positive i > j we set
P,J—PP+2Z PiiaPi—g + (1Y Py .
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Want:
e (Car(Q@ @ S)PA(Q)P.(S)) =7
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Want:
e (Car(Q@ @ S)PA(Q)P.(S)) =7

If I(A\) =gq, p=0, we get P\(E).
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Want:
e (Car(Q@ @ S)PA(Q)P.(S)) =7

If I(A\) =gq, p=0, we get P\(E).

If I(A) =qg—1, u=0, we get Py(E) for n — q even.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



Want:
e (Car(Q@ @ S)PA(Q)P.(S)) =7

If I(A\) =gq, p=0, we get P\(E).
If I(\) =qg—1, p=0, we get P,(E) for n — g even.

If I(A)=qg—1, u=0, we get 0 for n — g odd.
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Want:
e (Car(Q@ @ S)PA(Q)P.(S)) =7

If I(A\) =gq, p=0, we get P\(E).

If I(\) =qg—1, p=0, we get P,(E) for n — g even.
If I(A)=qg—1, u=0, we get 0 for n — g odd.

If n=15,q9=7,1(\) =3, I(1) =4, then

Tu(C56(Q ® S) - Po31(Q) - P75a2(S)) = (—6)Porsaszoi(E) .
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Want:
e (Car(Q@ @ S)PA(Q)P.(S)) =7

If I(A\) =gq, p=0, we get P\(E).

If I(\) =qg—1, p=0, we get P,(E) for n — g even.
If I(A)=qg—1, u=0, we get 0 for n — g odd.

If n=15,q9=7,1(\) =3, I(1) =4, then

Tu(C56(Q ® S) - Po31(Q) - P75a2(S)) = (—6)Porsaszoi(E) .

Like Schur S-polynomials govern Schubert calculus on classical
Grassmannians,
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Want:
e (Car(Q@ @ S)PA(Q)P.(S)) =7

If I(A\) =gq, p=0, we get P\(E).
If I(\) =qg—1, p=0, we get P,(E) for n — g even.
If I(A)=qg—1, u=0, we get 0 for n — g odd.
If n=15,q9=7,1(\) =3, I(1) =4, then

T(Cs6(Q @ 5) - Po31(Q) - Prsaz(S)) = (—6)Porsazar(E)
Like Schur S-polynomials govern Schubert calculus on classical
Grassmannians,

Schur P-polynomials govern Schubert calculus on Lagrangian
Grassmannians.
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Let 7 : FI(E) — X be the complete flag bundle parametrizing
flags of quotients of E of ranks n—1,n—2,... 1.
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Let 7 : FI(E) — X be the complete flag bundle parametrizing
flags of quotients of E of ranks n—1,n—2,... 1.

Let t be a variable. The main formula will be located in
A(X)[t] or H(X)][t].
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Let 7 : FI(E) — X be the complete flag bundle parametrizing
flags of quotients of E of ranks n—1,n—2,... 1.

Let t be a variable. The main formula will be located in
A(X)[t] or H(X)][t].

Let A = (A1,...,\n) € Z%, be sequence of nonnegative
integers. Set

RA(E: t) = (7). (5 - ) [ [ (% — 1)),

i<j

where (7g). acts on each coefficient of the polynomial in t
separately.
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Froposition
IfXxe€Zly and € Z5,9 then

T (RA(Q D)R.(S; 1) T] (i — 19)) = Ruu(E: 1),

i<q<j

where A\t = (A1, ..., Ag, fi1, - - -, itr) IS the juxtaposition of A
and p.
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Froposition
IfXxe€Zly and € Z5,9 then

T (RA(Q D)R.(S; 1) T] (i — 19)) = Ruu(E: 1),

i<q<j

where A\t = (A1, ..., Ag, fi1, - - -, itr) IS the juxtaposition of A
and p.

This is seen from a commutative diagram

FI(Q) X Ga(E) FI(S) — FI(E)

TQXTsl LTE

G9(E) X

which gives
m(TQ X Ts)s = (7€), -
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Suppose that x ..., x4 are the Chern roots of Q and
Xg+41, - - - » Xn are the ones of S.
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Suppose that x ..., x4 are the Chern roots of Q and

A
Xgi1,-- -, Xn are the ones of S. Let x* = x - - - x3* and

B M e
XM= Xgiq e Xh
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Suppose that x ..., x4 are the Chern roots of Q and
Xqi1,-- ;X are the ones of S. Let x» = x{ - x)° and

xt = x!'

oo xH
q+1 an.

