Positivity in Schubert calculus (Osaka 27.07.2012)

Piotr Pragacz
pragacz@impan.pl

IM PAN Warszawa

Standard positivity results

Let $X_{w}, w \in S_{n}$, be Schubert classes on the variety of complete flags in C^{n}.

Standard positivity results

Let $X_{w}, w \in S_{n}$, be Schubert classes on the variety of complete flags in C^{n}.
If $X_{w} \cdot X_{v}=\sum \alpha_{w v}^{u} X_{u}$, then $\alpha_{w v}^{u} \geq 0$.

Standard positivity results

Let $X_{w}, w \in S_{n}$, be Schubert classes on the variety of complete flags in C^{n}.
If $X_{w} \cdot X_{v}=\sum \alpha_{w v}^{u} X_{u}$, then $\alpha_{w v}^{u} \geq 0$.

Let V be a symplectic space of dimension $2 n$ and let $L G(V)$ be the Lagrangian Grassmannian.

Standard positivity results

Let $X_{w}, w \in S_{n}$, be Schubert classes on the variety of complete flags in \mathbf{C}^{n}.
If $X_{w} \cdot X_{v}=\sum \alpha_{w v}^{u} X_{u}$, then $\alpha_{w v}^{u} \geq 0$.

Let V be a symplectic space of dimension $2 n$ and let $L G(V)$ be the Lagrangian Grassmannian. Let $i: L G(V) \hookrightarrow G_{n}(V)$ be the inclusion.

Standard positivity results

Let $X_{w}, w \in S_{n}$, be Schubert classes on the variety of complete flags in \mathbf{C}^{n}.
If $X_{w} \cdot X_{v}=\sum \alpha_{w v}^{u} X_{u}$, then $\alpha_{w v}^{u} \geq 0$.

Let V be a symplectic space of dimension $2 n$ and let $L G(V)$ be the Lagrangian Grassmannian. Let $i: L G(V) \hookrightarrow G_{n}(V)$ be the inclusion. Let σ_{λ} denote the Schubert classes on $G_{n}(V)$ and σ_{I} those on $L G(V)$.

Standard positivity results

Let $X_{w}, w \in S_{n}$, be Schubert classes on the variety of complete flags in C^{n}.
If $X_{w} \cdot X_{v}=\sum \alpha_{w v}^{u} X_{u}$, then $\alpha_{w v}^{u} \geq 0$.

Let V be a symplectic space of dimension $2 n$ and let $L G(V)$ be the Lagrangian Grassmannian. Let $i: L G(V) \hookrightarrow G_{n}(V)$ be the inclusion. Let σ_{λ} denote the Schubert classes on $G_{n}(V)$ and σ_{I} those on $L G(V)$.
If $i^{*}\left(\sigma_{\lambda}\right)=\sum \alpha_{I} \sigma_{I}$, then $\alpha_{I} \geq 0$.

Standard positivity results

Let $X_{w}, w \in S_{n}$, be Schubert classes on the variety of complete flags in \mathbf{C}^{n}.
If $X_{w} \cdot X_{v}=\sum \alpha_{w v}^{u} X_{u}$, then $\alpha_{w v}^{u} \geq 0$.
Let V be a symplectic space of dimension $2 n$ and let $L G(V)$ be the Lagrangian Grassmannian. Let $i: L G(V) \hookrightarrow G_{n}(V)$ be the inclusion. Let σ_{λ} denote the Schubert classes on $G_{n}(V)$ and σ_{I} those on $L G(V)$. If $i^{*}\left(\sigma_{\lambda}\right)=\sum \alpha_{I} \sigma_{I}$, then $\alpha_{I} \geq 0$.

If Z is a subscheme in G / P and $[Z]=\sum \alpha_{w} X_{w}$, then $\alpha_{w} \geq 0$.

Standard tools to show positivity

If a connected algebraic group G acts on a variety X, the corresponding action on cohomology is trivial, so $[g \cdot V]=[V]$ for a subvariety V and an element g in G. If G acts transitively on X, one can use it to make $g \cdot V$ meet a given variety W transversally.

Standard tools to show positivity

If a connected algebraic group G acts on a variety X, the corresponding action on cohomology is trivial, so $[g \cdot V]=[V]$ for a subvariety V and an element g in G. If G acts transitively on X, one can use it to make $g \cdot V$ meet a given variety W transversally.
If $\operatorname{dim} V+\operatorname{dim} W=\operatorname{dim} X$, then $(g \cdot V) \cap W=$ finite number of points.

Standard tools to show positivity

If a connected algebraic group G acts on a variety X, the corresponding action on cohomology is trivial, so $[g \cdot V]=[V]$ for a subvariety V and an element g in G. If G acts transitively on X, one can use it to make $g \cdot V$ meet a given variety W transversally.
If $\operatorname{dim} V+\operatorname{dim} W=\operatorname{dim} X$, then $(g \cdot V) \cap W=$ finite number of points.
Let $f: X \rightarrow Y$ be a morphism, X -pure-dim'l., Y -nonsingular; let $V \subset Y$ CM of pure dimension d.

Standard tools to show positivity

If a connected algebraic group G acts on a variety X, the corresponding action on cohomology is trivial, so $[g \cdot V]=[V]$ for a subvariety V and an element g in G. If G acts transitively on X, one can use it to make $g \cdot V$ meet a given variety W transversally.
If $\operatorname{dim} V+\operatorname{dim} W=\operatorname{dim} X$, then $(g \cdot V) \cap W=$ finite number of points.
Let $f: X \rightarrow Y$ be a morphism, X -pure-dim'I., Y -nonsingular; let $V \subset Y \mathrm{CM}$ of pure dimension d. Let $W=f^{-1}(V)$. Then $\operatorname{codim}(W, X) \leq d$. If X is CM and $\operatorname{codim}(W, X)=d$, then W is CM and $f^{*}[V]=[W]$.

Standard tools to show positivity

If a connected algebraic group G acts on a variety X, the corresponding action on cohomology is trivial, so $[g \cdot V]=[V]$ for a subvariety V and an element g in G. If G acts transitively on X, one can use it to make $g \cdot V$ meet a given variety W transversally.
If $\operatorname{dim} V+\operatorname{dim} W=\operatorname{dim} X$, then $(g \cdot V) \cap W=$ finite number of points.
Let $f: X \rightarrow Y$ be a morphism, X -pure-dim'I., Y -nonsingular; let $V \subset Y \mathrm{CM}$ of pure dimension d. Let $W=f^{-1}(V)$. Then $\operatorname{codim}(W, X) \leq d$. If X is CM and $\operatorname{codim}(W, X)=d$, then W is CM and $f^{*}[V]=[W]$.

Duality: Consider the cohomology ring $H^{*}(G / P, \mathbf{Z})$ with Schubert classes X_{w}. For any w there exists only one w^{\prime} such that $X_{w} \cdot X_{w^{\prime}} \neq 0$ and $\operatorname{dim} X_{w}+\operatorname{dim} X_{w^{\prime}}=\operatorname{dim} G / P$.

Standard tools to show positivity

If a connected algebraic group G acts on a variety X, the corresponding action on cohomology is trivial, so $[g \cdot V]=[V]$ for a subvariety V and an element g in G. If G acts transitively on X, one can use it to make $g \cdot V$ meet a given variety W transversally.
If $\operatorname{dim} V+\operatorname{dim} W=\operatorname{dim} X$, then $(g \cdot V) \cap W=$ finite number of points.
Let $f: X \rightarrow Y$ be a morphism, X -pure-dim'I., Y -nonsingular; let $V \subset Y \mathrm{CM}$ of pure dimension d. Let $W=f^{-1}(V)$. Then $\operatorname{codim}(W, X) \leq d$. If X is CM and $\operatorname{codim}(W, X)=d$, then W is CM and $f^{*}[V]=[W]$.

Duality: Consider the cohomology ring $H^{*}(G / P, \mathbf{Z})$ with Schubert classes X_{w}. For any w there exists only one w^{\prime} such that $X_{w} \cdot X_{w^{\prime}} \neq 0$ and $\operatorname{dim} X_{w}+\operatorname{dim} X_{w^{\prime}}=\operatorname{dim} G / P$. Moreover, $X_{w} \cdot X_{w^{\prime}}=1$.

Vector bundles and positivity

Let $p: E \rightarrow X$ be a vector bundle. A section of E is a morphism $s: X \rightarrow E$ such that $p \circ s=i d_{X}$.

Vector bundles and positivity

Let $p: E \rightarrow X$ be a vector bundle. A section of E is a morphism $s: X \rightarrow E$ such that $p \circ s=i d_{X}$.
The bundle E is generated by sections if the map $X \times \Gamma(X, E) \rightarrow E$ s.t. $(x, s) \mapsto s(x)$ is surjective.

Vector bundles and positivity

Let $p: E \rightarrow X$ be a vector bundle. A section of E is a morphism $s: X \rightarrow E$ such that $p \circ s=i d_{X}$.
The bundle E is generated by sections if the map $X \times \Gamma(X, E) \rightarrow E$ s.t. $(x, s) \mapsto s(x)$ is surjective.
The bundle E is ample if for any sheaf \mathcal{F} there exists k_{0} s.t. $\operatorname{Sym}^{k}(E) \otimes \mathcal{F}$ for any $k \geq k_{0}$ is generated by its sections.

Vector bundles and positivity

Let $p: E \rightarrow X$ be a vector bundle. A section of E is a morphism $s: X \rightarrow E$ such that $p \circ s=i d_{X}$.

The bundle E is generated by sections if the map $X \times \Gamma(X, E) \rightarrow E$ s.t. $(x, s) \mapsto s(x)$ is surjective.

The bundle E is ample if for any sheaf \mathcal{F} there exists k_{0} s.t. $\operatorname{Sym}^{k}(E) \otimes \mathcal{F}$ for any $k \geq k_{0}$ is generated by its sections.

Let c_{1}, c_{2}, \ldots be variables with $\operatorname{deg}\left(c_{i}\right)=i$.

Vector bundles and positivity

Let $p: E \rightarrow X$ be a vector bundle. A section of E is a morphism $s: X \rightarrow E$ such that $p \circ s=i d_{X}$.

The bundle E is generated by sections if the map $X \times \Gamma(X, E) \rightarrow E$ s.t. $(x, s) \mapsto s(x)$ is surjective.

The bundle E is ample if for any sheaf \mathcal{F} there exists k_{0} s.t. $\operatorname{Sym}^{k}(E) \otimes \mathcal{F}$ for any $k \geq k_{0}$ is generated by its sections.
Let c_{1}, c_{2}, \ldots be variables with $\operatorname{deg}\left(c_{i}\right)=i$. Fix $n, e \in \mathbf{N}$. Let $P\left(c_{1}, \ldots, c_{e}\right)$ be a homogeneous polynomial of degree n.

Vector bundles and positivity

Let $p: E \rightarrow X$ be a vector bundle. A section of E is a morphism $s: X \rightarrow E$ such that $p \circ s=i d_{X}$.

The bundle E is generated by sections if the map $X \times \Gamma(X, E) \rightarrow E$ s.t. $(x, s) \mapsto s(x)$ is surjective.

The bundle E is ample if for any sheaf \mathcal{F} there exists k_{0} s.t. $\operatorname{Sym}^{k}(E) \otimes \mathcal{F}$ for any $k \geq k_{0}$ is generated by its sections.

