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Standard positivity results
Let Xw, w ∈ Sn, be Schubert classes on the variety of
complete flags in Cn.
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Standard positivity results
Let Xw, w ∈ Sn, be Schubert classes on the variety of
complete flags in Cn.
If Xw ·Xv =

∑
αu

wvXu, then αu
wv ≥ 0.

Let V be a symplectic space of dimension 2n and let LG(V )
be the Lagrangian Grassmannian. Let i : LG(V ) ↪→ Gn(V )
be the inclusion. Let σλ denote the Schubert classes on
Gn(V ) and σI those on LG(V ).
If i∗(σλ) =

∑
αIσI , then αI ≥ 0.

If Z is a subscheme in G/P and [Z] =
∑

αwXw, then
αw ≥ 0.
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Standard tools to show positivity
If a connected algebraic group G acts on a variety X, the
corresponding action on cohomology is trivial, so [g · V ] = [V ]
for a subvariety V and an element g in G. If G acts
transitively on X, one can use it to make g · V meet a given
variety W transversally.
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Duality: Consider the cohomology ring H∗(G/P,Z) with
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If a connected algebraic group G acts on a variety X, the
corresponding action on cohomology is trivial, so [g · V ] = [V ]
for a subvariety V and an element g in G. If G acts
transitively on X, one can use it to make g · V meet a given
variety W transversally.

If dimV + dim W = dim X, then (g · V ) ∩W=finite number
of points.

Let f : X → Y be a morphism, X-pure-dim’l., Y-nonsingular;
let V ⊂ Y CM of pure dimension d. Let W = f−1(V ). Then
codim(W,X) ≤ d. If X is CM and codim(W,X) = d, then
W is CM and f∗[V ] = [W ].

Duality: Consider the cohomology ring H∗(G/P,Z) with
Schubert classes Xw. For any w there exists only one w′ such
that Xw ·Xw′ 6= 0 and dim Xw + dimXw′ = dimG/P .
Moreover, Xw ·Xw′ = 1.
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Vector bundles and positivity
Let p : E → X be a vector bundle. A section of E is a
morphism s : X → E such that p ◦ s = idX .
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Vector bundles and positivity
Let p : E → X be a vector bundle. A section of E is a
morphism s : X → E such that p ◦ s = idX .

The bundle E is generated by sections if the map
X × Γ(X,E) → E s.t. (x, s) 7→ s(x) is surjective.

The bundle E is ample if for any sheaf F there exists k0 s.t.

Symk(E)⊗F for any k ≥ k0 is generated by its sections.

Let c1, c2, . . . be variables with deg(ci) = i.
Fix n, e ∈ N. Let P (c1, . . . , ce) be a homogeneous polynomial
of degree n. We say that P is positive for ample vector
bundles, if for every n-dimensional projective variety X and
any ample vector bundle of rank e on X,
deg(P (c1(E), . . . , ce(E)) > 0.

Griffiths, Kleiman, Bloch-Gieseker investigated positive
polynomials.
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Theorem. (Fulton-Lazarsfeld) A polynomial

P = α1sλ1
+ . . . + αksλk

is positive iff αi ≥ 0 for any i and
∑

αi > 0.
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Theorem. (Fulton-Lazarsfeld) A polynomial

P = α1sλ1
+ . . . + αksλk

is positive iff αi ≥ 0 for any i and
∑

αi > 0.

For globally generated bundles, a very close result was
obtained by Usui-Tango.

Proof of Fulton-Lazarsfeld uses a globalization of the
Giambelli formula (Kempf-Laksov, Lascoux) and Hard
Lefschetz Theorem

It works also in characteristic p and uses:
- the extension by Deligne to arbitrary characteristic of
IHk(X) of Goresky-MacPherson,
- Hard-Lefschetz Theorem for these groups, proved by
Gabber.
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Thom polynomial
Consider the space of jets J = J k(Cm

0 ,Cn
0 ).
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Consider the space of jets J = J k(Cm

0 ,Cn
0 ).

Let Autn be the group of automorphisms of (Cn, 0). We
have a natural right-left action of Autm×Autn on J .
By a singularity class we shall mean a closed invariant
algebraic subset of J .
Given two manifolds Mm and Nn, a singularity class Σ gives
rise to Σ(M,N) ⊂ J (M,N).

Given Σ, there exists a universal polynomial T Σ over Z in
m + n variables which depends only on Σ, m and n s.t. for
any manifolds Mm, Nn and general map f : M → N the

class of f−1
k (Σ(M,N)) is equal to

T Σ(c1(M), . . . , cm(M), f∗c1(N), . . . , f∗cn(N)).

where fk : M → J k(M,N) is the k-jet extension of f .
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Positivity in Schubert calculus – p. 7/31



If Σ is “stable” then T Σ depends on ci(TM − f∗TN).
In the Chern class monomial basis, a Thom polynomial can
have negative coefficients:

Positivity in Schubert calculus – p. 7/31



If Σ is “stable” then T Σ depends on ci(TM − f∗TN).
In the Chern class monomial basis, a Thom polynomial can
have negative coefficients: m = n, I2,2: c2