It follows from the above equality:

. (RM(@: )Ru(Sit) [T (xi — 1))

i<q<j
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Suppose that x ..., x4 are the Chern roots of Q and

Xqi1,-- ;X are the ones of S. Let x» = x{ - x)° and
It follows from the above equality:
T (RA(Q: t)Ru(S: 1) ] (i — )
i<q<j
= 7. ((70)« (¢ T (6 = 1)) - () T G — ) T G — )
i<j<q q<i<j i<q<j
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Suppose that x ..., x4 are the Chern roots of Q and

Xgi1,-- -, Xn are the ones of S. Let x* = x; - - -x,;\" and
xH = xq+1 e xhr
It follows from the above equality:
T (RA(Q: t)Ru(S: 1) ] (i — )
i<q<j
A
= 7. ((70)« (¢ T (6 = 1)) - () T G — ) T G — )
i<j<q q<i<j i<q<j
= m(TQ X T5)x <X’\ H — txj) x* H Xj — tx;j) H (xi — txJ))
i<j<q q<i<j i<q<j
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Suppose that x ..., x4 are the Chern roots of Q and

Xgi1,-- -, Xn are the ones of S. Let x* = x; - - -x,;\" and

xH = xq+1 e xhr

It follows from the above equality:

T (RA(Q: t)Ru(S: 1) ] (i — )
i<q<j

= 7 ((ra)e (< T (6 - ) - (rs)(x T (= 09)) T (x — )

i<j<q q<i<j i<q<j

= m(TQ X T5)x <X’\ H — txj) x* H Xj — tx;j) H (xi — txJ))

i<j<q q<i<j i<q<j
= (1g),(x* x* H —tx;)) = R\u(E; t).

i<j
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Suppose that x ..., x4 are the Chern roots of Q and

Xgi1,-- -, Xn are the ones of S. Let x* = x; - - -x,;\" and

xH = xq+1 e xhr

It follows from the above equality:

T (RA(Q: t)Ru(S: 1) ] (i — )
i<q<j

= 7 ((ra)e (< T (6 - ) - (rs)(x T (= 09)) T (x — )

i<j<q q<i<j i<q<j

= m(TQ X T5)x <X’\ H — txj) x* H Xj — tx;j) H (xi — txJ))

i<j<q q<i<j i<q<j
= (1g),(x* x* H —tx;)) = R\u(E; t).

i<j

[Ticjcq(i—06) I geici(xi— ) [Licqe;(xi—tx) = [ Lic;(xi—tx) -



Vin(t) := ﬁ L l; = (1+t)(1+t+t2) - (1+t+---+t71).
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=]]— 7 = (LAt (Tt
i=1

Let \ € Zgo. Consider the maximal subsets /,...,1; in
{1,...,n}, where the sequence \ is constant.
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=]]— 7 = (LAt (Tt
i=1

Let \ € Zgo. Consider the maximal subsets /,...,1; in
{1,...,n}, where the sequence \ is constant.

Let mq, ..., my be the cardinalities of /,...,/;. So we have
my+---+ mg = n.
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=]]— 7 = (LAt (Tt
i=1

Let \ € Zgo. Consider the maximal subsets /,...,1; in
{1,...,n}, where the sequence \ is constant.

Let mq, ..., my be the cardinalities of /,...,/;. So we have
my+---+ mg = n.

