Изв. Акад. Наук СССР Сер. Матем. Том 45(1981), № 3

Math. USSR Izvestija Vol. 18(1982), No. 3

CLASSES OF DETERMINANTAL VARIETIES ASSOCIATED WITH SYMMETRIC AND SKEW-SYMMETRIC MATRICES

UDC 513.6

T. JÓZEFIAK, A. LASCOUX AND P. PRAGACZ

ABSTRACT. In this paper the authors compute the classes of subschemes of degenerations of a homomorphism of two fibrations in the Chow ring of the base.

Bibliography: 18 titles.

The starting point of enumerative problems connected with investigating singularities is the following situation: for vector bundles E and F over a scheme X and a morphism $\varphi: F \to E$ over X it is necessary to describe the set of singularities of φ ; for example, for a fixed natural number q one wants to get information about a subscheme Y of the scheme X, where K Coker K one additional conditions are imposed on K, for example if K (the dual bundle) and K is a symmetric or skew-symmetric morphism.

The class of Y in the Chow ring of the scheme X was calculated under various conditions on φ (in the case of general φ) in papers by Porteous [18], Kempf and Laksov [10], and Lascoux [14]. If X is a Grassmann variety over a field, E its tautological bundle, and F a trivial bundle, then Y is called a *special Schubert variety*. In this case the determinantal formula for its class in the Chow ring was calculated at the start of this century by the Italian mathematician Giambelli [2] long before the rise of cohomological theories that allow one to give it an appropriate interpretation.

In the case where X is a projective space, $E = \theta(n_1) + \theta(n_2) + \cdots$, and φ is a symmetric or skew-symmetric morphism, Giambelli [3] also got some formulas in terms of symmetric functions, which express the degree of the variety defined by all the minors of φ of a given order.

In this paper we shall prove Giambelli's formulas in complete generality, i.e. under a single assumption on the codimension of Y in X. Using the same technique we present one more (brief) proof of the formula for the class of Y in the case of general φ .

To present the main idea of our proof we consider the (relative) Grassmannian $G_q(E)$ which parametrizes the quotient-bundles of the bundle E of rank q; let π : $G_q(E) \to X$ be the corresponding canonical projection. In an arbitrary case (i.e. general, symmetric, and skew-symmetric) we construct a subscheme Z in $G_q(E)$ which under generic conditions is

¹⁹⁸⁰ Mathematics Subject Classification. Primary 14M99; Secondary 14N10.

birationally isomorphic to Y (via π). Therefore, $\pi_*[Z] = [Y]$ in the Chow ring, where π_* : $\mathcal{C}(G_q(E)) \to \mathcal{C}(X)$ is the Gysin homomorphism. Thus, to calculate the class [Y] we need to know the class [Z] in $\mathcal{C}(G_q(E))$ and the description of the Gysin homomorphism. We get this by using the rich theory of Schur functions—a classical part of mathematics that plays a fundamental role in the theory of representations of symmetric and general linear groups [12], and has recently been reopened and applied in geometry [14], [15].

The general case where Y has the maximal possible codimension in X is gotten from the generic case by using the fact that Y is then a Cohen-Macaulay scheme and using a trick similar to that described by Kempf and Laksov in [10]. All this allows us to express φ as the inverse image of some ψ already defined under generic conditions.

An analogous method, applied to modules instead of Chern classes, has recently led to the construction of all syzygies of determinantal ideals (see [16], [17] and [7]).

Throughout the article, X denotes a smooth quasiprojective scheme over a field.

§1. Segre classes and Schur functions

Let E be a vector bundle over X of rank n and

$$c(E) = 1 + c_1(E) + \cdots + c_n(E)$$

the total Chern class in the Chow ring $\mathcal{C}(X)$. By the splitting principle we can represent c(E) as the product of n factors

$$c(E) = (1+a)(1+b)\cdots,$$
 (1)

where a, b, \ldots are the first Chern classes of some one-dimensional bundles gotten from splitting E. Thus the $c_i(E)$ can be considered as the elementary symmetric functions of a, b, \ldots

If F is another vector bundle over X, then c(E+F)=c(E)c(F). If c(E) is invertible in $\mathcal{C}(X)$, we can put $c(-E)=c(E)^{-1}$, and because of the additivity of the total Chern class on short exact sequences we can consider the c_i as mappings (not homomorphisms) of the Grothendieck ring K(X) of the scheme X into $\mathcal{C}(X)$.