2 − c1c3

Positivity in Schubert calculus – p. 7/31



If Σ is “stable” then T Σ depends on ci(TM − f∗TN).
In the Chern class monomial basis, a Thom polynomial can
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2 − c1c3

Theorem. (PP+AW, 2006) Let Σ be a nontrivial stable
singularity class. Then for any partition λ the coefficient
αλ in

T Σ =
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is nonnegative and
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αλ > 0.
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– conjectured for Thom-Boardman singularities by Feher and

Komuves (2004) who computed T Σi,j [−i+1].
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In the Chern class monomial basis, a Thom polynomial can
have negative coefficients: m = n, I2,2: c2

2 − c1c3

Theorem. (PP+AW, 2006) Let Σ be a nontrivial stable
singularity class. Then for any partition λ the coefficient
αλ in

T Σ =
∑

αλsλ(T ∗M − f∗T ∗N) ,

is nonnegative and
∑

αλ > 0.

– conjectured for Thom-Boardman singularities by Feher and

Komuves (2004) who computed T Σi,j [−i+1].
For any singularity class Σ, the coefficients in

T Σ =
∑

αλ,µsλ(T ∗M)sµ(f∗TN)

are nonnegative. Positivity in Schubert calculus – p. 7/31



Outline of proof
We have Σ ⊂ J . Using classifying spaces of singularities and
arguments from algebraic topology,

Positivity in Schubert calculus – p. 8/31



Outline of proof
We have Σ ⊂ J . Using classifying spaces of singularities and
arguments from algebraic topology, we attach to a pair of
vector bundles E, F over any (common) base variety X:

Positivity in Schubert calculus – p. 8/31



Outline of proof
We have Σ ⊂ J . Using classifying spaces of singularities and
arguments from algebraic topology, we attach to a pair of
vector bundles E, F over any (common) base variety X:

Σ(E,F ) ↪→ J (E,F ) :=
(
⊕k

i=1Symi(E∗)
)
⊗ F .

Positivity in Schubert calculus – p. 8/31



Outline of proof
We have Σ ⊂ J . Using classifying spaces of singularities and
arguments from algebraic topology, we attach to a pair of
vector bundles E, F over any (common) base variety X:

Σ(E,F ) ↪→ J (E,F ) :=
(
⊕k

i=1Symi(E∗)
)
⊗ F .

s.t. [Σ(E,F )] =
∑

αλsλ(E∗ − F ∗) ∈ H∗(X,Z); with the
same αλ.

Positivity in Schubert calculus – p. 8/31



Outline of proof
We have Σ ⊂ J . Using classifying spaces of singularities and
arguments from algebraic topology, we attach to a pair of
vector bundles E, F over any (common) base variety X:

Σ(E,F ) ↪→ J (E,F ) :=
(
⊕k

i=1Symi(E∗)
)
⊗ F .

s.t. [Σ(E,F )] =
∑

αλsλ(E∗ − F ∗) ∈ H∗(X,Z); with the
same αλ.

Let C ⊂ E be a cone in a vector bundle on X. We define
z(C,E) = s∗E([C]), where sE is the zero section of E.
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⊗ F .
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∑
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same αλ.

Let C ⊂ E be a cone in a vector bundle on X. We define
z(C,E) = s∗E([C]), where sE is the zero section of E.

Lemma. Suppose E is ample and dimC = rankE. Then∫
X

z(C,E) > 0.

We specialize. Let c = codimC. We take a projective variety
X of dimension c. We then choose E to be trivial bundle and
F an ample bundle of the corresponding ranks.
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arguments from algebraic topology, we attach to a pair of
vector bundles E, F over any (common) base variety X:

Σ(E,F ) ↪→ J (E,F ) :=
(
⊕k

i=1Symi(E∗)
)
⊗ F .

s.t. [Σ(E,F )] =
∑

αλsλ(E∗ − F ∗) ∈ H∗(X,Z); with the
same αλ.

Let C ⊂ E be a cone in a vector bundle on X. We define
z(C,E) = s∗E([C]), where sE is the zero section of E.

Lemma. Suppose E is ample and dimC = rankE. Then∫
X

z(C,E) > 0.

We specialize. Let c = codimC. We take a projective variety
X of dimension c. We then choose E to be trivial bundle and
F an ample bundle of the corresponding ranks.
Σ(E,F ) is a cone in J (E,F ), and we obtain the class
z(Σ(E,F ),J (E,F )).
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The class z(Σ(E,F ),J (E,F )) ∈ H0(X,Z) is dual to
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The class z(Σ(E,F ),J (E,F )) ∈ H0(X,Z) is dual to
∑

λ αλsλ(E∗ − F ∗) =
∑
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The class z(Σ(E,F ),J (E,F )) ∈ H0(X,Z) is dual to
∑

λ αλsλ(E∗ − F ∗) =
∑

λ αλsλ(−F ∗) =
∑

λ αλsλ∼(F ).

Consider the polynomial: P =
∑

λ αλsλ∼.

Since a direct sum of ample vector bundles is ample,
J (E,F ) = FN is ample.

We have:
∫
X

P (F ) = degX(z(Σ(E,F ), FN )) > 0 ,

that is, P is positive.

