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- ABSTRACT. In this paper the authors compute the classes of subschemes of degeneranons of :
o a homomorphism of two fibrations in the Chow ring of the base. :
i B:bhography I8 titles.

: The starting point of enumerative problems connected with investigating singularities is
. the following situation: for vector bundles E and F over a scheme X and a morphism
‘g F — E over X it is necessary to describe the set of singularities of ¢; for example, for a

" fixed natural number ¢ one wants to get information about a subscheme Y of the scheme

- X, where rk Coker ¢ = ¢. The same problem can be posed if some additional conditions

3 - “are imposed on ¢, for example if F= - E* (the dual bundle) and ? 1s a symmetnc or

skew-symmetric morphism. :
. The class of Y in the Chow ring of the scheme X was calculated under various
~conditions on ¢ (in the case of general ¢) in papers by Porteous [18], Kempf and Laksov

" {10}, and Lascoux [14). If X is a Grassmann variety over a field, E its tautological bundle,

and F a trivial bundle, then Y is called a special Schubert variety. In this case the

- determinantal formula for-its class in the Chow ring was calculated at the start of this
~ century by the Italian mathematician Giambelli [2] long before the rise of cohomologlcai §

. theories that allow one to give it an appropriate interpretation.
- In the case where X is a projective space, £ =0(n;) +O(n,)+---, and ¢ is a
. symmetric or skew-symmetric morphism, Giambeili [3] also got some formulas in terms of

symmetric functions, which express the degree of the variety defined by all the mmors ofp - B
o of a given order. L

- In this paper we shall prove Giambelli’s formulas in complete generahty, Le. under a

: '_’smgle assumption on the codimension of Y in X. Using the same technique we present one S
" . more (brief) proof of the formula for the class of Y in the case of general ¢.

. To present the main idea of our proof we consider the (relative) Grassmannian G/(E)
- which parametrizes the quotient-bundles of the bundle E of rank g; let m: G(£) — X be
. the corresponding canonical projection. In an arbitrary case (i.e. general, symmetric, and

i - skew-symmetric) we construct a subscheme Z in G,( E') which under generic conditions is
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birationally isomorphic to Y (via 7). Therefore, 7 [Z] = [Y] in the Chow ring, where 7 :
&(GE)) — &(X) is the Gysin homomorphism. Thus, to calculate the class [Y'] we need
to know the class [Z] in &(G,(£)) and the description of the Gysin homomorphism. We
get this by using the rich theory of Schur functions—a classical part of mathematics that
plays a fundamental role in the theory of representations of symmetric and general linear
groups [12], and has recently been reopened and applied in geometry [14], [15].

The general case where Y has the maximal possible codimension in X is gotten from the
generic case by using the fact that Y is then a Cohen-Macaulay scheme and using a trick
similar to that described by Kempf and Laksov in [10]. All this allows us to express ¢ as
the inverse image of some y already defined under generic conditions.

'An analogous method, applied to modules instead of Chern classes, has recently led to
the construction of all syzygies of determinantal ideals (see [16], [17] and {7]).
Throughout the article, X denotes a smooth quasiprojective scheme over a field.

§1. Segre classes and Schur functions
Let E be a vector bundle over X of rank » and
c(EY=1+c(E)+ - +c,(E)
the total Chern class in the Chow ring @( X). By the splitting principle we can represent
c( E) as the product of n factors
c(E)=(+a)l+b)-, (1)

where a, b,... are the first Chern classes of some one-dimensional bundles gotten from
splitting E. Thus the ¢,( £) can be considered as the elementary symmetric functions of
a b,....

If F is another vector bundle over X, then ¢(E + F) = ¢(E)c(F). If ¢(E) 15 invertible
in @(X), we can put ¢(-E) = ¢(E)"', and because of the additivity of the total Chern
class on short exact sequences we can consider the ¢; as mappings (not homomorphisms)

of the Grothendieck ring K( X) of the scheme X into &( X).
It turns out that the so-called Segre classes 5,{ E) are more convenient than the Chern

classes. They are defined by the formulas
s(E) = (‘I)ici("E) = ¢,(-E)*, i=0,
s(E)=0, <0,
where £E* denotes the bundle dual to E; then so( E) = 1, sy(E) = ¢,(E),and s{ £ + F) =

k=Sl E)s (F).
By (1) the complete Segre class

S(EY=1+s(E) +s5,(E) +---
can be represented as

]
)= == @

Thus any s5,(E) is a symmetric polynomial in a, b,..., the so-called total homogeneous
symmetric function of degree i (the sum of all monomials of total degree /).
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_ | Let I = (iy,---,1,) € Z” be any sequence of i integers. A basm role in all our calcu]anons
'wzll bc played by determmants of the form .

