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Introduction

Numerical properties of degeneracy loci of morphisme of vector bundles are useful
tools in many problems concerning “enumeration” in algebraic geometry and
topology. The most typical is the following situation. Let E and F be vector bundles
of ranks n and m on a scheme X. Let ¢: F — E be a morphism of vector bundles.

The set:
D, (p)={xeX, rank o (x) = r}
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414 P. PRAGACZ

is called the degeneracy locus of rank r of @. D,(@) as a subscheme of X is locally
defined by the ideal generated by all {r+ 1)-order minors of @. In [T} Thom observed
that for a “general” morphism of vector bundles ¢: F — E, the fundamental class of
D,(©) should be a polynomial in the Chern classes of E and F independent of the
morphism o itself. This polynomial, generalizing Giambelli’s formula for the degree of
a projective determinantal variety, was subsequently found by Porteous (see [Po]).

D, (@]=Detc,_,. 1 (E-F)}, 1=p,gsm—r,

and was applied in numerous situations in geometry and topology.

For some geometric purposes, however, a deeper insight into enumerative properties
of degeneracy loci is required. For example, a study of the Chern numbers of degeneracy
loci and their Chow groups leads in a natural way to an investigation of the following
more general

Problem. — What are the polynomials in the Chern classes of E and F which describe
cycles supported in D, (@), in an universal way?

More precisely, let i:D{¢)—X be the inclusion map and Iet
(i) A (D {0)) = A.(X) be the corresponding map of the Chow groups (cf. [F). Let
Zle (A), c.(BY]=Z[c,(A), ..., ¢c,(A), ¢,(B), ..., c,{B)] be a graded polynomial Z-
algebra where degc,(A)=degc,(B)=k. Let #, be the ideal of all polynomials
PeZ[c.(A), c.{B)] such that for every morphism ¢: F — E of vector bundles of ranks m
and » on an arbitrary scheme X, and for every ae A (X)

P(c. (E), c.(F)) Noaelm(),.

Here ¢.(E), c.(F) denote the Chern classes of E and F. Of course the Giambelli-Thom-
Porteous polynomials describing the fundamental classes [D;(@)] for i < r belong to 2,
but they do not generate this ideal for r > 0.

In the present paper we give an explicit description of the ideal &, for every r. This
is done in Theorem 3.4. A proper language to achieve this goal is provided by certain
class of symmetric polynomials. Maybe it is in order to recall that symmetric polynomi-
als very often play a significant role in cohomological computations; they lead to a
description of cohomology rings of many important varieties and to discovery of import-
ant formulas in cohomology rings, as well (see [H], [M] and [F}). In our situation these
are the so called Schur S-polynomials which play a fundamental role in a description of
the ideal 22.. More precisely, we use a generalization of the usual Schur $-polynomials
depending on two sets of variables. The definitions and properties of these generalized
Schur S-polynomials are given in Section 1. Our new geometric applications of them
are based on their factorization property stated in Lemma 1.1, and on a certain formula
for Gysin push forward (see Proposition 2.2).

Let us notice that the ideal £, has a remarkable interpretation in elimination theory
as a generalization of the resultant. Let

A)=x"+ Y c(A)x""" B(x)=x"+
i=1

t

¢;(Byx™J
j=1
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ENUMERATIVE GEOMETRY OF DEGENERACY LOCI 415

be two polynomials in Z[c.(A), ¢.(B)][x]. Then the ideal of all polynomials
PeZ{c.(A), c.(B)] which vanish if A (x) and B (x), specialized to a field, have r+1 roots
in common, is equal to 2, (see [P,]). A geometric interpretation of this ideal allows us
to study its algebraic properties by methods of intersection theory, and especiaily of
Schubert Calculus. We obtain in this way a certain “‘small”, finite set of generators of
#, as well as a certain Z-basis of it (see Propositions 6.1 and 6.2).

The main Theorem 3.4 and methods used to prove it, allow us to give an
explicit ~ description of the Chow groups of universal degeneracy loci
(see Propositions 4.2, 4.3). Moreover, as a by-product of our considerations we obtain
a simple rule for the computation of the Chern numbers of kernel and cokernel bundles
(see Proposition 5.3) and an algorithm which gives the Chern numbers of smooth degener-
acy loci themselves. In particular we arrive at a closed expression for the Euler-Poincaré
characteristic of a smooth degeneracy loci in an arbitrary dimension (see Proposition 5.7).

For some geometric aims it is important also to investigate the two cases when F=E "
and @: EY ~ E is symmetric or antisymmetric (in the last case we assume that r is even
and that the subscheme structure imposed on D, (¢) is defined by the ideal generated by
all (r+2)-order subpfaffians of ¢). The formulas for fundamental classes of D,.(¢) in
these cases were found in [J-L-P]. If ¢ is symmetric and “sufficiently general”, then

[Dr((P)]=2n—rDet[Cn—r—2p+q+1(E)L 1 ép! qén_r‘

If @ is antisymmetric and “sufficiently general”, then
D, (@)=Detlc, 3,0 (B), 1Sp gsn—r—1.

A description of the ideal in Z[c, (A), ..., ¢,(A)], which corresponds to the ideal Z,
requires another family of symmetric polynomials. It turns out that a family of the so
called Schur Q-polynomials provides a good tool for investigation of symmetric and
antisymmetric degeneracy loci from the above point of view. These polynomials were
introduced by Schur in {Sch] in order to describe projective characters of the symmetric
group. Schur Q-polynomials satisfy the corresponding factorization property
(see Lemma 1.13) and, specialized to the Chern classes of some vector bundles, behave
nicely when pushing forward in the Chow groups of Grassmannian bundles
(¢f. Proposition 2.8). This, with some little modifications, makes it possible to carry out
in Section 7 the previous program in the case of symmetric and antisymmetric degeneracy
loci. To compute the Chern numbers of these loci we need formulas for the Segre
classes of the second symmetric and exterior power of a vector bundle. Such a formula,
involving Pfaffians and binomial coefficients, is given in Proposition 7.12.

