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Abstract

We give a formula for pushing forward the classes of Hall-Littlewood
polynomials in Grassmann bundles, generalizing Gysin formulas for Schur
S- and P-functions.

Let E — X be a vector bundle of rank n over a nonsingular variety X over
an algebraically closed field. Denote by 7 : GY(E) — X the Grassmann bundle
parametrizing rank ¢ quotients of E. Let 7, : A(G4(FE)) — A(X) be the homo-
morphism of the Chow groups of algebraic cycles modulo rational equivalence,
induced by pushing-forward cycles (see [3, Chap. 1]). There exists an analogous
map of cohomology groups. A goal of this note is to give a formula (see Theorem
8) for the image via 7, of Hall-Littlewood classes from the Grassmann bundle.

Hall-Littlewood polynomials appeared implicitly in Hall’s study [5] of the
combinatorial lattice structure of finite abelian p-groups, and explicitly in the
work of Littlewood on some problems of representation theory [8]. A detailed
account of the theory of Hall-Littlewood functions is given in [9)].

The formula in Theorem 8 generalizes some Gysin formulas for Schur S- and
P-functions. In particular, it generalizes the formula in [11, Prop. 1.3(ii)], and
provides an explanation of its intriguing coefficient. We refer to [4] for general
information about the appearance of Schur S- and P-functions in cohomological
studies of algebraic varieties.

For some related results on push-forward, see [2, Prop. 2.1] (with the help
of [1, Thm 5.5]).

Let t be an indeterminate. The main formula will be located in A(X)[t], or
in the extension H*(X,Z)[t] of the cohomology ring for a complex variety X.
Let 7 : FI(E) — X be the flag bundle parametrizing flags of quotients of E of
ranks n,n — 1,...,1. Suppose that z1,...,xz, is a sequence of the Chern roots
of E.
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Definition 1. For a sequence A = (\1,...,\,) of nonnegative integers, set

RA(E;t) = (1p)« (23" - -2y [ [ (i — tay) (1)

i<j
where (Tg)« acts on each coefficient of the polynomial in t separately.

The Grassmann bundle 7 : GY(E) — X is endowed with the tautological
exact sequence of vector bundles

0—S—1mE—Q—0,

where rank(Q) = ¢. Let 7 = n — ¢ be the rank of S. Suppose that x; ..., x, are
the Chern roots of @ and z441,...,z, are the ones of S.

Proposition 2. For sequences A = (A1,..., ) and p = (pt1,- .., r) of non-
negative integers, we have

T (BA(Q)R.(S;t) [ (wi —tay)) = Rau(Es),

1<q<j
where A= (A1,..., Ag, pb1, - - ., o) 18 the juataposition of A and p.

Proof. Consider a commutative diagram

FIQ) Xga(w) FI(S) —— FI(E)

(
- |

Gi(E) X

It follows that
Ta(TQ X T )x = Tx . (2)

Using Eq.(1) for @ and S and Eq.(2), we obtain

T (RA@;Ru(S; ) [T (s —tay))

1<q<j
= 77*((7@)*(96?1 i x[]\q H (x; — ta:j)) . (Ts)*(a:f;j_l ceeghr H (x; — txj)) H (z; — txj))
1<j<q q<i<j 1<q<J
=T (TQ X Ts)« (xi\l -~-a:2q H (zi =ty -y H (@; — tx;) H (z; — txj)>
1<j<q q<i<j 1<q<j
= Tu(ayt - agoahly - alr (i - tay)
i<j

= R)\H(E;t) .

In the argument above, we have used the following equality:

H (xz — tl'j) H (%1 — tl'j) H (%1 — tlﬂj) = H(CEZ — tl’j) .0

1<j<q q<i<j 1<q<j 1<j



Definition 3. Set

1t
H1 =(A+A+t+82) - (Tt+-+t™ ). (3)
=1

Let A = (A1,...,An) be a sequence of nonnegative integers. Consider the
maximal subsets I1,...,J4 in {1,...,n}, where the sequence X\ is constant. Let
mai,...,mq be the cardinalities of Iy,...,I5. So we have mq + ---+mg = n.

