Pushing forward Hall-Littlewood polynomials

Piotr Pragacz
(IM PAN, Warszawa)

Introduction

(This is a version of July 2021)

Introduction

(This is a version of July 2021)

Let $f: X \rightarrow Y$ be a proper map of varieties.

Introduction

(This is a version of July 2021)

Let $f: X \rightarrow Y$ be a proper map of varieties.
f gives rise to a map $f_{*}: A(X) \rightarrow A(Y)$ of the Chow groups induced by push-forward of cycles. It is called push-forward or Gysin map.

Introduction

(This is a version of July 2021)

Let $f: X \rightarrow Y$ be a proper map of varieties.
f gives rise to a map $f_{*}: A(X) \rightarrow A(Y)$ of the Chow groups induced by push-forward of cycles. It is called push-forward or Gysin map.

There are many formulas for Gysin maps. Those for degeneracy loci often involve determinants and Pfaffians.

Introduction

(This is a version of July 2021)

Let $f: X \rightarrow Y$ be a proper map of varieties.
f gives rise to a map $f_{*}: A(X) \rightarrow A(Y)$ of the Chow groups induced by push-forward of cycles. It is called push-forward or Gysin map.

There are many formulas for Gysin maps. Those for degeneracy loci often involve determinants and Pfaffians.

We shall use them simultaneously by means of Hall-Littlewood polynomials associated with a vector bundle $E \rightarrow X$ of rank n with Chern roots $x_{1}, \ldots x_{n}$.

Let $s_{i}(E)$ denotes the ith complete symmetric function in x_{1}, \ldots, x_{n}, or $(-1)^{i}$ (i-th Segre class from Fulton's IT).

Let $s_{i}(E)$ denotes the ith complete symmetric function in x_{1}, \ldots, x_{n}, or $(-1)^{i}$ (i-th Segre class from Fulton's IT).

Given a partition $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{n} \geq 0\right)$, we set

$$
s_{\lambda}(E)=\left|s_{\lambda_{i}-i+j}(E)\right|_{1 \leq i, j \leq n} .
$$

Let $s_{i}(E)$ denotes the ith complete symmetric function in x_{1}, \ldots, x_{n}, or $(-1)^{i}$ (i-th Segre class from Fulton's IT).

Given a partition $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{n} \geq 0\right)$, we set

$$
s_{\lambda}(E)=\left|s_{\lambda_{i}-i+j}(E)\right|_{1 \leq i, j \leq n} .
$$

For $q \leq n$, let $\pi: G^{q}(E) \rightarrow X$ be the Grassmann bundle parametrizing rank q quotients of E. It is endowed with the universal exact sequence of vector bundles

$$
0 \longrightarrow S \longrightarrow \pi^{*} E \longrightarrow Q \longrightarrow 0,
$$

where $\operatorname{rank}(Q)=q$. Let $r=n-q$.

Let $s_{i}(E)$ denotes the ith complete symmetric function in x_{1}, \ldots, x_{n}, or (-1$)^{i}$ (i-th Segre class from Fulton's IT).

Given a partition $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{n} \geq 0\right)$, we set

$$
s_{\lambda}(E)=\left|s_{\lambda_{i}-i+j}(E)\right|_{1 \leq i, j \leq n} .
$$

For $q \leq n$, let $\pi: G^{q}(E) \rightarrow X$ be the Grassmann bundle parametrizing rank q quotients of E. It is endowed with the universal exact sequence of vector bundles

$$
0 \longrightarrow S \longrightarrow \pi^{*} E \longrightarrow Q \longrightarrow 0,
$$

where $\operatorname{rank}(Q)=q$. Let $r=n-q$.
Then for any partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{q}\right), \mu=\left(\mu_{1}, \ldots, \mu_{r}\right)$,

$$
\pi_{*}\left(s_{\lambda}(Q) \cdot s_{\mu}(S)\right)=s_{\lambda_{1}-r, \ldots, \lambda_{q}-r, \mu_{1}, \ldots, \mu_{r}}(E)
$$

Want: degeneracy loci formulas for maps with symmetries. We shall use Pfaffians.

Want: degeneracy loci formulas for maps with symmetries. We shall use Pfaffians.

Consider Schur P-functions $P_{\lambda}(E)=P_{\lambda}$ defined as follows. For a strict partition $\lambda=\left(\lambda_{1}>\ldots>\lambda_{k}>0\right)$ with odd k,

$$
P_{\lambda}=P_{\lambda_{1}} P_{\lambda_{2}, \ldots, \lambda_{k}}-P_{\lambda_{2}} P_{\lambda_{1}, \lambda_{3}, \ldots, \lambda_{k}}+\cdots+P_{\lambda_{k}} P_{\lambda_{1}, \ldots, \lambda_{k-1}},
$$

Want: degeneracy loci formulas for maps with symmetries. We shall use Pfaffians.

Consider Schur P-functions $P_{\lambda}(E)=P_{\lambda}$ defined as follows. For a strict partition $\lambda=\left(\lambda_{1}>\ldots>\lambda_{k}>0\right)$ with odd k,

$$
P_{\lambda}=P_{\lambda_{1}} P_{\lambda_{2}, \ldots, \lambda_{k}}-P_{\lambda_{2}} P_{\lambda_{1}, \lambda_{3}, \ldots, \lambda_{k}}+\cdots+P_{\lambda_{k}} P_{\lambda_{1}, \ldots, \lambda_{k-1}},
$$

and with even k,
$P_{\lambda}=P_{\lambda_{1}, \lambda_{2}} P_{\lambda_{3}, \ldots, \lambda_{k}}-P_{\lambda_{1}, \lambda_{3}} P_{\lambda_{2}, \lambda_{4}, \ldots, \lambda_{k}}+\cdots+P_{\lambda_{1}, \lambda_{k}} P_{\lambda_{2}, \ldots, \lambda_{k-1}}$.

Want: degeneracy loci formulas for maps with symmetries. We shall use Pfaffians.

Consider Schur P-functions $P_{\lambda}(E)=P_{\lambda}$ defined as follows. For a strict partition $\lambda=\left(\lambda_{1}>\ldots>\lambda_{k}>0\right)$ with odd k,

$$
P_{\lambda}=P_{\lambda_{1}} P_{\lambda_{2}, \ldots, \lambda_{k}}-P_{\lambda_{2}} P_{\lambda_{1}, \lambda_{3}, \ldots, \lambda_{k}}+\cdots+P_{\lambda_{k}} P_{\lambda_{1}, \ldots, \lambda_{k-1}},
$$

and with even k,
$P_{\lambda}=P_{\lambda_{1}, \lambda_{2}} P_{\lambda_{3}, \ldots, \lambda_{k}}-P_{\lambda_{1}, \lambda_{3}} P_{\lambda_{2}, \lambda_{4}, \ldots, \lambda_{k}}+\cdots+P_{\lambda_{1}, \lambda_{k}} P_{\lambda_{2}, \ldots, \lambda_{k-1}}$.
Here, $P_{i}=\sum s_{\mu}$, the sum over all hook partitions μ of i,

Want: degeneracy loci formulas for maps with symmetries. We shall use Pfaffians.