S(E)' s (E) s (E)
) .S(I E)«-— :,—-a(E) Siz-*l(.E‘)"'_sip—l(E) .

' < In pariicular, s(i; E)Y = s,(E) and s(l,.'..,i; E) = c,(E); we shall use both notations.

- According to (2), s(I; E) is a symmetric function of a, b,..., the so-called Schur function
“of index iy, iy~ 1, iy—2,... (a Schur function is usually indexed by the diagonal
elements of the matrix defzmng it; however, in the Chow ring it is more convement to
/index it by the first row; for example, see Proposition 1 below). '

We recall the representation of the Schur functions according to Jacobi:

s(I; E) =4,(a.b,...) /80,5, (a,b,...),

 where

. In particular.

Aoz, (ab )—‘“—‘H(a“b)

u#=h

_ f.-is the well-known Vandermonde determinant.
- The functions s(/: —), just like ¢; and s, define a mapping of K( X)into €( X).
' §2. The Gysin homomorphism

Let £ be a vector bundle of rank » (abbreviated as rk £ = n) over a scheme X. qgs<

“and 7: G ,{£) — X the canonical projection corresponding to the relative Grassmanman
parametrizing the quotient bundles of rank g of the bundle E. By definition. on G(E)
- there exists a tautological short exact sequence 0 — R — 7*E — Q — 0 of vector bundies
wheretk Q =gand tk R =r = n — g. For q =1, G (L) 1s the projective space over X,
- and Q is usually denoted by &(1).
. The Chow ring @(G (£)) is an extension of &(X) and contains elements of the form
s(H; R)and s(K: Q) (the\ play an important role in describing the structure of E(GAEN
“asand (X) module).

PROPOSITION 1LLIfH € N and K € NY. then
T(5(H: R)s(K: Q)) = s(HK; E),

- -_where_ HK = (hy, hy,..ky ky,..) € NT79,

Let G, (E) be the variety of flags which parametrizes the flags of quotient bundles

E - Eﬂ of {he bundle E of ranks ¢ and 1 respecnvely In our proof of the proposmon _ .
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here and in the sequel, a basic role will be played by the following commutative diagram
(see [14]):

6, (R)= 6y ((E)=6,(Q) g

U---H?——R‘—)-*:"“qr / N*‘P"a—r(%ﬁ*ﬂ
- : (3)

G(E) - Gg(E)

g */e’——f»or/)e—N /ﬂ-’k’*f-—a -7
X

It reflects the fact that the variety of flags can be considered as a Grassmannian in two
different ways. The short exact sequences arising from the mappings are tautological
sequences of the corresponding Grassmannians (instead of m*E we shall just write £, and

the same applies to the other mappings).
Before proving the proposition we recall a well-known lemma.

LemMa L. If g = 1 and & = ¢ (O(1)), then £ = 5,(E(1)) and 7 () = sp_u (B
PROOF. OF PROPOSITION 1. We induct on g. If ¢ =1, then we must show that

7 (s(H; R)s(k: &(1))) = s Hk: E). Using the formula s,(R) = s{E — SN =s(E)—
£s,_ (E), we get

Sh,(E) '5;.,(5) 3

Sh,—l(E) Sh,—l(E) ¢!
s(H, R) = .

sl E) e s dE)

Since r = n — 1, bv Lemma ! we have

so(E) - s(E)  sdE)
r o (s(H: R)gE) =5 (E) sh-(E) sio(E)| = s(HK: E).