It turns out that the so-called Segre classes $s_i(E)$ are more convenient than the Chern classes. They are defined by the formulas

$$s_i(E) = (-1)^i c_i(-E) = c_i(-E)^*, \quad i \ge 0,$$

 $s_i(E) = 0, \quad i < 0,$

where E^* denotes the bundle dual to E; then $s_0(E) = 1$, $s_1(E) = c_1(E)$, and $s_i(E + F) = \sum_{h+k=i} s_h(E) s_k(F)$.

By (1) the complete Segre class

$$s(E) = 1 + s_1(E) + s_2(E) + \cdots$$

can be represented as

$$s(E) = \frac{1}{(1-a)(1-b)\cdots}$$
 (2)

Thus any $s_i(E)$ is a symmetric polynomial in a, b, ..., the so-called total homogeneous symmetric function of degree i (the sum of all monomials of total degree i).

Let $I = (i_1, ..., i_p) \in \mathbb{Z}^p$ be any sequence of integers. A basic role in all our calculations will be played by determinants of the form

$$s(I; E) = \begin{vmatrix} s_{i_1}(E) & s_{i_2}(E) \cdots s_{i_p}(E) \\ s_{i_1-1}(E) & s_{i_2-1}(E) \cdots s_{i_p-1}(E) \\ \vdots & \vdots & \vdots \end{vmatrix}.$$

In particular, $s(i; E) = s_i(E)$ and $s(1,...,i; E) = c_i(E)$; we shall use both notations. According to (2), s(I; E) is a symmetric function of a, b,..., the so-called Schur function of index $i_1, i_2 - 1, i_3 - 2,...$ (a Schur function is usually indexed by the diagonal elements of the matrix defining it; however, in the Chow ring it is more convenient to index it by the first row; for example, see Proposition 1 below).

We recall the representation of the Schur functions according to Jacobi:

$$s(I; E) = \Delta_I(a, b, ...) / \Delta_{0,1,2,...}(a, b, ...),$$

where

$$\Delta_I(a,b,\ldots) = \begin{vmatrix} a^{i_1} & a^{i_2} \cdots a^{i_p} \\ b^{i_1} & b^{i_2} \cdots b^{i_p} \end{vmatrix}.$$

In particular,

$$\Delta_{0,1,2,\ldots}(a,b,\ldots) = \prod_{a\neq b} (a-b)$$

is the well-known Vandermonde determinant.

The functions s(I; -), just like c_i and s_i , define a mapping of K(X) into $\mathcal{C}(X)$.

§2. The Gysin homomorphism

Let E be a vector bundle of rank n (abbreviated as $\operatorname{rk} E = n$) over a scheme $X, q \leq n$, and $\pi: G_q(E) \to X$ the canonical projection corresponding to the relative Grassmannian parametrizing the quotient bundles of rank q of the bundle E. By definition, on $G_q(E)$ there exists a tautological short exact sequence $0 \to R \to \pi^*E \to Q \to 0$ of vector bundles, where $\operatorname{rk} Q = q$ and $\operatorname{rk} R = r = n - q$. For q = 1, $G_1(E)$ is the projective space over X, and Q is usually denoted by $\mathfrak{S}(1)$.

The Chow ring $\mathscr{C}(G_q(E))$ is an extension of $\mathscr{C}(X)$ and contains elements of the form s(H; R) and s(K; Q) (they play an important role in describing the structure of $\mathscr{C}(G_q(E))$ as an $\mathscr{C}(X)$ -module).

PROPOSITION 1. If $H \in \mathbb{N}'$ and $K \in \mathbb{N}^q$, then

$$\pi_*(s(H;R)s(K;Q)) = s(HK;E),$$

where $HK = (h_1, h_2, ..., k_1, k_2, ...) \in \mathbb{N}^{r+q}$.

Let $G_{q,1}(E)$ be the variety of flags which parametrizes the flags of quotient bundles $E_1 \to E_2$ of the bundle E of ranks q and 1 respectively. In our proof of the proposition,

here and in the sequel, a basic role will be played by the following commutative diagram (see [14]):

$$G_{q-1}(R') \cong G_{q,f}(E) \cong G_f(Q)$$

$$0 \to R \to R' \to P \to 0$$

$$\pi_1 \qquad \pi_3 \qquad 0 \to P \to Q \to O(I) \to 0$$

$$G_f(E) \qquad G_q(E)$$

$$0 \to R' \to E \to O(I) \to 0$$

$$\pi_2 \qquad \pi \qquad 0 \to R \to E \to Q \to 0$$

$$\chi \qquad (3)$$

It reflects the fact that the variety of flags can be considered as a Grassmannian in two different ways. The short exact sequences arising from the mappings are tautological sequences of the corresponding Grassmannians (instead of π^*E we shall just write E, and the same applies to the other mappings).

