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Introduction

Two plane curves, both nonsingular at a point x0, are said to
have a contact of order at least k at x0 (or the order of
tangency at least k at x0) if,

in properly chosen regular parametrizations, those two curves
have identical Taylor polynomials of degree k about x0.

Let me summarize our studies of the order of tangency with
Wojciech Domitrz and Piotr Mormul.

P. Pragacz, Ch. Eyral
The  Lojasiewicz exponent, hyperplane sections, and order of tangency



Introduction

Two plane curves, both nonsingular at a point x0, are said to
have a contact of order at least k at x0 (or the order of
tangency at least k at x0) if,

in properly chosen regular parametrizations, those two curves
have identical Taylor polynomials of degree k about x0.

Let me summarize our studies of the order of tangency with
Wojciech Domitrz and Piotr Mormul.

P. Pragacz, Ch. Eyral
The  Lojasiewicz exponent, hyperplane sections, and order of tangency



Introduction

Two plane curves, both nonsingular at a point x0, are said to
have a contact of order at least k at x0 (or the order of
tangency at least k at x0) if,

in properly chosen regular parametrizations, those two curves
have identical Taylor polynomials of degree k about x0.

Let me summarize our studies of the order of tangency with
Wojciech Domitrz and Piotr Mormul.

P. Pragacz, Ch. Eyral
The  Lojasiewicz exponent, hyperplane sections, and order of tangency



Why it is important to study the “order of tangency”?

Let us discuss this notion for Thom polynomials of
singularities (real or complex). Thom polynomials measure
complexity of singularities and were studied by René Thom
and many others.

An important property of Thom polynomials is their positivity
closely related to Schubert calculus.

Namely, the order of tangency allows one to define for example
the jets of Lagrangian submanifolds.

The space of these jets is a fibration over the Lagrangian
Grassmannian and leads to a positive decomposition of a
Lagrangian Thom polynomial in the basis of Lagrangian
Schubert cycles.
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Two manifolds M and M̃ embedded in Rm, both of class Cr ,
r ≥ 1, and the same dimension p, intersecting at x0 ∈ M ∩ M̃ ,
for k ≤ r , have at x0 the order of tangency at least k ,

when there exist a neighbourhood U 3 u0 in Rp and
parametrizations (diffeomorphisms onto their images)

q :
(
U , u0

)
→
(
M , x0

)
, q̃ :

(
U , u0

)
→
(
M̃ , x0

)
of class Cr such that

(
q̃ − q

)
(u) = o

(∣∣u − u0
∣∣k) (1)

when U 3 u → u0.

This definition does not depend on the choice of q and q̃.

In the category of complex analytic varieties, parametrizations
are biholomorphisms onto their images.
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f (u) = o(h(u)) when u → u0

means

limu→u0
f (u)
h(u)

= 0.

“f (u) is much smaller than h(u) for u near u0.”
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Proposition
The condition (1) is equivalent to

T k
u0

(
q
)

= T k
u0

(
q̃
)
, (2)

where T k
u0

(
·
)

means the Taylor polynomial about u0 of
degree k.

.(1) ⇒ (2).

o
(∣∣u − u0

∣∣k) = q̃(u)− q(u) =
(
q̃(u)− T k

u0

(
q̃
)
(u − u0)

)
+
(
T k

u0

(
q̃
)
(u − u0)− Tu0(q)(u − u0)

)
+
(
Tu0(q)(u − u0)− q(u)

)
,

where the first and last summands are o
(∣∣u− u0

∣∣k) by Taylor.
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Under (1), so is the middle summand

T k
u0

(
q̃
)
(u − u0)− T k

u0

(
q
)
(u − u0) = o

(∣∣u − u0
∣∣k)

and (2) follows from the following general result.

Lemma
Let w ∈ R[u1, u2, . . . , up] , degw ≤ k, w(u) = o

(
|u|k
)

when
u → 0 in Rp. Then w is identically zero.

