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Abstract

In this note, we investigate the behaviour of the  Lojasiewicz exponent
under hyperplane sections and its relation to the order of tangency.

1. Introduction and statements of the results

It is well known (see [5, 6]) that any pair of closed analytic subsets X,Y ⊂
Cm (m ≥ 2) satisfies so-called  Lojasiewicz regular separation property at any
point of X ∩ Y . Precisely, for any x0 ∈ X ∩ Y there are constants c, ν > 0 such
that for some neighbourhood U ⊂ Cm of x0 we have

ρ(x,X) + ρ(x, Y ) ≥ c ρ(x,X ∩ Y )ν for x ∈ U, (1)

where ρ is the distance induced by the standard Hermitian norm on Cm. Note
that if x0 /∈ int(X ∩ Y ), where the interior is computed in Cm, then necessarily
ν ≥ 1 (see [2]). Also, observe that X and Y satisfy (1) with a constant ν ≥ 1
if and only if there exist a neighbourhood U ′ of x0 and a constant c′ > 0 such
that

ρ(x, Y ) ≥ c′ρ(x,X ∩ Y )ν for x ∈ U ′ ∩X (2)

(see [5, 1, 2]). Any exponent ν satisfying the relation (1) for some U and c > 0
is called a regular separation exponent of X and Y at x0. The infimum of
such exponents is called the  Lojasiewicz exponent of X and Y at x0 and is
denoted by L(X,Y ;x0); it is important to observe that the latter is a regular
separation exponent itself (see [14]). The number L(X,Y ;x0) is an interesting
metric invariant of the pointed pair (X,Y ;x0) which have been the subject of
vast studies in analytic geometry (see, for instance, the references in [14]).

The goal of this note is to investigate the behaviour of the  Lojasiewicz ex-
ponent under hyperplane sections. Precisely we show the following theorem.

Theorem 1. Let X and Y be closed analytic subsets in Cm, and let x0 ∈ X∩Y
such that L(X,Y ;x0) ≥ 1. Then for a general hyperplane H0 of Cm passing
through x0 we have

L(X ∩H0, Y ∩H0;x0) ≤ L(X,Y ;x0).

This theorem is a consequence of the following result, which is the main part
of the present work.
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Theorem 2. Let X be a closed analytic subset in Cm, and let x0 ∈ X. Then
for a general hyperplane H0 of Cm passing through x0, there exist a constant
c > 0 and a neighbourhood U of x0 such that for all x ∈ U ∩H0 we have

ρ(x,X ∩H0) ≤ c ρ(x,X).

Theorems 1 and 2 are proved in Sections 2 and 3 respectively. To con-
clude this paper, in Section 4, we also briefly discuss the relation between the
 Lojasiewicz exponent and the order of tangency for pairs of closed analytic
submanifolds of Cm with the same dimension.

2. Proof of Theorem 1

Without loss of generality, we may assume that x0 is the origin 0 ∈ Cm. If
ν is a regular separation exponent for X and Y at 0, then ν ≥ L(X,Y ; 0) ≥ 1,
and by (2), for some c′ > 0 we have

ρ(x, Y ) ≥ c′ρ(x,X ∩ Y )ν (3)

for all x ∈ X near 0. By Theorem 2, applied to X ∩Y , for a general hyperplane
H0 of Cm there is a constant c > 0 such that for all x ∈ H0 near 0 we have

c ρ(x,X ∩ Y )ν ≥ ρ(x,X ∩ Y ∩H0)ν .

Combined with (3), this gives

ρ(x, Y ∩H0) ≥ ρ(x, Y ) ≥ c′ ρ(x,X ∩ Y )ν ≥ (c′/c) ρ(x,X ∩ Y ∩H0)ν

for all x ∈ X ∩H0 near 0, so that ν is a regular separation exponent for X ∩H0

and Y ∩H0 at 0. Applying this with ν = L(X,Y ;x0) shows that

L(X ∩H0, Y ∩H0;x0) ≤ L(X,Y ;x0).