Before proving the proposition we recall a well-known lemma.

LEMMA 1. If
$$q = 1$$
 and $\xi = c_1(\mathfrak{O}(1))$, then $\xi^k = s_k(\mathfrak{O}(1))$ and $\pi_*(\xi^k) = s_{k-n+1}(E)$.

PROOF OF PROPOSITION 1. We induct on q. If q = 1, then we must show that $\pi_*(s(H; R)s(k; \mathcal{O}(1))) = s(Hk; E)$. Using the formula $s_i(R) = s_i(E - \mathcal{O}(1)) = s_i(E) - \xi s_{i-1}(E)$, we get

$$s(H; R) = \begin{vmatrix} s_{h_1}(E) & \cdots & s_{h_r}(E) & \xi^r \\ s_{h_1-1}(E) & \cdots & s_{h_r-1}(E) & \xi^{r-1} \\ \vdots & & \vdots & \vdots \\ s_{h_1-r}(E) & \cdots & s_{h_r-r}(E) & 1 \end{vmatrix}.$$

Since r = n - 1, by Lemma 1 we have

$$\pi_*(s(H; R)\xi^k) = \begin{vmatrix} s_{h_1}(E) & \cdots & s_{h_r}(E) & s_k(E) \\ s_{h_1-1}(E) & \cdots & s_{h_r-1}(E) & s_{k-1}(E) \end{vmatrix} = s(Hk; E).$$

Now let q > 1 and K = K'k by the induction hypothesis and the commutative diagram (3) we have

COROLLARY 1. Let D be a vector bundle over X. If $K \in \mathbb{N}^q$, then

$$\pi_{*}(s(K;Q-D)) = s(k_{1}-r,...,k_{q}-r;E-D).$$

$$\pi_{*}(s(H;R)s(K;Q)) = \pi_{*}(\pi_{3}*(s(H;R)s(K';P)s(k;0(1))) =$$

$$= \pi_{1}*(\pi_{2}*(s(H;R)s(K';P)s(k;0(1)) = \pi_{1}*(s(HK',R')s(k,0(1))) =$$

$$= s(HK'k;E) = s(HK;E).$$

PROOF. Since s(H; R) = 1 for H = (0, 1, ..., r - 1), the determinant s(HK; E) has the form:

Consequently, it equals the cross-hatched determinant, with the indexing changed in this way. This proves the corollary for D=0.

If $D \neq 0$, then we use the formula for $s_i(Q - D)$, we represent s(K; Q - D) as a sum of determinants of the form s(K'; Q) with coefficients in $\mathcal{C}(X)$, we apply the part of the corollary already proved for D = 0, and we return to determinantal form.

§3. Technical lemmas

In this part we present auxiliary results we shall need in §4.

LEMMA 2. Let $I = (i_1, ..., i_p)$ and let F be a vector bundle of rank $m \le p$. Then for any element D of the Grothendieck ring the determinant s(I; D) does not change when $s_i(D)$ is replaced by $s_i(D-F)$ in the first p-m rows.

PROOF. We get the desired result by applying step-by-step to any row (from among the first p-m) an appropriate linear combination of the following m rows according to the equality

$$s_i(D-F) = s_i(D) - s_{i-1}(D)c_1(F) + \cdots \pm s_{i-m}(D)c_m(F).$$

PROPOSITION 2. Let E and F be vector bundles of ranks n and m respectively, $m \le n$. Then $c_{mn}(E \otimes F^*) = s(m, \ldots, m+n-1; E-F).$

PROOF. By the splitting principle we can write

$$c(E) = (1+a)(1+b)\cdots, c(F) = (1+x)(1+y)\cdots,$$

whence

$$c(E \otimes F^*) = (1 + a - x)(1 + b - x) \cdot \cdot \cdot (1 + a - y)(1 + b - y) \cdot \cdot \cdot$$

and, in particular,

$$c_{mn}(E \otimes F^*) = (a-x)(b-x)\cdots(a-y)(b-y)\cdots$$
divides

 $c_{mn}(E \otimes F^*) = (a-x)(b-x)\cdots(a-y)(b-y)\cdots.$ We first prove that $(a-x)(a-y)\cdots$ lies in $s(m,\ldots,m+n-1;E-F)$. Let E=A+E' in the Grothendieck ring, where rk A = 1 and c(A) = 1 + a. By Lemma 2, in the first row of the determinant s(m, ..., m + n - 1; E - F) we can replace $s_i(E - F)$ by

$$s_i(E-F-E')=s_i(A-F);$$

the first row now looks like this:

$$s_m(A-F), s_{m+1}(A-F), \ldots, s_{m+n-1}(A-F).$$

However,

$$s_{m+p}(A-F) = a^{m+p} - a^{m+p-1}c_1(F) + \cdots \pm a^p c_m(F) = a^p s_m(A-F)$$