We conclude, by Fulton-Lazarsfeld, that all the coefficients αλ

are nonnegative with at least one strictly positive, so T Σ 6= 0.
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗

We obtain the space of k-jets of Lagrangian submanifolds,
denoted J k(V ).
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Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.
Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W ∗) > 0}.

This cycle is the locus of singularities of L → W . Its
cohomology class is integral, and mod 2 equals w1(T

∗L).

We fix an integer k >> 0 and identify two germs of
Lagrangian submanifolds if the degree of their tangency at 0
is greater than k.
We obtain the space of k-jets of Lagrangian submanifolds,
denoted J k(V ). Every germ of a Lagrangian submanifold of
V is the image of W via a certain germ symplectomorphism.
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J k(V ) = Aut(V )/P ,

where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).
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J k(V ) = Aut(V )/P ,

where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).

Of course, LG(V ) is contained in J k(V ).

One has also π : J k(V ) → LG(V ) s.t. L 7→ T0L (which is
not a vector bundle for k ≥ 3).

Let H be the subgroup of Aut(V ) consisting of holomorphic
symplectomorphisms preserving the fibration V → W . Two
Lagrangian jets are Lagrangian equivalent if they belong to
the same orbit of H.

A Lagrange singularity class is any closed pure dimensional
algebraic subset of J k(V ) which is invariant w.r.t. the action
of H.
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Q̃-polynomials
Given a vector bundle E, we set Q̃i(E) = ci(E) and for i ≥ j,

Q̃i,j(E) = Q̃i(E)Q̃j(E) + 2

j∑

p=1

(−1)pQ̃i+p(E)Q̃j−p(E) .
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Suppose a general flag V• : V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ V of
isotropic subspaces with dim Vi = i, is given. Given a strict
partition s.t. I = (n ≥ i1 > · · · > ih > 0), we define

ΩI(V•) = {L ∈ LG(V ) : dim
(
L∩Vn+1−ip
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≥ p, p = 1, . . . , h}.
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(−1)pQ̃i+p(E)Q̃j−p(E) .

Given a partition I = (i1 ≥ · · · ≥ ih ≥ 0), where we can

assume h to be even, we set Q̃I(E) = Pfaffian(Q̃ip,iq(E)) .

Suppose a general flag V• : V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ V of
isotropic subspaces with dim Vi = i, is given. Given a strict
partition s.t. I = (n ≥ i1 > · · · > ih > 0), we define

ΩI(V•) = {L ∈ LG(V ) : dim
(
L∩Vn+1−ip

)
≥ p, p = 1, . . . , h}.

[ΩI(V•)] = ΩI . We have ΩI = Q̃I(R
∗), where R is the

tautological subbundle on LG(V ) (PP, 1986).
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Lagrangian Thom polynomial
Proceeding the same way with formal variables c1, c2, ..., we

define the polynomial Q̃I .

Positivity in Schubert calculus – p. 13/31



Lagrangian Thom polynomial
Proceeding the same way with formal variables c1, c2, ..., we

define the polynomial Q̃I .
ρ := (n, n− 1, . . . , 1).

Positivity in Schubert calculus – p. 13/31



Lagrangian Thom polynomial
Proceeding the same way with formal variables c1, c2, ..., we

define the polynomial Q̃I .
ρ := (n, n− 1, . . . , 1).

A Lagrange singularity class Σ ⊂ J k(V ) defines the
cohomology class

[Σ] ∈ H∗(J k(V ),Z) ∼= H∗(LG(V ),Z) .

Positivity in Schubert calculus – p. 13/31



Lagrangian Thom polynomial
Proceeding the same way with formal variables c1, c2, ..., we

define the polynomial Q̃I .
ρ := (n, n− 1, . . . , 1).

A Lagrange singularity class Σ ⊂ J k(V ) defines the
cohomology class

[Σ] ∈ H∗(J k(V ),Z) ∼= H∗(LG(V ),Z) .

Suppose that [Σ] =
∑

I⊂ρ αI Q̃I(R
∗).

Positivity in Schubert calculus – p. 13/31



Lagrangian Thom polynomial
Proceeding the same way with formal variables c1, c2, ..., we

define the polynomial Q̃I .
ρ := (n, n− 1, . . . , 1).

A Lagrange singularity class Σ ⊂ J k(V ) defines the
cohomology class

[Σ] ∈ H∗(J k(V ),Z) ∼= H∗(LG(V ),Z) .

Suppose that [Σ] =
∑

I⊂ρ αI Q̃I(R
∗). Then

T Σ :=
∑

I αI Q̃I is called the Thom polynomial associated
with the Lagrange singularity class Σ.

Positivity in Schubert calculus – p. 13/31
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Proceeding the same way with formal variables c1, c2, ..., we

define the polynomial Q̃I .
ρ := (n, n− 1, . . . , 1).

A Lagrange singularity class Σ ⊂ J k(V ) defines the
cohomology class

[Σ] ∈ H∗(J k(V ),Z) ∼= H∗(LG(V ),Z) .

Suppose that [Σ] =
∑

I⊂ρ αI Q̃I(R
∗). Then

T Σ :=
∑

I αI Q̃I is called the Thom polynomial associated
with the Lagrange singularity class Σ.