Now let ¢ > 1 and K = K'k by the induction hypothesis and the commutative diagram
(3) we have

COROLLARY 1. Let D be a vector bundle over X. If K € N, then
7 (s{(K:Q—D))=s(ky—r,....k,—r; E~ D).
Te (s (H;R) s(K; @) = my (my, (s (H;R) s(KP)s(k;on))) =
= Tyu (Tye (s (H;R) s (KGP) s(k;0(N) = T (s (H' ") s(k 0(11))) =
s(HK'k; E) '=5(HE<;E).

if
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- PROOF. Smce s(H, R) = 1for H=(0,1,...,r — 1), the determinant s( HX; E) has the
'form '

- Consequently, it equals the cross-hatched determinant, with the indexing changed in this
‘way. This proves the corollary for D = 0.

1f D # 0, then we use the formula for 5,(Q — D), we represent s( K @ — D) as a sum of
determinants of the form s(X’; Q) with coefficients in €(X), we apply the part of the
corollary already proved for D = 0, and we return to determinantal form.

§3. Technical lemmas
In this part we present auxiliary results we shall need in §4.

LeMMA 2. Let I = (i\,...,i,) and let F be a vector bundle of rank m < < p. Then for any
element D of the Grothendzeck ring the determinant s(I; D) does not change when s, {(DYis
replaced by s{ D — F) in the first p — m rows.

_ ProoF. We get the desired result by applying step-by-step to any row (from among the
. first p — m) an appropriate linear combination of the following m rows according to the
cquahty '

5D = F) =5(D) = 5,_((D)e,(F) + -+ =5,__(D)e,(F).

PROPOSITION 2. Let E and F be vector bundles of ranks n and m respectively, m < n. Then
ol EQ F*) =s(m,...om+n—1,E~F).

PROOF. By the splitting principle we can write
c(E)=({1+a)(l+b)-, o(F)=(1+x)1 +y)--,
- whence ;
(E®@F)=(1+a—x)(1+b—x) 1+a—yp)1+b—y)-
: .énd, i_n particular,
| Cnnl E® F*) = (a—=x)(b—x) -~ (a=y)(b—y)-

divides
We first prove that (a — x)(a = y)--- Hes4a s(m,....m +n— 1; £ — FyLetE=4 +

E’ in the Grothendieck ring, where tk 4 = | and c(A) =1+ a. By Lemma 2, in the first
row of the determinant s(m,...,m + n — 1; E — F) we can replace s{E— F)by

s{E~F~E)=3s(4~F);
- the fxrst TOW now looks like this:
5 (A F), Sm+l(A - F),.. ’sm+n—-1(A — F).
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However,

(A— F)=a™"? —ag™*? ¢ (F)+--- zafc, (F)=a?s, (A~ F)
Ls dfwded bg
for p = 0; this means that s(m,...,m +n—1; E — F) hesia s(A — F), which equals
(@a—x¥a—y) . divides
By symmetry, s(m,...,m +n -~ 1; E — F) hes=n c,,,(E @ F*). Both elements are
polynomials of the same degree in &, b,... and x, y,.... Thus they are equal, since they

take the same value, (-1)""¢,(F)", whena=5b= --- = 0.
If tk E = n, then ¢ (E) is called the maximal Chern class of the bundle E, and 1s

sometimes denoted by c,,,(E). The relative Grassmannian #: G(E) ~ X can be com-
pared with the element e(7) = ¢, (R ® Q). In the following lemmas we compute the
images of e(w) and other similar expressions under the homomorphism =, in the

projective case, i.e. for ¢ = 1.

m+p

LEmMa 3. If g = 1, then
n—1{

e(r)= 3 s(0,1,....i,..,n = I; R)E',

i=0
where £ = ¢ (O(1)) and 1k E = n.
Proor. By Proposition 2,
e(r)=5(1,2,...,n — 1, R = OQ(1)*) = ¢,_ (R — 8(1)*).

Using the formula of linearity, we get
n—1

e(r)= > 5(1,2,...,n—i—1; R)§".

i=0 .
Since s(O l,...,i — 1; R) =1, the determinant s(1,2,...,n — i — 1; R) equals
s(0,1,. ,n — 1; R), which proves the lemma.