 $s_{m+p}(A-F) = a^{m+p} - a^{m+p-1}c_1(F) + \cdots \pm a^p c_m(F) = a^p s_m(A-F)$ for $p \ge 0$; this means that $s(m,\ldots,m+n-1;E-F)$ lies in $s_m^0(A-F)$, which equals $(a-x)(a-y)\cdots$

By symmetry, s(m, ..., m + n - 1; E - F) lies in $c_{mn}(E \otimes F^*)$. Both elements are polynomials of the same degree in a, b, \ldots and x, y, \ldots Thus they are equal, since they take the same value, $(-1)^{mn}c_m(F)^n$, when $a=b=\cdots=0$.

If rk E = n, then $c_n(E)$ is called the maximal Chern class of the bundle E, and is sometimes denoted by $c_{\max}(E)$. The relative Grassmannian $\pi: G_q(E) \to X$ can be compared with the element $e(\pi) = c_{\max}(R \otimes Q)$. In the following lemmas we compute the images of $e(\pi)$ and other similar expressions under the homomorphism π_* in the projective case, i.e. for q = 1.

LEMMA 3. If q = 1, then

$$e(\pi) = \sum_{i=0}^{n-1} s(0, 1, \dots, \hat{i}, \dots, n-1; R) \xi^{i},$$

where $\xi = c_1(\Theta(1))$ and rk E = n.

PROOF. By Proposition 2,

$$e(\pi) = s(1,2,\ldots,n-1;R-\mathfrak{O}(1)^*) = c_{n-1}(R-\mathfrak{O}(1)^*).$$

Using the formula of linearity, we get

$$e(\pi) = \sum_{i=0}^{n-1} s(1,2,\ldots,n-i-1;R)\xi^{i}.$$

Since $s(0, 1, \ldots, i-1; R) = 1$, the determinant $s(1, 2, \ldots, n-i-1; R)$ equals $s(0,1,\ldots,\hat{i},\ldots,n-1;R)$, which proves the lemma.

COROLLARY 2. For any $k \ge 0$

$$\pi_*(e(\pi)\xi^k) = \sum_{i=0}^{n-1} s(1,2,\ldots,n-i-1,k;E).$$

PROOF. From Proposition 1 and Lemma 3 it follows that:

$$\pi_*(e(\pi)\xi^k) = \sum_{i=0}^{n-1} \pi_*(s(0,1,\ldots,\hat{i},\ldots,n-1;R)\xi^{i+k})$$
$$= \sum_{i=0}^{n-1} s(0,1,\ldots,\hat{i},\ldots,n-1,i+k;E).$$

Since s(0, 1, ..., i, ..., i - 1; E) = 1, we get the desired result.

COROLLARY 3.

$$\pi_*(e(\pi)) = \begin{cases} 1 & \text{if n is odd}, \\ 0 & \text{if n is even}. \end{cases}$$

LEMMA 4. If q = 1, then

$$\pi_*(e(\pi)s(1,3,\ldots,2k-3;R)\xi^k)=s(1,3,\ldots,2k-1;E).$$

PROOF. We have

$$e(\pi)s(1,3,\ldots,2k-3;R)\xi^{k}$$

$$=\begin{vmatrix} s_{1}(R) & s_{3}(R) & \cdots & s_{2k-3}(R) & 0 \\ s_{0}(R) & s_{2}(R) & \cdots & s_{2k-4}(R) & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ & \cdots & s_{k-3}(R) & s_{k-1}(R) & 0 \\ & \vdots & \vdots & \vdots & \vdots \\ & \cdots & s_{k-4}(R) & s_{k-2}(R) & e(\pi)\xi^{k} \end{vmatrix}.$$