Let us notice that Propositions 5.3, 5.7, 7.9 and 7.13 give an explicit answer to
questions left open in [H-T).

This paper is a unified and extended version of the author’s earlier preprints “Degener-
acy loci and symmetric functions I and I1”.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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INotations and conventions

SCHEMES AND CHOW GROUPS

The word scheme means in this paper an equidimensional algebraic scheme of finite
type over a field K.

The word point means always a closed point

If X is a scheme its Chow group graded by dimension will be denoted by A.(X), and

graded by codimension by A" (X). If a specification of the grading is not necessary, we
will write A (X).

If E is avector bundle over X then c,(E)- the Chern classes of E , 5(E) -
~ the Segre classes of E as well as polynomials in them are treated as
operators on A.{X). If X is smooth , then we treat these polynomials
as the corresponding elements in the Chow ring A'(X).

PARTITIONS

By a partition we mean a weakly decreasing sequence I=(i,, .. ., i,) of integers where
2 z...2i 20

Instead of (i, ..., {) (r-times) we will write (i)

If forsome k i, >i,>...0> iy =hyr=...=i,=0, then I will be called strict.

For given partitions I=(i,, ..., ), J=(, ..., j,), I £7J will denote the sequence
(i, * i, ..., i, £j) and I = J will mean that i, 5 j, for every k.

IfI=(iy, ..., 4), I={, ..., Jj) are two sequences of intcgers, then the juxtaposition
sequence (iy, .. .. i, jy, - - ., /) Will be denoted by T, 1.

The conjugate partition of a partition I, noted 17, is the partition {j,, j,, ...), where

Ge=card{h i, zk ).

r

Finally, for a given partition I its weight: Y i, will be denoted by |1| and its length:
k=1

card {k, i, 0} will be denoted by !(I).
1. Two classical families of symmetric polynomials

SCHUR S-POLYNOMIALS

Let A=(a,, ..., a)and B=(b,, ..., b,) be two sequences of elements of a commuta-
tive ring R. For a given sequence I=(i,, ..., i) of integers, the Schur S-polynomial

3¢ SERIE — TOME 21 — 1988 — N 3



ENUMERATIVE GEOMETRY OF DEGENERACY LOCI 417

5;(A; B} is defined as the determinant of the matrix
(I] [Sip—p+q(A; B)]e t gP, g g r

where 5,(A; B)eR is given by the following identity in R [[1]].

[[‘[ (1—ml.)]1 [1(=tb)=TY s.(A; B)¢*
i=1 i=1

k=0

and s,(A; By=01if k <0. By permuting the rows of the matrix (1), if necessary, we see
that each different from zero Schur S-polynomial is equal —up to a sign— to a
certain Schur S-polynomial indexed by a partition. Assume for a moment that I is a
partition. Notice that if b, =... =5, =0, then s;(A; B) becomes the “usuval” Schur S-
polynomial 5,(A) (cf [M], [L-S)), and if @, =... =ga,=0, then 5,(A; B)=(—1)!!!5,~(B)
where [7 is the conjugate partition of I. The following formula expresses s,(A: B} in
terms of usual Schur S-polynomials

2 5 (A; B)=Z(““1)“'““|31(A)Sl‘/1“(B)s

where the sum is over all partitions J, and s~ 4~(B) denotes the corresponding skew
Schur polynomial (see [M], 1.5). The formula (2) is a simple consequence of a general
A-ring caiculus. Recall that for every element x in an arbitrary A-ring one defines s (x)
as the determinant of the matrix

[5,-p+e))  1Spg=sr
where 5, (x)=(—1)*A*(—x) for any k. Then the following Linearity Formula holds
{3) Sl(x“y)=2("I)EIPHISJ(X)SI“;J“(y)a

where the sum is over all partitions J (see [M] Remark 1.5.3, and [L-S]). Let Sym({A)
be the ring of symmetric polynomials in A. Recall that Sym(A) has a natural A-ring

structure (see [M] Remark 1.2.15). Then in the A-ring Sym(A) ®,Sym(B)=Sym(A, B)

*
the formula (2) is a consequence of the formula (3) with x= Y a, y= Y b, )We refer
i=1 j=1
to [L-S] for the theory of Schur S-polynomials in the A-ring set-up. Another consequence
of the linearity formuia (3) is

(4) S[(A)=z 5;(A; B) SIIJ(B}'
1

Moreover, inspired by the notation in A-ring calculus, from now on we will use the
following more suggestive notation for Schur S-polynomials

(5) 5;{A—B)=g/(A; B).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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The following Lemma will be constantly used in this article.

Limma 1.1. — (Factorization Formula) Let I=(i,, ..., i} and J=(, ..., j,), j; S m
be two partitions. Then

St +1,) (A—B)=s5/(A) S(m)"(A —B)s5,(—B).

For a proof see [B—R] 6.20 or {L-8] 7.6.
For the partition (m)" we have the following expression of the corresponding Schur 8-
polynomial in terms of {q;} and {b;}.

LemmMa 1.2:

Semp(A—B) =[] (a,— b)), i=1,...,m j=1,...,m.
i

For a proof see for example [J-L-P] Proposition 3 or {L-§] 7.6.

If E and F are two vector bundles of rank n and m respectively then we define 5 (E—F)
as 5,(A —B) where Af{resp. B) is the set of the Chern roots of E (resp. F) (¢f. [F]
Remark 3.2.3 for this last notion).