Definition 4. Set .
t) =[] om.®. (4)
i=1

Example 5. Let v = (11 > ... > vy > 0) be a strict partition (see [9, I 1 Ex.9])
with k& < n. Let A = 0" * be the sequence v with n — k zeros added at the
end. Then d =k +1, (my,...,mq) = (1*,n — k), vA(t) = vn_i(t).

Definition 6. Let A = A\1,...,\,) be a sequence of nonnegative integers. Set

P\(E;t) = RA(E;t). (5)

b
’U,\(t)

If A is a partition, then Py(F;t) is a polynomial in ¢, called Hall-Littlewood
polynomial (see [9, I1I 1,2)]).

Let y1,...,y, and t be independent indeterminates. For a sequence A =
(M, ..., An) of nonnegative integers, set
yi —ty
R)\(yla'-'ayn;t): Z ( te H : ])a
wES, i<j
where S, is the symmetric group of all bijections of {y1,...,y,}. Specializing

y’s to the Chern roots of E, Rx(y;t) becomes Ry(E;t).
Computing with Maple, we get the following examples.
Example 7. For A equal to (0,2,0), (0,2,2,0), (0,2,3,0), (0,2,2,3,3), (0,0,0,
2,0,0

R (y; 1) is divisible by va(t). For X equal to (0,2,0,2) (0,2,0,0,2), (0,2,
(0,2,0,2,0,2), Rx(y;t) is not divisible by vx(t).

As a consequence of Proposition 2 we obtain the following result.

Theorem 8. Suppose that A = (A1,...,Aq) and pp = (p1,..., 1) are sequences
of nonnegative integers such that Rx(Q;t) is divisible by vi(t) and R, (S;t) is
divisible by v,,(t). Then for the polynomials P\(Q;t) and P,(S;t) we have

m( H (z; —ta?j)P,\(Q;t)PH(S;t)) L()P,\H(E t).

AL ().

In the sequel, the sequences A and p will be partitions.

We first consider the specialization ¢ = 0.



Example 9. We recall Schur S-functions. Let s;(E) denotes the ith complete

symmetric function in the roots x1, ..., x,, given by
CO |
ZSi(E) - H 1
>0 Jj=1

Given a partition A = (A; > ... >\, > 0), we set
SA(E) = ’SAi*i+j<E)’1§i)j§n .

(See also [9, I, 3].) Translating the Jacobi-Trudi formula (loc.cit.) to the Gysin
map for 7 : FI(E) = X (see, e.g. [11, Sect. 4]), we have

sA(E) = (1p)« (a7 an),

We see that Py(E;t) = sy(F) for ¢ = 0. Under this specialization, the theorem
becomes

T (@1 29)"s2(Q)351(5)) = Tu (5314, 0+ (Q)51(5))
= S)\M(E)v

a result obtained originally in [7, Prop. p. 196] and [6, Prop. 1].

If a sequence A = (A1,...,A,) is not a partition, then sy (E) is either 0 or
+s,(E) for some partition p. One can rearrange A by a sequence of operations
(..oyiygy..) = (..., 5—1,i+1,...) applied to pairs of successive integers. Either
one arrives at a sequence of the form (...,4,5+1,...), in which case s)(E) = 0,
or one arrives in d steps at a partition u, and then sy(E) = (—1)4s,(E).

Corollary 10. Let v and o be strict partitions of lengths k < g and h < r. It
follows from Eq.(3) that

Vyoa—kgor—nh (t) - |:n — k — h

Uy 00—k (£)Vgor—n (t) q—k
the Gaussian polynomial times (1 +¢)¢ where e is the number of common parts
of v and o.

Thus the theorem applied to the sequences A = 1097 % and p = 00" " yields
the following equation:

Jo-avor.

n—k—nh
w(I] @-wpp@ordsa) = | 5" 0 aror e, ©
i<q<j 1
We now consider the specialization t = —1.