Using the formula $s_i(E) = s_i(R) + s_{i-1}(E)\xi$, we transform this determinant into the form

$$\begin{vmatrix} s_{1}(E) & s_{3}(E) & \cdots & s_{2k-3}(E) & e(\pi)\xi^{2k-1} \\ s_{0}(E) & s_{2}(E) & \cdots & s_{2k-4}(E) & e(\pi)\xi^{2k-2} \\ \vdots & \vdots & & \vdots & \vdots \\ & \cdots & s_{k-1}(E) & e(\pi)\xi^{k+1} \\ & \cdots & s_{k-2}(E) & e(\pi)\xi^{k} \end{vmatrix}, \tag{4}$$

by adding step-by-step to a fixed row an appropriate multiple of the preceding and then passing on to the next row. Because of Corollary 2 we can compute

$$\pi_*(e(\pi)s(1,3,\ldots,2k-3;R)\xi^k)$$

by replacing $e(\pi)\xi^j$ by $\sum_{i=0}^{n-1}s(1,2,\ldots,n-i-1,j;E)$ in the last column of (4). However, by Pieri's formula (which more generally expresses the product of any Schur function and s_p as a sum of Schur functions)

$$s_p(E)s(1,2,\ldots,2j;E) = s(1,2,\ldots,2j-1,p+2j;E) + s(1,2,\ldots,2j;p+2j;E).$$

Therefore, multiplying the (k - j)th column of our matrix by

$$-s(1,2,\ldots,2j;E), j=1,\ldots,k-1,$$

and by adding up to the last column, at the last step we get s(1, 3, ..., 2k - 1; E).

§4. The main computations

We recall that X denotes a smooth quasiprojective scheme over a field.

Let $\varphi: F \to E$ be a morphism of vector bundles over X, and $\pi: G_q(E) \to X$ the relative Grassmannian corresponding to the number q. We define a subscheme Z of $G_q(E)$ as the scheme of zeros of the composite $F \to E \to Q$, where $0 \to R \to E \to Q \to 0$ is the tautological sequence on $G_q(E)$.

PROPOSITION 3. Let φ : $F \to E$ be a morphism of vector bundles over X, $\operatorname{rk} E = n$ and $\operatorname{rk} F = m$, $m \ge n$. Moreover, let Y be a subscheme of X, where $\operatorname{rk} \operatorname{Coker} \varphi \ge q$, $q \le n$; that is

$$\mathfrak{O}_Y = \operatorname{Coker} \left(\Lambda^{n-q+1} F \otimes \Lambda^{n-q+1} E^* \to \mathfrak{O}_X \right).$$

Then the following assertions are true:

- a) If Y is nonempty, then its codimension in X is at most q(m-n+q).
- b) If π induces a birational isomorphism of Z and Y and if $\operatorname{codim}_X Y = q(m n + q)$, then

$$[Y] = s(m-n+q,...,m-n+2q-1;E-F)$$

in the Chow ring of the scheme X.

PROOF. Part a) follows from (4). Since Z is birationally isomorphic to Y, we have $\pi_*[Z] = [Y]$ in the Chow ring of X. However, Z is the scheme of zeros of a section $G_q(E) \to F^* \otimes Q$ induced by the sequence $F \to E \to Q$ and rk $F^* \otimes Q = \operatorname{codim}_{G_q(E)} Z$; hence $[Z] = c_{\max}(F^* \otimes Q)$. From Proposition 2 and Corollary 1 we now get the desired result.

Let $\varphi: E^* \to E$ be a symmetric morphism of vector bundles over X, i.e. $\varphi^* = \varphi$. We denote by Z, just as before, the subscheme of zeros of the morphism $E^* \to E \to Q$ or, equivalently, of the induced section $G_q(E) \xrightarrow{\alpha} E \otimes Q$. Since φ is symmetric, α is a section of the bundle $H = \text{Ker}(E \otimes Q \to \Lambda^2(Q))$.

PROPOSITION 4. Let φ : $E^* \to E$ be a symmetric morphism of vector bundles over X, and Y a subscheme of X, where $\operatorname{rk} \operatorname{Coker} \varphi \geqslant q$, $q \leqslant n = \operatorname{rk} E$; that is

$$\mathfrak{O}_Y = \operatorname{Coker} \left(\Lambda^{n-q+1} E^* \otimes \Lambda^{n-q+1} E^* \to \mathfrak{O}_X \right).$$

Then the following assertions are true:

- a) If Y is nonempty, then its codimension in X is at most q(q + 1)/2.
- b) If π induces a birational isomorphism of Z and Y and if $\operatorname{codim}_X Y = q(q+1)/2$, then

$$[Y] = 2^q s(1, 3, ..., 2q - 1; E)$$

in the Chow ring of the scheme X.