Theorem. (MM+PP+AW, 2007) For any Lagrange

singularity class Σ, the Thom polynomial T Σ is a

nonnegative combination of Q̃-functions.
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Let i : G = LG(V ) ↪→ J be the inclusion. We look at the

coefficients αI of the expression i∗[Σ] =
∑

αI Q̃I(R
∗) .
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Let i : G = LG(V ) ↪→ J be the inclusion. We look at the

coefficients αI of the expression i∗[Σ] =
∑

αI Q̃I(R
∗) .

Let ΩI ′ be the dual Schubert class to ΩI . We have

αI = i∗[Σ] · ΩI ′ .

Let
C = CG∩ΣΣ ⊂ NGJ

be the normal cone of G ∩ Σ in Σ. Denote by j : G ↪→ NGJ
the zero-section inclusion.
By deformation to the normal cone, we have in A∗G the
equality

i∗[Σ] = j∗[C] .
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It follows that
αI = [C] · ΩI ′.

(intersection in NGJ ).
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It follows that
αI = [C] · ΩI ′.

(intersection in NGJ ).

Proposition. Let π : E → X be a globally generated
bundle on a proper homogeneous variety X. Let C be a
cone in E, and let Z be a nonnegative algebraic cycle in X
of the complementary dimension. Then the intersection
[C] · [Z] is nonnegative.
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It follows that
αI = [C] · ΩI ′.

(intersection in NGJ ).

Proposition. Let π : E → X be a globally generated
bundle on a proper homogeneous variety X. Let C be a
cone in E, and let Z be a nonnegative algebraic cycle in X
of the complementary dimension. Then the intersection
[C] · [Z] is nonnegative.

Take X = G

Take E = NGJ ∼=
⊕k+1

i=3 Symi(R∗) is g.g.
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It follows that
αI = [C] · ΩI ′.

(intersection in NGJ ).

Proposition. Let π : E → X be a globally generated
bundle on a proper homogeneous variety X. Let C be a
cone in E, and let Z be a nonnegative algebraic cycle in X
of the complementary dimension. Then the intersection
[C] · [Z] is nonnegative.

Take X = G

Take E = NGJ ∼=
⊕k+1

i=3 Symi(R∗) is g.g.

Take Z = ΩI ′.
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Some Legendrian geometry
Fix n ∈ N. Let W be a vector space of dimension n, and let
ξ be a vector space of dimension one.
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Fix n ∈ N. Let W be a vector space of dimension n, and let
ξ be a vector space of dimension one.

V := W ⊕ (W ∗ ⊗ ξ).

– standard symplectic space equipped with the twisted
symplectic form ω ∈ Λ2V ∗ ⊗ ξ. Have Lagrangian
submanifolds (germs through the origin).
Standard contact space equipped with the contact form α,

V ⊕ ξ = W ⊕ (W ∗ ⊗ ξ)⊕ ξ .

Legendrian submanifolds of V ⊕ ξ are maximal integral
submanifolds of α, i.e. the manifolds of dimension n with
tangent spaces contained in Ker(α).
Any Legendrian submanifold in V ⊕ ξ is determined by its
Lagrangian projection to V and any Lagrangian submanifold
in V lifts to V ⊕ ξ. Positivity in Schubert calculus – p. 16/31



We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.
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We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions. Two Lagrangian
submanifolds, if they are in generic position, intersect
transversally. The singular relative positions can be divided
into Legendrian singularity classes.

The group of symplectomorphisms of V acts on the pairs of
Lagrangian submanifolds.

Lemma. Any pair of Lagrangian submanifolds is
symplectic equivalent to a pair (L1, L2) such that L1 is a
linear Lagrangian subspace and the tangent space T0L2 is
equal to W .

Get 2 types of submanifolds: linear subspaces,
the submanifolds which have the tangent space at the
origin equal to W ; they are the graphs of the differentials of
the functions f : W → ξ satisfying df(0) = 0 and d2f(0) = 0

Positivity in Schubert calculus – p. 17/31



Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .
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and T0L2 = W .

Let π : J k(W, ξ) → LG(V, ω) be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:⊕k+1

i=3 Symi(W ∗)⊗ ξ.

We are interested in a larger group than the group of
symplectomorphisms, the group of contact automorphisms of
V ⊕ ξ.
By a Legendre singularity class we mean a closed algebraic
subset Σ ⊂ J k(Cn,C) invariant with respect to holomorphic

contactomorphisms of C2n+1.
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Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .

Let π : J k(W, ξ) → LG(V, ω) be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:⊕k+1

i=3 Symi(W ∗)⊗ ξ.