We need the following property of Gaussian polynomials, which should be
known but we know no precise reference.

Lemma 11. Att = —1, the Gaussian polynomial

[a+b] 0

a
specializes to zero if ab is odd and to the binomial coefficient

( L(at;r/l;)J/ 2] )

otherwise.



Proof. We have

[a-i—b] (1) = (1—t)(1—¢t2)--- (1 —toth)
a A=t (=t (1 —t)---(1—tY) "

Since t = —1 is a zero with multiplicity 1 of the factor (1 — t9) for even d, and
a zero with multiplicity 0 for odd d, the order of the rational function [azb] (t)

at t = —1 is equal to

L(a+0)/2] — [a/2] = [b/2]. (7)

The order (7) is equal to 1 when a and b are odd, and 0 otherwise. In the former
case, we get the claimed vanishing, and in the latter one, the product of the
factors with even exponents is equal to

o @

The value of this function at ¢ = —1 is equal to [L‘Hb/%} (1) which is the

la/2]
( L(a+0)/2] )
la/2] )~
This is the requested value since the remaining factors with an odd exponent
give 2 in the numerator and the same number in the denominator.
The assertions of the lemma follow. O

binomial coefficient

Example 12. Suppose that xi,...,z, are independent variables. Consider
Schur P-functions Py(z1,...,z,) = Py defined as follows. For a strict partition
A= (A1 >...> X >0) with odd k&,

P\ = PA1P>\27~~~,)\1¢ - PA2P>\17>\3,~~,>\1¢ +ooe PAkP)\lwux)\k—l )
and with even k,
Py =Py 6Py, — PriasProa,ooae o F P Prooa -

Here, P; =) s,, the sum over all hook partitions x of ¢, and for positive i > j

we set
j—1

Py j = PiPj + QZ(_l)dedp%d +(=1)/ Py
d=1
(See also [9, IIT 8].) It was shown in [12, p. 225] that for a strict partition A of
length k&,

Py(x1,...,1p,) = Z w(mi\l-“xfg" H M) (8)

T — 1
WESy, /(S1)* X Sp_k i<ji<k " J

(see also [10, Appendix pp. 451-453], [9, Ex.1 p. 259]).



We have also, for a similar A, the following formula for a Hall-Littlewood
polynomial:

Py(z1,...,205t) = Z w(xi\l...xzn H Ltjﬂ) (9)

o T — X
WESn /(S1)F X S i< i<k

(see [9, (2.2) p. 208]).

We pass now to the notation from Eq.(6). It follows from comparison of (8)
and (9) that for the sequence A = v097% we have P\(Q;t)i=—1 = P,(Q); and
for = 00", we have P,(S;t)i=—1 = P,(S).

For \ € ZY, we set P := Py (E;t)i=—1.

Note that for ¢+ j > 0, we have P._; ;.= =P ji...

Thus Py gi—rgor—n = (*1)(q7k)h7)uaonfk*h = (71)(q7k)hlpua' .

If e > 0, then P,,(E) = 0; so we can assume e = 0 without loss of generality.

We now use the notation from Corollary 10.

Specializing t = —1 in Eq.(6), we get by Lemma 11 the following result.

We have

7 (eqr(Q ® S)Po(Q) P4 (9)) = duo Pua (E)

where d, , =0 if (¢ — k)(r — h) is odd and

o (L= k= m)2)
e = (1) k)h( (g —K)/2) )

otherwise.

This result was obtained originally in [11, Prop. 1.3(ii)] in a different way.
The present approach gives an explanation of the intriguing coefficient d,, ..

Suppose that A = (A1,..., Ax) is not a strict partition. If there are repetitions
of elements in A, then P, is zero; if not then Py = (—1)ZPM , where [ is the length
of the permutation which rearranges (A1, ..., Ax) into the corresponding strict
partition pu.

We thank Stawomir Cynk, Witold Kraskiewicz, Hiroshi Naruse, Itaru Terada
and Anders Thorup for helpful discussions, and the referee for suggesting several
improvements of the text.
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