Also we set vy = vy(t) = [[, Vm (1).
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Example. A = (9,9,9,8,0,0,8,8,8,8,9), n= 11

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



Example. A = (9,9,9,8,0,0,8,8,8,8,9), n= 11

h={1,2,3,11}, I, = {4,7,8,9,10}, I, = {5,6}
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Example. A = (9,9,9,8,0,0,8,8,8,8,9), n= 11
h={1,2,3,11}, I, = {4,7,8,9,10}, I, = {5,6}

m1:4, m2:5, m3:2
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Example. A = (9,9,9,8,0,0,8,8,8,8,9), n=11
L ={1,2,3,11}, b, = {4,7,8,9,10}, I, = {5,6}
m1:4, m2:5, m3:2

VN = Va5V
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Example. A =(9,9,9,8,0,0,8,8,8,8,9), n=11
L ={1,2,3,11}, L = {4,7,8,9,10}, 5 = {5,6}
m =4 m,=5 m3=2

Vy = V45V

Example. Let v = (11 > ... > v, > 0) be a strict partition
with k < n.
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Example. A =(9,9,9,8,0,0,8,8,8,8,9), n=11
L ={1,2,3,11}, L = {4,7,8,9,10}, 5 = {5,6}
m =4 m,=5 m3=2

Vy = V45V

Example. Let v = (11 > ... > v, > 0) be a strict partition
with k < n.

Let A\ = 0"k be the sequence v with n — k zeros added at
the end.
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Example. A =(9,9,9,8,0,0,8,8,8,8,9), n=11
L ={1,2,3,11}, L = {4,7,8,9,10}, 5 = {5,6}
m =4 m,=5 m3=2

Vy = V45V

Example. Let v = (11 > ... > v, > 0) be a strict partition
with k < n.

Let A\ = 0"k be the sequence v with n — k zeros added at
the end.

Thend = k+1, (my,...,mg) = (15, n — k), vi(t) = vo_k(t).
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Definition
Let A be a sequence of nonnegative integers. Set

P,\(E; t) =

S RED. (1)
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If \is a partition, then P\(E;t) is a polynomial in t, called
Hall-Littlewood polynomial (see Macdonald's book)
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Definition
Let A be a sequence of nonnegative integers. Set

P,\(E; t) =

S RED. (1)

If \is a partition, then P\(E;t) is a polynomial in t, called

Hall-Littlewood polynomial (see Macdonald's book)

Let y1,...,y, and t be independent indeterminates.
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Definition
Let A be a sequence of nonnegative integers. Set

P,\(E; t) =

S RED. (1)

If \is a partition, then P\(E;t) is a polynomial in t, called
Hall-Littlewood polynomial (see Macdonald's book)

Let y1,...,y, and t be independent indeterminates.

For a sequence A = (A1,...,A,) of nonnegative integers, set
Yi — ty;
R,\()/lw--,)/n?t):ZW<Y1)‘1"')/”A" fj)a
weS, i< V1Y

where S, is the group of all bijections of {yi,...,y,}.
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Definition
Let A be a sequence of nonnegative integers. Set

PA(Eit) = ——Ry\(E; t). (1)

Vi t)

If \is a partition, then P\(E;t) is a polynomial in t, called
Hall-Littlewood polynomial (see Macdonald's book)

Let y1,...,y, and t be independent indeterminates.

For a sequence A = (A1,...,A,) of nonnegative integers, set
Yi — ty;
R,\()/lw--,)/n?t):ZW<Y1)‘1"')/”A" fj)a
weS, i< V1Y

where S, is the group of all bijections of {yi,...,y,}.
(Specializing the y's to the Chern roots of E, Ry(y; t)
becomes R\(E; t).)



Computing with Maple, we get the following examples.
Example

For A\ equal to (0,2,0), (0,2,2,0), (0,2,3,0), (0,2,2,3,3),
Ry(y; t) is divisible by v,(t).
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Computing with Maple, we get the following examples.
Example

For A equal to (0,2,0), (0,2,2,0), (0,2,3,0), (0,2,2,3,3),
R\(y; t) is divisible by vy(t). For A equal to (0,2,0,2),
(0,2,0,0,2), (0,2,2,0,0,0), R\(y; t) is not divisible by v,(t).
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Computing with Maple, we get the following examples.
Example

For A equal to (0,2,0), (0,2,2,0), (0,2,3,0), (0,2,2,3,3),
R\(y; t) is divisible by vy(t). For A equal to (0,2,0,2),
(0,2,0,0,2), (0,2,2,0,0,0), R\(y; t) is not divisible by v,(t).