PROOF. Part a) follows from [13] (see also [5]). Just as in the proof of Proposition 3, we get $\pi_*[Z] = [Y]$ and $[Z] = c_{\max}(H)$ as long as $\mathrm{rk}\ H = \mathrm{codim}_{G_q(E)}Z$. In the Grothendieck ring we have E = R + Q, so $H = R \otimes Q + S^2(Q)$; hence

$$c_{\max}(H) = c_{\max}(R \otimes Q)c_{\max}(S^{2}(Q)).$$

By the splitting principle a formal computation enables us to find $c_{\text{max}}(S^2(Q))$. If $c(Q) = \prod (1+a)$, then

$$c(S^{2}(Q)) = \prod (1+2a) \prod_{a\neq b} (1+a+b).$$

Therefore, from Jacobi's formula (see §1) we get

$$c_{\max}(S^{2}(Q)) = 2^{q}c_{q}(Q) \prod_{a=b} (a+b) = 2^{q}c_{q}(Q) \frac{\prod_{a\neq b} (a^{2} - b^{2})}{\prod_{a\neq b} (a-b)}$$

$$= 2^{q}c_{q}(Q) \frac{\Delta_{0,2,\dots,2q-2}(a,b,\dots)}{\Delta_{0,1,\dots,q-1}(a,b,\dots)} = 2^{q}c_{q}(Q)s(0,2,\dots,2q-2;Q)$$

$$= 2^{q}s(1,3,\dots,2q-1;Q).$$

To compute $\pi_*(c_{\max}(H))$, recall that in §3 we wrote $e(\pi) = c_{\max}(R \otimes Q)$. Let $e = e(\pi)$ and $e_i = e(\pi_i)$, i = 1, 2, 3, for the other mappings in the diagram (3). It is easy to check

that $e_1e_2 = ee_3$ in $\mathcal{C}(G_1(Q))$; indeed, both products equal

$$c_{\max}(P \otimes \mathcal{O}(1) + R \otimes P + R \otimes \mathcal{O}(1)).$$

We must show that

$$\pi_*(es(1,3,\ldots,2q-1;Q)) = s(1,3,\ldots,2q-1;E). \tag{5}$$

We shall show this by induction on q. For q = 1 formula (5) follows from Corollary 2. For q > 1 we use diagram (3). According to Lemma 4,

$$\pi_{3*}(e_3s(1,3,\ldots,2q-3;P)\xi^q)=s(1,3,\ldots,2q-1;Q).$$

Therefore

$$\pi_*(es(1,3,\ldots,2q-1;Q)) = \pi_*(\pi_{3*}ee_3s(1,3,\ldots,2q-3;P)\xi^q)$$
$$= \pi_{2*}(\pi_{1*}e_1e_2s(1,3,\ldots,2q-3;P)\xi^q).$$

By the induction hypothesis

$$\pi_1(e_1s(1,3,\ldots,2q-3;P))=s(1,3,\ldots,2q-3;R')$$

and in the last computation

$$\pi_*(es(1,3,\ldots,2q-1;Q)) = \pi_{2_*}(e_2s(1,3,\ldots,2q-3;R')\xi^q)$$

= $s(1,3,\ldots,2q-1;E)$

again because of Lemma 4.

To formulate the following result we shall assume that X is a scheme over a field of characteristic zero, and denote by $\varphi \colon E^* \to E$ a skew-symmetric morphism of vector bundles over X, i.e. $\varphi^* = -\varphi$. Let $n = \operatorname{rk} E$ and $2 \le q \le n$, where n - q = 2p is even. We describe the subscheme Y in X defined by the Pfaffians of φ of order 2p + 2. Under the isomorphism $\operatorname{Hom}(E^*, E) \cong E \otimes E$ the element φ corresponds to $f \in \Lambda^2 E$ (since φ is skew-symmetric). Then $f^{p+1} \in S^{p+1}(\Lambda^2 E)$; we denote by f^{p+1} the image of f^{p+1} under the natural mapping $f^{p+1}(\Lambda^2 E) \to \Lambda^2 f^{p+2} E$ sending $f^{p+1}(\Lambda^2 E) \to (\chi^2 f^{p+1}) \to (\chi^2 f^{p+$

If Z is defined as before, then the corresponding section $\alpha: G_q(E) \to E \otimes Q$ factors through $H' = \text{Ker } E \otimes Q \to S^2(Q)$, since φ is skew-symmetric.

PROPOSITION 5. Let X be a smooth quasiprojective scheme over a field of characteristic zero, φ : $E^* \to E$ a skew-symmetric morphism of vector bundles over X, Y the subscheme of X defined by the Pfaffians of order 2p + 2 of the mapping φ , $\operatorname{rk} E = n$ and q = n - 2p. Then the following assertions are true:

- a) If Y is nonempty, then its codimension in X is at most q(q-1)/2.
- b) If π induces a birational isomorphism of Z and Y and if $\operatorname{codim}_X Y = q(q-1)/2$, then [Y] = s(1, 3, ..., 2q-3; E) in the Chow ring of the scheme X.