By the splitting principle, Lemma 1.2 can be rewritten as

LemMa 1.3, — Let E and F be two vector bundles of ranks n and m on a
scheme X. Then ¢,,,(E® F”) =5, (E—F).

Remark 1.4, — The polynomials denoted here by s5,(A—B) appear in the literature
also under the names “Hook Schur functions” [B-R], “Super-Schur functions” or “Schur
bisymmetric functions™.

The reader who is interested mainly in the case of degeneracy loci associated with the
generic morphism ¢: F — E, can omit the next (sub)section in the first reading.

SCHUR Q-POLYNOMIALS

The rest of this Section will be devoted to description of another important family of
symmetric polynomials introduced by Schur in {Sch], which are less well known than the
Schur S-polynomials.

Let A=(a,, ..., a,) be a sequence of elements of a commutative ring R. Define
Q(tyeR [[f]] and g,(A)eR by

(6) Q=TI (1+ait)[ﬂ (l—a,-r)} =T q.(A)
i=1 i=1 k=0

and ¢,(A)=0 if kK <0. Thus for every k, q,(A)eR is symmetric with respect to
¢;, ..., a, For given nonnegative integers i, j define

Q. ;(A)=q;(A) q;(A) =244, (A) g (A +. .. +(_1)12Qi+j(A)-
Since Q1) Q(—1t)=1, we have for k > (0
3 (A)— ¢, (A) g (A)+q5(A) gz (A) + ... +(=1)* g, (A)=0

4° SERIE — TOME 21 — 1988 ~ N° 3




ENUMERATIVE GEOMETRY OF DEGENERACY LOCI 419

and therefore
Q, (A)=—-Q,; (A)fori,jz0and i+j>0.

In particular, Q; ;{A)=g;(A)=—Q, ;(A) if i>0. Finally, let I={(i, ..., i) be a
sequence of nonnegative integers. If  is even, we define the Schur Q-polynomial Q,(A)
as the Pfaffian of the antisymmetric matrix

(7 [Q,, , (A)] l=s<t=r

and if r is odd we put Q{A)=Qy, . ;. 0(A)
The following properties of Schur Q-polynomials follow from standard properties of
Pfaffians

LemMa 1.5, — (i) For any sequence 1=(i,, ..., i) of nonnegative integers,
Qiy. -t 0 . (A =Qu(A).

(ti) For any I=(i,, ..., i), Q;(A) is a symmetric polynomial in a,, ..., a, of degree
B i
(iii) For any nonnegative integers i, j such that i+j > 0

Q(..., i, j ...)(A)= —Q(...,j, i, ...;(A)-

In particular Q. , ., ,(A}=0fori=>0.

It follows from (iii) that the only nonzero Q-polynomials are given --up to a sign—
by u(A) where I is a strict partition, (e i{; >, > ... > > i, =...=i=0 for
some k).

Example 1.6. — q,(A)=27 s, (A), where the summation ranges over all hook partitions
k

I of length k. It follows from the formula (6) that g,(A)= Z 5;(A)s; k-1 (A). Then

i=0

Pieri’s formula for Schur S-polynomials (see [M] 1.5.17) yields the desired identity.

Assume for a moment that g,, ..., q, are algebraicaily independent over Z. LetI be
a strict partition. Then, by the (7) Q(A) is a sum of monomials of the form
zqy, (A). . . g (A), where zeZ and k,+ ... +k,=I(I). Therefore Example 1.6 implies
that there exists in Z[a,, ..., a,] a polynomial P;(A) such that Q;(A)=2'"P,(A). We
will call P,(A) the Schur P-polynomial and use it interchangeably with the Q,(A).

The following fact proved by Schur (see [Sch} p. 225) will be crucial for applications
of Schur Q-polynomials for our purpeses.

ProposiTioN 1.7, — Let 1=(i,, ..., i), kK £ n be a strict partition of length k. Then
the following equality holds
P{A)= Z W[ai]l ajzz- - 'a;(k n (ai+aj) (ﬂi—‘ﬂ;)ﬂ]:
weS /S X8, tgi<jsgn
isk

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



420 P. PRAGACZ

where for a given polynomial feZ [ay, .. .a,), wf(a,, ..., a,) means f(ay 1y -« dy )

For example,

p(i) (A] = Z ai ']—_[ (a.s+ as') (as_ as‘) N 1:

s=1 H 5

Pojy(A)= ¥ a1 &t b
i, 1 5 .

s,t=1 ag+as s Es dg— Ay vy Gp—dp

For the reader’s convenience we will give a proof of Proposition 1.7 in the Appendix
to this paper. Comparing Proposition 1.7 with definition 2.2 of the Hail-Littlewood
polynomials in {M] p. 104 we obtain

CoroLLARY 1.8. — Py(A) is a specialization of the Hall-Littlewood polynomial Pi(A, D)
Jor t= 1.

Let 1, J be partitions. Let Qy;(A;t) be the skew Hall-Littlewood polynomial as
defined in (M} IIL5. Define the skew Q-polynomial Q;(A) by

Qu(A)=Q(A; t=~1).

As a consequence of the formulas I11.5.2 and IIL5.5 in [M] satisfied by Hall-Littlewood
polynomials, we obtain

Lemma 1.9. -— (i) For any partitions 1, J Qy;,(A) is a Z-linear combination of the Schur
Q-polynomials Q(A).

(i) Let I be a partition and let A=(a,, ..., a,) B=(b,, ..., b,) be two sequences of
elements in a  commutative ring. Let A, B be the sequence
8y, ..., a, b, ..., b,). Then we have

Qi(A, B)=} Q,(A) Q,(B),

where the sum is over all (strict) partitions J.