COROLLARY 2. Forany k = 0
n—1

m(e(m)ed) = 3 s(1,2,...,n—i—1,k; E).
i=0
Proor. From Proposition 1 and Lemma 3 it follows that .

n—1

m(e(m)tF) = 3 m,(s(0,1,. .. f,...,n — 1; R)ETH)
=0

n—1
= 3 5(0,1,....0,...,n— 1, i+ k; E).
i=0

Since 5(0,1,...,i,...,i — 1; E)} = 1, we get the desired result.
COROLLARY 3. '

_ |1 ifnisodd,
ﬂ'*(e(w))m{o if nis even.

LEMMA 4. If g = 1, then
m(e(n)s(1,3,....2k — 3; R)¢) = 5(1,3,....2k — 15 E).
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Proor. We have )
¢(7r)s(l,3,...,2k — 3; R)¢*

e sry o R o
.So(R) Sz(R) o ._: Szk 4( ): 0
oo ) ! o

Sp—a(R) sp—2(R) | e(m)ek

Using the formula 5,(E) = 5,(R) + 5,_ (E)¢, we transform this determinant into the
form '

si(E)  s5(E) o+ sy o(E) I’ em )£
15(E)  s{E) -+ 55, 4 E) : e )g2k2
I A @

by adding step-by-step to a fixed row an appropriate muitiple of the preceding and then
passm<I on to the next row. Because of Corollary 2 we can compute

m (e(m)s(1.3,...,2k = 3; R)&X)

by replacing e(7)&’ by I'Zfs(1.2....,n — i = 1, j; E) in the last column of (4). However.
by Piert’s formula (which more generally expresses the product of any Schur function and
5, as a sum of Schur functions)

sp(E)S(L.20 . 2js EY=5(1,2.....2/ = 1,p + 2 E)
+s(L.20...25,p+ 25, E).

Therefore. muitiplying the (¥ ~ j)th column of our matrix by
-s(1.2..2/0 E), =1 k-1,
and by adding up to the last column. at the last step we get s(1.3.....2k — 1 E).
§4. The main computations

We recall that X denotes a smooth quasiprojective scheme over a field.
Let @: F — E be a morphism of vector bundles over X, and = G A L) — X the refative
Grassmannian corresponding to the number ¢g. We define a aubscheme Zof G(E)as the

scheme of zeros of the composite F — ? E—~Q where0 = R — E -~ Q —0is the tautologi-
cal sequence on G JLE).

PROPOSITION 3. Ler @: F — E be a morphism of vecior bundles over X. tk E = n and
tk = m., m = n. Moreover, let Y be a subscheme of X, where tk Coker p = g, 9 < n; that
is :

Oy = Coker{ A9 F @ A9HIE* L g,).
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Then the following assertions are true:
a) If Y is nonempty, then its codimension in X is at most g(m — n + gq).
b) If = induces a birational isomorphism of Z and Y and if codimy Y = g(m — n + q),
then
[Y]=s(m—n+gqg,....m—n+2g— 1, E~F)
in the Chow ring of the scheme X.

ProoF. Part a) follows from (4). Since Z is birationally isomorphic to Y, we have
7.[Z]=[Y] in the Chow ring of X. However, Z is the scheme of zeros of a section
GAE)—- F*®Q induced by the sequence F = E— Q and tk F* ® @ = codiran(E)Z;
hence [Z] = ¢ (F* ® Q). From Proposition 2 and Corollary 1 we now get the desired

result.
Let ¢: E* — E be a symmetric morphism of vector bundles over X, tLe. (p = ¢. We

denote by Z, just as before, the subscheme of zeros of the morphism E* LE- - @ or,
equivalently, of the induced section G (E ) — E ® Q. Since ¢ is symmetric, « i5 a section of
the bundle H = Ker(E @ Q — A*(Q)).

PROPOSITION 4. Let ¢: E* — E be a symmetric morphism of vector bundles over X, and ¥
a subscheme of X, where tk Coker ¢ = g, g < n = 1K E; that is
9, = Coker{ A" E* ® AT IE* — Q).

Then the following assertions are true:
a) If Y is nonempty, then its codimension in X is at most g(q + 1)/2.
b) If w induces a birational isomorphism of Z and ¥ and if codim ¥ = g(q + 1),/2. then

[v]=29(1.3,....2¢g — 1, E)

in the Chow ring of the scheme X.