We are interested in a larger group than the group of
symplectomorphisms, the group of contact automorphisms of
V ⊕ ξ.
By a Legendre singularity class we mean a closed algebraic
subset Σ ⊂ J k(Cn,C) invariant with respect to holomorphic

contactomorphisms of C2n+1.
Additionally, we assume that Σ is stable with respect to
enlarging the dimension of W .
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
Let τ : LG(V, ω) → X denote the Lagrange Grassmann
bundle parametrizing Lagrangian linear submanifolds in Vx,
x ∈ X.
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
Let τ : LG(V, ω) → X denote the Lagrange Grassmann
bundle parametrizing Lagrangian linear submanifolds in Vx,
x ∈ X. We have a relative version of the map:
π : J k(W, ξ) → LG(V, ω) .
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
Let τ : LG(V, ω) → X denote the Lagrange Grassmann
bundle parametrizing Lagrangian linear submanifolds in Vx,
x ∈ X. We have a relative version of the map:
π : J k(W, ξ) → LG(V, ω) .

The space J k(W, ξ) fibers over X. It is equal to the
pull-back:

J k(W, ξ) = τ∗

(
k+1⊕

i=3

Symi(W ∗)⊗ ξ

)
.
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Since any changes of coordinates of W and ξ induce
holomorphic contactomorphisms of V ⊕ ξ, any Legendre
singularity class Σ defines Σ(W, ξ) ⊂ J k(W, ξ).
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Since any changes of coordinates of W and ξ induce
holomorphic contactomorphisms of V ⊕ ξ, any Legendre
singularity class Σ defines Σ(W, ξ) ⊂ J k(W, ξ).

Let us fix an approximation of BU(1) =
⋃

n∈N
Pn, that is, we

set X = Pn, ξ = O(1). Let W = 1n be the trivial bundle of
rank n.
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Since any changes of coordinates of W and ξ induce
holomorphic contactomorphisms of V ⊕ ξ, any Legendre
singularity class Σ defines Σ(W, ξ) ⊂ J k(W, ξ).

Let us fix an approximation of BU(1) =
⋃

n∈N
Pn, that is, we

set X = Pn, ξ = O(1). Let W = 1n be the trivial bundle of
rank n.

Then H∗(LG(V, ω),Z) ∼= H∗(J k(W, ξ),Z) is isomorphic to
the ring of Legendrian characteristic classes for degrees
smaller than or equal to n.
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Since any changes of coordinates of W and ξ induce
holomorphic contactomorphisms of V ⊕ ξ, any Legendre
singularity class Σ defines Σ(W, ξ) ⊂ J k(W, ξ).

Let us fix an approximation of BU(1) =
⋃

n∈N
Pn, that is, we

set X = Pn, ξ = O(1). Let W = 1n be the trivial bundle of
rank n.

Then H∗(LG(V, ω),Z) ∼= H∗(J k(W, ξ),Z) is isomorphic to
the ring of Legendrian characteristic classes for degrees
smaller than or equal to n.

The element [Σ(W, ξ)] of H∗(J k(W, ξ),Z), is called the

Legendrian Thom polynomial of Σ, and denoted by T Σ.
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Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=
n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .
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Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=
n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .

We have a symplectic form ω defined on V with values in ξ.
LG(V, ω) is a homogeneous space for the symplectic group
Sp(V, ω) ⊂ End(V ).
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Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=
n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .

We have a symplectic form ω defined on V with values in ξ.
LG(V, ω) is a homogeneous space for the symplectic group
Sp(V, ω) ⊂ End(V ). Fix two“opposite” isotropic flags in V :

F+
h :=

h⊕

i=1

αi , F−
h :=

h⊕

i=1

α∗n−i+1⊗ξ , (h = 1, 2, . . . , n)
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Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=
n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .

We have a symplectic form ω defined on V with values in ξ.
LG(V, ω) is a homogeneous space for the symplectic group
Sp(V, ω) ⊂ End(V ). Fix two“opposite” isotropic flags in V :

F+
h :=

h⊕

i=1

αi , F−
h :=

h⊕

i=1

α∗n−i+1⊗ξ , (h = 1, 2, . . . , n)

Consider two Borel groups B± ⊂ Sp(V, ω), preserving the
flags F±

• . The orbits of B± in LG(V, ω) form two“opposite”
cell decompositions {ΩI(F

±
• , ξ)} of LG(V, ω), I ⊂ ρ strict.
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All that is functorial w.r.t. the automorphisms of the lines ξ
and αi’s, (they form a torus (C∗)n+1.
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All that is functorial w.r.t. the automorphisms of the lines ξ
and αi’s, (they form a torus (C∗)n+1. Thus the construction
of the cell decompositions can be repeated for bundles ξ and
{αi}

n
i=1 over any base X. We get a Lagrange Grassmann

bundle τ : LG(V, ω) → X endowed with two (relative)
stratifications

{ΩI(F
±
• , ξ) → X}I .
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All that is functorial w.r.t. the automorphisms of the lines ξ
and αi’s, (they form a torus (C∗)n+1. Thus the construction
of the cell decompositions can be repeated for bundles ξ and
{αi}

n
i=1 over any base X. We get a Lagrange Grassmann

bundle τ : LG(V, ω) → X endowed with two (relative)
stratifications

{ΩI(F
±
• , ξ) → X}I .

Assume that X = G/P is a compact manifold, homogeneous
with respect to an action of a linear group G. Then X admits
an algebraic cell decomposition {σλ}.
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All that is functorial w.r.t. the automorphisms of the lines ξ
and αi’s, (they form a torus (C∗)n+1. Thus the construction
of the cell decompositions can be repeated for bundles ξ and
{αi}

n
i=1 over any base X. We get a Lagrange Grassmann

bundle τ : LG(V, ω) → X endowed with two (relative)
stratifications

{ΩI(F
±
• , ξ) → X}I .