Let c_{1}, c_{2}, \ldots be variables with $\operatorname{deg}\left(c_{i}\right)=i$.
Fix $n, e \in \mathbf{N}$. Let $P\left(c_{1}, \ldots, c_{e}\right)$ be a homogeneous polynomial of degree n. We say that P is positive for ample vector bundles, if for every n-dimensional projective variety X

Vector bundles and positivity

Let $p: E \rightarrow X$ be a vector bundle. A section of E is a morphism $s: X \rightarrow E$ such that $p \circ s=i d_{X}$.

The bundle E is generated by sections if the map $X \times \Gamma(X, E) \rightarrow E$ s.t. $(x, s) \mapsto s(x)$ is surjective.

The bundle E is ample if for any sheaf \mathcal{F} there exists k_{0} s.t. $\operatorname{Sym}^{k}(E) \otimes \mathcal{F}$ for any $k \geq k_{0}$ is generated by its sections.
Let c_{1}, c_{2}, \ldots be variables with $\operatorname{deg}\left(c_{i}\right)=i$.
Fix $n, e \in \mathbf{N}$. Let $P\left(c_{1}, \ldots, c_{e}\right)$ be a homogeneous polynomial of degree n. We say that P is positive for ample vector bundles, if for every n-dimensional projective variety X and any ample vector bundle of rank e on X,
$\operatorname{deg}\left(P\left(c_{1}(E), \ldots, c_{e}(E)\right)>0\right.$.

Vector bundles and positivity

Let $p: E \rightarrow X$ be a vector bundle. A section of E is a morphism $s: X \rightarrow E$ such that $p \circ s=i d_{X}$.

The bundle E is generated by sections if the map $X \times \Gamma(X, E) \rightarrow E$ s.t. $(x, s) \mapsto s(x)$ is surjective.

The bundle E is ample if for any sheaf \mathcal{F} there exists k_{0} s.t. $\operatorname{Sym}^{k}(E) \otimes \mathcal{F}$ for any $k \geq k_{0}$ is generated by its sections.
Let c_{1}, c_{2}, \ldots be variables with $\operatorname{deg}\left(c_{i}\right)=i$.
Fix $n, e \in \mathbf{N}$. Let $P\left(c_{1}, \ldots, c_{e}\right)$ be a homogeneous polynomial of degree n. We say that P is positive for ample vector bundles, if for every n-dimensional projective variety X and any ample vector bundle of rank e on X, $\operatorname{deg}\left(P\left(c_{1}(E), \ldots, c_{e}(E)\right)>0\right.$.

Griffiths, Kleiman, Bloch-Gieseker investigated positive polynomials.

Theorem. (Fulton-Lazarsfeld) A polynomial

$$
P=\alpha_{1} s_{\lambda_{1}}+\ldots+\alpha_{k} s_{\lambda_{k}}
$$

is positive iff $\alpha_{i} \geq 0$ for any i and $\sum \alpha_{i}>0$.

Theorem. (Fulton-Lazarsfeld) A polynomial

$$
P=\alpha_{1} s_{\lambda_{1}}+\ldots+\alpha_{k} s_{\lambda_{k}}
$$

is positive iff $\alpha_{i} \geq 0$ for any i and $\sum \alpha_{i}>0$.
For globally generated bundles, a very close result was obtained by Usui-Tango.

Theorem. (Fulton-Lazarsfeld) A polynomial

$$
P=\alpha_{1} s_{\lambda_{1}}+\ldots+\alpha_{k} s_{\lambda_{k}}
$$

is positive iff $\alpha_{i} \geq 0$ for any i and $\sum \alpha_{i}>0$.
For globally generated bundles, a very close result was obtained by Usui-Tango.

Proof of Fulton-Lazarsfeld uses a globalization of the Giambelli formula (Kempf-Laksov, Lascoux) and Hard Lefschetz Theorem

Theorem. (Fulton-Lazarsfeld) A polynomial

$$
P=\alpha_{1} s_{\lambda_{1}}+\ldots+\alpha_{k} s_{\lambda_{k}}
$$

is positive iff $\alpha_{i} \geq 0$ for any i and $\sum \alpha_{i}>0$.
For globally generated bundles, a very close result was obtained by Usui-Tango.

Proof of Fulton-Lazarsfeld uses a globalization of the Giambelli formula (Kempf-Laksov, Lascoux) and Hard Lefschetz Theorem

It works also in characteristic p and uses:

Theorem. (Fulton-Lazarsfeld) A polynomial

$$
P=\alpha_{1} s_{\lambda_{1}}+\ldots+\alpha_{k} s_{\lambda_{k}}
$$

is positive iff $\alpha_{i} \geq 0$ for any i and $\sum \alpha_{i}>0$.
For globally generated bundles, a very close result was obtained by Usui-Tango.

Proof of Fulton-Lazarsfeld uses a globalization of the Giambelli formula (Kempf-Laksov, Lascoux) and Hard Lefschetz Theorem

It works also in characteristic p and uses:

- the extension by Deligne to arbitrary characteristic of $I H^{k}(X)$ of Goresky-MacPherson,

Theorem. (Fulton-Lazarsfeld) A polynomial

$$
P=\alpha_{1} s_{\lambda_{1}}+\ldots+\alpha_{k} s_{\lambda_{k}}
$$

is positive iff $\alpha_{i} \geq 0$ for any i and $\sum \alpha_{i}>0$.
For globally generated bundles, a very close result was obtained by Usui-Tango.
Proof of Fulton-Lazarsfeld uses a globalization of the Giambelli formula (Kempf-Laksov, Lascoux) and Hard Lefschetz Theorem

It works also in characteristic p and uses:

- the extension by Deligne to arbitrary characteristic of $I H^{k}(X)$ of Goresky-MacPherson,
- Hard-Lefschetz Theorem for these groups, proved by

Gabber.

Thom polynomial

Consider the space of jets $\mathcal{J}=\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.

Thom polynomial

Consider the space of jets $\mathcal{J}=\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Let Aut_{n} be the group of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$. We have a natural right-left action of $\mathrm{Aut}_{m} \times \mathrm{Aut}_{n}$ on \mathcal{J}.

Thom polynomial

Consider the space of jets $\mathcal{J}=\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Let Aut_{n} be the group of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$. We have a natural right-left action of $\mathrm{Aut}_{m} \times \mathrm{Aut}_{n}$ on \mathcal{J}. By a singularity class we shall mean a closed invariant algebraic subset of \mathcal{J}.

Thom polynomial

Consider the space of jets $\mathcal{J}=\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Let Aut_{n} be the group of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$. We have a natural right-left action of $\mathrm{Aut}_{m} \times \mathrm{Aut}_{n}$ on \mathcal{J}. By a singularity class we shall mean a closed invariant algebraic subset of \mathcal{J}.
Given two manifolds M^{m} and N^{n}, a singularity class Σ gives rise to $\Sigma(M, N) \subset \mathcal{J}(M, N)$.

Thom polynomial

Consider the space of jets $\mathcal{J}=\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Let Aut_{n} be the group of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$. We have a natural right-left action of $\mathrm{Aut}_{m} \times \mathrm{Aut}_{n}$ on \mathcal{J}. By a singularity class we shall mean a closed invariant algebraic subset of \mathcal{J}.
Given two manifolds M^{m} and N^{n}, a singularity class Σ gives rise to $\Sigma(M, N) \subset \mathcal{J}(M, N)$.
Given Σ, there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z}

Thom polynomial

Consider the space of jets $\mathcal{J}=\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Let Aut_{n} be the group of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$. We have a natural right-left action of $\mathrm{Aut}_{m} \times \mathrm{Aut}_{n}$ on \mathcal{J}. By a singularity class we shall mean a closed invariant algebraic subset of \mathcal{J}.
Given two manifolds M^{m} and N^{n}, a singularity class Σ gives rise to $\Sigma(M, N) \subset \mathcal{J}(M, N)$.
Given Σ, there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z} in $m+n$ variables which depends only on Σ, m and n

Thom polynomial

Consider the space of jets $\mathcal{J}=\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Let Aut_{n} be the group of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$. We have a natural right-left action of $\mathrm{Aut}_{m} \times \mathrm{Aut}_{n}$ on \mathcal{J}. By a singularity class we shall mean a closed invariant algebraic subset of \mathcal{J}.
Given two manifolds M^{m} and N^{n}, a singularity class Σ gives rise to $\Sigma(M, N) \subset \mathcal{J}(M, N)$.
Given Σ, there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z} in $m+n$ variables which depends only on Σ, m and n s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$

Thom polynomial

Consider the space of jets $\mathcal{J}=\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Let Aut_{n} be the group of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$. We have a natural right-left action of $\mathrm{Aut}_{m} \times \mathrm{Aut}_{n}$ on \mathcal{J}. By a singularity class we shall mean a closed invariant algebraic subset of \mathcal{J}.
Given two manifolds M^{m} and N^{n}, a singularity class Σ gives rise to $\Sigma(M, N) \subset \mathcal{J}(M, N)$.
Given Σ, there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z} in $m+n$ variables which depends only on Σ, m and n s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$ the class of $f_{k}^{-1}(\Sigma(M, N))$ is equal to

Thom polynomial

Consider the space of jets $\mathcal{J}=\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Let Aut_{n} be the group of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$. We have a natural right-left action of $\mathrm{Aut}_{m} \times \mathrm{Aut}_{n}$ on \mathcal{J}. By a singularity class we shall mean a closed invariant algebraic subset of \mathcal{J}.
Given two manifolds M^{m} and N^{n}, a singularity class Σ gives rise to $\Sigma(M, N) \subset \mathcal{J}(M, N)$.
Given Σ, there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z} in $m+n$ variables which depends only on Σ, m and n s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$ the class of $f_{k}^{-1}(\Sigma(M, N))$ is equal to

$$
\mathcal{T}^{\Sigma}\left(c_{1}(M), \ldots, c_{m}(M), f^{*} c_{1}(N), \ldots, f^{*} c_{n}(N)\right) .
$$

Thom polynomial

Consider the space of jets $\mathcal{J}=\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Let Aut_{n} be the group of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$. We have a natural right-left action of $\mathrm{Aut}_{m} \times \mathrm{Aut}_{n}$ on \mathcal{J}. By a singularity class we shall mean a closed invariant algebraic subset of \mathcal{J}.
Given two manifolds M^{m} and N^{n}, a singularity class Σ gives rise to $\Sigma(M, N) \subset \mathcal{J}(M, N)$.
Given Σ, there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z} in $m+n$ variables which depends only on Σ, m and n s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$ the class of $f_{k}^{-1}(\Sigma(M, N))$ is equal to

$$
\mathcal{T}^{\Sigma}\left(c_{1}(M), \ldots, c_{m}(M), f^{*} c_{1}(N), \ldots, f^{*} c_{n}(N)\right) .
$$

where $f_{k}: M \rightarrow \mathcal{J}^{k}(M, N)$ is the k-jet extension of f.

If Σ is "stable" then \mathcal{T}^{Σ} depends on $c_{i}\left(T M-f^{*} T N\right)$.