For a given sequence A=(ay, ..., a,) of clements in a commutative ring we write
A"=(-ap ..., —a,) and {A}—for the multiset {a,, ..., a,}.

LeMMA 1.10. — Assume that {A}={A"}. Then Q;(A)=0 for every 1, J such that
[#1

Proof. — By Lemma 1.9 (i) it suffices to show that for every T Q(A)=0 if
{At={A"}. Since Q/(A) is a polynomial in the g,(A), k=1, 2, ..., the assertion is
reduced to showing that q,(A)=0 if {A}={A~}. But this follows immediately from
the formula {6). B

Let p, denote the partition (k, k—1, ..., 2, 1).

4° SERIE — TOME 2] — 1988 — ~°3
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Lemma 1.11:

Son I(A) H (ai+aj)a Spn(A)=Hai n (ai+aj)

i< i i<

(for example see [M] p. 31).

If E is a vector bundle on a scheme X, then by Q(E) (resp. P,(E)) we will denote
i (A) (resp. P(A)) where A is the set of Chern roots of E. By the splitting principle
the above Lemma can be rewritten as

LemMma 1.12. — Let E be a vector bundle of rank n on a scheme X. Then
Cop(S2 E)=2"5, (E), Cop(A’E)=s E).

The following factorization property of Schur Q-polynomials (and its proof) is due to
R. Staniey.

Pr-1 (

Lemma 113 ([St]). — Let A={ay, ..., a,) and let 1={i,, ..., i) be a partition. Then
Py erlA) =5, (A)5(A).

Proof. — By Proposition 1.7 we have
Pp,,-,H(A):Z W[ajllﬂmlaizz”Az- . *af;" H (a;+a) n (aimaj)_l}

weS, P j i<

=1 (@+a) 5 wlaa™ a2 ds [T (@—a) }=s,,_, (A)s(A).

[ we Sy E<

The last equality follows from Lemma 1.11 and the Jacobi definition of Schur polynomials
(see [M] (3.1) p. 24). B

COROLLARY 1.14:

Poo i (A) =5, (A), Q, (A)=2"5, (A).

2. Formulas for Gysin push forwards in Grassmannian and flag bundles

In this chapter E will denote a vector bundle of rank n on a scheme X and
n: G=G, (E) - X will be the Grassmannian bundle parametrizing the rank r subbundles
of E. Let 0 - R — Eg5 — Q- 0 be the tautological sequence of vector bundles on G, (E),
where rank R=r. Letting g=n—r we will also treat G as the Grassmannian bundle of
g-quotients of E and write G=G4(E). Let L J be partitions, (D) sr1(J )sq,

LemMa 2.1. — With the above notation, assume that g=1. Then for every vector bundle
Hon X, and any ae A(X)

1t [si(R—Hg)s;(Q—Hg) Na*a] =5, ,,, J(E~-HyNa

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



422 P. PRAGACZ

Proof. — Let £=¢ {(QQ). It follows from the identity
5;{(R—Hg)=s{Eg—Hg) —&s,_1 (Eg—Hg)

that
i gr-t
s (R —~Hg)= Si -t (Eq—Hg) Sfl(EG‘“HG) Cee Si;+n~2(EG_HG)

S -2{Eg—Hg) Sizmk(E"G_HG) 5i2+n«3(EG*HG)

It is well known that = (§%)=s,_,.,(E). Therefore by the linearity formula
T (5 (Q-He) =Y 5 (—H)n (EN=s, ,, (E~H). Since rkQ=1, we have also
§7s5;(Q—Hg)=s,,,(Q~Hg). Hence
7, (5 (R —Hg)s;(Q—Hg) N n*a)

Sjenet (E—H) s, ,(E-H) ... s;(E—H)

i (E-H) s (B=H) ... s, (E-H)[Na

=8jp+y (E-H}No B

An induction procedure described in the proof of Proposition 1 in [J-L-P] allows us
easily to generalize the above Lemma for any gq.

ProrosiTioN 2.2. — With the above notation, for every vector bundle H on X and any
acA(X)

7, [${ (R —Hg) s, (Q—Hg) N n*a}=s;_4 ((E-H) N

For 0 <k £n, let ©: FI*(E) =X be the flag bundle parametrizing the flags of
consecutive quotients of E of ranks k, k—1, ..., 2, 1. Let

E»Q-nQFlo. . QP!

be the tautological sequence on F [*(E). Define the line bundles L, ..., L, on FI*(E)
by L,=Ker(Q' = Q"!). Let a,=c,(L). In particular if k=n=rank E we obtain the
flag bundle FI{E) parametrizing the complete quotient flags of E. Recall that the
consecutive projections

FI(E) - FI(E) » G¥(E) » X

induce the following chain of injections of the corresponding Chow groups

(8) A(X) - A(G*(E)) = A(FI*(E)) - A(FI(E)).
Let A=(ay, ...,a,), A¥=(a,, ..., &}, A, ={&% 1 ..., a,). The sequence (8) allows
us to treat the following classes of polynomials : symmetric in A |

symmetric in A* and A,_, , and finally symmetric in A,_,, as operators

4¢ SERIE — TOME2]1 — 1988 — n°3



ENUMERATIVE GEOMETRY OF DEGENERACY LOCI 423
respectively on AlX)y , A(GYE) and finally on A(FIF(E) .

Using the presentation of FI{E)} as a composition of successive projective bundles and
the well known description of the Gysin push forward for a projective bundle (see
I.emma 2.1) one proves easiiy

LeMMa 2.3, — For ae A (X), the following equality holds (t=1"):
T, (g}t aizz- coarn T =8, nt1, igmnt2,....0 (B}

(see also [H-T] Proposition 2.3).