Consider Schur P-functions $P_{\lambda}(E)=P_{\lambda}$ defined as follows. For a strict partition $\lambda=\left(\lambda_{1}>\ldots>\lambda_{k}>0\right)$ with odd k,

$$
P_{\lambda}=P_{\lambda_{1}} P_{\lambda_{2}, \ldots, \lambda_{k}}-P_{\lambda_{2}} P_{\lambda_{1}, \lambda_{3}, \ldots, \lambda_{k}}+\cdots+P_{\lambda_{k}} P_{\lambda_{1}, \ldots, \lambda_{k-1}},
$$

and with even k,
$P_{\lambda}=P_{\lambda_{1}, \lambda_{2}} P_{\lambda_{3}, \ldots, \lambda_{k}}-P_{\lambda_{1}, \lambda_{3}} P_{\lambda_{2}, \lambda_{4}, \ldots, \lambda_{k}}+\cdots+P_{\lambda_{1}, \lambda_{k}} P_{\lambda_{2}, \ldots, \lambda_{k-1}}$.
Here, $P_{i}=\sum s_{\mu}$, the sum over all hook partitions μ of i,
and for positive $i>j$ we set

$$
P_{i, j}=P_{i} P_{j}+2 \sum_{d=1}^{j-1}(-1)^{d} P_{i+d} P_{j-d}+(-1)^{j} P_{i+j} .
$$

Want:

$$
\pi_{*}\left(c_{q r}(Q \otimes S) P_{\lambda}(Q) P_{\mu}(S)\right)=?
$$

Want:

$$
\pi_{*}\left(c_{q r}(Q \otimes S) P_{\lambda}(Q) P_{\mu}(S)\right)=?
$$

If $I(\lambda)=q, \mu=0$, we get $P_{\lambda}(E)$.

Want:

$$
\pi_{*}\left(c_{q r}(Q \otimes S) P_{\lambda}(Q) P_{\mu}(S)\right)=?
$$

If $I(\lambda)=q, \mu=0$, we get $P_{\lambda}(E)$.
If $I(\lambda)=q-1, \mu=0$, we get $P_{\lambda}(E)$ for $n-q$ even.

Want:

$$
\pi_{*}\left(c_{q r}(Q \otimes S) P_{\lambda}(Q) P_{\mu}(S)\right)=?
$$

If $I(\lambda)=q, \mu=0$, we get $P_{\lambda}(E)$.
If $I(\lambda)=q-1, \mu=0$, we get $P_{\lambda}(E)$ for $n-q$ even.
If $I(\lambda)=q-1, \mu=0$, we get 0 for $n-q$ odd.

Want:

$$
\pi_{*}\left(c_{q r}(Q \otimes S) P_{\lambda}(Q) P_{\mu}(S)\right)=?
$$

If $I(\lambda)=q, \mu=0$, we get $P_{\lambda}(E)$.
If $I(\lambda)=q-1, \mu=0$, we get $P_{\lambda}(E)$ for $n-q$ even.
If $I(\lambda)=q-1, \mu=0$, we get 0 for $n-q$ odd.
If $n=15, q=7, I(\lambda)=3, I(\mu)=4$, then

$$
\pi_{*}\left(c_{56}(Q \otimes S) \cdot P_{931}(Q) \cdot P_{7542}(S)\right)=(-6) P_{9754321}(E)
$$

Want:

$$
\pi_{*}\left(c_{q r}(Q \otimes S) P_{\lambda}(Q) P_{\mu}(S)\right)=?
$$

If $I(\lambda)=q, \mu=0$, we get $P_{\lambda}(E)$.
If $I(\lambda)=q-1, \mu=0$, we get $P_{\lambda}(E)$ for $n-q$ even.
If $I(\lambda)=q-1, \mu=0$, we get 0 for $n-q$ odd.
If $n=15, q=7, I(\lambda)=3, I(\mu)=4$, then

$$
\pi_{*}\left(c_{56}(Q \otimes S) \cdot P_{931}(Q) \cdot P_{7542}(S)\right)=(-6) P_{9754321}(E)
$$

Like Schur S-polynomials govern Schubert calculus on classical Grassmannians,

Want:

$$
\pi_{*}\left(c_{q r}(Q \otimes S) P_{\lambda}(Q) P_{\mu}(S)\right)=?
$$

If $I(\lambda)=q, \mu=0$, we get $P_{\lambda}(E)$.
If $I(\lambda)=q-1, \mu=0$, we get $P_{\lambda}(E)$ for $n-q$ even.
If $I(\lambda)=q-1, \mu=0$, we get 0 for $n-q$ odd.
If $n=15, q=7, I(\lambda)=3, I(\mu)=4$, then

$$
\pi_{*}\left(c_{56}(Q \otimes S) \cdot P_{931}(Q) \cdot P_{7542}(S)\right)=(-6) P_{9754321}(E)
$$

Like Schur S-polynomials govern Schubert calculus on classical Grassmannians,

Schur P-polynomials govern Schubert calculus on Lagrangian Grassmannians.

Let $\tau_{E}: F I(E) \rightarrow X$ be the complete flag bundle parametrizing flags of quotients of E of ranks $n-1, n-2, \ldots, 1$.

Let $\tau_{E}: F I(E) \rightarrow X$ be the complete flag bundle parametrizing flags of quotients of E of ranks $n-1, n-2, \ldots, 1$.

Let t be a variable. The main formula will be located in $A(X)[t]$ or $H(X)[t]$.

Let $\tau_{E}: F I(E) \rightarrow X$ be the complete flag bundle parametrizing flags of quotients of E of ranks $n-1, n-2, \ldots, 1$.

Let t be a variable. The main formula will be located in $A(X)[t]$ or $H(X)[t]$.

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ be sequence of nonnegative integers. Set

$$
R_{\lambda}(E ; t)=\left(\tau_{E}\right)_{*}\left(x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}} \prod_{i<j}\left(x_{i}-t x_{j}\right)\right),
$$

where $\left(\tau_{E}\right)_{*}$ acts on each coefficient of the polynomial in t separately.

Proposition
If $\lambda \in \mathbb{Z}_{\geq 0}^{q}$ and $\mu \in \mathbb{Z}_{\geq 0}^{n-q}$ then

$$
\pi_{*}\left(R_{\lambda}(Q ; t) R_{\mu}(S ; t) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right)=R_{\lambda \mu}(E ; t)
$$

where $\lambda \mu=\left(\lambda_{1}, \ldots, \lambda_{q}, \mu_{1}, \ldots, \mu_{r}\right)$ is the juxtaposition of λ and μ.

Proposition
If $\lambda \in \mathbb{Z}_{\geq 0}^{q}$ and $\mu \in \mathbb{Z}_{\geq 0}^{n-q}$ then

$$
\pi_{*}\left(R_{\lambda}(Q ; t) R_{\mu}(S ; t) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right)=R_{\lambda \mu}(E ; t)
$$

where $\lambda \mu=\left(\lambda_{1}, \ldots, \lambda_{q}, \mu_{1}, \ldots, \mu_{r}\right)$ is the juxtaposition of λ and μ.

This is seen from a commutative diagram
which gives

$$
\pi_{*}\left(\tau_{Q} \times \tau_{S}\right)_{*}=\left(\tau_{E}\right)_{*}
$$

Suppose that $x_{1} \ldots, x_{q}$ are the Chern roots of Q and x_{q+1}, \ldots, x_{n} are the ones of S.

Suppose that $x_{1} \ldots, x_{q}$ are the Chern roots of Q and x_{q+1}, \ldots, x_{n} are the ones of S. Let $x^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{q}^{\lambda_{q}}$ and $x^{\mu}=x_{q+1}^{\mu_{1}} \cdots x_{n}^{\mu_{r}}$.