As a consequence of the Proposition we obtain the following
result.
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Computing with Maple, we get the following examples.
Example

For A equal to (0,2,0), (0,2,2,0), (0,2,3,0), (0,2,2,3,3),
R\(y; t) is divisible by vy(t). For A equal to (0,2,0,2),
(0,2,0,0,2), (0,2,2,0,0,0), R\(y; t) is not divisible by v,(t).

As a consequence of the Proposition we obtain the following
result.

Theorem

Suppose that A = (A1,...,A\g) and p = (uq, ..., 1) are
sequences of nonnegative integers such that R\(Q; t) is
divisible by v\(t) and R,(S; t) is divisible by v,(t).
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Computing with Maple, we get the following examples.
Example

For A equal to (0,2,0), (0,2,2,0), (0,2,3,0), (0,2,2,3,3),
R\(y; t) is divisible by vy(t). For A equal to (0,2,0,2),
(0,2,0,0,2), (0,2,2,0,0,0), R\(y; t) is not divisible by v,(t).

As a consequence of the Proposition we obtain the following
result.

Theorem

Suppose that A = (A1,...,A\g) and p = (uq, ..., 1) are
sequences of nonnegative integers such that R\(Q; t) is
divisible by v\(t) and R,(S; t) is divisible by v,(t). Then for
the polynomials P\(Q;t) and P,(S;t) we have

w*( T[T (6 — £6)PA(Q: 1)P,(S: t)) _ vt by,

i<q<j va(t)v,(t)
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In the sequel, the sequences A and j will be partitions.
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In the sequel, the sequences A and j will be partitions.

We look at the specialization t = 0.
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In the sequel, the sequences A and j will be partitions.
We look at the specialization t = 0.

We invoke the Jacobi-Trudi formula for sy(E) with the help of
the Gysin map associated to 7¢ : FI(E) — X:

S\(E) = (Te): (™" - x7).
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In the sequel, the sequences A and j will be partitions.
We look at the specialization t = 0.

We invoke the Jacobi-Trudi formula for sy(E) with the help of
the Gysin map associated to 7¢ : FI(E) — X:

S\(E) = (Te): (™" - x7).

We see that P\(E; t) = s\(E) for t = 0. Under this
specialization, the Theorem becomes

(Jézefiak-Lascoux-P)
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If a sequence A\ = (A1,...,\,) is not a partition, then s\(E) is
either 0 or £s,(E) for some partition .
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If a sequence A\ = (A1,...,\,) is not a partition, then s\(E) is
either 0 or £s,(E) for some partition .

One can rearrange A\ by a sequence of operations

(...;ij,...)—=(..,j—1i+1,...) applied to pairs of
successive integers.
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If a sequence A\ = (A1,...,\,) is not a partition, then s\(E) is
either 0 or £s,(E) for some partition .

One can rearrange A\ by a sequence of operations
(...;ij,...)—=(..,j—1i+1,...) applied to pairs of
successive integers.

Either one arrives at a sequence of the form (...,i,i+1,...),
in which case s,(E) = 0, or one arrives in d steps at a
partition 4, and then s,(E) = (—1)9s,(E).
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Pair of strict partitions v, o:
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Pair of strict partitions v, o:

v=(1>...>1>0), k<g, \:=v09k
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Pair of strict partitions v, o:
v=(>...>>0), k<g, \:=v097k

oc=(o1>...>0,>0), h<n—gq, p:=o00"9"
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Pair of strict partitions v, o:
v=(>...>>0), k<g, \:=v097k

oc=(o1>...>0,>0), h<n—gq, p:=o00"9"

VA—Hq kl t’
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Pair of strict partitions v, o:
v=(>...>>0), k<g, \:=v097k

o=(01>...>0,>0), h<n—gq, p:=0c0"m9"h
VA—Hq kl t’

_ TYn—9-h 1-t
v, =[5 -t
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Pair of strict partitions v, o:
v=(>...>>0), k<g, \:=v097k

o=(01>...>0,>0), h<n—gq, p:=0c0"m9"h
k i
vy = [0k
_ Tr—9—h1-¢
ve =112 =%

n—k—h 1—¢/ 2 1-¢)\°
Vap = [T 1t | ¢
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Pair of strict partitions v, o:
v=(>...>>0), k<g, \:=v097k

oc=(o1>...>0,>0), h<n—gq, p:=o00"9"
q—k 1 t’
vy = H
_ T—9-h 1=t
v, =[5 1-t
n—k—h 1—¢/ 2 1-¢\°
Vap = [T -t <Hi:1 1—t>