3. Proof of Theorem 2

It strongly relies on the Lipschitz equisingularity theory of complex analytic
sets developed in [7] by the second named author. Throughout, we always work
with Hermitian orthonormal bases {e1, . . . , em} in Cm, and the corresponding
coordinates x = (x1, . . . , xm). As in Section 2, we assume x0 = 0 and we work
in a small neighbourhood of it.

Let P̌m−1 denote the set of all hyperplanes of Cm through 0, with its usual
structure of manifold. The distance between two elements H,K ∈ P̌m−1 is the
angle �(H,K) between them, that is,

�(H,K) := arccos
|〈v, w〉|
|v| |w|

∈ [0, π/2]

where v and w are normal vectors to the hyperplanes H and K, respectively,
and 〈·, ·〉 is the standard Hermitian product on Cm (see, e.g., [13]).

Step 1. Let
X := {(H,x) ∈ P̌m−1 ×Cm | x ∈ H ∩X}.
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By Proposition 1.1 of [7], in a neighbourhood

U := {(H,x) ∈ P̌m−1 ×Cm | �(H0, H) < a and |x| < b}

of a generic (H0, 0), we have that X is Lipschitz equisingular over P̌m−1 × {0}.
That is, for any (H, 0) ∈ U ∩ (P̌m−1 × {0}), there is a (germ of) Lipschitz
homeomorphism

ϕ : (P̌m−1 ×Cm, (H, 0))→ (P̌m−1 ×Cm, (H, 0))

(with a Lipschitz inverse) such that p ◦ϕ = p and ϕ(X ) = P̌m−1 × (H ∩X) (as
germs at (H, 0)). (Here, p : P̌m−1 ×Cm → P̌m−1 is the standard projection.)
Actually, if h = (h1, . . . , hm−1) are coordinates in P̌m−1 around H0 such that

h1(H0) = · · · = hm−1(H0) = 0 ,

then, locally near (H0, 0), the standard “constant” vector fields ∂hj (1 ≤ j ≤
m− 1) on P̌m−1×{0} can be lifted to Lipschitz vector fields vj on P̌m−1×Cm

such that the flows of vj preserve X (see the proof of Proposition 1.1 of [7],
p.10). So, in particular, vj is a Lipschitz vector field of the form

vj(h, x) = ∂hj (h, x) +

m∑
`=1

wj`(h, x) ∂x`
(h, x),

so that vj(h, 0) = ∂hj
(h, 0) and there exists a constant c′ > 0 such that

|wj`(h, x)| ≤ c′ |x| near 0 (4)

for all j, `.

Step 2. Pick a point y0 ∈ H0. We want to prove that if y0 is sufficiently close
to 0, then

ρ(y0, X ∩H0) ≤ c ρ(y0, X) (5)

for some constant c > 0 independent of y0. Let y1 ∈ X be one of the closest
points to y0, that is, ρ(y0, X) = |y1 − y0|. If y0 ∈ X, then ρ(y0, X ∩ H0) =
ρ(y0, X) = 0, and the inequality (5) is obviously true. So, hereafter, we assume
that y0 /∈ X. Of course, without loss of generality, we may also assume that
|y0| < b and |y1| < b. Choose H1 ∈ P̌m−1 such that y1 ∈ H1 and �(H0, H1) is
minimal. If �(H0, H1) = 0 (i.e., if y1 ∈ H0), then again ρ(y0, X∩H0) = ρ(y0, X)
and (5) is true. From now on, let us assume that �(H0, H1) 6= 0. Then we have
the following lemma.

Lemma 3. If (H1, y
1) /∈ U (i.e., if �(H0, H1) ≥ a), then there exists a′ > 0

depending only on a such that

|y1 − y0| ≥ a′ |y0|.