If Σ is "stable" then \mathcal{T}^{Σ} depends on $c_{i}\left(T M-f^{*} T N\right)$.
In the Chern class monomial basis, a Thom polynomial can have negative coefficients:

If Σ is "stable" then \mathcal{T}^{Σ} depends on $c_{i}\left(T M-f^{*} T N\right)$.
In the Chern class monomial basis, a Thom polynomial can have negative coefficients: $m=n, I_{2,2}$: $\quad c_{2}^{2}-c_{1} c_{3}$

If Σ is "stable" then \mathcal{T}^{Σ} depends on $c_{i}\left(T M-f^{*} T N\right)$.
In the Chern class monomial basis, a Thom polynomial can have negative coefficients: $m=n, I_{2,2}: \quad c_{2}^{2}-c_{1} c_{3}$ Theorem. ($P P+A W$, 2006) Let Σ be a nontrivial stable singularity class. Then for any partition λ the coefficient α_{λ} in

$$
\mathcal{T}^{\Sigma}=\sum \alpha_{\lambda} s_{\lambda}\left(T^{*} M-f^{*} T^{*} N\right)
$$

is nonnegative and $\sum \alpha_{\lambda}>0$.

If Σ is "stable" then \mathcal{T}^{Σ} depends on $c_{i}\left(T M-f^{*} T N\right)$.
In the Chern class monomial basis, a Thom polynomial can have negative coefficients: $m=n, I_{2,2}: \quad c_{2}^{2}-c_{1} c_{3}$ Theorem. ($P P+A W$, 2006) Let Σ be a nontrivial stable singularity class. Then for any partition λ the coefficient α_{λ} in

$$
\mathcal{T}^{\Sigma}=\sum \alpha_{\lambda} s_{\lambda}\left(T^{*} M-f^{*} T^{*} N\right),
$$

is nonnegative and $\sum \alpha_{\lambda}>0$.

- conjectured for Thom-Boardman singularities by Feher and Komuves (2004) who computed $\mathcal{T}^{\Sigma^{i, j}[-i+1]}$.

If Σ is "stable" then \mathcal{T}^{Σ} depends on $c_{i}\left(T M-f^{*} T N\right)$. In the Chern class monomial basis, a Thom polynomial can have negative coefficients: $m=n, I_{2,2}: \quad c_{2}^{2}-c_{1} c_{3}$ Theorem. ($P P+A W$, 2006) Let Σ be a nontrivial stable singularity class. Then for any partition λ the coefficient α_{λ} in

$$
\mathcal{T}^{\Sigma}=\sum \alpha_{\lambda} s_{\lambda}\left(T^{*} M-f^{*} T^{*} N\right),
$$

is nonnegative and $\sum \alpha_{\lambda}>0$.

- conjectured for Thom-Boardman singularities by Feher and Komuves (2004) who computed $\mathcal{T}^{\Sigma^{i, j}[-i+1]}$.
For any singularity class Σ, the coefficients in

$$
\mathcal{T}^{\Sigma}=\sum \alpha_{\lambda, \mu} s_{\lambda}\left(T^{*} M\right) s_{\mu}\left(f^{*} T N\right)
$$

are nonnegative.

Outline of proof

We have $\Sigma \subset J$. Using classifying spaces of singularities and arguments from algebraic topology,

Outline of proof

We have $\Sigma \subset J$. Using classifying spaces of singularities and arguments from algebraic topology, we attach to a pair of vector bundles E, F over any (common) base variety X :

Outline of proof

We have $\Sigma \subset J$. Using classifying spaces of singularities and arguments from algebraic topology, we attach to a pair of vector bundles E, F over any (common) base variety X : $\Sigma(E, F) \hookrightarrow \mathcal{J}(E, F):=\left(\oplus_{i=1}^{k} \operatorname{Sym}^{i}\left(E^{*}\right)\right) \otimes F$.

Outline of proof

We have $\Sigma \subset J$. Using classifying spaces of singularities and arguments from algebraic topology, we attach to a pair of vector bundles E, F over any (common) base variety X : $\Sigma(E, F) \hookrightarrow \mathcal{J}(E, F):=\left(\oplus_{i=1}^{k} \operatorname{Sym}^{i}\left(E^{*}\right)\right) \otimes F$.
s.t. $[\Sigma(E, F)]=\sum \alpha_{\lambda} s_{\lambda}\left(E^{*}-F^{*}\right) \in H^{*}(X, \mathbf{Z})$; with the same α_{λ}.

Outline of proof

We have $\Sigma \subset J$. Using classifying spaces of singularities and arguments from algebraic topology, we attach to a pair of vector bundles E, F over any (common) base variety X : $\Sigma(E, F) \hookrightarrow \mathcal{J}(E, F):=\left(\oplus_{i=1}^{k} \operatorname{Sym}^{i}\left(E^{*}\right)\right) \otimes F$.
s.t. $[\Sigma(E, F)]=\sum \alpha_{\lambda} s_{\lambda}\left(E^{*}-F^{*}\right) \in H^{*}(X, \mathbf{Z})$; with the same α_{λ}.
Let $C \subset E$ be a cone in a vector bundle on X. We define $z(C, E)=s_{E}^{*}([C])$, where s_{E} is the zero section of E.

Outline of proof

We have $\Sigma \subset J$. Using classifying spaces of singularities and arguments from algebraic topology, we attach to a pair of vector bundles E, F over any (common) base variety X : $\Sigma(E, F) \hookrightarrow \mathcal{J}(E, F):=\left(\oplus_{i=1}^{k} \operatorname{Sym}^{i}\left(E^{*}\right)\right) \otimes F$.
s.t. $[\Sigma(E, F)]=\sum \alpha_{\lambda} s_{\lambda}\left(E^{*}-F^{*}\right) \in H^{*}(X, \mathbf{Z})$; with the same α_{λ}.
Let $C \subset E$ be a cone in a vector bundle on X. We define $z(C, E)=s_{E}^{*}([C])$, where s_{E} is the zero section of E.
Lemma. Suppose E is ample and $\operatorname{dim} C=\operatorname{rank} E$. Then $\int_{X} z(C, E)>0$.

Outline of proof

We have $\Sigma \subset J$. Using classifying spaces of singularities and arguments from algebraic topology, we attach to a pair of vector bundles E, F over any (common) base variety X : $\Sigma(E, F) \hookrightarrow \mathcal{J}(E, F):=\left(\oplus_{i=1}^{k} \operatorname{Sym}^{i}\left(E^{*}\right)\right) \otimes F$.
s.t. $[\Sigma(E, F)]=\sum \alpha_{\lambda} s_{\lambda}\left(E^{*}-F^{*}\right) \in H^{*}(X, \mathbf{Z})$; with the same α_{λ}.
Let $C \subset E$ be a cone in a vector bundle on X. We define $z(C, E)=s_{E}^{*}([C])$, where s_{E} is the zero section of E.
Lemma. Suppose E is ample and $\operatorname{dim} C=\operatorname{rank} E$. Then $\int_{X} z(C, E)>0$.
We specialize. Let $c=\operatorname{codim} C$. We take a projective variety X of dimension c. We then choose E to be trivial bundle and F an ample bundle of the corresponding ranks.

Outline of proof

We have $\Sigma \subset J$. Using classifying spaces of singularities and arguments from algebraic topology, we attach to a pair of vector bundles E, F over any (common) base variety X : $\Sigma(E, F) \hookrightarrow \mathcal{J}(E, F):=\left(\oplus_{i=1}^{k} \operatorname{Sym}^{i}\left(E^{*}\right)\right) \otimes F$.
s.t. $[\Sigma(E, F)]=\sum \alpha_{\lambda} s_{\lambda}\left(E^{*}-F^{*}\right) \in H^{*}(X, \mathbf{Z})$; with the same α_{λ}.
Let $C \subset E$ be a cone in a vector bundle on X. We define $z(C, E)=s_{E}^{*}([C])$, where s_{E} is the zero section of E.
Lemma. Suppose E is ample and $\operatorname{dim} C=\operatorname{rank} E$. Then $\int_{X} z(C, E)>0$.

We specialize. Let $c=\operatorname{codim} C$. We take a projective variety X of dimension c. We then choose E to be trivial bundle and F an ample bundle of the corresponding ranks. $\Sigma(E, F)$ is a cone in $\mathcal{J}(E, F)$, and we obtain the class $z(\Sigma(E, F), \mathcal{J}(E, F))$.

The class $z(\Sigma(E, F), \mathcal{J}(E, F)) \in H_{0}(X, \mathbf{Z})$ is dual to

The class $z(\Sigma(E, F), \mathcal{J}(E, F)) \in H_{0}(X, \mathbf{Z})$ is dual to $\sum_{\lambda} \alpha_{\lambda} s_{\lambda}\left(E^{*}-F^{*}\right)=\sum_{\lambda} \alpha_{\lambda} s_{\lambda}\left(-F^{*}\right)=\sum_{\lambda} \alpha_{\lambda} s_{\lambda \sim}(F)$.

The class $z(\Sigma(E, F), \mathcal{J}(E, F)) \in H_{0}(X, \mathbf{Z})$ is dual to $\sum_{\lambda} \alpha_{\lambda} s_{\lambda}\left(E^{*}-F^{*}\right)=\sum_{\lambda} \alpha_{\lambda} s_{\lambda}\left(-F^{*}\right)=\sum_{\lambda} \alpha_{\lambda} s_{\lambda \sim}(F)$.
Consider the polynomial: $P=\sum_{\lambda} \alpha_{\lambda} s_{\lambda \sim}$.

The class $z(\Sigma(E, F), \mathcal{J}(E, F)) \in H_{0}(X, \mathbf{Z})$ is dual to $\sum_{\lambda} \alpha_{\lambda} s_{\lambda}\left(E^{*}-F^{*}\right)=\sum_{\lambda} \alpha_{\lambda} s_{\lambda}\left(-F^{*}\right)=\sum_{\lambda} \alpha_{\lambda} s_{\lambda \sim}(F)$.
Consider the polynomial: $P=\sum_{\lambda} \alpha_{\lambda} s_{\lambda \sim}$.
Since a direct sum of ample vector bundles is ample, $\mathcal{J}(E, F)=F^{N}$ is ample.

The class $z(\Sigma(E, F), \mathcal{J}(E, F)) \in H_{0}(X, \mathbf{Z})$ is dual to
$\sum_{\lambda} \alpha_{\lambda} s_{\lambda}\left(E^{*}-F^{*}\right)=\sum_{\lambda} \alpha_{\lambda} s_{\lambda}\left(-F^{*}\right)=\sum_{\lambda} \alpha_{\lambda} s_{\lambda \sim}(F)$.
Consider the polynomial: $P=\sum_{\lambda} \alpha_{\lambda} s_{\lambda \sim}$.
Since a direct sum of ample vector bundles is ample, $\mathcal{J}(E, F)=F^{N}$ is ample.
We have: $\int_{X} P(F)=\operatorname{deg}_{X}\left(z\left(\Sigma(E, F), F^{N}\right)\right)>0$,

The class $z(\Sigma(E, F), \mathcal{J}(E, F)) \in H_{0}(X, \mathbf{Z})$ is dual to
$\sum_{\lambda} \alpha_{\lambda} s_{\lambda}\left(E^{*}-F^{*}\right)=\sum_{\lambda} \alpha_{\lambda} s_{\lambda}\left(-F^{*}\right)=\sum_{\lambda} \alpha_{\lambda} s_{\lambda \sim}(F)$.
Consider the polynomial: $P=\sum_{\lambda} \alpha_{\lambda} s_{\lambda \sim}$.
Since a direct sum of ample vector bundles is ample, $\mathcal{J}(E, F)=F^{N}$ is ample.
We have: $\int_{X} P(F)=\operatorname{deg}_{X}\left(z\left(\Sigma(E, F), F^{N}\right)\right)>0$,
that is, P is positive.

The class $z(\Sigma(E, F), \mathcal{J}(E, F)) \in H_{0}(X, \mathbf{Z})$ is dual to
$\sum_{\lambda} \alpha_{\lambda} s_{\lambda}\left(E^{*}-F^{*}\right)=\sum_{\lambda} \alpha_{\lambda} s_{\lambda}\left(-F^{*}\right)=\sum_{\lambda} \alpha_{\lambda} s_{\lambda \sim}(F)$.
Consider the polynomial: $P=\sum_{\lambda} \alpha_{\lambda} s_{\lambda \sim}$.
Since a direct sum of ample vector bundles is ample, $\mathcal{J}(E, F)=F^{N}$ is ample.
We have: $\int_{X} P(F)=\operatorname{deg}_{X}\left(z\left(\Sigma(E, F), F^{N}\right)\right)>0$,
that is, P is positive.
We conclude, by Fulton-Lazarsfeld, that all the coefficients α_{λ} are nonnegative with at least one strictly positive, so $\mathcal{T}^{\Sigma} \neq 0$.

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.
Classically, in real symplectic geometry, the Maslov class is represented by the cycle

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.
Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\}
$$

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.
Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\}
$$

This cycle is the locus of singularities of $L \rightarrow W$. Its cohomology class is integral, and mod 2 equals $w_{1}\left(T^{*} L\right)$.

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.
Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\} .
$$

This cycle is the locus of singularities of $L \rightarrow W$. Its cohomology class is integral, and mod 2 equals $w_{1}\left(T^{*} L\right)$. We fix an integer $k \gg 0$ and identify two germs of Lagrangian submanifolds if the degree of their tangency at 0 is greater than k .

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.
Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\} .
$$

This cycle is the locus of singularities of $L \rightarrow W$. Its cohomology class is integral, and mod 2 equals $w_{1}\left(T^{*} L\right)$. We fix an integer $k \gg 0$ and identify two germs of Lagrangian submanifolds if the degree of their tangency at 0 is greater than k .
We obtain the space of k-jets of Lagrangian submanifolds, denoted $\mathcal{J}^{k}(V)$.

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.
Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\} .
$$

This cycle is the locus of singularities of $L \rightarrow W$. Its cohomology class is integral, and mod 2 equals $w_{1}\left(T^{*} L\right)$. We fix an integer $k \gg 0$ and identify two germs of Lagrangian submanifolds if the degree of their tangency at 0 is greater than k .
We obtain the space of k-jets of Lagrangian submanifolds, denoted $\mathcal{J}^{k}(V)$. Every germ of a Lagrangian submanifold of V is the image of W via a certain germ symplectomorphism.

$$
\mathcal{J}^{k}(V)=\operatorname{Aut}(V) / P,
$$

where $\operatorname{Aut}(V)$ is the group of k-jet symplectomorphisms, and P is the stabilizer of W (k is fixed).

$$
\mathcal{J}^{k}(V)=\operatorname{Aut}(V) / P,
$$

where $\operatorname{Aut}(V)$ is the group of k-jet symplectomorphisms, and P is the stabilizer of W (k is fixed). Of course, $L G(V)$ is contained in $\mathcal{J}^{k}(V)$.

$$
\mathcal{J}^{k}(V)=\operatorname{Aut}(V) / P,
$$

where $\operatorname{Aut}(V)$ is the group of k-jet symplectomorphisms, and P is the stabilizer of W (k is fixed). Of course, $L G(V)$ is contained in $\mathcal{J}^{k}(V)$.
One has also $\pi: \mathcal{J}^{k}(V) \rightarrow L G(V)$ s.t. $L \mapsto T_{0} L$ (which is not a vector bundle for $k \geq 3$).

$$
\mathcal{J}^{k}(V)=\operatorname{Aut}(V) / P,
$$

where $\operatorname{Aut}(V)$ is the group of k-jet symplectomorphisms, and P is the stabilizer of W (k is fixed). Of course, $L G(V)$ is contained in $\mathcal{J}^{k}(V)$.
One has also $\pi: \mathcal{J}^{k}(V) \rightarrow L G(V)$ s.t. $L \mapsto T_{0} L$ (which is not a vector bundle for $k \geq 3$).
Let H be the subgroup of $\operatorname{Aut}(V)$ consisting of holomorphic symplectomorphisms preserving the fibration $V \rightarrow W$. Two Lagrangian jets are Lagrangian equivalent if they belong to the same orbit of H.

$$
\mathcal{J}^{k}(V)=\operatorname{Aut}(V) / P,
$$

where $\operatorname{Aut}(V)$ is the group of k-jet symplectomorphisms, and P is the stabilizer of W (k is fixed). Of course, $L G(V)$ is contained in $\mathcal{J}^{k}(V)$.
One has also $\pi: \mathcal{J}^{k}(V) \rightarrow L G(V)$ s.t. $L \mapsto T_{0} L$ (which is not a vector bundle for $k \geq 3$).
Let H be the subgroup of $\operatorname{Aut}(V)$ consisting of holomorphic symplectomorphisms preserving the fibration $V \rightarrow W$. Two Lagrangian jets are Lagrangian equivalent if they belong to the same orbit of H.

A Lagrange singularity class is any closed pure dimensional algebraic subset of $\mathcal{J}^{k}(V)$ which is invariant w.r.t. the action of H.

\widetilde{Q}-polynomials

Given a vector bundle E, we set $\widetilde{Q}_{i}(E)=c_{i}(E)$ and for $i \geq j$,

$$
\widetilde{Q}_{i, j}(E)=\widetilde{Q}_{i}(E) \widetilde{Q}_{j}(E)+2 \sum_{p=1}^{j}(-1)^{p} \widetilde{Q}_{i+p}(E) \widetilde{Q}_{j-p}(E)
$$

\widetilde{Q}-polynomials

Given a vector bundle E, we set $\widetilde{Q}_{i}(E)=c_{i}(E)$ and for $i \geq j$,

$$
\widetilde{Q}_{i, j}(E)=\widetilde{Q}_{i}(E) \widetilde{Q}_{j}(E)+2 \sum_{p=1}^{j}(-1)^{p} \widetilde{Q}_{i+p}(E) \widetilde{Q}_{j-p}(E) .
$$

Given a partition $I=\left(i_{1} \geq \cdots \geq i_{h} \geq 0\right)$, where we can assume h to be even, we set $\widetilde{Q}_{I}(E)=\operatorname{Pfaffian}\left(\widetilde{Q}_{i_{p}, i_{q}}(E)\right)$.

\widetilde{Q}-polynomials

Given a vector bundle E, we set $\widetilde{Q}_{i}(E)=c_{i}(E)$ and for $i \geq j$,

$$
\widetilde{Q}_{i, j}(E)=\widetilde{Q}_{i}(E) \widetilde{Q}_{j}(E)+2 \sum_{p=1}^{j}(-1)^{p} \widetilde{Q}_{i+p}(E) \widetilde{Q}_{j-p}(E) .
$$

Given a partition $I=\left(i_{1} \geq \cdots \geq i_{h} \geq 0\right)$, where we can assume h to be even, we set $\widetilde{Q}_{I}(E)=\operatorname{Pfaffian}\left(\widetilde{Q}_{i_{p}, i_{q}}(E)\right)$. Suppose a general flag $V_{\bullet}: V_{1} \subset V_{2} \subset \cdots \subset V_{n} \subset V$ of isotropic subspaces with $\operatorname{dim} V_{i}=i$, is given.

\widetilde{Q}-polynomials

Given a vector bundle E, we set $\widetilde{Q}_{i}(E)=c_{i}(E)$ and for $i \geq j$,

$$
\widetilde{Q}_{i, j}(E)=\widetilde{Q}_{i}(E) \widetilde{Q}_{j}(E)+2 \sum_{p=1}^{j}(-1)^{p} \widetilde{Q}_{i+p}(E) \widetilde{Q}_{j-p}(E) .
$$

Given a partition $I=\left(i_{1} \geq \cdots \geq i_{h} \geq 0\right)$, where we can assume h to be even, we set $\widetilde{Q}_{I}(E)=\operatorname{Pfaffian}\left(\widetilde{Q}_{i_{p}, i_{q}}(E)\right)$. Suppose a general flag $V_{\bullet}: V_{1} \subset V_{2} \subset \cdots \subset V_{n} \subset V$ of isotropic subspaces with $\operatorname{dim} V_{i}=i$, is given. Given a strict partition s.t. $I=\left(n \geq i_{1}>\cdots>i_{h}>0\right)$, we define

$$
\Omega_{I}\left(V_{\bullet}\right)=\left\{L \in L G(V): \operatorname{dim}\left(L \cap V_{n+1-i_{p}}\right) \geq p, p=1, \ldots, h\right\} .
$$

\widetilde{Q}-polynomials

Given a vector bundle E, we set $\widetilde{Q}_{i}(E)=c_{i}(E)$ and for $i \geq j$,

$$
\widetilde{Q}_{i, j}(E)=\widetilde{Q}_{i}(E) \widetilde{Q}_{j}(E)+2 \sum_{p=1}^{j}(-1)^{p} \widetilde{Q}_{i+p}(E) \widetilde{Q}_{j-p}(E) .
$$

Given a partition $I=\left(i_{1} \geq \cdots \geq i_{h} \geq 0\right)$, where we can assume h to be even, we set $\widetilde{Q}_{I}(E)=\operatorname{Pfaffian}\left(\widetilde{Q}_{i_{p}, i_{q}}(E)\right)$. Suppose a general flag $V_{\bullet}: V_{1} \subset V_{2} \subset \cdots \subset V_{n} \subset V$ of isotropic subspaces with $\operatorname{dim} V_{i}=i$, is given. Given a strict partition s.t. $I=\left(n \geq i_{1}>\cdots>i_{h}>0\right)$, we define $\Omega_{I}\left(V_{\bullet}\right)=\left\{L \in L G(V): \operatorname{dim}\left(L \cap V_{n+1-i_{p}}\right) \geq p, p=1, \ldots, h\right\}$.
$\left[\Omega_{I}\left(V_{\bullet}\right)\right]=\Omega_{I}$. We have $\Omega_{I}=\widetilde{Q}_{I}\left(R^{*}\right)$, where R is the tautological subbundle on $L G(V)$ (PP, 1986).

Lagrangian Thom polynomial

Proceeding the same way with formal variables c_{1}, c_{2}, \ldots, we define the polynomial \widetilde{Q}_{I}.

Lagrangian Thom polynomial

Proceeding the same way with formal variables c_{1}, c_{2}, \ldots, we define the polynomial \widetilde{Q}_{I}.
$\rho:=(n, n-1, \ldots, 1)$.

Lagrangian Thom polynomial

Proceeding the same way with formal variables c_{1}, c_{2}, \ldots, we define the polynomial \widetilde{Q}_{I}.
$\rho:=(n, n-1, \ldots, 1)$.
A Lagrange singularity class $\Sigma \subset \mathcal{J}^{k}(V)$ defines the cohomology class

$$
[\Sigma] \in H^{*}\left(\mathcal{J}^{k}(V), \mathbf{Z}\right) \cong H^{*}(L G(V), \mathbf{Z})
$$

Lagrangian Thom polynomial

Proceeding the same way with formal variables c_{1}, c_{2}, \ldots, we define the polynomial \widetilde{Q}_{I}.
$\rho:=(n, n-1, \ldots, 1)$.
A Lagrange singularity class $\Sigma \subset \mathcal{J}^{k}(V)$ defines the cohomology class

$$
[\Sigma] \in H^{*}\left(\mathcal{J}^{k}(V), \mathbf{Z}\right) \cong H^{*}(L G(V), \mathbf{Z})
$$

Suppose that $[\Sigma]=\sum_{I \subset \rho} \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right)$.

Lagrangian Thom polynomial

Proceeding the same way with formal variables c_{1}, c_{2}, \ldots, we define the polynomial \widetilde{Q}_{I}.
$\rho:=(n, n-1, \ldots, 1)$.
A Lagrange singularity class $\Sigma \subset \mathcal{J}^{k}(V)$ defines the cohomology class

$$
[\Sigma] \in H^{*}\left(\mathcal{J}^{k}(V), \mathbf{Z}\right) \cong H^{*}(L G(V), \mathbf{Z}) .
$$

Suppose that $[\Sigma]=\sum_{I \subset \rho} \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right)$. Then $\mathcal{T}^{\Sigma}:=\sum_{I} \alpha_{I} \widetilde{Q}_{I}$ is called the Thom polynomial associated with the Lagrange singularity class Σ.

Lagrangian Thom polynomial

Proceeding the same way with formal variables c_{1}, c_{2}, \ldots, we define the polynomial \widetilde{Q}_{I}.
$\rho:=(n, n-1, \ldots, 1)$.
A Lagrange singularity class $\Sigma \subset \mathcal{J}^{k}(V)$ defines the cohomology class

$$
[\Sigma] \in H^{*}\left(\mathcal{J}^{k}(V), \mathbf{Z}\right) \cong H^{*}(L G(V), \mathbf{Z})
$$

Suppose that $[\Sigma]=\sum_{I \subset \rho} \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right)$. Then
$\mathcal{T}^{\Sigma}:=\sum_{I} \alpha_{I} \widetilde{Q}_{I}$ is called the Thom polynomial associated with the Lagrange singularity class Σ.

Theorem. ($M M+P P+A W$, 2007) For any Lagrange singularity class Σ, the Thom polynomial \mathcal{T}^{Σ} is a nonnegative combination of \widetilde{Q}-functions.

Let $i: G=L G(V) \hookrightarrow \mathcal{J}$ be the inclusion. We look at the coefficients α_{I} of the expression $i^{*}[\Sigma]=\sum \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right)$.

Let $i: G=L G(V) \hookrightarrow \mathcal{J}$ be the inclusion. We look at the coefficients α_{I} of the expression $i^{*}[\Sigma]=\sum \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right)$.
Let $\Omega_{I^{\prime}}$ be the dual Schubert class to Ω_{I}. We have

$$
\alpha_{I}=i^{*}[\Sigma] \cdot \Omega_{I^{\prime}}
$$

Let $i: G=L G(V) \hookrightarrow \mathcal{J}$ be the inclusion. We look at the coefficients α_{I} of the expression $i^{*}[\Sigma]=\sum \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right)$.
Let $\Omega_{I^{\prime}}$ be the dual Schubert class to Ω_{I}. We have

$$
\alpha_{I}=i^{*}[\Sigma] \cdot \Omega_{I^{\prime}}
$$

Let

$$
C=C_{G \cap \Sigma} \Sigma \subset N_{G} \mathcal{J}
$$

be the normal cone of $G \cap \Sigma$ in Σ. Denote by $j: G \hookrightarrow N_{G} \mathcal{J}$ the zero-section inclusion.

Let $i: G=L G(V) \hookrightarrow \mathcal{J}$ be the inclusion. We look at the coefficients α_{I} of the expression $i^{*}[\Sigma]=\sum \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right)$.
Let $\Omega_{I^{\prime}}$ be the dual Schubert class to Ω_{I}. We have

$$
\alpha_{I}=i^{*}[\Sigma] \cdot \Omega_{I^{\prime}}
$$

Let

$$
C=C_{G \cap \Sigma} \Sigma \subset N_{G} \mathcal{J}
$$

be the normal cone of $G \cap \Sigma$ in Σ. Denote by $j: G \hookrightarrow N_{G} \mathcal{J}$ the zero-section inclusion.
By deformation to the normal cone, we have in $A_{*} G$ the equality

$$
i^{*}[\Sigma]=j^{*}[C] .
$$

It follows that

$$
\alpha_{I}=[C] \cdot \Omega_{I^{\prime}}
$$

(intersection in $N_{G} \mathcal{J}$).

It follows that

$$
\alpha_{I}=[C] \cdot \Omega_{I^{\prime}}
$$

(intersection in $N_{G} \mathcal{J}$).
Proposition. Let $\pi: E \rightarrow X$ be a globally generated bundle on a proper homogeneous variety X. Let C be a cone in E, and let Z be a nonnegative algebraic cycle in X of the complementary dimension. Then the intersection $[C] \cdot[Z]$ is nonnegative.

It follows that

$$
\alpha_{I}=[C] \cdot \Omega_{I^{\prime}}
$$

(intersection in $N_{G} \mathcal{J}$).
Proposition. Let $\pi: E \rightarrow X$ be a globally generated bundle on a proper homogeneous variety X. Let C be a cone in E, and let Z be a nonnegative algebraic cycle in X of the complementary dimension. Then the intersection $[C] \cdot[Z]$ is nonnegative.

Take $X=G$

It follows that

$$
\alpha_{I}=[C] \cdot \Omega_{I^{\prime}}
$$

(intersection in $N_{G} \mathcal{J}$).
Proposition. Let $\pi: E \rightarrow X$ be a globally generated bundle on a proper homogeneous variety X. Let C be a cone in E, and let Z be a nonnegative algebraic cycle in X of the complementary dimension. Then the intersection $[C] \cdot[Z]$ is nonnegative.

Take $X=G$
Take $E=N_{G} \mathcal{J} \cong \bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(R^{*}\right)$ is g.g.

It follows that

$$
\alpha_{I}=[C] \cdot \Omega_{I^{\prime}}
$$

(intersection in $N_{G} \mathcal{J}$).
Proposition. Let $\pi: E \rightarrow X$ be a globally generated bundle on a proper homogeneous variety X. Let C be a cone in E, and let Z be a nonnegative algebraic cycle in X of the complementary dimension. Then the intersection $[C] \cdot[Z]$ is nonnegative.

Take $X=G$
Take $E=N_{G} \mathcal{J} \cong \bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(R^{*}\right)$ is g.g.
Take $Z=\Omega_{I^{\prime}}$.

Some Legendrian geometry

Fix $n \in \mathbf{N}$. Let W be a vector space of dimension n, and let ξ be a vector space of dimension one.

Some Legendrian geometry

Fix $n \in \mathbf{N}$. Let W be a vector space of dimension n, and let ξ be a vector space of dimension one.

$$
V:=W \oplus\left(W^{*} \otimes \xi\right) .
$$

Some Legendrian geometry

Fix $n \in \mathbf{N}$. Let W be a vector space of dimension n, and let ξ be a vector space of dimension one.

$$
V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

- standard symplectic space equipped with the twisted symplectic form $\omega \in \Lambda^{2} V^{*} \otimes \xi$. Have Lagrangian submanifolds (germs through the origin).

Some Legendrian geometry

Fix $n \in \mathbf{N}$. Let W be a vector space of dimension n, and let ξ be a vector space of dimension one.

$$
V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

- standard symplectic space equipped with the twisted symplectic form $\omega \in \Lambda^{2} V^{*} \otimes \xi$. Have Lagrangian submanifolds (germs through the origin).
Standard contact space equipped with the contact form α,

$$
V \oplus \xi=W \oplus\left(W^{*} \otimes \xi\right) \oplus \xi
$$

Some Legendrian geometry

Fix $n \in \mathbf{N}$. Let W be a vector space of dimension n, and let ξ be a vector space of dimension one.

$$
V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

- standard symplectic space equipped with the twisted symplectic form $\omega \in \Lambda^{2} V^{*} \otimes \xi$. Have Lagrangian submanifolds (germs through the origin). Standard contact space equipped with the contact form α,

$$
V \oplus \xi=W \oplus\left(W^{*} \otimes \xi\right) \oplus \xi
$$

Legendrian submanifolds of $V \oplus \xi$ are maximal integral submanifolds of α, i.e. the manifolds of dimension n with tangent spaces contained in $\operatorname{Ker}(\alpha)$.

Some Legendrian geometry

Fix $n \in \mathbf{N}$. Let W be a vector space of dimension n, and let ξ be a vector space of dimension one.

$$
V:=W \oplus\left(W^{*} \otimes \xi\right) .
$$

- standard symplectic space equipped with the twisted symplectic form $\omega \in \Lambda^{2} V^{*} \otimes \xi$. Have Lagrangian submanifolds (germs through the origin). Standard contact space equipped with the contact form α,

$$
V \oplus \xi=W \oplus\left(W^{*} \otimes \xi\right) \oplus \xi
$$

Legendrian submanifolds of $V \oplus \xi$ are maximal integral submanifolds of α, i.e. the manifolds of dimension n with tangent spaces contained in $\operatorname{Ker}(\alpha)$.
Any Legendrian submanifold in $V \oplus \xi$ is determined by its Lagrangian projection to V and any Lagrangian submanifold in V lifts to $V \oplus \xi$.

We shall work with pairs of Lagrangian submanifolds and try to classify all the possible relative positions.

We shall work with pairs of Lagrangian submanifolds and try to classify all the possible relative positions. Two Lagrangian submanifolds, if they are in generic position, intersect transversally. The singular relative positions can be divided into Legendrian singularity classes.

We shall work with pairs of Lagrangian submanifolds and try to classify all the possible relative positions. Two Lagrangian submanifolds, if they are in generic position, intersect transversally. The singular relative positions can be divided into Legendrian singularity classes.
The group of symplectomorphisms of V acts on the pairs of Lagrangian submanifolds.

We shall work with pairs of Lagrangian submanifolds and try to classify all the possible relative positions. Two Lagrangian submanifolds, if they are in generic position, intersect transversally. The singular relative positions can be divided into Legendrian singularity classes.
The group of symplectomorphisms of V acts on the pairs of Lagrangian submanifolds.
Lemma. Any pair of Lagrangian submanifolds is symplectic equivalent to a pair $\left(L_{1}, L_{2}\right)$ such that L_{1} is a linear Lagrangian subspace and the tangent space $T_{0} L_{2}$ is equal to W.

We shall work with pairs of Lagrangian submanifolds and try to classify all the possible relative positions. Two Lagrangian submanifolds, if they are in generic position, intersect transversally. The singular relative positions can be divided into Legendrian singularity classes.
The group of symplectomorphisms of V acts on the pairs of Lagrangian submanifolds.
Lemma. Any pair of Lagrangian submanifolds is symplectic equivalent to a pair $\left(L_{1}, L_{2}\right)$ such that L_{1} is a linear Lagrangian subspace and the tangent space $T_{0} L_{2}$ is equal to W.
Get 2 types of submanifolds: linear subspaces,

We shall work with pairs of Lagrangian submanifolds and try to classify all the possible relative positions. Two Lagrangian submanifolds, if they are in generic position, intersect transversally. The singular relative positions can be divided into Legendrian singularity classes.
The group of symplectomorphisms of V acts on the pairs of Lagrangian submanifolds.
Lemma. Any pair of Lagrangian submanifolds is symplectic equivalent to a pair $\left(L_{1}, L_{2}\right)$ such that L_{1} is a linear Lagrangian subspace and the tangent space $T_{0} L_{2}$ is equal to W.
Get 2 types of submanifolds: linear subspaces, the submanifolds which have the tangent space at the origin equal to W; they are the graphs of the differentials of the functions $f: W \rightarrow \xi$ satisfying $d f(0)=0$ and $d^{2} f(0)=0$

Let $\mathcal{J}^{k}(W, \xi)$ be the set of pairs $\left(L_{1}, L_{2}\right)$ of k-jets of Lagrangian submanifolds of V such that L_{1} is a linear space and $T_{0} L_{2}=W$.

Let $\mathcal{J}^{k}(W, \xi)$ be the set of pairs $\left(L_{1}, L_{2}\right)$ of k-jets of Lagrangian submanifolds of V such that L_{1} is a linear space and $T_{0} L_{2}=W$.

Let $\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$ be the projection.

Let $\mathcal{J}^{k}(W, \xi)$ be the set of pairs $\left(L_{1}, L_{2}\right)$ of k-jets of Lagrangian submanifolds of V such that L_{1} is a linear space and $T_{0} L_{2}=W$.

Let $\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$ be the projection. Clearly, π is a trivial vector bundle with the fiber equal to: $\bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(W^{*}\right) \otimes \xi$.

Let $\mathcal{J}^{k}(W, \xi)$ be the set of pairs $\left(L_{1}, L_{2}\right)$ of k-jets of Lagrangian submanifolds of V such that L_{1} is a linear space and $T_{0} L_{2}=W$.
Let $\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$ be the projection. Clearly, π is a trivial vector bundle with the fiber equal to: $\bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(W^{*}\right) \otimes \xi$.
We are interested in a larger group than the group of symplectomorphisms, the group of contact automorphisms of $V \oplus \xi$.

Let $\mathcal{J}^{k}(W, \xi)$ be the set of pairs $\left(L_{1}, L_{2}\right)$ of k-jets of Lagrangian submanifolds of V such that L_{1} is a linear space and $T_{0} L_{2}=W$.
Let $\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$ be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to: $\bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(W^{*}\right) \otimes \xi$.
We are interested in a larger group than the group of symplectomorphisms, the group of contact automorphisms of $V \oplus \xi$.
By a Legendre singularity class we mean a closed algebraic subset $\Sigma \subset \mathcal{J}^{k}\left(\mathbf{C}^{n}, \mathbf{C}\right)$ invariant with respect to holomorphic contactomorphisms of $\mathbf{C}^{2 n+1}$.

Let $\mathcal{J}^{k}(W, \xi)$ be the set of pairs $\left(L_{1}, L_{2}\right)$ of k-jets of Lagrangian submanifolds of V such that L_{1} is a linear space and $T_{0} L_{2}=W$.
Let $\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$ be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to: $\bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(W^{*}\right) \otimes \xi$.
We are interested in a larger group than the group of symplectomorphisms, the group of contact automorphisms of $V \oplus \xi$.
By a Legendre singularity class we mean a closed algebraic subset $\Sigma \subset \mathcal{J}^{k}\left(\mathbf{C}^{n}, \mathbf{C}\right)$ invariant with respect to holomorphic contactomorphisms of $\mathbf{C}^{2 n+1}$.
Additionally, we assume that Σ is stable with respect to enlarging the dimension of W.

Jet bundle $\mathcal{J}^{k}(W, \xi)$

Let X be a topological space, W a complex rank n vector bundle over X, and ξ a complex line bundle over X.

Jet bundle $\mathcal{J}^{k}(W, \xi)$

Let X be a topological space, W a complex rank n vector bundle over X, and ξ a complex line bundle over X.
Let $\tau: L G(V, \omega) \rightarrow X$ denote the Lagrange Grassmann bundle parametrizing Lagrangian linear submanifolds in V_{x}, $x \in X$.

Jet bundle $\mathcal{J}^{k}(W, \xi)$

Let X be a topological space, W a complex rank n vector bundle over X, and ξ a complex line bundle over X.
Let $\tau: L G(V, \omega) \rightarrow X$ denote the Lagrange Grassmann bundle parametrizing Lagrangian linear submanifolds in V_{x}, $x \in X$. We have a relative version of the map:
$\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$.

Jet bundle $\mathcal{J}^{k}(W, \xi)$

Let X be a topological space, W a complex rank n vector bundle over X, and ξ a complex line bundle over X.
Let $\tau: L G(V, \omega) \rightarrow X$ denote the Lagrange Grassmann bundle parametrizing Lagrangian linear submanifolds in V_{x}, $x \in X$. We have a relative version of the map:
$\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$.
The space $\mathcal{J}^{k}(W, \xi)$ fibers over X. It is equal to the pull-back:

$$
\mathcal{J}^{k}(W, \xi)=\tau^{*}\left(\bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(W^{*}\right) \otimes \xi\right) .
$$

Since any changes of coordinates of W and ξ induce holomorphic contactomorphisms of $V \oplus \xi$, any Legendre singularity class Σ defines $\Sigma(W, \xi) \subset \mathcal{J}^{k}(W, \xi)$.

Since any changes of coordinates of W and ξ induce holomorphic contactomorphisms of $V \oplus \xi$, any Legendre singularity class Σ defines $\Sigma(W, \xi) \subset \mathcal{J}^{k}(W, \xi)$.
Let us fix an approximation of $B U(1)=\bigcup_{n \in \mathbf{N}} \mathbf{P}^{n}$, that is, we set $X=\mathbf{P}^{n}, \xi=\mathcal{O}(1)$. Let $W=\mathbf{1}^{n}$ be the trivial bundle of rank n.

Since any changes of coordinates of W and ξ induce holomorphic contactomorphisms of $V \oplus \xi$, any Legendre singularity class Σ defines $\Sigma(W, \xi) \subset \mathcal{J}^{k}(W, \xi)$.
Let us fix an approximation of $B U(1)=\bigcup_{n \in \mathbf{N}} \mathbf{P}^{n}$, that is, we set $X=\mathbf{P}^{n}, \xi=\mathcal{O}(1)$. Let $W=\mathbf{1}^{n}$ be the trivial bundle of rank n.

Then $H^{*}(L G(V, \omega), \mathbf{Z}) \cong H^{*}\left(\mathcal{J}^{k}(W, \xi), \mathbf{Z}\right)$ is isomorphic to the ring of Legendrian characteristic classes for degrees smaller than or equal to n.

Since any changes of coordinates of W and ξ induce holomorphic contactomorphisms of $V \oplus \xi$, any Legendre singularity class Σ defines $\Sigma(W, \xi) \subset \mathcal{J}^{k}(W, \xi)$.
Let us fix an approximation of $B U(1)=\bigcup_{n \in \mathbf{N}} \mathbf{P}^{n}$, that is, we set $X=\mathbf{P}^{n}, \xi=\mathcal{O}(1)$. Let $W=\mathbf{1}^{n}$ be the trivial bundle of rank n.
Then $H^{*}(L G(V, \omega), \mathbf{Z}) \cong H^{*}\left(\mathcal{J}^{k}(W, \xi), \mathbf{Z}\right)$ is isomorphic to the ring of Legendrian characteristic classes for degrees smaller than or equal to n.
The element $[\Sigma(W, \xi)]$ of $H^{*}\left(\mathcal{J}^{k}(W, \xi), \mathbf{Z}\right)$, is called the Legendrian Thom polynomial of Σ, and denoted by \mathcal{T}^{Σ}.

Let $\xi, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be vector spaces of dimension one and let

$$
W:=\bigoplus_{i=1}^{n} \alpha_{i}, \quad V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

Let $\xi, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be vector spaces of dimension one and let

$$
W:=\bigoplus_{i=1}^{n} \alpha_{i}, \quad V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

We have a symplectic form ω defined on V with values in ξ. $L G(V, \omega)$ is a homogeneous space for the symplectic group $S p(V, \omega) \subset \operatorname{End}(V)$.

Let $\xi, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be vector spaces of dimension one and let

$$
W:=\bigoplus_{i=1}^{n} \alpha_{i}, \quad V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

We have a symplectic form ω defined on V with values in ξ. $L G(V, \omega)$ is a homogeneous space for the symplectic group $S p(V, \omega) \subset \operatorname{End}(V)$. Fix two "opposite" isotropic flags in V :

$$
F_{h}^{+}:=\bigoplus_{i=1}^{h} \alpha_{i}
$$

$$
F_{h}^{-}:=\bigoplus_{i=1}^{h} \alpha_{n-i+1}^{*} \otimes \xi
$$

$$
(h=1,2, \ldots, n)
$$

Let $\xi, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be vector spaces of dimension one and let

$$
W:=\bigoplus_{i=1}^{n} \alpha_{i}, \quad V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

We have a symplectic form ω defined on V with values in ξ. $L G(V, \omega)$ is a homogeneous space for the symplectic group $S p(V, \omega) \subset \operatorname{End}(V)$. Fix two "opposite" isotropic flags in V :
$F_{h}^{+}:=\bigoplus_{i=1}^{h} \alpha_{i}$,

$$
(h=1,2, \ldots, n)
$$

Consider two Borel groups $B^{ \pm} \subset S p(V, \omega)$, preserving the flags $F_{\bullet}^{ \pm}$. The orbits of $B^{ \pm}$in $L G(V, \omega)$ form two "opposite" cell decompositions $\left\{\Omega_{I}\left(F_{\bullet}^{ \pm}, \xi\right)\right\}$ of $L G(V, \omega), I \subset \rho$ strict.

All that is functorial w.r.t. the automorphisms of the lines ξ and α_{i} 's, (they form a torus $\left(\mathbf{C}^{*}\right)^{n+1}$.

All that is functorial w.r.t. the automorphisms of the lines ξ and α_{i} 's, (they form a torus $\left(\mathbf{C}^{*}\right)^{n+1}$. Thus the construction of the cell decompositions can be repeated for bundles ξ and $\left\{\alpha_{i}\right\}_{i=1}^{n}$ over any base X. We get a Lagrange Grassmann bundle $\tau: L G(V, \omega) \rightarrow X$ endowed with two (relative) stratifications

$$
\left\{\Omega_{I}\left(F_{\bullet}^{ \pm}, \xi\right) \rightarrow X\right\}_{I}
$$

All that is functorial w.r.t. the automorphisms of the lines ξ and α_{i} 's, (they form a torus $\left(\mathbf{C}^{*}\right)^{n+1}$. Thus the construction of the cell decompositions can be repeated for bundles ξ and $\left\{\alpha_{i}\right\}_{i=1}^{n}$ over any base X. We get a Lagrange Grassmann bundle $\tau: L G(V, \omega) \rightarrow X$ endowed with two (relative) stratifications

$$
\left\{\Omega_{I}\left(F_{\bullet}^{ \pm}, \xi\right) \rightarrow X\right\}_{I}
$$

Assume that $X=G / P$ is a compact manifold, homogeneous with respect to an action of a linear group G. Then X admits an algebraic cell decomposition $\left\{\sigma_{\lambda}\right\}$.