PROOF. Part a) follows from [6]. The proof of part b) is similar to the corresponding proof of Proposition 4. By assumption we have $[Z] = c_{\text{max}}(H')$. Since $H' = R \otimes Q + \Lambda^2 Q$

in the Grothendieck ring, we find that

$$c_{\max}(H') = c_{\max}(R \otimes Q)c_{\max}(\Lambda^2 Q).$$

Proceeding just as in the proof of Proposition 4 and using Corollary 3, we get the desired result.

§5. Passage to the generic case

We first recall one of the tricks of [10]. In the notation of Proposition 3, consider the Grassmannian $X = G_n(F \oplus E)$ and its corresponding tautological sequence $0 \to T \to F \oplus E \to P \to 0$ on X. Define $\psi \colon F \xrightarrow{1+\varphi} F \oplus E \to P$ and Y as the subscheme of X where $Y \to Y$ is the subscheme of $Y \to Y$ where $Y \to Y$ is the subscheme of $Y \to Y$ where $Y \to Y$ is the subscheme of $Y \to Y$ where $Y \to Y$ is the subscheme of $Y \to Y$ where $Y \to Y$ is the subscheme of $Y \to Y$ where $Y \to Y$ is the subscheme of $Y \to Y$ where $Y \to Y$ is the subscheme of $Y \to Y$ where $Y \to Y$ is the subscheme of $Y \to Y$ is the

$$\begin{array}{ccc} Y & \hookrightarrow & X \\ \downarrow \eta & & \downarrow \eta \\ Y & \hookrightarrow & X \end{array}$$

where η is induced by the exact sequence $0 \to F \to F \oplus E \to E \to 0$ on X. Since $\eta^* \psi = \varphi$, we find that $\eta^{-1} Y = Y$. Applying Lemma 9 from [10] and noting that Y is a Cohen-Macaulay scheme and codim Y = q(m - n + q) (see [4]), we get the following result.

LEMMA 5. In the notation of Proposition 3, if codim $_XY = q(m-n+q)$, then $\eta^*[Y] = [Y]$.

Now let $\varphi: E^* \to E$ be a symmetric morphism. Consider the relative Grassmannian $\mathbf{X} = G_n(E^* \oplus E)$ and its corresponding tautological sequence $0 \to T \to E^* \oplus E \xrightarrow{\rho} P \to 0$. Define a symmetric morphism

$$\psi \colon P^* \stackrel{\rho^*}{\to} E \oplus E^* \stackrel{\begin{pmatrix} 0 & 1 \\ 1 & \varphi \end{pmatrix}}{\to} E^* \oplus E \stackrel{\rho}{\to} P$$

and the subscheme Y of the points of X where rk Coker $\psi \ge q$. The sequence $0 \to E^* \to E^* \oplus E \to E \to 0$ on X induces an embedding $\eta: X \to X$ such that the inverse image η^* transforms the exact sequence $0 \to T \to E^* \oplus E \to P \to 0$ into $0 \to E^* \to E^* \oplus E \to E \to 0$. Hence $\eta^*\psi = \varphi$ and $\eta^{-1}Y = Y$. Because of [13], Y is a Cohen-Macaulay scheme and codim $_X Y = q(q+1)/2$, so that, applying Lemma 9 from [10], we get the following result.

LEMMA 6. In the notation of Proposition 4, if $\operatorname{codim}_X Y = q(q+1)/2$, then $\eta^*[Y] = [Y]$.

The same argument works for a skew-symmetric morphism. The fact that the corresponding scheme Y defined by the Pfaffians is a Cohen-Macaulay scheme and codim $_XY = q(q-1)/2$ follows from [11].

LEMMA 7. In the notation and under the hypotheses of Proposition 5, if $\operatorname{codim}_X Y = q(q-1)/2$, then $\eta^*[Y] = [Y]$.

§6. Concluding results

THEOREM 1 (KEMPF-LAKSOV [10]). Maintaining the notation of Proposition 3, let $\operatorname{codim}_X Y = q(m-n+q)$. Then

$$[Y] = s(m-n+q,...,m-n+2q-1;E-F)$$

in the Chow ring of the scheme X.

PROOF. We apply Proposition 3 to the scheme X and the morphism ψ : $F \to P$ (notation of §5). Since in the commutative diagram

$$egin{array}{lll} \mathbf{Z} & & \hookrightarrow & G_q(P) \\ \downarrow \pi & & \downarrow \pi \\ \mathbf{Y} & \hookrightarrow & \mathbf{X} \end{array}$$

 π establishes a birational isomorphism of **Z** and **Y** (because of [8] and [9], or by direct calculation) and codim_{**X**} **Y** = q(m - n + q), we find that

$$[Y] = s(m-n+q,...,m-n+2q-1; P-F)$$

in the Chow ring of X. The assertion of the theorem then follows from Lemma 5.