The following two Lemmas give some alternative formulas for Gysin push forward
for (total) flag bundie and Grassmannian bundle. We will prove only the first
formula. A proof of the second one is similar, and is left to the reader.

Lemma 2.4, — For any polynomial P in n variables and any ac A (X)

(9 L(Play, .. a)NT*W)= 3 w[P(ay, ....a) [] (@—a) ' INa
we S, i<j
Proof. — By the universal character of (9) it suffices to assume that X

is a Grassmannian , E is the tautological vector bundle on X, a= [X].
Then A (X) is the subring of A(FIE)) of all symmetric polynomials
in A. Denote the morphism A (FI(E)) — A (X) defined by the right hand side of
(9) byt Recall that T, is an A (X)-morphism and that a. . .a, i, S n—~k, k=1, ..., n
are generators of A (FI(E)) over A(X) (see [H]). Therefore it suffices to prove that t’
is an A (X)-morphism and 7' (a%. . . an)=1,(a. . .ap), i, Sn—k k=1, ..., n Indeed,
it follows from the definition of 1 that t(P,-P,)=1(P,}-P, if P, is symmetric
in A. Furthermore, 7" sends a polynomial P to a certain polynomial of the degree
n(n—i)/2less than the degree of P. In particular ' (a%...adm=0 if i Tn—k,
k=1, ...,nand i, < n-~k for some k. One checks readily that t(a} '...a,_;)=1.
But by Lemma 2.3 the same equalities hold with t, used instead of v. B

LemmMa 2.3, — With the above notation the Gysin morphism =, A(G*(E) — A(X) is
induced by the following operation on polynomials

Pla, ...,a)— Y w(P(ay, ...,a) J| (a—a)™")

w e Sp/Sk X 8p—g i g
i

A
A

1
k+1 £ jsn

As a consequence of these two facts we have

Lemma 2.6. — With the above notation the Gysin morphism % : A(FI*(E)) —» A(X) is
induced by the following operation on polynomials

Play, ..., a,)— Y wlP{a,, ..., a) ] (a;—ap ')

w e S /(S1)* X Sp—p 1z n

A

i<j
ik

Proof. — The flag bundie t*: Fi*(E) - X can be presented as the composition
K Qg "
™ FHQ - G*(E) =X

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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where Q is the tautological quotient vector bundle of rank k on G*(E). Therefore the
assertion follows from a presentation of 1:’; as the composition

(zg} 7
% AFFE)=A.(FI(Q) > A(G*E) 3AX)
and from Lemmas 2.4, 2.5. B
Proposition 1.7 combined with Lemma 2.6 gives

CoROLLARY 2.7. — For every strict partition 1=(i,, ..., i) of length k where k < n,
and for any ac A (X)

P(EyNa=t, faf...ax ] (@+apNn@EH*a

The following fact extends the main calculation in [J-L-F].

ProrosiTiON 2.8. — With the above notation, for cvery strict partition T=(iy, ..., i) of
length = q— 1, and for every ae A (X)

Ty [Cop (R ® Q) P (Q) M n* o] =P (E) M .
Proof. — Observe that if /{1)=g or g— 1, then by Corollary 2.7, for Be A (G*(E)
PN B=(TQJ*[‘3£11- . -a;‘f H (ai+aj)m(TQ)* Bl

tsi<jsaq
Indeed, 14 ! =14 =1, Therefore we have
Q o=Tq

TC* [Ctop (R ® Q) PE(Q)n T[* Q}
=, (tluday. - ap  []  (@+a)(19* (RO QN ()

(by the projection formula for 1)

=(19),[ay...ay ]  (a+a)NE*y

1si<js
E£q
(by the splitting principle for R ® Q)
=P (E) N« (by Corollary 2.7). B
Remark 2.9. — The results in this Section were stated and proved for Chow

groups. They remain valid, however, also for other (coJhomology theories — in particular
for complex manifolds and singular cohomology. The proofs are the same.
3. The ideal of universal polynomials describing cycles supported in a degeneracy locus

Let us fix integers m >0, n>0and r Z0. Let @: F—E be a morphism of vector
bundies on a scheme X. Assume that rank E=n, rank F=m. Consider the degeneracy
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locus

D,{0)={xeX, rank ¢ (x) < r}

where a subscheme structure is determined by the ideal gemerated by all (r+ 1)-order
minors of ¢. The aim of this chapter is to study the following set 2, of polynomials in
the graded polynomial Z-algebra

Z[c-(A), c.(B)]=Z[c, (A), ..., c,{A), ¢, (B), ..., cn(B)],

where ¢, (A), ..., ¢, (A), ¢;(B), ..., ¢,(B) are two sets of independent variables and
degc, (A)=dege {By=k for cvery k. Let i:D,{(p)—> X be the inclusion, and Ilet
(i)y: A.(D,(9)) = A.(X) be the induced push forward map of the Chow groups. Define
2, to be the set of all polynomials PeZ{c.{A), ¢.(B)] such that for every morphism
¢: F—E of vector bundles on an arbitrary scheme X (rank E=n, rank F=m), and
every ae A, (X)

P(c,(E), ..., ¢,(E), ¢, (F), - .., ¢, (F)) Naelm(i),.

(¢ (E), ¢ (F) denote here the k-th Chern classes of the vector bundles E and F). It is
not difficult to see that 2, is an ideal in Z[c.(A), ¢. (B)].

We start with a computational Lemma which will be frequently used in this work. ILet
E, F be two vector bundles on a scheme X of ranks n and m respectively. Let
Rg: G,(E) = X (resp. np: G'(F) — X) be the Grassmannian bundle parametrizing r-sub-
bundles of E {resp. r-quotients of F). Moreover, let

0-RY —Eg, Q™" -0

0- R Fer g~ QF -0

be the tautological sequences on G,(E) and G'(F) involving bundles of the indicated
ranks. Consider the following product of Grassmannian bundles

"B

rp X1
n: G=G'(F) x y G, (E) —— G, (E) = X.