ProOOF. Part a) follows from [13] (see also {S]). Just as in the proof of Proposition 3. we
getw [Z] =[Y]and [Z] = ¢, (H) as long as tk A = codimg ;2. In the Grothendieck
ringwehave E=R + 0,s0 H=R®Q + S2(0); hence

Cma H) = (R ® Q) S3(Q)).

By the splitting principle a formal computation enables us to find c_ {SHON. If
c(Q) = (1 + a), then

(s =T +2a) [ 1 +a+b).

a=h

Therefore. from Jacobt's formuia (see §1) we get

max( (Q)) (Q) H (a-#b)zzch(Q)Ha#h(a'_"b-)

u=h D msla = b)
Nga. og—alacb.)
Mot q—tanb)
=295(1.3.....2¢ — 1, Q).

To compute 7 (¢ ( H ). recall that in §3 we wrote e(7) = ¢, (R ® Q). Lete = e(7)
and e, = e(x), i = 1,2.3, for the other mappings in the diagram (3). It is easy to check

= 20¢,(0) =29¢,(0)5(0.2,....29 — 2: Q)
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. .thate e2 = eey in E(G{(OQ)); 1ndeed both products equal v
na(P@E(1) + RE P+ RBO()).
. We must show that

w*(es(1,3....,2q—-1;Q))35(1,3,...,?.(;—I;E). | | (5)

| - We shall show this by induction on g. For g = 1 formula (5) follows from Corollary 2. For
. g > 1 we use diagram (3). According to Lemma 4, '

Te(e;s(1,3....,2¢ — 3; P)¢7) = 5(1,3....,2g — 1; Q).
Therefore
| a,(es(1,3...., 29— 1;0)) = w,(m,ee;s(1.3.....2q — 3; P)gq)
:wz*(wl*elezs(l,l...,lq--3;P)$‘7).

By the induction hypothesis
o m, (e,s(1.3.....2g =~ 3; P)) =s5(1.3,....2¢g — 3; R)

‘and in the last computation

7 (es(1.3.....2¢ — 1: Q) = my_{e.s(1,3..... 29 — 3. R')¢7)

| again because of Lemma 4.
| ~To formulate the following result we shall assume that .Y is a scheme over a field of
- charactenstic zero. and denote by ¢: £* — E a skew-svmmetric morphism of vector
- bundles over X, i.e. ¢* = —p. Letn = rk Fand 2 < g < n. where n — ¢ = 2 p is even. We
~describe the subscheme Y in X defined by the Pfaffians of ¢ of order 2p + 2, Under the
_isomorphism Hom(E*, E) = E ® E the element ¢ corresponds to f € A’E (since g is
“skew-symmetric). Then 7™ € S77'(\’E); we denote by /7! the image of f77" under
the natural mapping S77'(A’E) — A*7?E sending (x; Ax)) - (X A Fpet) 1O Xy A
yp AN Ax, o Ay, Fora fixed basis of £ and the dual basis of E*, the coefficients 6f
f*”' in the canomcal basis of A*#7°E are (up to a nonzero scalar) the Pfaffians of order
2p + 2 of the matrix of p. We define ¢ as Coker( A**72E — & ). From {1] it follows that
Y consists of the points of the scheme X for which rk Coker ¢ = ¢.
- If Z is defined as before, then the corresponding section a: G AE) — E@ Q factors

: through H' = Ker E ® Q — S Q) since ¢ is skew-symmetric.

PROPOSITION 5. Let X be a smooth quasiprojective scheme over a field of characteristic
zero, @: E* — E a skew-symmetric morphism of vecior bundles over X, Y the subscheme of X
defined by the Pfaffians of order 2p + 2 of the mapping @tk £ = nand g = n = 2p. Then
the following assertions are true:

a) If Y is nonempty, then its codimension in X is at most q(qg — 1)/2.

b) If = induces a birational isomorphism of Z and Y and if codim Y = g(q ~ 1)/2. then

[Y]=s(1,3,...,29 — 3; E) in the Chow ring of the scheme X.

Proor. Part a) follows from [6]. The proof of part b) is similar to the corresponding

proof of Proposition 4. By assumption we have [Z] = ¢, ( H"). Since H’ =R®Q+ AQ
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in the Grothendieck ring, we find that

| Cone ) = o R ® Q) 470).
Proceeding just as in the proof of Proposition 4 and using Corollary 3, we get the desired
result.