The implication: Proposition ⇒ (1) is easy.
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Consider the quantity

s = s(M , M̃ ; x0) : = sup{k ∈ N : the order of tangency ≥ k} .
(3)

Note that an additional restriction here on k is k ≤ r . If the
class of smoothness r =∞, then the condition (1) holds for
all k if and only if s =∞.

Let us assume additionally that

s < r . (4)

When r =∞, the condition (4) simply says that s is finite.
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Our second approach uses pairs of curves lying, respectively,
in M and M̃ . We assume that Tx0M = Tx0M̃ .

Theorem
Under (4),

min
v

(
max
γ,γ̃

(
max

{
l ∈ {0}∪N : |γ(t)−γ̃(t)| = o

(
|t|l
)
when t → 0

}))
= s.

(5)

The minimum is taken over all 0 6= v ∈ Tx0M = Tx0M̃. The
outer maximum is taken over all pairs of Cr curves γ ⊂ M,
γ̃ ⊂ M̃ such that γ(0) = x0 = γ̃(0), and – both non-zero! –
velocities γ̇(0), ˙̃γ(0) are both parallel to v .

Attention. In this theorem the assumption (4) is essential; our
proof would not work in the situation s = r .
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Our third approach is based on a tower of consecutive
Grassmannians attached to a local Cr parametrization q.

To every C1 immersion H : N → N ′, N – an n-dimensional
manifold, N ′ – an n′-dimensional manifold, we attach the
so-called image map GH : N → Gn(N ′) of the tangent map
d H : for s ∈ N ,

GH(s) = dH(s)(TsN) , (6)

where Gn(N ′) is the total space of the Grassmann bundle, with
base N ′, of all n planes tangent to N ′ (often denoted Gn(TN′)).

Recall that M , M̃ ⊂ Rm.
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We use as previously the pair of parametrizations q and q̃. So
we are now given the mappings

G q : U −→ Gp

(
Rm
)
, G q̃ : U −→ Gp

(
Rm
)
.

Upon putting M (0) = Rm, G(1) = G, we get two sequences of
recursively defined mappings. Namely, for l ≥ 1,

G(l)q : U −→ Gp

(
M (l−1)) , G(l+1)q = G

(
G(l)q

)
and

G(l)q̃ : U −→ Gp

(
M (l−1)) , G(l+1)q̃ = G

(
G(l)q̃

)
,

where, naturally, M (l) = Gp

(
M (l−1)).
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Theorem
Cr manifolds M and M̃ have at x0 the order of tangency at
least k (1 ≤ k ≤ r ) iff

G(k)q (u0) = G(k)q̃ (u0)

for any parametrizations q and q̃ of M and M̃ around x0.
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Lemma
For 1 ≤ l ≤ k there exists such a local chart on the
Grassmannian Gp

(
M (l−1)) in which the mapping G(l)q

evaluated at u has the form

(
u, f (u);

(
l

1

)
× f[1](u),

(
l

2

)
× f[2](u), . . . ,

(
l

l

)
× f[l ](u)

)
,

where f[ν](u) is the aggregate of all the partials of the ν-th
order at u, of all the components of f .

Attention. In this lemma we distinguish mixed derivatives
taken in different orders.
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A natural question arises: What about branches of algebraic
sets which often happen to be tangent one to another with
various degrees of closeness?
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It is well known that any pair of (closed) analytic subsets
X ,Y ⊂ Cm (of possibly different dimensions) satisfies so-called
 Lojasiewicz regular separation property at any point of X ∩ Y :

for any x0 ∈ X ∩ Y there are c , ν > 0 such that for some
neighbourhood U ⊂ Cm of x0 we have

ρ(x ,X ) + ρ(x ,Y ) ≥ c ρ(x ,X ∩ Y )ν for x ∈ U , (7)

where ρ is a distance induced by any of the usual norms on
Cm.
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If furthermore x0 ∈ X \ Y , then ν ≥ 1 and (7) is equivalent to

ρ(x ,Y ) ≥ c ′ρ(x ,X ∩ Y )ν for x ∈ U ′ ∩ X , (8)

where c ′ > 0 and U ′ is a neighbourhood of x0.

Actually, (7) and (8) are equivalent if ν ≥ 1.

The exponent ν satisfying the relation (7) for some U and
c > 0 is called a regular separation exponent of X and Y at
x0.

The infimum of all regular separation exponents of X and Y
at x0 is called the  Lojasiewicz exponent of X and Y at x0. It
is denoted by L(X ,Y ; x0).

This exponent is an interesting metric invariant of the pointed
pair (X ,Y ; x0).
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Example Here we shall see that the order and exponent can
be both integer and different. (The example, but not the
reasoning, comes from a paper by Tworzewski.)

Consider two curves N and Z in C2(x , y) intersecting at (0, 0):

N = {y = 0} and Z = {yd + yxd−1 + x s = 0},
where 1 < d < s, and assume that d is odd. What is their
 Lojasiewicz exponent at (0, 0)?

We want to present Z as the graph of some function y(x).

Lemma
There is a locally unique function

y(x) = x s−d+1z(x)− x s−d+1

whose graph is Z , with a C∞ function z(x), z(0) = 0.

This is ”−x s−d+1” which dominates the computation.
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Using y(x), we compute the  Lojasiewicz exponent. Here is a
sketch. We discuss the inequality defining this exponent at
(0, 0).

Let A = (x , 0) be the points on N , B = (x , y(x)) be the
points on Z , and let O be the point (0, 0).

Using the function y(x), the length AB is of order |x |s−d+1.
Since AO and BO are of order |x |, the triangle inequality:

AB ≤ AO + BO

implies the inequality (10) from the  Lojasiewicz theorem.

We get that the exponent is equal to s − d + 1. (The order of
tangency is s − d .)
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Our goal is to investigate the behaviour of the  Lojasiewicz
exponent under hyperplane sections.

Theorem
Let X and Y be analytic subsets in Cm, and let x0 ∈ X ∩ Y
such that L(X ,Y ; x0) ≥ 1. Then for a general hyperplane H0

of Cm passing through x0 we have

L(X ∩ H0,Y ∩ H0; x0) ≤ L(X ,Y ; x0).
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To prove it, we need the following proposition comparing the
two following distances.

Proposition
Let X be an analytic subset in Cm, and let x0 ∈ X . Then for a
general hyperplane H0 of Cm passing through x0, there exist
c > 0 and a neighbourhood U of x0 such that for all
x ∈ U ∩ H0 we have

ρ(x ,X ∩ H0) ≤ c ρ(x ,X ) .

How the proposition implies the theorem?

Let us assume that x0 is the origin 0 ∈ Cm. If ν is a regular
separation exponent for X and Y at 0,

then ν ≥ L(X ,Y ; 0) ≥ 1, and for some c ′ > 0 we have

ρ(x ,Y ) ≥ c ′ρ(x ,X ∩ Y )ν (9)

for all x ∈ X near 0.
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By the proposition applied to X ∩ Y , there is c > 0 such that
for all x ∈ H0 near 0 we have

c ρ(x ,X ∩ Y )ν ≥ ρ(x ,X ∩ Y ∩ H0)ν .

Combined with (9), this gives

ρ(x ,Y ∩ H0) ≥ ρ(x ,Y ) ≥ c ′ ρ(x ,X ∩ Y )ν ≥ c ′

c
ρ(x ,X ∩ Y ∩ H0)ν

for all x ∈ X ∩ H0 near 0, so that ν is a regular separation
exponent for X ∩ H0 and Y ∩ H0 at 0 as desired.
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We now comment on the proof of the proposition. It uses the
Tadeusz Mostowski Lipschitz equisingularity theory.

We may assume that x0 is the origin 0 ∈ Cm. We work in a
small neighbourhood of 0.

Let P̌m−1 denote the set of all hyperplanes of Cm through 0,
with its usual structure of manifold. The distance between two
elements H ,K ∈ P̌m−1 is the angle �(H ,K ) between them,
that is,

�(H ,K ) := arccos
〈v ,w〉
|v | |w |

,

where v and w are normal vectors to the hyperplanes H and
K respectively, considered with their underlying real structures,
and where 〈·, ·〉 is the standard inner product in R2m.
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Let
X := {(H , x) ∈ P̌m−1 × Cm | x ∈ H ∩ X}.

By the very first Proposition of Mostowski’s Dissertationes, in
a neighbourhood

U := {(H , x) ∈ P̌m−1 × Cm | �(H0,H) < a and |x | < b}

of a generic (H0, 0), the set X is Lipschitz equisingular over
P̌m−1 × {0}.

That is, for any (H , 0) ∈ U ∩ (P̌m−1 × {0}), there is a (germ
of) Lipschitz homeomorphism

ϕ : (P̌m−1 × Cm, (H , 0))→ (P̌m−1 × Cm, (H , 0))

such that p ◦ ϕ = p (where p : P̌m−1 × Cm → P̌m−1 is the
standard projection) and ϕ(X ) = P̌m−1 × (H ∩ X ) (as germs
at (H , 0)).
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Actually, if h = (h1, . . . , hm−1) are coordinates in P̌m−1 around
H0 such that

h1(H0) = · · · = hm−1(H0) = 0 ,

and if x = (x1, . . . , xm) are Cartesian coordinates in Cm,

then locally near (H0, 0), the standard vector fields ∂hj
(1 ≤ j ≤ m − 1) on P̌m−1 × {0} can be lifted to Lipschitz
vector fields vj on P̌m−1 × Cm

such that the flows of vj preserve X .
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So, in particular, vj is a Lipschitz vector field of the form

vj(h, x) = ∂hj |(h,x) +
m∑
`=1

wj`(h, x) ∂x` |(h,x),

and there is c ′ > 0 such that

|wj`(h, x)| ≤ c ′ |x | near 0 (10)

for all j , `.

Using the integral curves of these Lipschitz vector fields, we
prove the proposition.
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Corollary
Assume that dim(X ) = dim(Y ). If x0 ∈ X \ Y , then the
tangency order s(X ,Y ; x0) ≤ L(X ,Y ; x0).

Remark. If x0 /∈ X \ Y , then ν = 0 or ν = 1 in (7), and in
general, the above inequality is not true.

Let us first consider the special case where x0 is an isolated
point of X ∩ Y . By the assumption, x0 is an accumulation
point of X . Then, by the inequality (11), and since the
parametrization q is locally bi-Lipschitz, there exists c > 0
such that for all u near u0 we have

ρ
(
q(u),Y

)
≥ c |u − u0|L(X ,Y ;x0),

while by (1) we have

ρ
(
q(u),Y

)
< |u − u0|s(X ,Y ;x0).

Thus the corollary holds true in this case.
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The general case (i.e., dim X ∩ Y = n > 0) follows from the
0-dimensional case and the last theorem.

Indeed, take n general hyperplanes H1, . . . ,Hn in Cm passing
through x0, so that X ∩ Y ∩ H1 ∩ · · · ∩ Hn is an isolated
intersection.

Let si (respectively, Li) denote the order of tangency
(respectively, the  Lojasiewicz exponent) of X ∩ H1 ∩ · · · ∩ Hi

and Y ∩ H1 ∩ · · · ∩ Hi at x0.

Clearly, (1) implies si ≤ si+1 while the last theorem shows
Li ≥ Li+1.

Thus the corollary follows from the inequality sn ≤ Ln

(0-dimensional case).
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