Assume that X = G/P is a compact manifold, homogeneous
with respect to an action of a linear group G. Then X admits
an algebraic cell decomposition {σλ}. The subsets

Z−
Iλ := τ−1(σλ) ∩ ΩI(F

−
• , ξ)

form an algebraic cell decomposition of LG(V, ω).
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All that is functorial w.r.t. the automorphisms of the lines ξ
and αi’s, (they form a torus (C∗)n+1. Thus the construction
of the cell decompositions can be repeated for bundles ξ and
{αi}

n
i=1 over any base X. We get a Lagrange Grassmann

bundle τ : LG(V, ω) → X endowed with two (relative)
stratifications

{ΩI(F
±
• , ξ) → X}I .

Assume that X = G/P is a compact manifold, homogeneous
with respect to an action of a linear group G. Then X admits
an algebraic cell decomposition {σλ}. The subsets

Z−
Iλ := τ−1(σλ) ∩ ΩI(F

−
• , ξ)

form an algebraic cell decomposition of LG(V, ω). Similarly,

Z+
Iλ := τ−1(σλ) ∩ ΩI(F

+
• , ξ) .
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Theorem. Fix I ⊂ ρ and λ. Suppose that the vector
bundle J is globally generated. Then, in J , the
intersection of Σ(W, ξ) with the closure of any π−1(Z−

Iλ) is
represented by a nonnegative cycle.
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Theorem. Fix I ⊂ ρ and λ. Suppose that the vector
bundle J is globally generated. Then, in J , the
intersection of Σ(W, ξ) with the closure of any π−1(Z−

Iλ) is
represented by a nonnegative cycle.

We shall apply the Theorem in the situation when all αi are
equal to the same line bundle α (i.e. W = α⊕n) and α−m ⊗ ξ
is globally generated for m ≥ 3.
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Theorem. Fix I ⊂ ρ and λ. Suppose that the vector
bundle J is globally generated. Then, in J , the
intersection of Σ(W, ξ) with the closure of any π−1(Z−

Iλ) is
represented by a nonnegative cycle.

We shall apply the Theorem in the situation when all αi are
equal to the same line bundle α (i.e. W = α⊕n) and α−m ⊗ ξ
is globally generated for m ≥ 3.
Consider the following three cases: the base is always
X = Pn and

ξ1 = O(−2), α1 = O(−1)

ξ2 = O(1), α2 = 1

ξ3 = O(−3), α3 = O(−1).

We obtain symplectic bundles Vi = α⊕n
i ⊕ (α∗i ⊗ ξi)

⊕n with
twisted symplectic forms ωi, i = 1, 2, 3.
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To overlap all these three cases we consider the product
X := Pn ×Pn
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To overlap all these three cases we consider the product
X := Pn ×Pn and set

W := p∗1O(−1)⊕n , ξ := p∗1O(−3)⊗ p∗2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections. Let vi

denote p∗i (c1(O(1))) for i = 1, 2.
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To overlap all these three cases we consider the product
X := Pn ×Pn and set

W := p∗1O(−1)⊕n , ξ := p∗1O(−3)⊗ p∗2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections. Let vi

denote p∗i (c1(O(1))) for i = 1, 2.

Restricting the bundles W and ξ to the diagonal, or to the
factors we obtain the three cases considered above.
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To overlap all these three cases we consider the product
X := Pn ×Pn and set

W := p∗1O(−1)⊕n , ξ := p∗1O(−3)⊗ p∗2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections. Let vi

denote p∗i (c1(O(1))) for i = 1, 2.

Restricting the bundles W and ξ to the diagonal, or to the
factors we obtain the three cases considered above.

The space LG(V, ω) has a cell decomposition Z−
I,a,b. The

dual basis of cohomology (in the sense of linear algebra) is
denoted by

eI,a,b = [Z−
I,a,b]

∗.
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To overlap all these three cases we consider the product
X := Pn ×Pn and set

W := p∗1O(−1)⊕n , ξ := p∗1O(−3)⊗ p∗2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections. Let vi

denote p∗i (c1(O(1))) for i = 1, 2.

Restricting the bundles W and ξ to the diagonal, or to the
factors we obtain the three cases considered above.

The space LG(V, ω) has a cell decomposition Z−
I,a,b. The

dual basis of cohomology (in the sense of linear algebra) is
denoted by

eI,a,b = [Z−
I,a,b]

∗.

We have eI,a,b = eI,0,0 va
1vb

2 and eI,0,0 = [ΩI(F
+
• , ξ)].
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Theorem. (MM+PP+AW 2010) Let Σ be a Legendre
singularity class. Then [Σ(W, ξ)] has nonnegative
coefficients in the basis {eI,a,b}.
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Theorem. (MM+PP+AW 2010) Let Σ be a Legendre
singularity class. Then [Σ(W, ξ)] has nonnegative
coefficients in the basis {eI,a,b}.