THEOREM 2. Let X be a smooth quasiprojective scheme over a field of characteristic $\neq 2$, φ : $E^* \to E$ a symmetric morphism over X, and maintain all the other notation of Proposition 4. If $\operatorname{codim}_X Y = q(q+1)/2$, then $[Y] = 2^q s(1,3,\ldots,2q-1;E)$ in the Chow ring of the scheme X.

PROOF. The hypotheses of Proposition 4 are fulfilled by the scheme X and the morphism $\psi \colon P^* \to P$ (see the notation of §5), since $\pi \colon G_q(P) \to X$ establishes a birational isomorphism of the corresponding Z and Y. This follows from the arguments of [9], p. 234, which hold for fields of characteristic $\neq 2$. Thus

$$[Y] = 2^q s(1, 3, ..., 2q - 1; P),$$

and Lemma 6 completes the proof.

Similar arguments, using Proposition 5 and Lemma 7, give the result for skew-symmetric morphisms.

THEOREM 3. Let X be a smooth quasiprojective scheme over a field of characteristic zero. $\varphi \colon E^* \to E$ a skew-symmetric morphism over X, and maintain all the other notation of Proposition 4. If $\operatorname{codim}_X Y = q(q-1)/2$, then $[Y] = s(1,3,\ldots,2q-3;E)$ in the Chow ring of the scheme X.

Received 23/OCT/80

BIBLIOGRAPHY

- 1. David A. Buchsbaum and David Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 447-485.
- 2. Giovanni Z. Giambelli, Risoluzione del problema degli spazi secanti, Mem. R. Accad. Sci. Torino (2) 52 (1902), 171-211.
- 3. _____, Sulla varietà rappresentate coll'annullare determinanti minori contenuti in un determinante simmetrico od emisimmetrico generico di forme, Atti. R. Accad. Sci. Torino 41 (1905/06), 102-125.
- 4. M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058.
- 5. Tadeusz Józefiak, *Ideals generated by minors of a symmetric matrix*, Comment. Math. Helv. 53 (1978), 595-607.
 - 6. Tadeusz Józefiak and Piotr Pragacz, Ideals generated by Pfaffians, J. Algebra 61 (1979), 189-198.
 - 7. _____, Syzygies de pfaffiens, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), A89-A91.
 - 8. George R. Kempf, On the geometry of a theorem of Riemann, Ann. of Math. (2) 98 (1973), 178-185.
 - 9. _____, On the collapsing of homogeneous bundles, Invent. Math. 37 (1976), 229-239.
- 10. G. R. Kempf and D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153-162.

- 11.* H. Kleppe and D. Laksov, a) The algebraic structure and deformation of Pfaffian schemes, J. Algebra 64 (1980), 167-189.
- b) The generic perfectness of determinantal schemes, Algebraic Geometry (Proc. Summer Meeting, Copenhagen, 1978), Lecture Notes in Math., vol. 732, Springer-Verlag, 1979.
- 12. Donald Knutson, λ -rings and the representation theory of the symmetric group, Lecture Notes in Math., vol. 308, Springer-Verlag, 1973.
- 13. Ronald E. Kutz, Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic groups, Trans. Amer. Math. Soc. 194 (1974), 115-129.
- 14. Alain Lascoux, Puissances extérieures, déterminants et cycles de Schubert, Bull. Soc. Math. France 102 (1974), 161-179.
- 15. _____, Calcul de Schur et extension grassmanniennes des λ-anneaux, Combinatoire et Représentation du Groupe Symétrique (Actes Table Ronde CNRS, Strasbourg, 1976), Lecture Notes in Math., vol. 579, Springer-Verlag, 1977, pp. 182–216.
 - 16. _____, Syzygies des variétés déterminantales, Advances in Math. 30 (1978), 202-237.
 - 17. _____, Syzygies pour les mineurs de matrices symétriques, Preprint, 1977.
- 18. I. R. Porteous, Simple singularities of maps, Proc. Liverpool Singularities Sympos. I (1969/70), Lecture Notes in Math., vol. 192, Springer-Verlag, 1971, pp. 286-307.

Translated by M. ACKERMAN

^{*}Editor's note. The Russian combines the title of a) with the volume reference for b).

^{**} Author's note Not Russian but Polish - French - Polish.