In particular, since 0 ∈ X ∩H0, if (H1, y
1) /∈ U then we have

ρ(y0, X ∩H0) ≤ |y0| ≤ (1/a′) ρ(y0, X) (6)

as desired.
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Figure 1: Hyperplanes H0 and H1

Proof of Lemma 3. By a proper choice of the basis {e1, . . . , em}, we may assume
that H0 is defined by the equation xm = 0, so that em is orthogonal to H0. Now,
if xm =

∑m−1
`=1 q` x` is an equation for H1, then, clearly, for each 1 ≤ ` ≤ m− 1,

the vector E` := e` + q`em is in H1. Thus, if N =
∑m−1
`=1 u`e` + umem is a

normal vector to H1, then we must have 〈N,E`〉 = 0, and hence, u` = −umq̄`,
so that we can take N := −

∑m−1
`=1 q̄` e` + em.

Now, saying that �(H0, H1) is minimal means that

cos�(H0, H1) =
|〈N, em〉|
|N | |em|

=
1√

1 +
∑m−1
`=1 |q`|2

is maximal, that is,
∑m−1
`=1 |q`|2 is minimal. By adjusting the choice of the

basis, we may further assume that y1 = (y11 , 0, . . . , 0, y
1
m), so that its orthogonal

projection onto H0 is y2 := (y11 , 0, . . . , 0). As y1 ∈ H1, we have q1 = y1m/y
1
1 6= 0.

Thus,
∑m−1
`=1 |q`|2 is minimal if and only if q2 = · · · = qm−1 = 0. So, if�(H0, H1)

is minimal, then H1 is given by the equation xm = q1x1.
It follows that if �(H0, H1) ≥ a (assumption of the lemma), then we must

have
cos�(H0, H1) = 1/

√
1 + |q1|2 ≤ a1,

and hence |q1| ≥ a2, for some constants a1, a2 > 0 depending only on a. Now,
clearly, we may always assume |y0 − y1| < (1/10) |y0|. Thus, |y2 − y0| ≤ |y1 −
y0| < (1/10) |y0|, and hence,

|y2 − 0| = |y11 | > (9/10) |y0|

(see Figure 1). It follows that

|y0 − y1| ≥ |y1 − y2| = |q1| |y11 | ≥ a2 (9/10) |y0|,

and this completes the proof of Lemma 3.

Step 3. Lemma 3 solves the case where (H1, y
1) /∈ U (see (6)). Now let us

look at the case where (H1, y
1) ∈ U ; here comes Lipschitz equisingularity (see

Step 1). Let h1 = (h11, . . . , h
1
m−1) be the coordinates of H1. (Note that |h1| ≤

d·�(H0, H1) for some constant d > 0 independent ofH1.) Consider the Lipschitz
vector field v on P̌m−1 ×Cm defined by

v(h, x) := −
m−1∑
j=1

h1j vj(h, x)

= −
m−1∑
j=1

h1j ∂hj (h, x) +

m∑
`=1

(
−
m−1∑
j=1

h1j wj,`(h, x)

)
∂x`

(h, x),
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and look at the integral curve γ(t) = (h(t), x(t)) of v starting at (H1, y
1). So,

in particular, we have:

ḣj(t) = −h1j , ẋ`(t) = −
m−1∑
j=1

h1j wj,`(h, x),

hj(0) = h1j , x`(0) = y1` .

As the flows of the vector fields vj preserve X and since γ(0) ∈ X , the curve
γ(t) lies in X . Moreover, since hj(t) = h1j (1−t), we have hj(1) = 0 for all j, and
hence x(1) lies in H0. Finally, observe that the length LI(x) of the restriction
of the curve x(t) to the compact interval I = [0, 1] satisfies

LI(x) :=

∫ 1

0

|ẋ(t)| dt ≤ c1
∫ 1

0

m−1∑
j=1

(
|h1j | ·

( m∑
`=1

|wj,`(γ(t))|
))

dt

by (4)