The bundle J here is gg (hence desired intersections in J are
nonnegative):

τ∗
(⊕k+1

j=3 Symj(W ∗)⊗ ξ
)

=

τ∗
(⊕k+1

j=3 Symj(1n)⊗ p∗1O(j−3)⊗ p∗2O(1)
)

.
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Theorem. (MM+PP+AW 2010) Let Σ be a Legendre
singularity class. Then [Σ(W, ξ)] has nonnegative
coefficients in the basis {eI,a,b}.

The bundle J here is gg (hence desired intersections in J are
nonnegative):

τ∗
(⊕k+1

j=3 Symj(W ∗)⊗ ξ
)

=

τ∗
(⊕k+1

j=3 Symj(1n)⊗ p∗1O(j−3)⊗ p∗2O(1)
)

.

Using this theorem, one can obtain a one-parameter family of
bases in the ring of Legendrian characteristic classes giving
rise to positive expansions of all Legendrian Thom
polynomials.

Positivity in Schubert calculus – p. 25/31



A8 :

18840 Q̃[61] + 20160 Q̃[7] + 3123 Q̃[421] + 5556 Q̃[43]+

15564 Q̃[52]+

t(71856 Q̃[6] + 3999 Q̃[321] + 55672 Q̃[51] + 34780 Q̃[42])+

t2(64524 Q̃[41] + 24616 Q̃[32] + 105496 Q̃[5])+

t3(36048 Q̃[31] + 81544 Q̃[4])+

t4(8876 Q̃[21] + 34936 Q̃[3])+

t57848 Q̃[2]+

t6720 Q̃[1]
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E8 :

93 Q̃[421] + 108 Q̃[43] + 204 Q̃[52] + 72 Q̃[61]+

t(99 Q̃[321] + 216 Q̃[51] + 414 Q̃[42])+

t2(246 Q̃[41] + 246 Q̃[32])+

t3126 Q̃[31]+

t424 Q̃[21]

Positivity in Schubert calculus – p. 27/31



Theorem. (W. Graham) Let X = G/B be the flag variety
for a complex semisimple group G and with maximal torus
T ⊂ B, and let {σw ∈ H∗

T X : w ∈ W} be the basis of
(B-invariant) Schubert classes. Let αi be the simple roots
which are negative on B. Then in the expansion

σu · σv =
∑

w

cw
uvσw ,

the coefficients cw
uv are in Z≥0[α].
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Theorem. (W. Graham) Let X = G/B be the flag variety
for a complex semisimple group G and with maximal torus
T ⊂ B, and let {σw ∈ H∗

T X : w ∈ W} be the basis of
(B-invariant) Schubert classes. Let αi be the simple roots
which are negative on B. Then in the expansion

σu · σv =
∑

w

cw
uvσw ,

the coefficients cw
uv are in Z≥0[α].

Inspired by D. Anderson’s proof of the theorem of Graham,
we show the following result
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Theorem. (W. Graham) Let X = G/B be the flag variety
for a complex semisimple group G and with maximal torus
T ⊂ B, and let {σw ∈ H∗

T X : w ∈ W} be the basis of
(B-invariant) Schubert classes. Let αi be the simple roots
which are negative on B. Then in the expansion

σu · σv =
∑

w

cw
uvσw ,

the coefficients cw
uv are in Z≥0[α].

Inspired by D. Anderson’s proof of the theorem of Graham,
we show the following result

Theorem. The intersection of any nonnegative cycle on

LG(V, ω) with any Z+
Iλ is represented by a nonnegative

cycle.
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X is homogeneous. For any automorphism of X which is
covered by a map of ξ and αi’s, we obtain an automorphism
of LG(V, ω) → X transforming the fibers to fibers.
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X is homogeneous. For any automorphism of X which is
covered by a map of ξ and αi’s, we obtain an automorphism
of LG(V, ω) → X transforming the fibers to fibers.

Assume that the line bundles:

α∗i ⊗ αj for i < j and α∗i ⊗ α∗j ⊗ ξ for all i, j ,

are globally generated. Consider the group ΓB− of global
sections of the bundle B− → X.
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X is homogeneous. For any automorphism of X which is
covered by a map of ξ and αi’s, we obtain an automorphism
of LG(V, ω) → X transforming the fibers to fibers.

Assume that the line bundles:

α∗i ⊗ αj for i < j and α∗i ⊗ α∗j ⊗ ξ for all i, j ,

are globally generated. Consider the group ΓB− of global
sections of the bundle B− → X.

Lemma. ΓB− is globally generated.
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X is homogeneous. For any automorphism of X which is
covered by a map of ξ and αi’s, we obtain an automorphism
of LG(V, ω) → X transforming the fibers to fibers.

Assume that the line bundles:

α∗i ⊗ αj for i < j and α∗i ⊗ α∗j ⊗ ξ for all i, j ,

are globally generated. Consider the group ΓB− of global
sections of the bundle B− → X.

Lemma. ΓB− is globally generated.