Suppose that $x_{1} \ldots, x_{q}$ are the Chern roots of Q and x_{q+1}, \ldots, x_{n} are the ones of S. Let $x^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{q}^{\lambda_{q}}$ and $x^{\mu}=x_{q+1}^{\mu_{1}} \cdots x_{n}^{\mu_{r}}$.

It follows from the above equality:

$$
\pi_{*}\left(R_{\lambda}(Q ; t) R_{\mu}(S ; t) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right)
$$

Suppose that $x_{1} \ldots, x_{q}$ are the Chern roots of Q and x_{q+1}, \ldots, x_{n} are the ones of S. Let $x^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{q}^{\lambda_{q}}$ and $x^{\mu}=x_{q+1}^{\mu_{1}} \cdots x_{n}^{\mu_{r}}$.

It follows from the above equality:

$$
\begin{aligned}
& \pi_{*}\left(R_{\lambda}(Q ; t) R_{\mu}(S ; t) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right) \\
& =\pi_{*}\left(\left(\tau_{Q}\right)_{*}\left(x^{\lambda} \prod_{i<j \leq q}\left(x_{i}-t x_{j}\right)\right) \cdot\left(\tau_{S}\right)_{*}\left(x^{\mu} \prod_{q<i<j}\left(x_{i}-t x_{j}\right)\right) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right.
\end{aligned}
$$

Suppose that $x_{1} \ldots, x_{q}$ are the Chern roots of Q and x_{q+1}, \ldots, x_{n} are the ones of S. Let $x^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{q}^{\lambda_{q}}$ and $x^{\mu}=x_{q+1}^{\mu_{1}} \cdots x_{n}^{\mu_{r}}$.

It follows from the above equality:

$$
\begin{aligned}
& \pi_{*}\left(R_{\lambda}(Q ; t) R_{\mu}(S ; t) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right) \\
& =\pi_{*}\left(\left(\tau_{Q}\right)_{*}\left(x^{\lambda} \prod_{i<j \leq q}\left(x_{i}-t x_{j}\right)\right) \cdot\left(\tau_{S}\right)_{*}\left(x^{\mu} \prod_{q<i<j}\left(x_{i}-t x_{j}\right)\right) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right. \\
& =\pi_{*}\left(\tau_{Q} \times \tau_{S}\right)_{*}\left(x^{\lambda} \prod_{i<j \leq q}\left(x_{i}-t x_{j}\right) x^{\mu} \prod_{q<i<j}\left(x_{i}-t x_{j}\right) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right)
\end{aligned}
$$

Suppose that $x_{1} \ldots, x_{q}$ are the Chern roots of Q and x_{q+1}, \ldots, x_{n} are the ones of S. Let $x^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{q}^{\lambda_{q}}$ and $x^{\mu}=x_{q+1}^{\mu_{1}} \cdots x_{n}^{\mu_{r}}$.

It follows from the above equality:

$$
\begin{aligned}
& \pi_{*}\left(R_{\lambda}(Q ; t) R_{\mu}(S ; t) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right) \\
& =\pi_{*}\left(\left(\tau_{Q}\right)_{*}\left(x^{\lambda} \prod_{i<j \leq q}\left(x_{i}-t x_{j}\right)\right) \cdot(\tau)_{*}\left(x^{\mu} \prod_{q<i<j}\left(x_{i}-t x_{j}\right)\right) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right. \\
& =\pi_{*}\left(\tau_{Q} \times \tau_{S}\right)_{*}\left(x^{\lambda} \prod_{i<j \leq q}\left(x_{i}-t x_{j}\right) x^{\mu} \prod_{q<i<j}\left(x_{i}-t x_{j}\right) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right) \\
& =\left(\tau_{E}\right)_{*}\left(x^{\lambda} x^{\mu} \prod_{i<j}\left(x_{i}-t x_{j}\right)\right)=R_{\lambda \mu}(E ; t) .
\end{aligned}
$$

Suppose that $x_{1} \ldots, x_{q}$ are the Chern roots of Q and x_{q+1}, \ldots, x_{n} are the ones of S. Let $x^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{q}^{\lambda_{q}}$ and $x^{\mu}=x_{q+1}^{\mu_{1}} \cdots x_{n}^{\mu_{r}}$.

It follows from the above equality:

$$
\begin{aligned}
& \pi_{*}\left(R_{\lambda}(Q ; t) R_{\mu}(S ; t) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right) \\
& =\pi_{*}\left(\left(\tau_{Q}\right)_{*}\left(x^{\lambda} \prod_{i<j \leq q}\left(x_{i}-t x_{j}\right)\right) \cdot(\tau s)_{*}\left(x^{\mu} \prod_{q<i<j}\left(x_{i}-t x_{j}\right)\right) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right. \\
& =\pi_{*}\left(\tau_{Q} \times \tau S\right)_{*}\left(x^{\lambda} \prod_{i<j \leq q}\left(x_{i}-t x_{j}\right) x^{\mu} \prod_{q<i<j}\left(x_{i}-t x_{j}\right) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)\right) \\
& =\left(\tau_{E}\right)_{*}\left(x^{\lambda} x^{\mu} \prod_{i<j}\left(x_{i}-t x_{j}\right)\right)=R_{\lambda \mu}(E ; t) . \\
& \prod_{i<j \leq q}\left(x_{i}-t x_{j}\right) \prod_{q<i<j}\left(x_{i}-t x_{j}\right) \prod_{i \leq q<j}\left(x_{i}-t x_{j}\right)=\prod_{i<j}\left(x_{i}-t x_{j}\right) .
\end{aligned}
$$

$$
v_{m}(t):=\prod_{i=1}^{m} \frac{1-t^{i}}{1-t}=(1+t)\left(1+t+t^{2}\right) \cdots\left(1+t+\cdots+t^{m-1}\right)
$$

$v_{m}(t):=\prod_{i=1}^{m} \frac{1-t^{i}}{1-t}=(1+t)\left(1+t+t^{2}\right) \cdots\left(1+t+\cdots+t^{m-1}\right)$.

Let $\lambda \in \mathbb{Z}_{\geq 0}^{n}$. Consider the maximal subsets I_{1}, \ldots, I_{d} in $\{1, \ldots, n\}$, where the sequence λ is constant.
$v_{m}(t):=\prod_{i=1}^{m} \frac{1-t^{i}}{1-t}=(1+t)\left(1+t+t^{2}\right) \cdots\left(1+t+\cdots+t^{m-1}\right)$.

Let $\lambda \in \mathbb{Z}_{\geq 0}^{n}$. Consider the maximal subsets I_{1}, \ldots, I_{d} in $\{1, \ldots, n\}$, where the sequence λ is constant.

Let m_{1}, \ldots, m_{d} be the cardinalities of I_{1}, \ldots, l_{d}. So we have $m_{1}+\cdots+m_{d}=n$.
$v_{m}(t):=\prod_{i=1}^{m} \frac{1-t^{i}}{1-t}=(1+t)\left(1+t+t^{2}\right) \cdots\left(1+t+\cdots+t^{m-1}\right)$.

Let $\lambda \in \mathbb{Z}_{\geq 0}^{n}$. Consider the maximal subsets I_{1}, \ldots, I_{d} in $\{1, \ldots, n\}$, where the sequence λ is constant.

Let m_{1}, \ldots, m_{d} be the cardinalities of I_{1}, \ldots, l_{d}. So we have $m_{1}+\cdots+m_{d}=n$.

Also we set $v_{\lambda}=v_{\lambda}(t):=\prod_{i=1}^{d} v_{m_{i}}(t)$.

Example. $\lambda=(9,9,9,8,0,0,8,8,8,8,9), n=11$

Example. $\lambda=(9,9,9,8,0,0,8,8,8,8,9), n=11$

$$
I_{1}=\{1,2,3,11\}, I_{2}=\{4,7,8,9,10\}, I_{3}=\{5,6\}
$$

Example. $\lambda=(9,9,9,8,0,0,8,8,8,8,9), n=11$

$$
\begin{aligned}
& I_{1}=\{1,2,3,11\}, I_{2}=\{4,7,8,9,10\}, I_{3}=\{5,6\} \\
& m_{1}=4, m_{2}=5, m_{3}=2
\end{aligned}
$$

Example. $\lambda=(9,9,9,8,0,0,8,8,8,8,9), n=11$
$I_{1}=\{1,2,3,11\}, I_{2}=\{4,7,8,9,10\}, I_{3}=\{5,6\}$
$m_{1}=4, m_{2}=5, m_{3}=2$
$v_{\lambda}=v_{4} v_{5} v_{2}$

Example. $\lambda=(9,9,9,8,0,0,8,8,8,8,9), n=11$
$I_{1}=\{1,2,3,11\}, I_{2}=\{4,7,8,9,10\}, I_{3}=\{5,6\}$
$m_{1}=4, m_{2}=5, m_{3}=2$
$v_{\lambda}=v_{4} v_{5} v_{2}$
Example. Let $\nu=\left(\nu_{1}>\ldots>\nu_{k}>0\right)$ be a strict partition with $k \leq n$.

Example. $\lambda=(9,9,9,8,0,0,8,8,8,8,9), n=11$
$I_{1}=\{1,2,3,11\}, I_{2}=\{4,7,8,9,10\}, I_{3}=\{5,6\}$
$m_{1}=4, m_{2}=5, m_{3}=2$
$v_{\lambda}=v_{4} v_{5} v_{2}$
Example. Let $\nu=\left(\nu_{1}>\ldots>\nu_{k}>0\right)$ be a strict partition with $k \leq n$.

Let $\lambda=\nu 0^{n-k}$ be the sequence ν with $n-k$ zeros added at the end.

Example. $\lambda=(9,9,9,8,0,0,8,8,8,8,9), n=11$
$I_{1}=\{1,2,3,11\}, I_{2}=\{4,7,8,9,10\}, I_{3}=\{5,6\}$
$m_{1}=4, m_{2}=5, m_{3}=2$
$v_{\lambda}=v_{4} v_{5} v_{2}$
Example. Let $\nu=\left(\nu_{1}>\ldots>\nu_{k}>0\right)$ be a strict partition with $k \leq n$.

Let $\lambda=\nu 0^{n-k}$ be the sequence ν with $n-k$ zeros added at the end.

Then $d=k+1,\left(m_{1}, \ldots, m_{d}\right)=\left(1^{k}, n-k\right), v_{\lambda}(t)=v_{n-k}(t)$.

Detinition
Let λ be a sequence of nonnegative integers. Set

$$
\begin{equation*}
P_{\lambda}(E ; t)=\frac{1}{v_{\lambda}(t)} R_{\lambda}(E ; t) \tag{1}
\end{equation*}
$$

Detinition
Let λ be a sequence of nonnegative integers. Set

$$
\begin{equation*}
P_{\lambda}(E ; t)=\frac{1}{v_{\lambda}(t)} R_{\lambda}(E ; t) . \tag{1}
\end{equation*}
$$

If λ is a partition, then $P_{\lambda}(E ; t)$ is a polynomial in t, called Hall-Littlewood polynomial (see Macdonald's book)

Definition
Let λ be a sequence of nonnegative integers. Set

$$
\begin{equation*}
P_{\lambda}(E ; t)=\frac{1}{v_{\lambda}(t)} R_{\lambda}(E ; t) \tag{1}
\end{equation*}
$$

If λ is a partition, then $P_{\lambda}(E ; t)$ is a polynomial in t, called Hall-Littlewood polynomial (see Macdonald's book)

Let y_{1}, \ldots, y_{n} and t be independent indeterminates.

Definition
Let λ be a sequence of nonnegative integers. Set

$$
\begin{equation*}
P_{\lambda}(E ; t)=\frac{1}{v_{\lambda}(t)} R_{\lambda}(E ; t) \tag{1}
\end{equation*}
$$

If λ is a partition, then $P_{\lambda}(E ; t)$ is a polynomial in t, called Hall-Littlewood polynomial (see Macdonald's book)

Let y_{1}, \ldots, y_{n} and t be independent indeterminates.
For a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of nonnegative integers, set

$$
R_{\lambda}\left(y_{1}, \ldots, y_{n} ; t\right)=\sum_{w \in S_{n}} w\left(y_{1}^{\lambda_{1}} \cdots y_{n}^{\lambda_{n}} \prod_{i<j} \frac{y_{i}-t y_{j}}{y_{i}-y_{j}}\right)
$$

where S_{n} is the group of all bijections of $\left\{y_{1}, \ldots, y_{n}\right\}$.

Detinition

Let λ be a sequence of nonnegative integers. Set

$$
\begin{equation*}
P_{\lambda}(E ; t)=\frac{1}{v_{\lambda}(t)} R_{\lambda}(E ; t) \tag{1}
\end{equation*}
$$

If λ is a partition, then $P_{\lambda}(E ; t)$ is a polynomial in t, called Hall-Littlewood polynomial (see Macdonald's book)

Let y_{1}, \ldots, y_{n} and t be independent indeterminates.
For a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of nonnegative integers, set

$$
R_{\lambda}\left(y_{1}, \ldots, y_{n} ; t\right)=\sum_{w \in S_{n}} w\left(y_{1}^{\lambda_{1}} \cdots y_{n}^{\lambda_{n}} \prod_{i<j} \frac{y_{i}-t y_{j}}{y_{i}-y_{j}}\right)
$$

where S_{n} is the group of all bijections of $\left\{y_{1}, \ldots, y_{n}\right\}$. (Specializing the y 's to the Chern roots of $E, R_{\lambda}(y ; t)$ becomes $R_{\lambda}(E ; t)$.)

Computing with Maple, we get the following examples.

Example

For λ equal to $(0,2,0),(0,2,2,0),(0,2,3,0),(0,2,2,3,3)$, $R_{\lambda}(y ; t)$ is divisible by $v_{\lambda}(t)$.

Computing with Maple, we get the following examples.

Example

For λ equal to $(0,2,0),(0,2,2,0),(0,2,3,0),(0,2,2,3,3)$, $R_{\lambda}(y ; t)$ is divisible by $v_{\lambda}(t)$. For λ equal to ($0,2,0,2$), $(0,2,0,0,2),(0,2,2,0,0,0), R_{\lambda}(y ; t)$ is not divisible by $v_{\lambda}(t)$.

Computing with Maple, we get the following examples.

Example

For λ equal to $(0,2,0),(0,2,2,0),(0,2,3,0),(0,2,2,3,3)$, $R_{\lambda}(y ; t)$ is divisible by $v_{\lambda}(t)$. For λ equal to ($0,2,0,2$), $(0,2,0,0,2),(0,2,2,0,0,0), R_{\lambda}(y ; t)$ is not divisible by $v_{\lambda}(t)$.

As a consequence of the Proposition we obtain the following result.

Computing with Maple, we get the following examples.

Example

For λ equal to $(0,2,0),(0,2,2,0),(0,2,3,0),(0,2,2,3,3)$, $R_{\lambda}(y ; t)$ is divisible by $v_{\lambda}(t)$. For λ equal to ($0,2,0,2$), $(0,2,0,0,2),(0,2,2,0,0,0), R_{\lambda}(y ; t)$ is not divisible by $v_{\lambda}(t)$.

As a consequence of the Proposition we obtain the following result.
Theorem
Suppose that $\lambda=\left(\lambda_{1}, \ldots, \lambda_{q}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{r}\right)$ are sequences of nonnegative integers such that $R_{\lambda}(Q ; t)$ is divisible by $v_{\lambda}(t)$ and $R_{\mu}(S ; t)$ is divisible by $v_{\mu}(t)$.

Computing with Maple, we get the following examples.

Example

For λ equal to $(0,2,0),(0,2,2,0),(0,2,3,0),(0,2,2,3,3)$, $R_{\lambda}(y ; t)$ is divisible by $v_{\lambda}(t)$. For λ equal to ($0,2,0,2$), $(0,2,0,0,2),(0,2,2,0,0,0), R_{\lambda}(y ; t)$ is not divisible by $v_{\lambda}(t)$.

As a consequence of the Proposition we obtain the following result.

Theorem

Suppose that $\lambda=\left(\lambda_{1}, \ldots, \lambda_{q}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{r}\right)$ are sequences of nonnegative integers such that $R_{\lambda}(Q ; t)$ is divisible by $v_{\lambda}(t)$ and $R_{\mu}(S ; t)$ is divisible by $v_{\mu}(t)$. Then for the polynomials $P_{\lambda}(Q ; t)$ and $P_{\mu}(S ; t)$ we have

$$
\pi_{*}\left(\prod_{i \leq q<j}\left(x_{i}-t x_{j}\right) P_{\lambda}(Q ; t) P_{\mu}(S ; t)\right)=\frac{v_{\lambda \mu}(t)}{v_{\lambda}(t) v_{\mu}(t)} P_{\lambda \mu}(E ; t) .
$$

In the sequel, the sequences λ and μ will be partitions.

In the sequel, the sequences λ and μ will be partitions.
We look at the specialization $t=0$.

In the sequel, the sequences λ and μ will be partitions.
We look at the specialization $t=0$.
We invoke the Jacobi-Trudi formula for $s_{\lambda}(E)$ with the help of the Gysin map associated to $\tau_{E}: F I(E) \rightarrow X$:

$$
s_{\lambda}(E)=\left(\tau_{E}\right)_{*}\left(x_{1}^{\lambda_{1}+n-1} \cdots x_{n}^{\lambda_{n}}\right)
$$

In the sequel, the sequences λ and μ will be partitions.
We look at the specialization $t=0$.
We invoke the Jacobi-Trudi formula for $s_{\lambda}(E)$ with the help of the Gysin map associated to $\tau_{E}: F I(E) \rightarrow X$:

$$
s_{\lambda}(E)=\left(\tau_{E}\right)_{*}\left(x_{1}^{\lambda_{1}+n-1} \cdots x_{n}^{\lambda_{n}}\right) .
$$

We see that $P_{\lambda}(E ; t)=s_{\lambda}(E)$ for $t=0$. Under this specialization, the Theorem becomes
$\pi_{*}\left(\left(x_{1} \cdots x_{q}\right)^{r} s_{\lambda}(Q) s_{\mu}(S)\right)=\pi_{*}\left(s_{\lambda_{1}+r, \ldots, \lambda_{q}+r}(Q) s_{\mu}(S)\right)=s_{\lambda \mu}(E)$.
(Józefiak-Lascoux-P)

If a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is not a partition, then $s_{\lambda}(E)$ is either 0 or $\pm s_{\mu}(E)$ for some partition μ.

If a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is not a partition, then $s_{\lambda}(E)$ is either 0 or $\pm s_{\mu}(E)$ for some partition μ.

One can rearrange λ by a sequence of operations $(\ldots, i, j, \ldots) \mapsto(\ldots, j-1, i+1, \ldots)$ applied to pairs of successive integers.

If a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is not a partition, then $s_{\lambda}(E)$ is either 0 or $\pm s_{\mu}(E)$ for some partition μ.

One can rearrange λ by a sequence of operations $(\ldots, i, j, \ldots) \mapsto(\ldots, j-1, i+1, \ldots)$ applied to pairs of successive integers.

Either one arrives at a sequence of the form $(\ldots, i, i+1, \ldots)$, in which case $s_{\lambda}(E)=0$, or one arrives in d steps at a partition μ, and then $s_{\lambda}(E)=(-1)^{d} s_{\mu}(E)$.

Pair of strict partitions ν, σ :

Pair of strict partitions ν, σ :

$$
\nu=\left(\nu_{1}>\ldots>\nu_{k}>0\right), \quad k \leq q, \quad \lambda:=\nu 0^{q-k}
$$

Pair of strict partitions ν, σ :

$$
\begin{array}{ll}
\nu=\left(\nu_{1}>\ldots>\nu_{k}>0\right), \quad k \leq q, \quad \lambda:=\nu 0^{q-k} \\
\sigma=\left(\sigma_{1}>\ldots>\sigma_{h}>0\right), \quad h \leq n-q, \quad \mu:=\sigma 0^{n-q-h}
\end{array}
$$

Pair of strict partitions ν, σ :

$$
\begin{aligned}
& \nu=\left(\nu_{1}>\ldots>\nu_{k}>0\right), \quad k \leq q, \quad \lambda:=\nu 0^{q-k} \\
& \sigma=\left(\sigma_{1}>\ldots>\sigma_{h}>0\right), \quad h \leq n-q, \quad \mu:=\sigma 0^{n-q-h} \\
& v_{\lambda}=\prod_{i=1}^{q-k} \frac{1-t^{i}}{1-t}
\end{aligned}
$$

Pair of strict partitions ν, σ :

$$
\begin{aligned}
& \nu=\left(\nu_{1}>\ldots>\nu_{k}>0\right), \quad k \leq q, \quad \lambda:=\nu 0^{q-k} \\
& \sigma=\left(\sigma_{1}>\ldots>\sigma_{h}>0\right), \quad h \leq n-q, \quad \mu:=\sigma 0^{n-q-h} \\
& v_{\lambda}=\prod_{i=1}^{q-k} \frac{1-t^{i}}{1-t} \\
& v_{\mu}=\prod_{i=1}^{n-q-h} \frac{1-t^{i}}{1-t}
\end{aligned}
$$

Pair of strict partitions ν, σ :

$$
\begin{aligned}
& \nu=\left(\nu_{1}>\ldots>\nu_{k}>0\right), \quad k \leq q, \quad \lambda:=\nu 0^{q-k} \\
& \sigma=\left(\sigma_{1}>\ldots>\sigma_{h}>0\right), \quad h \leq n-q, \quad \mu:=\sigma 0^{n-q-h} \\
& v_{\lambda}=\prod_{i=1}^{q-k} \frac{1-t^{i}}{1-t} \\
& v_{\mu}=\prod_{i=1}^{n-q-h} \frac{1-t^{i}}{1-t} \\
& v_{\lambda \mu}=\prod_{i=1}^{n-k-h} \frac{1-t^{i}}{1-t}\left(\prod_{i=1}^{2} \frac{1-t^{i}}{1-t}\right)^{e}
\end{aligned}
$$

Pair of strict partitions ν, σ :

$$
\begin{aligned}
& \nu=\left(\nu_{1}>\ldots>\nu_{k}>0\right), \quad k \leq q, \quad \lambda:=\nu 0^{q-k} \\
& \sigma=\left(\sigma_{1}>\ldots>\sigma_{h}>0\right), \quad h \leq n-q, \quad \mu:=\sigma 0^{n-q-h} \\
& v_{\lambda}=\prod_{i=1}^{q-k} \frac{1-t^{i}}{1-t} \\
& v_{\mu}=\prod_{i=1}^{n-q-h} \frac{1-t^{i}}{1-t} \\
& v_{\lambda \mu}=\prod_{i=1}^{n-k-h} \frac{1-t^{i}}{1-t}\left(\prod_{i=1}^{2} \frac{1-t^{i}}{1-t}\right)^{e}
\end{aligned}
$$

Here e is the number of common parts of ν and σ.

We have

$$
\frac{v_{\lambda \mu}}{v_{\lambda} v_{\mu}}=\frac{(1-t) \cdots\left(1-t^{n-k-h}\right)}{(1-t) \cdots\left(1-t^{q-k}\right)(1-t) \cdots\left(1-t^{n-q-h}\right)}(1+t)^{e}
$$

We have

$\frac{v_{\lambda \mu}}{v_{\lambda} v_{\mu}}=\frac{(1-t) \cdots\left(1-t^{n-k-h}\right)}{(1-t) \cdots\left(1-t^{q-k}\right)(1-t) \cdots\left(1-t^{n-q-h}\right)}(1+t)^{e}$
This is the Gaussian polynomial $\left[\begin{array}{c}n-k-h \\ q-k\end{array}\right](t)$ times $(1+t)^{e}$.

We have
$\frac{v_{\lambda \mu}}{v_{\lambda} v_{\mu}}=\frac{(1-t) \cdots\left(1-t^{n-k-h}\right)}{(1-t) \cdots\left(1-t^{q-k}\right)(1-t) \cdots\left(1-t^{n-q-h}\right)}(1+t)^{e}$
This is the Gaussian polynomial $\left[\begin{array}{c}n-k-h \\ q-k\end{array}\right](t)$ times $(1+t)^{e}$.
So by Theorem we have

$$
\pi_{*}\left(\prod_{i \leq q<j}\left(x_{i}-t x_{j}\right) P_{\lambda}(Q ; t) P_{\mu}(S ; t)\right)=\left[\begin{array}{c}
n-k-h \\
q-k
\end{array}\right](t)(1+t)^{e} P_{\lambda \mu}(E ; t)
$$

We have
$\frac{v_{\lambda \mu}}{v_{\lambda} v_{\mu}}=\frac{(1-t) \cdots\left(1-t^{n-k-h}\right)}{(1-t) \cdots\left(1-t^{q-k}\right)(1-t) \cdots\left(1-t^{n-q-h}\right)}(1+t)^{e}$
This is the Gaussian polynomial $\left[\begin{array}{c}n-k-h \\ q-k\end{array}\right](t)$ times $(1+t)^{e}$.
So by Theorem we have
$\pi_{*}\left(\prod_{i \leq q<j}\left(x_{i}-t x_{j}\right) P_{\lambda}(Q ; t) P_{\mu}(S ; t)\right)=\left[\begin{array}{c}n-k-h \\ q-k\end{array}\right](t)(1+t)^{e} P_{\lambda \mu}(E ; t)$.

- some zeros at the end of λ possible

We have
$\frac{v_{\lambda \mu}}{v_{\lambda} v_{\mu}}=\frac{(1-t) \cdots\left(1-t^{n-k-h}\right)}{(1-t) \cdots\left(1-t^{q-k}\right)(1-t) \cdots\left(1-t^{n-q-h}\right)}(1+t)^{e}$
This is the Gaussian polynomial $\left[\begin{array}{c}n-k-h \\ q-k\end{array}\right](t)$ times $(1+t)^{e}$.
So by Theorem we have
$\pi_{*}\left(\prod_{i \leq q<j}\left(x_{i}-t x_{j}\right) P_{\lambda}(Q ; t) P_{\mu}(S ; t)\right)=\left[\begin{array}{c}n-k-h \\ q-k\end{array}\right](t)(1+t)^{e} P_{\lambda \mu}(E ; t)$.

- some zeros at the end of λ possible

We look at the specialization $t=-1$. Most interesting is the specialization of Gaussian polynomials.

Lemma

At $t=-1$, the Gaussian polynomial

$$
\left[\begin{array}{c}
a+b \\
a
\end{array}\right](t)
$$

specializes to zero if $a b$ is odd and to the binomial coefficient

$$
\binom{\lfloor(a+b) / 2\rfloor}{\lfloor a / 2\rfloor}
$$

otherwise.

Lemma

At $t=-1$, the Gaussian polynomial

$$
\left[\begin{array}{c}
a+b \\
a
\end{array}\right](t)
$$

specializes to zero if $a b$ is odd and to the binomial coefficient

$$
\binom{\lfloor(a+b) / 2\rfloor}{\lfloor a / 2\rfloor}
$$

otherwise.
(with Witold Kraśkiewicz)

Indeed, we have

$$
\left[\begin{array}{c}
a+b \\
a
\end{array}\right](t)=\frac{(1-t)\left(1-t^{2}\right) \cdots\left(1-t^{a+b}\right)}{(1-t) \cdots\left(1-t^{a}\right)(1-t) \cdots\left(1-t^{b}\right)}
$$

Indeed, we have

$$
\left[\begin{array}{c}
a+b \\
a
\end{array}\right](t)=\frac{(1-t)\left(1-t^{2}\right) \cdots\left(1-t^{a+b}\right)}{(1-t) \cdots\left(1-t^{a}\right)(1-t) \cdots\left(1-t^{b}\right)}
$$

Since $t=-1$ is a zero with multiplicity 1 of the factor $\left(1-t^{d}\right)$ for even d, and a zero with multiplicity 0 for odd d,

Indeed, we have

$$
\left[\begin{array}{c}
a+b \\
a
\end{array}\right](t)=\frac{(1-t)\left(1-t^{2}\right) \cdots\left(1-t^{a+b}\right)}{(1-t) \cdots\left(1-t^{a}\right)(1-t) \cdots\left(1-t^{b}\right)}
$$

Since $t=-1$ is a zero with multiplicity 1 of the factor $\left(1-t^{d}\right)$ for even d, and a zero with multiplicity 0 for odd d, the order of the rational function $\left[\begin{array}{c}a+b \\ a\end{array}\right](t)$ at $t=-1$ is equal to

$$
\lfloor(a+b) / 2\rfloor-\lfloor a / 2\rfloor-\lfloor b / 2\rfloor .
$$

Indeed, we have

$$
\left[\begin{array}{c}
a+b \\
a
\end{array}\right](t)=\frac{(1-t)\left(1-t^{2}\right) \cdots\left(1-t^{a+b}\right)}{(1-t) \cdots\left(1-t^{a}\right)(1-t) \cdots\left(1-t^{b}\right)}
$$

Since $t=-1$ is a zero with multiplicity 1 of the factor $\left(1-t^{d}\right)$ for even d, and a zero with multiplicity 0 for odd d, the order of the rational function $\left[\begin{array}{c}a+b \\ a\end{array}\right](t)$ at $t=-1$ is equal to

$$
\lfloor(a+b) / 2\rfloor-\lfloor a / 2\rfloor-\lfloor b / 2\rfloor .
$$

This order is equal to 1 when a and b are odd, and 0 otherwise.

Indeed, we have

$$
\left[\begin{array}{c}
a+b \\
a
\end{array}\right](t)=\frac{(1-t)\left(1-t^{2}\right) \cdots\left(1-t^{a+b}\right)}{(1-t) \cdots\left(1-t^{a}\right)(1-t) \cdots\left(1-t^{b}\right)}
$$

Since $t=-1$ is a zero with multiplicity 1 of the factor $\left(1-t^{d}\right)$ for even d, and a zero with multiplicity 0 for odd d, the order of the rational function $\left[\begin{array}{c}a+b \\ a\end{array}\right](t)$ at $t=-1$ is equal to

$$
\lfloor(a+b) / 2\rfloor-\lfloor a / 2\rfloor-\lfloor b / 2\rfloor .
$$

This order is equal to 1 when a and b are odd, and 0 otherwise.
In the former case, we get the claimed vanishing, and
in the latter one, the product of the factors with even exponents is equal to

$$
\left[\begin{array}{c}
\lfloor a+b / 2\rfloor \\
\lfloor a / 2\rfloor
\end{array}\right]\left(t^{2}\right)
$$

The value of this function at $t=-1$ is equal to $\left[\begin{array}{c}\lfloor a+b / 2\rfloor \\ \lfloor a / 2\rfloor\end{array}\right]$ (1)
in the latter one, the product of the factors with even exponents is equal to

$$
\left[\begin{array}{c}
\lfloor a+b / 2\rfloor \\
\lfloor a / 2\rfloor
\end{array}\right]\left(t^{2}\right)
$$

The value of this function at $t=-1$ is equal to $\left[\begin{array}{c}\lfloor a+b / 2\rfloor \\ \lfloor a / 2\rfloor\end{array}\right]$ (1) which is the binomial coefficient

$$
\binom{\lfloor(a+b) / 2\rfloor}{\lfloor a / 2\rfloor} .
$$

in the latter one, the product of the factors with even exponents is equal to

$$
\left[\begin{array}{c}
\lfloor a+b / 2\rfloor \\
\lfloor a / 2\rfloor
\end{array}\right]\left(t^{2}\right) .
$$

The value of this function at $t=-1$ is equal to $\left[\begin{array}{c}{[a+b / 2\rfloor} \\ {[a / 2\rfloor}\end{array}\right]$ (1) which is the binomial coefficient

$$
\binom{\lfloor(a+b) / 2\rfloor}{\lfloor a / 2\rfloor} .
$$

This is the requested value since the remaining factors with odd exponents give 2 in the numerator and the same number in the denominator. QED

Let x_{1}, \ldots, x_{n} and t be independent indeterminates over \mathbb{Z}.

Let x_{1}, \ldots, x_{n} and t be independent indeterminates over \mathbb{Z}.
Schur in his 1911 paper on projective representations of the symmetric group showed that for any strict partition λ of length k,

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{w \in S_{n} /\left(S_{1}\right)^{k} \times S_{n-k}} w\left(x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}} \prod_{i<j, i \leq k} \frac{x_{i}+x_{j}}{x_{i}-x_{j}}\right)
$$

Let x_{1}, \ldots, x_{n} and t be independent indeterminates over \mathbb{Z}.
Schur in his 1911 paper on projective representations of the symmetric group showed that for any strict partition λ of length k,

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{w \in S_{n} /\left(S_{1}\right)^{k} \times S_{n-k}} w\left(x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}} \prod_{i<j, i \leq k} \frac{x_{i}+x_{j}}{x_{i}-x_{j}}\right)
$$

We have also, for a similar λ, the following formula for a Hall-Littlewood polynomial (see Mcd p. 208):

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; t\right)=\sum_{w \in S_{n} /\left(S_{1}\right)^{k} \times S_{n-k}} w\left(x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}} \prod_{i<j, i \leq k} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right)
$$

We pass now to the notation associated to a pair of strict partitions ν and σ. It follows from comparison of the last two formulas that for $\lambda=\nu 0^{q-k}$, we have $P_{\lambda}(Q ; t)_{t=-1}=P_{\nu}(Q)$;

We pass now to the notation associated to a pair of strict partitions ν and σ. It follows from comparison of the last two formulas that for $\lambda=\nu 0^{q-k}$, we have $P_{\lambda}(Q ; t)_{t=-1}=P_{\nu}(Q)$; and for $\mu=\sigma 0^{r-h}$, we have $P_{\mu}(S ; t)_{t=-1}=P_{\sigma}(S)$.

We pass now to the notation associated to a pair of strict partitions ν and σ. It follows from comparison of the last two formulas that for $\lambda=\nu 0^{q-k}$, we have $P_{\lambda}(Q ; t)_{t=-1}=P_{\nu}(Q)$; and for $\mu=\sigma 0^{r-h}$, we have $P_{\mu}(S ; t)_{t=-1}=P_{\sigma}(S)$.

For $\lambda \in \mathbb{Z}_{\geq 0}^{n}$ set $\mathcal{P}:=P_{\lambda}(E ; t)_{t=-1}$.

We pass now to the notation associated to a pair of strict partitions ν and σ. It follows from comparison of the last two formulas that for $\lambda=\nu 0^{q-k}$, we have $P_{\lambda}(Q ; t)_{t=-1}=P_{\nu}(Q)$; and for $\mu=\sigma 0^{r-h}$, we have $P_{\mu}(S ; t)_{t=-1}=P_{\sigma}(S)$.

For $\lambda \in \mathbb{Z}_{\geq 0}^{n}$ set $\mathcal{P}:=P_{\lambda}(E ; t)_{t=-1}$.
Note that for $i+j>0$, we have $\mathcal{P}_{\ldots, i, j, \ldots}=-\mathcal{P}_{\ldots, j, i, \ldots}$.

We pass now to the notation associated to a pair of strict partitions ν and σ. It follows from comparison of the last two formulas that for $\lambda=\nu 0^{q-k}$, we have $P_{\lambda}(Q ; t)_{t=-1}=P_{\nu}(Q)$; and for $\mu=\sigma 0^{r-h}$, we have $P_{\mu}(S ; t)_{t=-1}=P_{\sigma}(S)$.

For $\lambda \in \mathbb{Z}_{\geq 0}^{n}$ set $\mathcal{P}:=P_{\lambda}(E ; t)_{t=-1}$.
Note that for $i+j>0$, we have $\mathcal{P}_{\ldots, i, j, \ldots}=-\mathcal{P}_{\ldots, j, i, \ldots}$.
Thus $\mathcal{P}_{\nu 0^{q-k} \sigma 0^{r-h}}=(-1)^{(q-k) h} \mathcal{P}_{\nu \sigma 0^{n-k-h}}=(-1)^{(q-k) h} \mathcal{P}_{\nu \sigma}$.

We pass now to the notation associated to a pair of strict partitions ν and σ. It follows from comparison of the last two formulas that for $\lambda=\nu 0^{q-k}$, we have $P_{\lambda}(Q ; t)_{t=-1}=P_{\nu}(Q)$; and for $\mu=\sigma 0^{r-h}$, we have $P_{\mu}(S ; t)_{t=-1}=P_{\sigma}(S)$.

For $\lambda \in \mathbb{Z}_{\geq 0}^{n}$ set $\mathcal{P}:=P_{\lambda}(E ; t)_{t=-1}$.
Note that for $i+j>0$, we have $\mathcal{P}_{\ldots, i, j, \ldots}=-\mathcal{P}_{\ldots, j, i, \ldots}$.
Thus $\mathcal{P}_{\nu 0^{q-k} \sigma 0^{r-h}}=(-1)^{(q-k) h} \mathcal{P}_{\nu \sigma 0^{n-k-h}}=(-1)^{(q-k) h} \mathcal{P}_{\nu \sigma}$.
If $e>0$, then $P_{\nu \sigma}(E)=0$; so we can assume $e=0$ without loss of generality.

Specializing $t=-1$ we get from the Theorem by virtue of the Lemma the following result.

Specializing $t=-1$ we get from the Theorem by virtue of the Lemma the following result.

For strict partitions ν, σ with $I(\nu)=k \leq q$ and $I(\sigma)=h \leq n-q$, we have

Specializing $t=-1$ we get from the Theorem by virtue of the Lemma the following result.

For strict partitions ν, σ with $I(\nu)=k \leq q$ and $I(\sigma)=h \leq n-q$, we have

$$
\pi_{*}\left(c_{q r}(Q \otimes S) P_{\nu}(Q) P_{\sigma}(S)\right)=d_{\nu, \sigma} \cdot P_{\nu \sigma}(E),
$$

Specializing $t=-1$ we get from the Theorem by virtue of the Lemma the following result.

For strict partitions ν, σ with $I(\nu)=k \leq q$ and $I(\sigma)=h \leq n-q$, we have

$$
\pi_{*}\left(c_{q r}(Q \otimes S) P_{\nu}(Q) P_{\sigma}(S)\right)=d_{\nu, \sigma} \cdot P_{\nu \sigma}(E),
$$

where $d_{\nu, \sigma}=0$ if $(q-k)(r-h)$ is odd, and

Specializing $t=-1$ we get from the Theorem by virtue of the Lemma the following result.

For strict partitions ν, σ with $I(\nu)=k \leq q$ and $I(\sigma)=h \leq n-q$, we have

$$
\pi_{*}\left(c_{q r}(Q \otimes S) P_{\nu}(Q) P_{\sigma}(S)\right)=d_{\nu, \sigma} \cdot P_{\nu \sigma}(E),
$$

where $d_{\nu, \sigma}=0$ if $(q-k)(r-h)$ is odd, and

$$
d_{\nu, \sigma}=(-1)^{(q-k) h}\binom{\lfloor(n-k-h) / 2\rfloor}{\lfloor(q-k) / 2\rfloor}
$$

otherwise.

It can happen that $\nu \sigma$ is not a strict partition.

It can happen that $\nu \sigma$ is not a strict partition.
If there are repetitions of indices in $\nu \sigma$ then the RHS is assumed to be zero.

It can happen that $\nu \sigma$ is not a strict partition.
If there are repetitions of indices in $\nu \sigma$ then the RHS is assumed to be zero.

If not, then $P_{\nu \sigma}(E)=(-I)^{\prime} P_{\kappa}(E)$, where I is the lenghth of the permutation which rearranges $\nu \sigma$ into the corresponding strict partition κ.

History of Hall-Littlewood polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite p-groups (Philip Hall about 1950):

History of Hall-Littlewood polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite p-groups (Philip Hall about 1950):
p - prime number, M finite Abelian p-group, $M=\oplus_{i=1}^{r} \mathbb{Z} / p^{\lambda_{i}} \mathbb{Z}$,

History of Hall-Littlewood polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite p-groups (Philip Hall about 1950):
p - prime number, M finite Abelian p-group, $M=\oplus_{i=1}^{r} \mathbb{Z} / p^{\lambda_{i}} \mathbb{Z}$,
$\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$ - partition ("type of M^{\prime}).

History of Hall-Littlewood polynomials (very brief):
Investigation of combinatorial structure of the lattice of finite p-groups (Philip Hall about 1950):
p - prime number, M finite Abelian p-group, $M=\oplus_{i=1}^{r} \mathbb{Z} / p^{\lambda_{i}} \mathbb{Z}$,
$\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$ - partition ("type of M^{\prime}).
Hall algebra : λ, μ, ν three partitions. Let M be of type λ.

$$
G_{\mu \nu}^{\lambda}:=\operatorname{card}\{N \subset M: \operatorname{type}(N)=\nu, \operatorname{type}(M / N)=\mu\}
$$

History of Hall-Littlewood polynomials (very brief):
Investigation of combinatorial structure of the lattice of finite p-groups (Philip Hall about 1950):
p - prime number, M finite Abelian p-group, $M=\oplus_{i=1}^{r} \mathbb{Z} / p^{\lambda_{i}} \mathbb{Z}$,
$\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$ - partition ("type of M^{\prime}).
Hall algebra : λ, μ, ν three partitions. Let M be of type λ.

$$
G_{\mu \nu}^{\lambda}:=\operatorname{card}\{N \subset M: \operatorname{type}(N)=\nu, \operatorname{type}(M / N)=\mu\}
$$

Let H be a free \mathbb{Z}-module with basis $\left\{u_{\lambda}\right\}$,

History of Hall-Littlewood polynomials (very brief):
Investigation of combinatorial structure of the lattice of finite p-groups (Philip Hall about 1950):
p - prime number, M finite Abelian p-group, $M=\oplus_{i=1}^{r} \mathbb{Z} / p^{\lambda_{i}} \mathbb{Z}$,
$\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$ - partition ("type of M^{\prime}).
Hall algebra : λ, μ, ν three partitions. Let M be of type λ.

$$
G_{\mu \nu}^{\lambda}:=\operatorname{card}\{N \subset M: \operatorname{type}(N)=\nu, \operatorname{type}(M / N)=\mu\}
$$

Let H be a free \mathbb{Z}-module with basis $\left\{u_{\lambda}\right\}$,

$$
u_{\mu} \cdot u_{\nu}:=\sum G_{\mu \nu}^{\lambda} u_{\lambda} .
$$

Theorem

H is a commutative ring, and is generated as a \mathbb{Z}-algebra by $\left\{u_{\left(1^{r}\right)}\right\}$ (algebraically independent).

Theorem

H is a commutative ring, and is generated as a \mathbb{Z}-algebra by $\left\{u_{\left(1^{r}\right)}\right\}$ (algebraically independent).

Theorem

The \mathbb{Q}-linear map $\psi: H \otimes \mathbb{Q} \rightarrow \Lambda \otimes \mathbb{Q}$ (symmetric functions) such that

$$
\psi\left(u_{\lambda}\right)=p^{-\sum(i-1) \lambda_{i}} P_{\lambda}\left(y_{1}, y_{2}, \ldots ; p^{-1}\right)
$$

is a ring isomorphism.

Theorem

H is a commutative ring, and is generated as a \mathbb{Z}-algebra by $\left\{u_{\left(1^{r}\right)}\right\}$ (algebraically independent).

Theorem

The \mathbb{Q}-linear map $\psi: H \otimes \mathbb{Q} \rightarrow \Lambda \otimes \mathbb{Q}$ (symmetric functions) such that

$$
\psi\left(u_{\lambda}\right)=p^{-\sum(i-1) \lambda_{i}} P_{\lambda}\left(y_{1}, y_{2}, \ldots ; p^{-1}\right)
$$

is a ring isomorphism.
J.A. Green, D.E. Littlewood: Representation theory of $G L_{n}$ over finite fields.

End