In the sequel instead of (Rg)g, (Qflg, - - -, we will write Rg, Qg, . . ., for short,

LEmMA 3.1. — For any partitions 1, J such that I(I) S n—r, 1(J) S m—r and any
ae A (X) the following equality holds

ﬂ* [S] QE SJ( _RF] C\op (Hom(Fa E)G/M(QF’ RE)) m * D"I'] =S(m-r)"lr+l. J (E“F) m a.

Proof. — First, let us record the following simple consequence of Proposition 2.2. For
every vector bundle H on X and every pe A (X) we have

(10) (T[F)* Som—ryr, 1 (Hgr (F)_RF) MyngBl=s,(H-F) N B.
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Indeed, G"(F) is isomorphic to the Grassmannian bundle =y : G,(F¥) - X. The tauto-
logical exact sequence on G, {(F") can be written as

0-Qf —chV;r(Fv)—-)RI:-’ - 0.

Then we have

(e [Semry 3 (Hgr iy —Re) M B
=g ) [~ 4y (RE —HE pv) N(ng)* B
=5~(F'—H")NPB  (by Proposition 2.2)
=s5;(H-F)M B

and (10) is proved. Next, notice that in the Grothendieck group
[Hom(F, E)g/Hom (Qr, Rg)l=[Rf ® R+ ®@ Qg
Therefore we have to evaluate

T [51 Qe 8 (-~ RE) Ciop (RF @ Rp) €0 (FY @ Q) Mim* o]
=Ty [8 Qi (=R} Sy (Re—Rg) $gyn-—r (Qe ~F) M w* 0
(by Lemma 1.3)
=Ty [Sem-rr,s (Rg—Rp) Sp-r . (Qe —F) N w* o
(by the factorization formula)
=(ng)y [5; (Rg—F) 5-r  (Qg ~F) N mf o]
(by (10))
=Spppp-rap  (E—F} Na
(by Proposition 2.2 applied to ng). B
ProrosiTion 3.2, — Ler 1,J be two partiions such that () S n-r,
IJ7) =m—r. Then the Schur S-polynomial s, _n-r. (A —B) belongs to #,.

Proof. — Let @: F - E be a morphism of vector bundles on a scheme X, where rank
E=n, rank F=m. Preserving the above notation, consider the following geometric
construction. The morphism ¢ induces the section s, of Hom(F, E) and thus the
section 5, of the vector bundle Hom(F, E)g/Hom{Qg, Rg) on G.  Let Z be the subsch-
eme of zeros of 5. It follows from the definition of Z that the restriction p of n to Z
factorizes through D, (¢); in other words we have a commutative diagram of schemes

Z - G
(11) ITREE
D)= X

ir
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where i, is the inclusion. Let P=P(E, F)=s,,.,-r. ;(E—F). To see that
PMaelm(i), we can pass to generic case. Let X =Hom(F, E) and denote by p: X = X
the canonical projection. Recall that there exists on X the canonical {tautological)
morphism ¢: F - E where E=Eg, F=Fz and we have D,(¢) = X —the corresponding
degeneracy locus. The morphism ¢ induces a section $o: X =X such that pes,=id,
(s)*(E}=E and (s,)*(F)=F. Thus s*[P(E, F) Np*a]=P(E, F)Na Now from the
cartesian square

D,{0}> X
I
D,(p)» X

b

we obtain the commutative diagram of the Chow groups (cf. [F] TurorEM 6.2 (a))

A.(D,(H) > A.(R)
l (ip)s l(!@)'
A-(Dy(0)) = A.(X)

In particular we infer that P(E, F) M p* aeIm (i}, implies P(E, F}) N acIm (i,),. There-
fore we can assume that the morphism ¢: F — E in question is generic in the above
sense. But, then by looking at the local coordinates we see that codimg, (Z) =mn—r?
and thus

(12) (i)x [2]= ¢1op [Hom (F, E)o/Hom (Qp, Re] N [G].

Now, let 2 A(X). Since the diagram

AlZ) ->AG)
{ir),
°, R

A(D, (@) = A(X)

(i),

of the Chow groups is commutative (see [F] chap. 1) the Proposition will be proved if
we find elements z; e A (Z) such that &, (i), (z, ;) =P(E, F) "\ a. Indeed, for the element
Peziy in A(D, (), we then have (i), (p,z )=P(E, F)\a Define 7, as
()* s, Qs { ~Rg) Mc*a). We have

Ty (i;)* (21, ) =1, (i), {(’;)* [5Qgs;(~Rp) M w* 0‘}}
=Ty {51Qgs;(—Ryp) Ciop fHom (F, E)g/Hom (Qy, Rg)] N n* o}

by the projection formula for i and by (12). The final assertion now follows from
Lemma 3.1. B
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Remark 3.3. — Let M,, . ,(K) be the affine space of m x n matrices over a field K. Let
D, = M,,,(K) be the determinantal subscheme of matrices of rank <r Then the
construction (11) is a desingularization of D,. The morphism p restricted to
p ' (D,~D, _,) is an isomorphism; if we identify M, ., (K} with Hom (K™ K", then the
inverse morphism to p on D,—D,__| is given by f+—(f, K" = Im f, Im f 5 K").