§5. Passage to the generic case

We first recall one of the tricks of {10]. In the notation of Proposition 3, consider the
Grassmannian X = G(F®E) and zts corresponding tautological sequence 0 — 7 — F &

E - P -0 on X. Define y: F - F@E P and Y as the subscheme of X where
rk Coker ¢ = g. We have a commutative diagram

Y = X
1l b
Y = X

where 7 is induced by the exact sequence 0 —» F - F & £ - E — 0 on X. Since 7%y = @,
we find that 'Y = Y. Applying Lemma 9 from [10] and noting that Y is a Cohen-
Macaulay scheme and codimyY = g{m — n + q) (see {4]), we get the following result.

LEMMA 5. In the notatzon of Proposmon 3, ifcodim ¥ = g(m — n + q), then n*[Y] =
[Y]. |

Now let @: E* — F be a symmetric morphism. Consider the relative Grassmannian
X = G(E* @ E) and its corresponding tautological sequence 0 - T~ E* © E A P -0
Define a symmetric morphism

a1

p* Y P
y:P*-EDE* - E*DE-P

and the subscheme Y of the points of X where rk Coker ¢ = g. The sequence 0 — E* —
E*® E - E — 0 on X induces an embedding 7: X — X such that the inverse image n*
transforms the exact sequence 0 = T - E* @ E-P - 0into0 - E* - E*SQ E ~FE —
0. Hence n*y = ¢ and n7'Y = Y. Because of [13], Y is a Cohen-Macaulay scheme and
codimy Y = g(g + 1)/2. so that. applying Lemma 9 from [10], we get the following result.

LEMMA 6. In the noration of Proposirion 4, if codim Y = g(g + 1) /2, then n*{Y] = [T].

The same argument works for a skew-symmetric morphism. The fact that the corre-
sponding scheme Y defined by the Pfaffians is a Cohen-Macaulay scheme and codimy Y
= g(gq — 1)/2 follows from []1].

LEMMA 7. In the notation and under the hypotheses of Proposition 5. if codim, ¥ =
q9(q = 1)/2. then 7*[Y] = [Y]. |
§6. Concluding results

THEOREM 1 (KEMPF-Laksov [10)). Mainzaining the notarion of Proposition 3, let
codimy ¥ = g(m — n + q). Then

(Y]=s(m—n+gq,....m—n+2g—~1,E—~F)
in the Chow ring of the scheme X.
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~ Proor. We apply Proposition 3 to the scheme X and the morphism ¢: F — P (notauon
of §5). Smce in the commutative diagram : _ : :

Z - G(P)
{o Lo
Y = X

. m establishes a birational 1somorphism of Z and Y (because of [8] and [9], or by direct -
- calculation) and codimy Y = g(m — n + g), we find that S

Y]=s(m—n+gq,....m—n+29—1; P —F)
in the Chow ring of X. The assertion of the theorem then follows from Lemma 5.

THEOREM 2. Let X be a smooth quasiprojective scheme over a field of characteristic + 2,
¢: E* — E a symmetric morphism over X, and maintain all the other notation of Proposition
4. Ifcodimy Y = q(q + 1)/2, then [Y] = 2%(1,3,...,2q ~ 1; E) in the Chow ring of the
scheme X.

. .ProOF. The hypotheses of Proposition 4 are fulfilled by the scheme X and the

- morphism : P* — P (see the notation of §5), since #: G,(F) — X establishes a birational
. isomorphism of the corresponding Z and Y. This follows from the arguments of [9], p.
234, which hold for fields of characteristic 2. Thus

= 29(1.3,....2¢g— 1, P),
[Y] =295(1.3,....2¢— 1, P

and Lemma 6 completes the proof.
- Similar arguments. using Proposition 5 and Lemma 7, give the result for skew-symmet-

_ ric morphisms.

THEOREM 3. Let X be a smooth quasiprojective scheme over a field of characteristic zero.
@ E*—~Ea skew-symmetric morphism over X. and maintain all the other noiation of
- Proposition 4. If codimy Y = g(q — 1)/2. then [Y] = s5(1,3....,29 — 3; E) in the Chow
ring of the scheme X.
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