Here e is the number of common parts of v and o.
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We have

Vap (1—t)--(1—t"—k=h)
v:\ljM - (1—t)n-(l—tq*k)(l—t)m(l—t"*q*h)(]' + t)e
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We have

Vau

_ (1=t)-(1—t"—kh)
VaVy (1—t)n-(l—tq*k)(l—t)m(l—t"*q*h)(]' + t)e

This is the Gaussian polynomial [”;f;h} (t) times (1 + t)e.
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We have

Vap (1—t)--(1—t"—k=h)
v:\ljM - (1—t)n-(l—tq*k)(l—t)m(l—t"*q*h)(]' + t)e

This is the Gaussian polynomial [”;f;h} (t) times (1 + t)e.

So by Theorem we have

n—k—
qg—k

7T*( H (xi—tx;)PA(Q; t)Pu(S; t)) _ [

i<q<j

h] (t)(1+1)°Pyu(E; t).
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We have

Vap (1—t)--(1—t"—k=h)
v:\ljM - (1—t)n-(l—tq*k)(l—t)m(l—t"*q*h)(]' + t)e

This is the Gaussian polynomial [”;f;h} (t) times (1 + t)e.

So by Theorem we have

n—k—
qg—k

7T*( H (xi—tx;)PA(Q; t)Pu(S; t)) _ [

i<q<j

h] (t)(1+1)°Pyu(E; t).

- some zeros at the end of )\ possible
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We have

v 1—¢t).(1— n—k—h
Au (1—t)-(1—t ) )(1+t)e

Vave  (I—t)(1—ta R)(A—t)-(1—trah

This is the Gaussian polynomial [”;f;h} (t) times (1 + t)e.

So by Theorem we have

n—k—
qg—k

7T*( H (xi—tx;)PA(Q; t)Pu(S; t)) _ [

i<q<j

h] (t)(1+1)°Pyu(E; t).

- some zeros at the end of )\ possible

We look at the specialization t = —1. Most interesting is the
specialization of Gaussian polynomials.
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Lemma
At t = —1, the Gaussian polynomial

[a + b} ()

a

specializes to zero if ab is odd and to the binomial coefficient

(“oe)

otherwise.
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Lemma
At t = —1, the Gaussian polynomial

[a + b} ()

a

specializes to zero if ab is odd and to the binomial coefficient

(“oe)

otherwise.

(with Witold Kraskiewicz)
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Indeed, we have

a+b B (1—t)(1—1t?)---(1—t>P)
l a }(t)_(1_t)"'(l—ta)(1—t)--~(1—tb)'
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Indeed, we have

a+b B (1—t)(1—1t?)---(1—t>P)
l a }(t)_(1_t)""(l—ta)(1—t)--~(1—tb)'

Since t = —1 is a zero with multiplicity 1 of the factor
(1 — t9) for even d, and a zero with multiplicity O for odd d,
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Indeed, we have

a+b B (1—t)(1—1t?)---(1—t>P)
l a }(t)_(1_t)'“(l—ta)(1—t)-~~(1—tb)'

Since t = —1 is a zero with multiplicity 1 of the factor
(1 — t9) for even d, and a zero with multiplicity O for odd d,

the order of the rational function [*%"] (t) at t = —1 is equal

to
[(a+b)/2] —[a/2] — [b/2].
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Indeed, we have

a+b B (1—t)(1—1t?)---(1—t>P)
l a }(t)_(1_t)'“(l—ta)(1—t)-~~(1—tb)'

Since t = —1 is a zero with multiplicity 1 of the factor
(1 — t9) for even d, and a zero with multiplicity O for odd d,

the order of the rational function [*%"] (t) at t = —1 is equal
to
[(a+b)/2] —|a/2] = [b/2].

This order is equal to 1 when a and b are odd, and 0 otherwise.
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Indeed, we have

a+b B (1—t)(1—1t?)---(1—t>P)
l a }(t)_(1_t)'“(l—ta)(1—t)-~~(1—tb)'

Since t = —1 is a zero with multiplicity 1 of the factor
(1 — t9) for even d, and a zero with multiplicity O for odd d,

the order of the rational function [*%"] (t) at t = —1 is equal
to
[(a+b)/2] —|a/2] = [b/2].