Assume that A=(a,, ..., a,), B=(b,, ..., b,) are two disjoint sequences of algebrai-
cally independent elements over Z. Let

L. (A), c.(B)]=Z[e,(A), ..., ¢, (A), ¢ (B), ..., ¢, (B)]
be a graded polynomial Z-algebra where degc, (A)=degc,{B)=k. The assignment

¢, (A) > (k-th elementary symmetric function in A)

and likewise for ¢, (B), defines an isomorphism Z[c.(A), ¢.(B)] 3 Sym(A, B) and allows
us to treat #, as an ideal in Sym{A, B).

The main result of this paper is the following

THEOREM 3.4. — The ideal #, of Sym(A, B) is generated by Schur S-polynomials
5 (A —B). where I ranges over all partitions such that 1 > (m—r)"™"

Let us denote by .#, the ideal of Sym (A, B) generated by all Schur S-polynomials
5i{A—B), where I o (m—r)""". T

First we prove that #, < 2. It suffices to show that the Schur S-polynomials
Sym—in ity ) (A~B) belong to #,, where i=0, ..., rand {D) £ n—i, I{(J"YEm—i. By
Proposition 3.2 5., _,n-i.; ;(A—B) belongs to 2. Since clearly #, < 2, i=0, ..., r,
the assertion follows,

Now we will prove that #, < .#,. Consider the following situation. Let V, W be
two vector spaces over a field K. Assume that s=dim (V) > m, w=dim (W) > n. Let
G"=G™(V) be the Grassmannian of m-quotients of V and let G,=G,(W) be the
Grassmannian of n-subspaces of W. Let Qf be the tautological m-quotient bundle on
G™ and let Ry, be the tautological n-subbundle on G,. Finally, let

(13) X=X, ,=Hom((QPsm~s, (RWanxg,), F=F, ,=(QV)x, E=E, ,=(Ry)x.

We have on X the canonical (tautological) morphism ¢: F—>E. Let D, =D, (», w)
denote the degeneracy locus D,(p). Observe that by Thom isomorphism (see [F]
Theorem 3.3) we have A'(X) =~ A'(G™"xG,) because X is a vector bundle on
G"x G, Let us notice two features of this situation.

). The morphism ¢ is given locally by m x n matrix of variables.

2). By Schubert Calculus all elements of the form s(E)-s{F), {(H) £ m, I(I) < n are
non-zero for v, w > 0, and every finite set {5, (E}-s; (F),. .., s, (E}s, F}, (I, J,) # (I, J)
if p # q, becomes a family of Z-linearly independent elements for v, w » 0.

Let #,(E, F) be the ideal in A(X) generated by all Schur S-polynomials s (E—F)
where [ = (m—r)"~".  Our aim is to prove the following
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ProposiTioN 3.5, — For the degeneracy locus D,=D, (v, w) described above and for any
v>m, w>n, we have Im (i), =% (E, F).

Notice that this Proposition implies that #, = .#,. Indeed, the property 2) of the
construction (13) guarantees that letting v, w — o0, we do not lose any of the polynomials
from £, in this counting,

We recall the following fact

LemMa 3.6.— Let i: H g H be a monomorphism of vector bundles on a
scheme Y. Then the following two exact sequences are isomorphic

A’ (H) A(H->A(H-H)-0
R
AYY)y ——— A (Y) - A (H-H) -0
Clop (H/H'Y 1 =
Proof. — The assertion follows easily from the Thom isomorphism

A'(H)~A(H) = A'(Y), from the self-intersection formula i*i, (h)=c,, Ny(H)-h,
where he A (H'), and from the well known identification Ny(H") = (H/H)y. B
In particular the exact sequence

A(Zero section of H) — A (H) — A (H-Zero section of H)

can be identified with

A(X) —— A{(X)— A(H-Zero section of H) — 0.

cppH M —

The following Lemma will be frequently used in this paper

Lemma 3.7. — Let D=D, oD, , = ... 2D, 2D, = D_, = be a sequence of irre-
ducible and closed subschemes of a scheme D over a field K. Let n: Z — D be a proper,
surjective morphism of schemes. Assume that for every k=0, .. ., r there exists an open
covering {Ut}, .o of D,—D,_, and a scheme G,, such that for every aeA, n~ (U} is
isomorphic to U*xG,, and the restricted morphism =: n” ' (UY > U% is equal to the
projection Uk x G, — Uk onto the first factor. Then the induced map n,: A.(Z) > A .(D)
of the Chow groups is surjective.

Proof. — Let Z,=n"'(D,), k=0, ..., r. There is a commutative diagram
A(Ze-y) - AZY) - AL-Z.-,) -0
,l,("'Zt—l]‘ l(nlzk}_ l(ﬂlzk_zkml)_
A(Dey) - AADY —- A.(D—Di-y)
with exact rows (the commutativity of the diagram on the right hand side follows from
[F] Proposition 1.7). By a diagram chase we see that 1t suffices to prove that

(7 |Zk"Zk-1)* is surjective for k=0, ..., r and induct on k. Write D° for D,—D, ., and
n for m|g_z ,:Z,~Z,_,—>D° Choose an open subscheme U in D°® where
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n: =~ {U) - U is equal to the projection p: Ux G, —» U. Similarly as above, there is a
commutative diagram with exact rows

A D -U) »A.(Z—Z,. )= A.(x"'(U) -0
l(RIDO—U}, iﬂ‘ l(nl,(“l. (U))t

A (D-1) - A(DY - A.(U)

By Noetherian induction, i. e. repeating the process on D°—U, we can assume that the
left vertical map is surjective. Then the assertion follows by a diagram chase, because
the surjectivity of (n|n—1w}} « =Pyt A (UxG) —A.(U) is obvious. This proves the
Lemma. &

The proof of Proposition 3.5 will be carried out in such a way that as a by-product
we obtain a certain finite set of generators of #,. The following construction will lead
to a particularly simple set of generators of #,. Recall that to a given morphism
©: F -+ E of vector bundles on X one can associate the following geometric construction
(¢f. [J-L-P] or [F] Ex. 14.4.10).