All that is functorial w.r.t. the automorphisms of the lines ξ and α_{i} 's, (they form a torus $\left(\mathbf{C}^{*}\right)^{n+1}$. Thus the construction of the cell decompositions can be repeated for bundles ξ and $\left\{\alpha_{i}\right\}_{i=1}^{n}$ over any base X. We get a Lagrange Grassmann bundle $\tau: L G(V, \omega) \rightarrow X$ endowed with two (relative) stratifications

$$
\left\{\Omega_{I}\left(F_{\bullet}^{ \pm}, \xi\right) \rightarrow X\right\}_{I}
$$

Assume that $X=G / P$ is a compact manifold, homogeneous with respect to an action of a linear group G. Then X admits an algebraic cell decomposition $\left\{\sigma_{\lambda}\right\}$. The subsets

$$
Z_{I \lambda}^{-}:=\tau^{-1}\left(\sigma_{\lambda}\right) \cap \Omega_{I}\left(F_{\bullet}^{-}, \xi\right)
$$

form an algebraic cell decomposition of $L G(V, \omega)$.

All that is functorial w.r.t. the automorphisms of the lines ξ and α_{i} 's, (they form a torus $\left(\mathbf{C}^{*}\right)^{n+1}$. Thus the construction of the cell decompositions can be repeated for bundles ξ and $\left\{\alpha_{i}\right\}_{i=1}^{n}$ over any base X. We get a Lagrange Grassmann bundle $\tau: L G(V, \omega) \rightarrow X$ endowed with two (relative) stratifications

$$
\left\{\Omega_{I}\left(F_{\bullet}^{ \pm}, \xi\right) \rightarrow X\right\}_{I}
$$

Assume that $X=G / P$ is a compact manifold, homogeneous with respect to an action of a linear group G. Then X admits an algebraic cell decomposition $\left\{\sigma_{\lambda}\right\}$. The subsets

$$
Z_{I \lambda}^{-}:=\tau^{-1}\left(\sigma_{\lambda}\right) \cap \Omega_{I}\left(F_{\bullet}^{-}, \xi\right)
$$

form an algebraic cell decomposition of $L G(V, \omega)$. Similarly,

$$
Z_{I \lambda}^{+}:=\tau^{-1}\left(\sigma_{\lambda}\right) \cap \Omega_{I}\left(F_{\bullet}^{+} \underset{\substack{\text { posituiv }}}{\xi}\right) .
$$

Theorem. Fix $I \subset \rho$ and λ. Suppose that the vector bundle \mathcal{J} is globally generated. Then, in \mathcal{J}, the intersection of $\Sigma(W, \xi)$ with the closure of any $\pi^{-1}\left(Z_{I \lambda}^{-}\right)$is represented by a nonnegative cycle.

Theorem. Fix $I \subset \rho$ and λ. Suppose that the vector bundle \mathcal{J} is globally generated. Then, in \mathcal{J}, the intersection of $\Sigma(W, \xi)$ with the closure of any $\pi^{-1}\left(Z_{I \lambda}^{-}\right)$is represented by a nonnegative cycle.

We shall apply the Theorem in the situation when all α_{i} are equal to the same line bundle α (i.e. $W=\alpha^{\oplus n}$) and $\alpha^{-m} \otimes \xi$ is globally generated for $m \geq 3$.

Theorem. Fix $I \subset \rho$ and λ. Suppose that the vector bundle \mathcal{J} is globally generated. Then, in \mathcal{J}, the intersection of $\Sigma(W, \xi)$ with the closure of any $\pi^{-1}\left(Z_{I \lambda}^{-}\right)$is represented by a nonnegative cycle.

We shall apply the Theorem in the situation when all α_{i} are equal to the same line bundle α (i.e. $W=\alpha^{\oplus n}$) and $\alpha^{-m} \otimes \xi$ is globally generated for $m \geq 3$.
Consider the following three cases: the base is always $X=\mathbf{P}^{n}$ and

$$
\begin{gathered}
\xi_{1}=\mathcal{O}(-2), \alpha_{1}=\mathcal{O}(-1) \\
\xi_{2}=\mathcal{O}(1), \alpha_{2}=\mathbf{1} \\
\xi_{3}=\mathcal{O}(-3), \alpha_{3}=\mathcal{O}(-1) .
\end{gathered}
$$

We obtain symplectic bundles $V_{i}=\alpha_{i}^{\oplus n} \oplus\left(\alpha_{i}^{*} \otimes \xi_{i}\right)^{\oplus n}$ with twisted symplectic forms $\omega_{i}, i=1,2,3$.

To overlap all these three cases we consider the product $X:=\mathbf{P}^{n} \times \mathbf{P}^{n}$

To overlap all these three cases we consider the product $X:=\mathbf{P}^{n} \times \mathbf{P}^{n}$ and set

$$
W:=p_{1}^{*} \mathcal{O}(-1)^{\oplus n}, \quad \xi:=p_{1}^{*} \mathcal{O}(-3) \otimes p_{2}^{*} \mathcal{O}(1)
$$

where $p_{i}: X \rightarrow \mathbf{P}^{n}, i=1,2$, are the projections. Let v_{i} denote $p_{i}^{*}\left(c_{1}(\mathcal{O}(1))\right)$ for $i=1,2$.

To overlap all these three cases we consider the product $X:=\mathbf{P}^{n} \times \mathbf{P}^{n}$ and set

$$
W:=p_{1}^{*} \mathcal{O}(-1)^{\oplus n}, \quad \xi:=p_{1}^{*} \mathcal{O}(-3) \otimes p_{2}^{*} \mathcal{O}(1)
$$

where $p_{i}: X \rightarrow \mathbf{P}^{n}, i=1,2$, are the projections. Let v_{i} denote $p_{i}^{*}\left(c_{1}(\mathcal{O}(1))\right)$ for $i=1,2$.

Restricting the bundles W and ξ to the diagonal, or to the factors we obtain the three cases considered above.

To overlap all these three cases we consider the product $X:=\mathbf{P}^{n} \times \mathbf{P}^{n}$ and set

$$
W:=p_{1}^{*} \mathcal{O}(-1)^{\oplus n}, \quad \xi:=p_{1}^{*} \mathcal{O}(-3) \otimes p_{2}^{*} \mathcal{O}(1)
$$

where $p_{i}: X \rightarrow \mathbf{P}^{n}, i=1,2$, are the projections. Let v_{i} denote $p_{i}^{*}\left(c_{1}(\mathcal{O}(1))\right)$ for $i=1,2$.

Restricting the bundles W and ξ to the diagonal, or to the factors we obtain the three cases considered above.

The space $L G(V, \omega)$ has a cell decomposition $Z_{I, a, b}^{-}$. The dual basis of cohomology (in the sense of linear algebra) is denoted by

$$
e_{I, a, b}=\left[\bar{Z}_{I, a, b}^{-}\right]^{*}
$$

To overlap all these three cases we consider the product $X:=\mathbf{P}^{n} \times \mathbf{P}^{n}$ and set

$$
W:=p_{1}^{*} \mathcal{O}(-1)^{\oplus n}, \quad \xi:=p_{1}^{*} \mathcal{O}(-3) \otimes p_{2}^{*} \mathcal{O}(1)
$$

where $p_{i}: X \rightarrow \mathbf{P}^{n}, i=1,2$, are the projections. Let v_{i} denote $p_{i}^{*}\left(c_{1}(\mathcal{O}(1))\right)$ for $i=1,2$.

Restricting the bundles W and ξ to the diagonal, or to the factors we obtain the three cases considered above.

The space $L G(V, \omega)$ has a cell decomposition $Z_{I, a, b}^{-}$. The dual basis of cohomology (in the sense of linear algebra) is denoted by

$$
e_{I, a, b}=\left[\overline{Z_{I, a, b}^{-}}\right]^{*} .
$$

We have $e_{I, a, b}=e_{I, 0,0} v_{1}^{a} v_{2}^{b}$ and $e_{I, 0,0}=\left[\overline{\Omega_{I}\left(F_{\bullet}^{+}, \xi\right)}\right]$.

Theorem. ($M M+P P+A W$ 2010) Let Σ be a Legendre singularity class. Then $[\Sigma(W, \xi)]$ has nonnegative coefficients in the basis $\left\{e_{I, a, b}\right\}$.

Theorem. $(M M+P P+A W$ 2010) Let Σ be a Legendre singularity class. Then $[\Sigma(W, \xi)]$ has nonnegative coefficients in the basis $\left\{e_{I, a, b}\right\}$.
The bundle \mathcal{J} here is gg (hence desired intersections in \mathcal{J} are nonnegative):
$\tau^{*}\left(\oplus_{j=3}^{k+1} \operatorname{Sym}^{j}\left(W^{*}\right) \otimes \xi\right)=$
$\tau^{*}\left(\bigoplus_{j=3}^{k+1} \operatorname{Sym}^{j}\left(\mathbf{1}^{n}\right) \otimes p_{1}^{*} \mathcal{O}(j-3) \otimes p_{2}^{*} \mathcal{O}(1)\right)$.

Theorem. $(M M+P P+A W$ 2010) Let Σ be a Legendre singularity class. Then $[\Sigma(W, \xi)]$ has nonnegative coefficients in the basis $\left\{e_{I, a, b}\right\}$.
The bundle \mathcal{J} here is gg (hence desired intersections in \mathcal{J} are nonnegative):
$\tau^{*}\left(\oplus_{j=3}^{k+1} \operatorname{Sym}^{j}\left(W^{*}\right) \otimes \xi\right)=$
$\tau^{*}\left(\bigoplus_{j=3}^{k+1} \operatorname{Sym}^{j}\left(\mathbf{1}^{n}\right) \otimes p_{1}^{*} \mathcal{O}(j-3) \otimes p_{2}^{*} \mathcal{O}(1)\right)$.
Using this theorem, one can obtain a one-parameter family of bases in the ring of Legendrian characteristic classes giving rise to positive expansions of all Legendrian Thom polynomials.
A_{8} :
$18840 \widetilde{Q}[61]+20160 \widetilde{Q}[7]+3123 \widetilde{Q}[421]+5556 \widetilde{Q}[43]+$ $15564 \widetilde{Q}[52]+$
$t(71856 \widetilde{Q}[6]+3999 \widetilde{Q}[321]+55672 \widetilde{Q}[51]+34780 \widetilde{Q}[42])+$
$t^{2}(64524 \widetilde{Q}[41]+24616 \widetilde{Q}[32]+105496 \widetilde{Q}[5])+$
$t^{3}(36048 \widetilde{Q}[31]+81544 \widetilde{Q}[4])+$
$t^{4}(8876 \widetilde{Q}[21]+34936 \widetilde{Q}[3])+$
$t^{5} 7848 \widetilde{Q}[2]+$
$t^{6} 720 \widetilde{Q}[1]$
E_{8} :
$93 \widetilde{Q}[421]+108 \widetilde{Q}[43]+204 \widetilde{Q}[52]+72 \widetilde{Q}[61]+$ $t(99 \widetilde{Q}[321]+216 \widetilde{Q}[51]+414 \widetilde{Q}[42])+$
$t^{2}(246 \widetilde{Q}[41]+246 \widetilde{Q}[32])+$ $t^{3} 126 \widetilde{Q}[31]+$ $t^{4} 24 \widetilde{Q}[21]$

Theorem. (W. Graham) Let $X=G / B$ be the flag variety for a complex semisimple group G and with maximal torus $T \subset B$, and let $\left\{\sigma_{w} \in H_{T}^{*} X: w \in W\right\}$ be the basis of (B-invariant) Schubert classes. Let α_{i} be the simple roots which are negative on B. Then in the expansion

$$
\sigma_{u} \cdot \sigma_{v}=\sum_{w} c_{u v}^{w} \sigma_{w},
$$

the coefficients $c_{u v}^{w}$ are in $\mathbf{Z}_{\geq 0}[\alpha]$.