This order is equal to 1 when a and b are odd, and 0 otherwise.

In the former case, we get the claimed vanishing, and
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in the latter one, the product of the factors with even
exponents is equal to

]

The value of this function at t = —1 is equal to [LT;%J?J] (1)
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in the latter one, the product of the factors with even
exponents is equal to

2

|:La+b/ J:| (t2)
La/2]

The value of this function at t = —1 is equal to [LT;%J?J] (1)

which is the binomial coefficient

(“oe)
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in the latter one, the product of the factors with even
exponents is equal to

]

The value of this function at t = —1 is equal to [LT;;;/J?J] (1)
which is the binomial coefficient

(“oe)

This is the requested value since the remaining factors with
odd exponents give 2 in the numerator and the same number
in the denominator. QED
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Let xq,...,x, and t be independent indeterminates over Z.
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Let xq,...,x, and t be independent indeterminates over Z.

Schur in his 1911 paper on projective representations of the
symmetric group showed that for any strict partition A\ of

length k,

Xi + X;
P/\(X]_,...,Xn): Z W<X]?\1”'X’i\n H X_XJ>
J

wESn/(S1)% X Sn—k i<ji<k ™!
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Let xq,...,x, and t be independent indeterminates over Z.

Schur in his 1911 paper on projective representations of the
symmetric group showed that for any strict partition A\ of
length k,

Xi + X;
P goeesXn) — (Al... )‘” ! J>
XL, Xn) ) wixoon ] X

X
wESy/(51)k xSy« i<ji<k !

We have also, for a similar A, the following formula for a
Hall-Littlewood polynomial (see Mcd p. 208):

X; — tx;
Py(x1, ..., Xp t) = Z W<xf‘1~~~x,;\" H ﬁ)
i X

weESy/(51)kxSp_« i<ji<k
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We pass now to the notation associated to a pair of strict

partitions v and o. It follows from comparison of the last two
formulas that for A = 0975, we have P\(Q; t);—_1 = P,(Q);
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We pass now to the notation associated to a pair of strict
partitions v and o. It follows from comparison of the last two
formulas that for A = 0975, we have P\(Q; t);—_1 = P,(Q);
and for = 00", we have P,(S; t);=_1 = P,(S).
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We pass now to the notation associated to a pair of strict
partitions v and o. It follows from comparison of the last two
formulas that for A = 0975, we have P\(Q; t);—_1 = P,(Q);
and for = 00", we have P,(S; t);=_1 = P,(S).

For A € Z% set P := P\(E; t)i—_1.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



We pass now to the notation associated to a pair of strict
partitions v and o. It follows from comparison of the last two
formulas that for A = 0975, we have P\(Q; t);—_1 = P,(Q);
and for = 00", we have P,(S; t);=_1 = P,(S).

For A € Z% set P := P\(E; t)i—_1.

Note that for i +, > 0, we have P_;; = —P_ji .
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We pass now to the notation associated to a pair of strict
partitions v and o. It follows from comparison of the last two
formulas that for A = 0975, we have P\(Q; t);—_1 = P,(Q);
and for = 00", we have P,(S; t);=_1 = P,(S).

For A € Z% set P := P\(E; t)i—_1.

Note that for i +, >0, we have P_;; = —P _ji ..

goee

Thus P,gs—keor—h = (_1)(q—k)h7ywon7k7h _ (_1)(q—k)h7pw _
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We pass now to the notation associated to a pair of strict
partitions v and o. It follows from comparison of the last two
formulas that for A = 0975, we have P\(Q; t);—_1 = P,(Q);
and for = 00", we have P,(S; t);=_1 = P,(S).

For A € Z% set P := P\(E; t)i—_1.
Note that for i+ >0, we have P_;; = —P i .
Thus P,gs—keor—h = (_1)(q—k)h7ywon7k7h _ (_1)(q—k)h7pw _

If e >0, then P,,(E) = 0; so we can assume e = 0 without
loss of generality.
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Specializing t = —1 we get from the Theorem by virtue of the
Lemma the following result.
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Specializing t = —1 we get from the Theorem by virtue of the
Lemma the following result.