≤ c2 |h1|
∫ 1

0

|x(t)| dt ≤ c3 |h1| |x(0)| ≤ c4 |y0 − x(0)|

for some constants ci > 0 independent of y0, H1 and y1. The first and third
inequalities are clear. The second one follows from the crucial relation (4) (i.e.,
from Lipschitz equisingularity). To show the last inequality, we may proceed as
in the proof of Lemma 3, exchanging the roles of H0 and H1. Namely, for a new
proper choice of the basis, we may assume that H1 is defined by xm = 0 and
that y0 = (y01 , 0, . . . , 0, y

0
m), so that the orthogonal projection of y0 onto H1 is

y3 := (y01 , 0, . . . , 0). As the angle �(H0, H1) is minimal, we may suppose that
H0 is given by an equation of the form xm = q1x1. Clearly, we may also assume
that |y0− y1| < (1/10) |y1|. Thus |y3− y1| ≤ |y0− y1| < (1/10) |y1|, and hence,
|y3 − 0| = |y01 | > (9/10) |y1|. It follows that

|y0 − y1| ≥ |y0 − y3| = |q1| |y01 | > |q1| (9/10) |y1|.

But we have

|h1| ≤ d ·�(H0, H1) = d · arccos(1/
√

1 + |q1|2) ≤ d′ |q1|,

where the constants d, d′ > 0 are independent of y0, H1 and y1. It follows that

|y0 − y1| ≥ 9

10 d′
|h1| |y1|

as desired (remind that y1 = x(0)). Now, by the estimate of the length LI(x)
given above, we have

ρ(y0, X ∩H0) ≤ |y0 − x(1)| ≤ |y0 − x(0)|+ |x(0)− x(1)| ≤ |y0 − x(0)|+ LI(x)

≤ (1 + c4) |y0 − x(0)| = (1 + c4) ρ(y0, X),

and this completes the proof of Theorem 2.

Remark. Note that the proof of Theorem 2 (and hence of Theorem 1) given
above only depends on the Lipschitz equisingularity theory of complex analytic
sets developed in [7] by the second named author. Real versions of this theory for
the semi-analytic and subanalytic categories were addressed by A. Parusiński
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in [9, 10, 11, 12] while the case of sets definable in a polynomially bounded
o-minimal structure was obtained by Nguyen Nhan and G. Valette in [8]. The-
orems 1 and 2 must then be true in these categories as well.

4. Remark on the  Lojasiewicz exponent and the order of tangency

To conclude this paper, we give a lower bound for the  Lojasiewicz exponent
L(X,Y ;x0) of two p-dimensional closed analytic submanifolds X and Y of Cm

at x0 ∈ X ∩ Y in terms of the order of tangency of X and Y at x0.
Following [4, 3], we say that the order of tangency between X and Y at

x0 is greater than or equal to an integer k if there exist parametrizations (i.e.,
biholomorphisms onto their images)

q : (U, u0)→ (X,x0) and q′ : (U, u0)→ (Y, x0),

where U 3 u0 is an open subset of Cp, such that

q(u)− q′(u) = o(|u− u0|k) (7)

when U 3 u→ u0. The order of tangency between X and Y at x0 (denoted by
s(X,Y ;x0)) is the supremum of all such integers k.

Observation 4. Let X and Y be p-dimensional closed analytic submanifolds of
Cm, and let x0 ∈ X ∩ Y . Suppose that s(X,Y ;x0) is finite. If L(X,Y ;x0) ≥ 1,
then

s(X,Y ;x0) ≤ L(X,Y ;x0)− 1.

Proof. Put s := s(X,Y ;x0), L := L(X,Y ;x0), and for this proof write Cm =
Cp
x × Cm−p

y where x = (x1, . . . , xp) and y = (xp+1, . . . , xm). As above, we
assume that x0 is the origin 0 ∈ Cm. In a neighbourhood of 0, the analytic
submanifold X is given by y = f(x) for some analytic function

f = (f1, . . . , fm−p) : (Cp
x, 0)→ (Cm−p

y , 0).