Theorem. (W. Graham) Let $X=G / B$ be the flag variety for a complex semisimple group G and with maximal torus $T \subset B$, and let $\left\{\sigma_{w} \in H_{T}^{*} X: w \in W\right\}$ be the basis of (B-invariant) Schubert classes. Let α_{i} be the simple roots which are negative on B. Then in the expansion

$$
\sigma_{u} \cdot \sigma_{v}=\sum_{w} c_{u v}^{w} \sigma_{w},
$$

the coefficients $c_{u v}^{w}$ are in $\mathbf{Z}_{\geq 0}[\alpha]$.
Inspired by D. Anderson's proof of the theorem of Graham, we show the following result

Theorem. (W. Graham) Let $X=G / B$ be the flag variety for a complex semisimple group G and with maximal torus $T \subset B$, and let $\left\{\sigma_{w} \in H_{T}^{*} X: w \in W\right\}$ be the basis of (B-invariant) Schubert classes. Let α_{i} be the simple roots which are negative on B. Then in the expansion

$$
\sigma_{u} \cdot \sigma_{v}=\sum_{w} c_{u v}^{w} \sigma_{w},
$$

the coefficients $c_{u v}^{w}$ are in $\mathbf{Z}_{\geq 0}[\alpha]$.
Inspired by D. Anderson's proof of the theorem of Graham, we show the following result

Theorem. The intersection of any nonnegative cycle on $L G(V, \omega)$ with any $\overline{Z_{I \lambda}^{+}}$is represented by a nonnegative cycle.
X is homogeneous. For any automorphism of X which is covered by a map of ξ and α_{i} 's, we obtain an automorphism of $L G(V, \omega) \rightarrow X$ transforming the fibers to fibers.
X is homogeneous. For any automorphism of X which is covered by a map of ξ and α_{i} 's, we obtain an automorphism of $L G(V, \omega) \rightarrow X$ transforming the fibers to fibers.

Assume that the line bundles:

$$
\alpha_{i}^{*} \otimes \alpha_{j} \text { for } i<j \quad \text { and } \quad \alpha_{i}^{*} \otimes \alpha_{j}^{*} \otimes \xi \quad \text { for all } i, j,
$$

are globally generated. Consider the group ΓB^{-}of global sections of the bundle $B^{-} \rightarrow X$.
X is homogeneous. For any automorphism of X which is covered by a map of ξ and α_{i} 's, we obtain an automorphism of $L G(V, \omega) \rightarrow X$ transforming the fibers to fibers.

Assume that the line bundles:

$$
\alpha_{i}^{*} \otimes \alpha_{j} \text { for } i<j \quad \text { and } \quad \alpha_{i}^{*} \otimes \alpha_{j}^{*} \otimes \xi \quad \text { for all } i, j,
$$

are globally generated. Consider the group ΓB^{-}of global sections of the bundle $B^{-} \rightarrow X$.

Lemma. ΓB^{-}is globally generated.
X is homogeneous. For any automorphism of X which is covered by a map of ξ and α_{i} 's, we obtain an automorphism of $L G(V, \omega) \rightarrow X$ transforming the fibers to fibers.

Assume that the line bundles:

$$
\alpha_{i}^{*} \otimes \alpha_{j} \text { for } i<j \quad \text { and } \quad \alpha_{i}^{*} \otimes \alpha_{j}^{*} \otimes \xi \quad \text { for all } i, j,
$$

are globally generated. Consider the group ΓB^{-}of global sections of the bundle $B^{-} \rightarrow X$.

Lemma. ΓB^{-}is globally generated.
Corollary. The group ΓB^{-}acts on $L G(V, \omega)$, preserving fibers, and in each fiber its orbits coincide with the strata of the stratification $\left\{\Omega_{J}^{-}\right\}$.

Assume that X is homogeneous with respect to a linear group G and the transformation group acts on the line bundles ξ and α_{i}.

Assume that X is homogeneous with respect to a linear group G and the transformation group acts on the line bundles ξ and α_{i}.
We define H to be the subgroup of $\operatorname{Aut}(L G(V, \omega))$ generated by ΓB^{-}and G (it is the semidirect product of these groups). The variety H is irreducible.

Assume that X is homogeneous with respect to a linear group G and the transformation group acts on the line bundles ξ and α_{i}.
We define H to be the subgroup of $\operatorname{Aut}(L G(V, \omega))$ generated by ΓB^{-}and G (it is the semidirect product of these groups). The variety H is irreducible.

Lemma. The group H acts transitively on each stratum $\Omega_{J}^{-}: G$ transports any fiber to any other fiber, and ΓB^{-} acts transitively inside the fibers.

Assume that X is homogeneous with respect to a linear group G and the transformation group acts on the line bundles ξ and α_{i}.
We define H to be the subgroup of $\operatorname{Aut}(L G(V, \omega))$ generated by ΓB^{-}and G (it is the semidirect product of these groups). The variety H is irreducible.

Lemma. The group H acts transitively on each stratum $\Omega_{J}^{-}: G$ transports any fiber to any other fiber, and ΓB^{-} acts transitively inside the fibers.

Proof of the theorem Let $Y \subset L G(V, \omega)$ be a subvariety.

Assume that X is homogeneous with respect to a linear group G and the transformation group acts on the line bundles ξ and α_{i}.
We define H to be the subgroup of $\operatorname{Aut}(L G(V, \omega))$ generated by ΓB^{-}and G (it is the semidirect product of these groups). The variety H is irreducible.

Lemma. The group H acts transitively on each stratum $\Omega_{J}^{-}: G$ transports any fiber to any other fiber, and ΓB^{-} acts transitively inside the fibers.

Proof of the theorem Let $Y \subset L G(V, \omega)$ be a subvariety. We can use the Bertini-Kleiman transversality theorem for H acting on Ω_{J}^{-}. There exists an open, dense subset $U_{J I \lambda} \subset H$ with the following property: if $h \in U_{J I \lambda}$, then $h \cdot\left(Y \cap \Omega_{J}^{-}\right)$ meets transversally $\overline{Z_{I \lambda}^{+}} \cap \Omega_{J}^{-}$.

Set

$$
U_{J}:=\bigcap_{I, \lambda} U_{J I \lambda}
$$

Set

$$
U_{J}:=\bigcap_{I, \lambda} U_{J I \lambda}
$$

We get an open, dense subset $U_{J} \subset H$ s.t. if $h \in U_{J}$, then $h \cdot\left(Y \cap \Omega_{J}^{-}\right)$meets transversally any $\overline{Z_{I \lambda}^{+}} \cap \Omega_{J}^{-}$(transversality in Ω_{J}^{-}).

Set

$$
U_{J}:=\bigcap_{I, \lambda} U_{J I \lambda}
$$

We get an open, dense subset $U_{J} \subset H$ s.t. if $h \in U_{J}$, then $h \cdot\left(Y \cap \Omega_{J}^{-}\right)$meets transversally any $\overline{Z_{I \lambda}^{+}} \cap \Omega_{J}^{-}$(transversality in $\left.\Omega_{J}^{-}\right)$. Since Ω_{J}^{-}is transverse to all strata $Z_{I \lambda}^{+}$of $L G(V, \omega)$, this transverslity holds also in the whole ambient space.

Set

$$
U_{J}:=\bigcap_{I, \lambda} U_{J I \lambda}
$$

We get an open, dense subset $U_{J} \subset H$ s.t. if $h \in U_{J}$, then $h \cdot\left(Y \cap \Omega_{J}^{-}\right)$meets transversally any $\overline{Z_{I \lambda}^{+}} \cap \Omega_{J}^{-}$(transversality in Ω_{J}^{-}). Since Ω_{J}^{-}is transverse to all strata $Z_{I \lambda}^{+}$of $L G(V, \omega)$, this transverslity holds also in the whole ambient space. Set

$$
U:=\bigcap_{\text {strict }} U_{J \subset \rho} .
$$

Set

$$
U_{J}:=\bigcap_{I, \lambda} U_{J I \lambda}
$$

We get an open, dense subset $U_{J} \subset H$ s.t. if $h \in U_{J}$, then $h \cdot\left(Y \cap \Omega_{J}^{-}\right)$meets transversally any $\overline{Z_{I \lambda}^{+}} \cap \Omega_{J}^{-}$(transversality in Ω_{J}^{-}). Since Ω_{J}^{-}is transverse to all strata $Z_{I \lambda}^{+}$of $L G(V, \omega)$, this transverslity holds also in the whole ambient space.
Set

$$
U:=\bigcap_{\text {strict }} U_{J \subset \rho} .
$$

Pick $h \in U$. Then $Y^{\prime}=h \cdot Y$ meets transversally any $\overline{Z_{I \lambda}^{+}}$.

Set

$$
U_{J}:=\bigcap_{I, \lambda} U_{J I \lambda}
$$

We get an open, dense subset $U_{J} \subset H$ s.t. if $h \in U_{J}$, then $h \cdot\left(Y \cap \Omega_{J}^{-}\right)$meets transversally any $\overline{Z_{I \lambda}^{+}} \cap \Omega_{J}^{-}$(transversality in Ω_{J}^{-}). Since Ω_{J}^{-}is transverse to all strata $Z_{I \lambda}^{+}$of $L G(V, \omega)$, this transverslity holds also in the whole ambient space.
Set

$$
U:=\bigcap_{\text {strict }} U_{J \subset \rho} .
$$

Pick $h \in U$. Then $Y^{\prime}=h \cdot Y$ meets transversally any $\overline{Z_{I \lambda}^{+}}$.
Thus $Y^{\prime} \cdot\left[\overline{Z_{I \lambda}^{+}}\right]$is represented by a nonnegative cycle.

Set

$$
U_{J}:=\bigcap_{I, \lambda} U_{J I \lambda} .
$$

We get an open, dense subset $U_{J} \subset H$ s.t. if $h \in U_{J}$, then $h \cdot\left(Y \cap \Omega_{J}^{-}\right)$meets transversally any $\overline{Z_{I \lambda}^{+}} \cap \Omega_{J}^{-}$(transversality in $\left.\Omega_{J}^{-}\right)$. Since Ω_{J}^{-}is transverse to all strata $Z_{I \lambda}^{+}$of $L G(V, \omega)$, this transverslity holds also in the whole ambient space.
Set

$$
U:=\bigcap_{\text {strict }} U_{J \subset \rho} .
$$

Pick $h \in U$. Then $Y^{\prime}=h \cdot Y$ meets transversally any $\overline{Z_{I \lambda}^{+}}$.
Thus $Y^{\prime} \cdot\left[\overline{Z_{I \lambda}^{+}}\right]$is represented by a nonnegative cycle.