Corollary. The group ΓB− acts on LG(V, ω), preserving
fibers, and in each fiber its orbits coincide with the strata
of the stratification {Ω−J }.
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Assume that X is homogeneous with respect to a linear
group G and the transformation group acts on the line
bundles ξ and αi.
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Assume that X is homogeneous with respect to a linear
group G and the transformation group acts on the line
bundles ξ and αi.
We define H to be the subgroup of Aut(LG(V, ω)) generated
by ΓB− and G (it is the semidirect product of these groups).
The variety H is irreducible.
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Assume that X is homogeneous with respect to a linear
group G and the transformation group acts on the line
bundles ξ and αi.
We define H to be the subgroup of Aut(LG(V, ω)) generated
by ΓB− and G (it is the semidirect product of these groups).
The variety H is irreducible.

Lemma. The group H acts transitively on each stratum
Ω−J : G transports any fiber to any other fiber, and ΓB−

acts transitively inside the fibers.
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Assume that X is homogeneous with respect to a linear
group G and the transformation group acts on the line
bundles ξ and αi.
We define H to be the subgroup of Aut(LG(V, ω)) generated
by ΓB− and G (it is the semidirect product of these groups).
The variety H is irreducible.

Lemma. The group H acts transitively on each stratum
Ω−J : G transports any fiber to any other fiber, and ΓB−

acts transitively inside the fibers.

Proof of the theorem Let Y ⊂ LG(V, ω) be a subvariety.
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Assume that X is homogeneous with respect to a linear
group G and the transformation group acts on the line
bundles ξ and αi.
We define H to be the subgroup of Aut(LG(V, ω)) generated
by ΓB− and G (it is the semidirect product of these groups).
The variety H is irreducible.

Lemma. The group H acts transitively on each stratum
Ω−J : G transports any fiber to any other fiber, and ΓB−

acts transitively inside the fibers.

Proof of the theorem Let Y ⊂ LG(V, ω) be a subvariety.
We can use the Bertini-Kleiman transversality theorem for H

acting on Ω−J . There exists an open, dense subset UJIλ ⊂ H

with the following property: if h ∈ UJIλ, then h · (Y ∩ Ω−J )

meets transversally Z+
Iλ ∩ Ω−J .
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Set

UJ :=
⋂

I,λ

UJIλ.
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Set

UJ :=
⋂

I,λ

UJIλ.

We get an open, dense subset UJ ⊂ H s.t. if h ∈ UJ , then

h · (Y ∩ Ω−J ) meets transversally any Z+
Iλ ∩ Ω−J (transversality

in Ω−J ).
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Set

UJ :=
⋂

I,λ

UJIλ.

We get an open, dense subset UJ ⊂ H s.t. if h ∈ UJ , then

h · (Y ∩ Ω−J ) meets transversally any Z+
Iλ ∩ Ω−J (transversality

in Ω−J ). Since Ω−J is transverse to all strata Z+
Iλ of LG(V, ω),

this transverslity holds also in the whole ambient space.
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Set

UJ :=
⋂

I,λ

UJIλ.

We get an open, dense subset UJ ⊂ H s.t. if h ∈ UJ , then

h · (Y ∩ Ω−J ) meets transversally any Z+
Iλ ∩ Ω−J (transversality

in Ω−J ). Since Ω−J is transverse to all strata Z+
Iλ of LG(V, ω),

this transverslity holds also in the whole ambient space.
Set

U :=
⋂

strict J⊂ρ

UJ .
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Set

UJ :=
⋂

I,λ

UJIλ.

We get an open, dense subset UJ ⊂ H s.t. if h ∈ UJ , then

h · (Y ∩ Ω−J ) meets transversally any Z+
Iλ ∩ Ω−J (transversality

in Ω−J ). Since Ω−J is transverse to all strata Z+
Iλ of LG(V, ω),

this transverslity holds also in the whole ambient space.
Set

U :=
⋂

strict J⊂ρ

UJ .

Pick h ∈ U . Then Y ′ = h · Y meets transversally any Z+
Iλ.
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Set

UJ :=
⋂

I,λ

UJIλ.

We get an open, dense subset UJ ⊂ H s.t. if h ∈ UJ , then

h · (Y ∩ Ω−J ) meets transversally any Z+
Iλ ∩ Ω−J (transversality

in Ω−J ). Since Ω−J is transverse to all strata Z+
Iλ of LG(V, ω),

this transverslity holds also in the whole ambient space.
Set

U :=
⋂

strict J⊂ρ

UJ .

Pick h ∈ U . Then Y ′ = h · Y meets transversally any Z+
Iλ.

Thus Y ′ · [Z+
Iλ] is represented by a nonnegative cycle.
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Set

UJ :=
⋂

I,λ

UJIλ.

We get an open, dense subset UJ ⊂ H s.t. if h ∈ UJ , then

h · (Y ∩ Ω−J ) meets transversally any Z+
Iλ ∩ Ω−J (transversality

in Ω−J ). Since Ω−J is transverse to all strata Z+
Iλ of LG(V, ω),

this transverslity holds also in the whole ambient space.
Set

U :=
⋂

strict J⊂ρ

UJ .

Pick h ∈ U . Then Y ′ = h · Y meets transversally any Z+
Iλ.

Thus Y ′ · [Z+
Iλ] is represented by a nonnegative cycle.

THE END Positivity in Schubert calculus – p. 31/31
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