Similarly, Y is also the graph of an analytic function g, and without loss of
generality, we may assume that g = 0. Now, let s′ be the smallest integer k for
which there exists a multi-index α = (α1, . . . , αp) such that |α| = α1+· · ·+αp =
k and Dα(f − g)(0) 6= 0. Clearly, s = s′− 1. Each component fi has the Taylor
expansion

fi(x) = Fi(x) + o(|x|ri)

where Fi is a homogeneous polynomial of degree ri. Of course, we may assume
r1 ≤ ri for all i, so that r1 = s′. Consider the standard projection

π : Cp
x ×Cm−p

y → Cp
x,

and look at the hypersurface π(X ∩ Y ) = {x ∈ Cp
x ; f(x) = 0} of Cp

x. It is easy
to see that if L is a line through 0 which is not in the tangent cone of π(X ∩Y )
at 0, then

ρ(x, π(X ∩ Y )) ∼ |x|
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for x ∈ L near 0.1 Now, if F1 6= 0 on L, then for any x ∈ L near 0, we also have

|f1(x)| ∼ |x|r1 = |x|s
′

and |fi(x)| ≤ a |x|ri ≤ a |x|s
′

for some constant a > 0. It follows that for any (x, y) ∈ π−1(L) ∩ X =
{(x, y) ; x ∈ L and y = f(x)} near 0, we have

ρ((x, y), Y ) = |f(x)| ∼ |x|s
′

and ρ((x, y), X ∩ Y ) ∼ |x|.

Now, the  Lojasiewicz exponent L satisfies ρ((x, y), Y ) ≥ c ρ((x, y), X ∩ Y )L,
that is, |x|s′ ≥ c |x|L for some constant c > 0. Thus s′ ≤ L, and hence,
s = s′ − 1 ≤ L− 1.

Remark. We may also investigate the relationship between s := s(X,Y ;x0)
and L := L(X,Y ;x0) using Theorem 1 but this second approach only gives
the inequality s < L. However, for completeness, let us briefly explain the
argument. First, we consider the special case where x0 is an isolated point of
X ∩ Y . In this case, there exists a constant c′ > 0 such that

ρ(x, Y ) ≥ c′ ρ(x,X ∩ Y )L = c′ |x− x0|L for x ∈ X near x0,

or equivalently, ρ(q(u), Y ) ≥ c′ |q(u) − q(u0)|L for u near u0. Since q is locally
bi-Lipschitz, there exists a constant c′′ > 0 such that

c′ |q(u)− q(u0)|L ≥ c′′ |u− u0|L for u near u0.

Now, by (7), we have

ρ(q(u), Y ) ≤ |q(u)− q′(u)| < c′′ |u− u0|s for u near u0.

Combining these relations gives

c′′ |u− u0|L ≤ ρ(q(u), Y ) < c′′ |u− u0|s for u near u0,

and hence s < L.
The general case (i.e., dimX ∩ Y = n > 0) follows from the 0-dimensional

case and Theorem 1. Indeed, take n general hyperplanes H1, . . . ,Hn in Cm

passing through x0, so that X∩Y ∩H1∩· · ·∩Hn is an isolated intersection. Let
si (respectively, Li) denote the order of tangency (respectively, the  Lojasiewicz
exponent) of X ∩H1 ∩ · · · ∩Hi and Y ∩H1 ∩ · · · ∩Hi at x0. Clearly, (7) implies
si ≤ si+1 while Theorem 1 shows Li ≥ Li+1. (Note that since int(X ∩Y ∩H1 ∩
· · · ∩ Hi) = ∅, we have Li ≥ 1, so that Theorem 1 applies.) Now the relation
s < L follows from the inequality sn < Ln (0-dimensional case).

Acknowledgments. We warmly thank Tadeusz Krasiński and the referee for
valuable comments and suggestions which enabled us to improve the paper.
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