For strict partitions v, o with /(v) = k < g and
I(c) = h < n— g, we have
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Specializing t = —1 we get from the Theorem by virtue of the
Lemma the following result.

For strict partitions v, o with /(v) = k < g and

I(c) = h < n—q, we have

7. (car(Q ® S)P(Q)Po(S)) = dyy - Puo(E),
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Specializing t = —1 we get from the Theorem by virtue of the
Lemma the following result.

For strict partitions v, o with /(v) = k < g and
I(c) = h < n— g, we have

T (qu(Q & S)PZI(Q)PG'(S)) — dy,o : PVO’(E)7
where d,, = 0 if (¢ — k)(r — h) is odd, and
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Specializing t = —1 we get from the Theorem by virtue of the
Lemma the following result.

For strict partitions v, o with /(v) = k < g and
I(c) = h < n— g, we have

T (qu(Q & S)PZI(Q)PG'(S)) — dy,o : PVO’(E)7
where d,, = 0 if (¢ — k)(r — h) is odd, and

q—k)h [(n—k—h)/2]
g = (1)1 ( (g K)/2] )

otherwise.
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It can happen that vo is not a strict partition.
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It can happen that vo is not a strict partition.

If there are repetitions of indices in vo then the RHS is
assumed to be zero.
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It can happen that vo is not a strict partition.

If there are repetitions of indices in vo then the RHS is
assumed to be zero.

If not, then P,,(E) = (—/)'P.(E), where / is the lenghth of
the permutation which rearranges vo into the corresponding
strict partition k.
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History of Hall-Littlewood polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite
p-groups (Philip Hall about 1950):
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History of Hall-Littlewood polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite
p-groups (Philip Hall about 1950):

p - prime number, M finite Abelian p-group,
M= &{Z/pVZ,
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History of Hall-Littlewood polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite
p-groups (Philip Hall about 1950):

p - prime number, M finite Abelian p-group,
M= &{Z/pVZ,

A= (A1 > X\ >...) - partition (“type of M").
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History of Hall-Littlewood polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite
p-groups (Philip Hall about 1950):

p - prime number, M finite Abelian p-group,
M= &{Z/pVZ,

A= (A1 > X\ >...) - partition (“type of M").
Hall algebra : )\, i, v three partitions. Let M be of type \.

A : _ _
G, = card{N C M : type(N) = v, type(M/N) = pu}

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



History of Hall-Littlewood polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite
p-groups (Philip Hall about 1950):

p - prime number, M finite Abelian p-group,
M= &{Z/pVZ,

A= (A1 > X\ >...) - partition (“type of M").
Hall algebra : )\, i, v three partitions. Let M be of type \.

A : _ _
G, = card{N C M : type(N) = v, type(M/N) = pu}

Let H be a free Z-module with basis {u,},
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History of Hall-Littlewood polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite
p-groups (Philip Hall about 1950):

p - prime number, M finite Abelian p-group,
M= &{Z/pVZ,

A= (A1 > X\ >...) - partition (“type of M").
Hall algebra : )\, i, v three partitions. Let M be of type \.

A : _ _
G, = card{N C M : type(N) = v, type(M/N) = pu}

Let H be a free Z-module with basis {u,},

- A
U, - U, = g G U -
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Theorem
H is a commutative ring, and is generated as a Z-algebra by
{uan} (algebraically independent).
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Theorem
H is a commutative ring, and is generated as a Z-algebra by
{uan} (algebraically independent).

Theorem
The Q-linear map ¢ : H® Q — A ® Q (symmetric functions)
such that

Y(uy) = p~ =DNPy (yy,yn,. .5 p7Y)

is a ring isomorphism.
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Theorem
H is a commutative ring, and is generated as a Z-algebra by
{uan} (algebraically independent).

Theorem
The Q-linear map ¢ : H® Q — A ® Q (symmetric functions)
such that

Y(uy) = p~ =DNPy (yy,yn,. .5 p7Y)

is a ring isomorphism.

J.A. Green, D.E. Littlewood: Representation theory of GL,
over finite fields.
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End
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