Z=Zeros(Fg - E;—»Q - G=G,(E)

(14) s ’ J»
D, (9) —— X

Here i, is the inclusion, n is the canonical projection and p is the restriction of m to
Z. Let us apply the construction (i14) to the generic situation (13). Let U® where
a=(a, ...,%), 1o, <...<as<m and U, where B=(B,,...,B)
1 £h, < ... <P, = nbe the standard coverings of G™(V) (respectively of G,(W)) which
trivialize the bundles Qy and Ry, Let A be the set of all pairs {«, f) with o and B as
above. For (a, B)eA define U, 4, as the inverse image of U* x Uy with respect to the
projection X - G™(V) x G_(W). Let

D=D.oD,. ,>...2D;5D,2D._ =
be the sequence of determinantal varictics. Define an open covering {Uf, Bl
k=0,1,...,r, (2 P)eA of the variety D,—D,_, by Uf 5=U, 5N (D=D,_,)

Then p~ ' (U}, 4)=Uf, 5 X G, (K"). Since the assumptions of Lemma 3.7 are satisfied,
we infer

Lemma 3.8, — With the above notation, the induced map p,: A (Z) - A .(D,) is surjec-
tive.
Consider now the commutative diagram of the Chow groups, induced by (14)

A2 AL
(15) Le. 15
A(D) A (X)
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This diagram can be treated as a commutative diagram of A (X)-modules. Indeed A (G)
is a (free) A(X)-module by the Schubert Calculus for Grassmannian bundles (cf. [F]
chap. 14); then the Gysin morphism (£)* aliows to define a A (X)-module structure on
A (Z) in such a way that (i;), is a A (X)-morphism because of the projection formula
for i, Lemma 3.8 and the commutativity of the diagram (15) imply

Lemma 3.9, — Im(i), ==, [Im(i),].

In order to compute Im (i), we will describe now the geometry of Z in an explicit
way. Recall that Z is the scheme of zeros of the section 0 — F ® Q induced by the

L
composition: Fg = E; = Q. We can identify G=G,(E) with the vector bundle

H=Hom [(Q¥)gm ¢ i (Ri)gmxr 1,,,.]

on the scheme G™x FI, | (Fl, ,=F1 (W) is the scheme parametrizing flags of subspaces
in W of dimensions » and n). Under this identification the subscheme Z = G becomes
the subbundie

H'=Hom {(Q¥)gnm ¢ b (Rwamxry, )

Therefore the exact sequence

(16) A(Z)(i—');A(G)—-»A(G—Z)aO
is equai to
(17 A(H’)u—'l'A(H)wA(H—H’)—»O.

By Lemma 3.6 the exact sequence (17) corresponds via Thom isomorphism to the
sequence

Crop (H/H) 1 =

A(Y) ——— A(Y)—> A(H-H") =0,
where Y =G™xF/_, and

H/H' =(Q0)m s, , ® (RE/Ri)gmars,

Therefore, by expressing the assertion of Lemma 3.6 in terms of the exact sequence (16)
we infer the following fact.

Lemma 3.10. — Im(i}), is a principal ideal in A (G) generated by c,,,(F¢ ® Q).

LemMMA 3.11. — The A(X)-module n [Im{i;),] is generated by Schur S-polynomials
Som—pn=r+1 (E—F) , where L < (r)"7".
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Proof. — By the Schubert Calculus for Grassmannian bundles the A (X)-module A (G)
is generated by 5(Q) where [ = (r)"™". Since ¢, (F§ ® Q) =5(yn-r{Q~Fg), the A(X)-
module Im (i), is generated by s,,»-r.1(Q-Fg), where [ < (#)"™", by the factorization
formula. The assertion now follows from Proposition 2.2. &

Finaily, Lemmas 3.9 and 3.11 imply Proposition 3.5. This finishes the proof of
Theorem 3.4.

Remark 3.12. — It is possible to give a more “down-to-earth” proof of inclusion
#, « #, by showing by induction on r that in the generic situation (13) a somewhat
weaker assertion holds: if », w> 0, then Im(i), =.#,(E, F). We will demonstrate this
alternative method for a symmetric morphism in Section 7.

CoroLLARY 3.13. — Consider the generic situation (13} where m=n , n=s+1. Then
Imi}, is generated by all Schur S-polynomials s;(E—F), where 1 ranges over all partitions
of positive weight. By the linearity formula (4), we easily see that Im (i), is also generated
by the elements of the form s,E—s,F, where 1 ranges over all partitions of positive weight.

4. Chow groups of determinantal schemes

As a by-product of considerations in Section 3, we will obtain here an explicit descrip-
tion of the Chow groups of determinantal schemes.

Let M=M,,.,(K) be the affine space of mxnr matrices over a field K. Let
D, =M, (K)=Homg(V, W}, where V=K" W=K" be the determinantal subscheme
determined by the vanishing of all {r+1)-order minors. Before going further
we recall the following fundamental fact from Schubert Calculus. Let
g;=(0,...,0,1,0,...,0),i=1, ..., n, be the standard basis in K". For each sequence

13

e=(ty, ..., 0) where 0 <o, < ... <o, =n let A; be the space spanned by ¢,, .. .,
e, and let Q(o)={LeG,(K", dim(LMNA) =i 1<i<r},. Then the fundamental

clélsses of Q(a), 0 <o) < ... <o =nform a Z-basis of A.(G,(K")). Let Q'() be the
subset of all linear homomorphisms f of rank r in D, D, _; such that Im (/) eQ(a).

LEmMMA 4.1. — Assume that m = n. