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Introduction

Let f : X → Y be a proper map of varieties.

f gives rise to a map f∗ : A(X )→ A(Y ) of the Chow groups
induced by push-forward of cycles. It is called push-forward or
Gysin map.

There are many formulas for Gysin maps. Those for
degeneracy loci often involve determinants and Pfaffians.

We shall use them simultaneously by means of Hall-Littlewood
classes associated with a vector bundle E → X of rank n with
Chern roots x1, . . . xn.
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Let si(E ) denotes the ith complete symmetric function in
x1, . . . , xn , or (−1)i (i -th Segre class from Fulton’s IT).

Given a partition λ = (λ1 ≥ . . . ≥ λn ≥ 0) , we set

sλ(E ) =
∣∣sλi−i+j(E )

∣∣
1≤i ,j≤n .

For q ≤ n, let π : G q(E )→ X be the Grassmann bundle
parametrizing rank q quotients of E . It is endowed with the
universal exact sequence of vector bundles

0 −→ S −→ π∗E −→ Q −→ 0 ,

where rank(Q) = q. Let r = n − q.

Then for any partitions λ = (λ1, . . . , λq), µ = (µ1, . . . , µr ) ,

π∗
(
sλ(Q) · sµ(S)

)
= sλ1−r ,...,λq−r ,µ1,...,µr (E ) .
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Want: degeneracy loci formulas for maps with symmetries.
We shall use Pfaffians.

Consider Schur P-functions Pλ(E ) = Pλ defined as follows.
For a strict partition λ = (λ1 > . . . > λk > 0) with odd k ,

Pλ = Pλ1Pλ2,...,λk − Pλ2Pλ1,λ3,...,λk + · · ·+ PλkPλ1,...,λk−1
,

and with even k ,

Pλ = Pλ1,λ2Pλ3,...,λk − Pλ1,λ3Pλ2,λ4,...,λk + · · ·+ Pλ1,λkPλ2,...,λk−1
.

Here, Pi =
∑

sµ, the sum over all hook partitions µ of i ,

and for positive i > j we set

Pi ,j = PiPj + 2

j−1∑
d=1

(−1)dPi+dPj−d + (−1)jPi+j .
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Want:
π∗
(
cqr (Q ⊗ S)Pλ(Q)Pµ(S)

)
=?

If l(λ) = q, µ = 0, we get Pλ(E ).

If l(λ) = q − 1, µ = 0, we get Pλ(E ) for n − q even.

If l(λ) = q − 1, µ = 0, we get 0 for n − q odd.

If n = 15, q = 7, l(λ) = 3, l(µ) = 4, then

π∗(c56(Q ⊗ S) · P931(Q) · P7542(S)) = (−6)P9754321(E ) .

Like Schur S-polynomials govern Schubert calculus on classical
Grassmannians,

Schur P-polynomials govern Schubert calculus on Lagrangian
Grassmannians.
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Let τE : Fl(E )→ X be the complete flag bundle parametrizing
flags of quotients of E of ranks n − 1, n − 2, . . . , 1.

Let t be a variable. The main formula will be located in
A(X )[t] or H(X )[t].

Let λ = (λ1, . . . , λn) ∈ Zn
≥0 be sequence of nonnegative

integers. Define

Rλ(E ; t) = (τE )∗
(
xλ11 · · · xλnn

∏
i<j

(xi − txj)
)
,

where (τE )∗ acts on each coefficient of the polynomial in t
separately.

This polynomial will give rise to a Hall-Littlewood polynomial.
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Proposition
If λ ∈ Zq

≥0 and µ ∈ Zn−q
≥0 then

π∗
(
Rλ(Q; t)Rµ(S ; t)

∏
i≤q<j

(xi − txj)
)

= Rλµ(E ; t),

where λµ = (λ1, . . . , λq, µ1, . . . , µr ) is the juxtaposition of λ
and µ.

This is seen from a commutative diagram

Fl(Q)×Gq(E) Fl(S)

τQ×τS
��

∼= // Fl(E )

τE

��
G q(E ) π

// X

which gives
π∗(τQ × τS)∗ = (τE )∗ .
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Suppose that x1 . . . , xq are the Chern roots of Q and

xq+1, . . . , xn are the ones of S .

Let xλ = xλ11 · · · x
λq
q and

xµ = xµ1q+1 · · · xµrn .

It follows from the above equality:

π∗
(
Rλ(Q; t)Rµ(S ; t)

∏
i≤q<j

(xi − txj)
)

= π∗
(
(τQ)∗

(
xλ

∏
i<j≤q

(xi − txj)
)
· (τS)∗

(
xµ

∏
q<i<j

(xi − txj)
) ∏
i≤q<j

(xi − txj)
)

= π∗(τQ × τS)∗
(
xλ

∏
i<j≤q

(xi − txj) x
µ
∏

q<i<j

(xi − txj)
∏

i≤q<j

(xi − txj)
)

= (τE )∗(x
λ xµ

∏
i<j

(xi − txj)) = Rλµ(E ; t) .

∏
i<j≤q(xi−txj)

∏
q<i<j(xi−txj)

∏
i≤q<j(xi−txj) =

∏
i<j(xi−txj) .
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vm(t) :=
m∏
i=1

1− t i

1− t
= (1+t)(1+t+t2) · · · (1+t+ · · ·+tm−1).

Let λ ∈ Zn
≥0. Consider the maximal subsets I1,...,Id in

{1, . . . , n}, where the sequence λ is constant.

Let m1, . . . ,md be the cardinalities of I1,...,Id . So we have
m1 + · · ·+ md = n.

Let Sn be the symmetric group of permutations of {1, . . . , n}.
We define the stabilizer of λ:

Sλn = {w ∈ Sn : λw(i) = λi , 1 ≤ i ≤ n} .
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We have Sλn =
∏d

i=1 Smi
.

Also we set vλ = vλ(t) :=
∏d

i=1 vmi
(t).

Example. λ = (9, 9, 9, 8, 0, 0, 8, 8, 8, 8, 9), n = 11

I1 = {1, 2, 3, 11}, I2 = {4, 7, 8, 9, 10}, I3 = {5, 6}

m1 = 4, m2 = 5, m3 = 2

vλ = v4v5v2 , Sλ11 = S4 × S5 × S2.
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Example. Let ν = (ν1 > . . . > νk > 0) be a strict partition
with k ≤ n.

Let λ = ν0n−k be the sequence ν with n − k zeros added at
the end.

Then d = k + 1, (m1, . . . ,md) = (1k , n − k), vλ(t) = vn−k(t),
Sλn = (S1)k × Sn−k .
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We shall now need some results from Macdonald’s book. Let
y1, . . . , yn and t be independent indeterminates.

Lemma
(Mcd p.207) We have∑

w∈Sn

w
(∏

i<j

yi − tyj
yi − yj

)
= vn(t) .

For λ ∈ Zn
≥0 we set yλ = yλ11 · · · yλnn and define

Rλ(y1, . . . , yn; t) =
∑
w∈Sn

w
(
yλ
∏
i<j

yi − tyj
yi − yj

)

(thinking about yi as the Chern roots of E , we get Rλ(E ; t)).
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Proposition
The polynomial vλ(t) divides Rλ(y1, . . . , yn; t)

(i.e. all the coefficients of Rλ are divisible by vλ(t) in Z[t])
and we have

Rλ(y1, . . . , yn; t) = vλ(t)
∑

w∈Sn/Sλ
n

w
(
yλ

∏
i<j ,λi 6=λj

yi − tyj
yi − yj

)
.

Proof. Any w ∈ Sn which permutes only the digits from I1 will
fix the monomial yλ, and by Lemma used for Sm1 , we can
extract a factor vm1(t) from Rλ.

Repeating this procedure for I2,...,Id and Sm2 , ..., Smd
, we

extract succesively factors vm2(t), ..., vmd
(t) from Rλ, i.e. a

factor vλ(t), and get the assertion. QED
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Let λ ∈ Zn
≥0. Extending Mcd, we set

Pλ(E ; t) :=
1

vλ(t)
Rλ(E ; t)

and call it Hall-Littlewood polynomial.

It follows from Proposition that Pλ(E ; t) is a polynomial in the
Chern classes of E and t.

As a consequence of the two Propositions and the definition of
Pλ(E ; t), we get

Theorem
Let λ ∈ Zq

≥0 and µ ∈ Zn−q
≥0 . We then have

π∗

( ∏
i≤q<j

(xi − txj)Pλ(Q; t)Pµ(S ; t)
)

=
vλµ(t)

vλ(t)vµ(t)
Pλµ(E ; t) .
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We look at the specialization t = 0.

We invoke the Jacobi-Trudi formula for sλ(E ) with the help of
the Gysin map associated to τE : Fl(E )→ X :

sλ(E ) = (τE )∗(x
λ1+n−1
1 · · · xλnn ).

We see that Pλ(E ; t) = sλ(E ) for t = 0. Under this
specialization, Theorem becomes

π∗
(
(x1 · · · xq)r sλ(Q)sµ(S)

)
= π∗

(
sλ1+r ,...,λq+r (Q)sµ(S)

)
= sλµ(E ) .

(Józefiak-Lascoux-P)
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If a sequence λ = (λ1, . . . , λn) is not a partition, then sλ(E ) is
either 0 or ±sµ(E ) for some partition µ.

One can rearrange λ by a sequence of operations
(. . . , i , j , . . .) 7→ (. . . , j − 1, i + 1, . . .) applied to pairs of
successive integers.

Either one arrives at a sequence of the form (. . . , i , i + 1, . . .),
in which case sλ(E ) = 0, or one arrives in d steps at a
partition µ, and then sλ(E ) = (−1)dsµ(E ).
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Pair of strict partitions ν, σ:

ν = (ν1 > . . . > νk > 0), k ≤ q, λ := ν0q−k

σ = (σ1 > . . . > σh > 0), h ≤ n − q, µ := σ0n−q−h

vλ =
∏q−k

i=1
1−t i
1−t

vµ =
∏n−q−h

i=1
1−t i
1−t

vλµ =
∏n−k−h

i=1
1−t i
1−t

(∏2
i=1

1−t i
1−t

)e
Here e is the number of common parts of ν and σ.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



Pair of strict partitions ν, σ:

ν = (ν1 > . . . > νk > 0), k ≤ q, λ := ν0q−k

σ = (σ1 > . . . > σh > 0), h ≤ n − q, µ := σ0n−q−h

vλ =
∏q−k

i=1
1−t i
1−t

vµ =
∏n−q−h

i=1
1−t i
1−t

vλµ =
∏n−k−h

i=1
1−t i
1−t

(∏2
i=1

1−t i
1−t

)e
Here e is the number of common parts of ν and σ.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



Pair of strict partitions ν, σ:

ν = (ν1 > . . . > νk > 0), k ≤ q, λ := ν0q−k

σ = (σ1 > . . . > σh > 0), h ≤ n − q, µ := σ0n−q−h

vλ =
∏q−k

i=1
1−t i
1−t

vµ =
∏n−q−h

i=1
1−t i
1−t

vλµ =
∏n−k−h

i=1
1−t i
1−t

(∏2
i=1

1−t i
1−t

)e
Here e is the number of common parts of ν and σ.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



Pair of strict partitions ν, σ:

ν = (ν1 > . . . > νk > 0), k ≤ q, λ := ν0q−k

σ = (σ1 > . . . > σh > 0), h ≤ n − q, µ := σ0n−q−h

vλ =
∏q−k

i=1
1−t i
1−t

vµ =
∏n−q−h

i=1
1−t i
1−t

vλµ =
∏n−k−h

i=1
1−t i
1−t

(∏2
i=1

1−t i
1−t

)e
Here e is the number of common parts of ν and σ.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



Pair of strict partitions ν, σ:

ν = (ν1 > . . . > νk > 0), k ≤ q, λ := ν0q−k

σ = (σ1 > . . . > σh > 0), h ≤ n − q, µ := σ0n−q−h

vλ =
∏q−k

i=1
1−t i
1−t

vµ =
∏n−q−h

i=1
1−t i
1−t

vλµ =
∏n−k−h

i=1
1−t i
1−t

(∏2
i=1

1−t i
1−t

)e
Here e is the number of common parts of ν and σ.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



Pair of strict partitions ν, σ:

ν = (ν1 > . . . > νk > 0), k ≤ q, λ := ν0q−k

σ = (σ1 > . . . > σh > 0), h ≤ n − q, µ := σ0n−q−h

vλ =
∏q−k

i=1
1−t i
1−t

vµ =
∏n−q−h

i=1
1−t i
1−t

vλµ =
∏n−k−h

i=1
1−t i
1−t

(∏2
i=1

1−t i
1−t

)e

Here e is the number of common parts of ν and σ.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



Pair of strict partitions ν, σ:

ν = (ν1 > . . . > νk > 0), k ≤ q, λ := ν0q−k

σ = (σ1 > . . . > σh > 0), h ≤ n − q, µ := σ0n−q−h

vλ =
∏q−k

i=1
1−t i
1−t

vµ =
∏n−q−h

i=1
1−t i
1−t

vλµ =
∏n−k−h

i=1
1−t i
1−t

(∏2
i=1

1−t i
1−t

)e
Here e is the number of common parts of ν and σ.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



We have

vλµ
vλvµ

= (1−t)···(1−tn−k−h)
(1−t)···(1−tq−k )(1−t)···(1−tn−q−h)

(1 + t)e

This is the Gaussian polynomial
[
n−k−h
q−k

]
(t) times (1 + t)e .

So by Theorem we have

π∗

( ∏
i≤q<j

(xi−txj)Pλ(Q; t)Pµ(S ; t)
)
=

[
n − k − h

q − k

]
(t)(1+t)ePλµ(E ; t).

- some zeros at the end of λ possible

We look at the specialization t = −1. Most interesting is the
specialization of Gaussian polynomials.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



We have

vλµ
vλvµ

= (1−t)···(1−tn−k−h)
(1−t)···(1−tq−k )(1−t)···(1−tn−q−h)

(1 + t)e

This is the Gaussian polynomial
[
n−k−h
q−k

]
(t) times (1 + t)e .

So by Theorem we have

π∗

( ∏
i≤q<j

(xi−txj)Pλ(Q; t)Pµ(S ; t)
)
=

[
n − k − h

q − k

]
(t)(1+t)ePλµ(E ; t).

- some zeros at the end of λ possible

We look at the specialization t = −1. Most interesting is the
specialization of Gaussian polynomials.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



We have

vλµ
vλvµ

= (1−t)···(1−tn−k−h)
(1−t)···(1−tq−k )(1−t)···(1−tn−q−h)

(1 + t)e

This is the Gaussian polynomial
[
n−k−h
q−k

]
(t) times (1 + t)e .

So by Theorem we have

π∗

( ∏
i≤q<j

(xi−txj)Pλ(Q; t)Pµ(S ; t)
)
=

[
n − k − h

q − k

]
(t)(1+t)ePλµ(E ; t).

- some zeros at the end of λ possible

We look at the specialization t = −1. Most interesting is the
specialization of Gaussian polynomials.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



We have

vλµ
vλvµ

= (1−t)···(1−tn−k−h)
(1−t)···(1−tq−k )(1−t)···(1−tn−q−h)

(1 + t)e

This is the Gaussian polynomial
[
n−k−h
q−k

]
(t) times (1 + t)e .

So by Theorem we have

π∗

( ∏
i≤q<j

(xi−txj)Pλ(Q; t)Pµ(S ; t)
)
=

[
n − k − h

q − k

]
(t)(1+t)ePλµ(E ; t).

- some zeros at the end of λ possible

We look at the specialization t = −1. Most interesting is the
specialization of Gaussian polynomials.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



We have

vλµ
vλvµ

= (1−t)···(1−tn−k−h)
(1−t)···(1−tq−k )(1−t)···(1−tn−q−h)

(1 + t)e

This is the Gaussian polynomial
[
n−k−h
q−k

]
(t) times (1 + t)e .

So by Theorem we have

π∗

( ∏
i≤q<j

(xi−txj)Pλ(Q; t)Pµ(S ; t)
)
=

[
n − k − h

q − k

]
(t)(1+t)ePλµ(E ; t).

- some zeros at the end of λ possible

We look at the specialization t = −1. Most interesting is the
specialization of Gaussian polynomials.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



Lemma
At t = −1, the Gaussian polynomial[

a + b

a

]
(t)

specializes to zero if ab is odd and to the binomial coefficient(
b(a + b)/2c
ba/2c

)
otherwise.

(with Witold Kraśkiewicz)
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Indeed, we have[
a + b

a

]
(t) =

(1− t)(1− t2) · · · (1− ta+b)

(1− t) · · · (1− ta)(1− t) · · · (1− tb)
.

Since t = −1 is a zero with multiplicity 1 of the factor
(1− td) for even d , and a zero with multiplicity 0 for odd d ,

the order of the rational function
[
a+b
a

]
(t) at t = −1 is equal

to
b(a + b)/2c − ba/2c − bb/2c .

This order is equal to 1 when a and b are odd, and 0 otherwise.

In the former case, we get the claimed vanishing, and
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in the latter one, the product of the factors with even
exponents is equal to [

ba + b/2c
ba/2c

]
(t2) .

The value of this function at t = −1 is equal to
[
ba+b/2c
ba/2c

]
(1)

which is the binomial coefficient(
b(a + b)/2c
ba/2c

)
.

This is the requested value since the remaining factors with
odd exponents give 2 in the numerator and the same number
in the denominator. QED
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Schur in his 1911 paper on projective representations of Sq

showed that for a strict partition ν with l(ν) = k ≤ q,

Pν(y1, . . . , yq) =
∑

w∈Sq/(S1)k×Sq−k

w
(
y ν11 · · · y νqn

∏
i<j ,i≤k

yi + yj
yi − yj

)
where on LHS we use Schur’s P-functions from Introduction in
the variables y1, . . . , yq.

It follows from this equality and the latter Proposition for
λ = ν0q−k that Pλ(Q; t)t=−1 = Pν(Q);

Also for µ = σ0r−h, Pµ(S ; t)t=−1 = Pσ(S).

For a rank n vector bundle E , λ ∈ Zn
≥0, set P := Pλ(E ; t)t=−1.

Note that for i + j > 0, we have P...,i ,j ,... = −P...,j ,i ,... (follows
from Mcd pp. 213-214).
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Thus Pν0q−kσ0n−q−h = (−1)(q−k)hPνσ0n−k−h = (−1)(q−k)hPνσ .

If e > 0, then Pνσ(E ) = 0; so we can assume e = 0.

Specializing t = −1 we get from the main Theorem by virtue
of the latter Lemma

Theorem
For strict partitions ν, σ with l(ν) = k ≤ q and
l(σ) = h ≤ n − q,

π∗
(
cqr (Q ⊗ S)Pν(Q)Pσ(S)

)
= dν,σ · Pνσ(E ) ,

where dν,σ = 0 if (q − k)(r − h) is odd, and

dν,σ = (−1)(q−k)h
(
b(n − k − h)/2c
b(q − k)/2c

)
otherwise.
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It can happen that νσ is not a strict partition.

If there are repetitions of indices in νσ then the RHS is
assumed to be zero.

If not, then Pνσ(E ) = (−l)lPκ(E ), where l is the lenghth of
the permutation which rearranges νσ into the corresponding
strict partition κ.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



It can happen that νσ is not a strict partition.

If there are repetitions of indices in νσ then the RHS is
assumed to be zero.

If not, then Pνσ(E ) = (−l)lPκ(E ), where l is the lenghth of
the permutation which rearranges νσ into the corresponding
strict partition κ.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



It can happen that νσ is not a strict partition.

If there are repetitions of indices in νσ then the RHS is
assumed to be zero.

If not, then Pνσ(E ) = (−l)lPκ(E ), where l is the lenghth of
the permutation which rearranges νσ into the corresponding
strict partition κ.

Piotr Pragacz Pushing forward Hall-Littlewood polynomials



History of Hall-Littlewood polynomials (very brief):

Investigation of combinatorial structure of the lattice of finite
p-groups (Philip Hall about 1950):

p - prime number, M finite Abelian p-group,
M = ⊕r

i=1Z/pλiZ,

λ = (λ1 ≥ λ2 ≥ . . .) - partition (“type of M”).

Hall algebra : λ, µ, ν three partitions. Let M be of type λ.

Gλ
µν := card{N ⊂ M : type(N) = ν, type(M/N) = µ}

Let H be a free Z-module with basis {uλ} ,

uµ · uν :=
∑

Gλ
µνuλ .
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Theorem
H is a commutative ring, and is generated as a Z-algebra by
{u(1r )} (algebraically independent).

Theorem
The Q-linear map ψ : H ⊗Q→ Λ⊗Q (symmetric functions)
such that

ψ(uλ) = p−
∑

(i−1)λiPλ(y1, y2, . . . ; p
−1)

is a ring isomorphism.

J.A. Green, D.E. Littlewood: Representation theory of GLn
over finite fields.
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A flag bundle associated to λ

Let λ ∈ Zn
≥0. We associate to λ a (d − 1)-step flag bundle

(with steps of lengths mi)

ηλ : Flλ(E )→ X ,

parametrizing flags of quotients of E of ranks

n −md , n −md −md−1, . . . , n −md −md−1 − · · · −m2 .

Let ν = (ν1 > . . . > νk > 0) be a strict partition with k ≤ n.
Let λ = ν0n−k . Then ηλ is a flag bundle which parametrizes
quotients of E of ranks k , k − 1, . . . , 1.

Recall that A(Flλ(E )) as an A(X )-module is generated by
Sλn -invariant polynomials f in the Chern roots of E .
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For such an f , set

∂λ(f ) =
∑

w∈Sn/Sλ
n

w
( f (x1, . . . , xn)∏

i<j ,λi 6=λj (xi − xj)

)
.

Proposition
For an Sλn -invariant polynomial f , (ηλ)∗

(
f ) = ∂λ(f ).

Extended by Brion to any connected reductive algebraic group.

It follows from the two Propositions, that

Rλ(E ; t) = vλ(t)(ηλ)∗
(
xλ11 · · · xλnn

∏
i<j ,λi 6=λj

(xi − txj)
)
.
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End
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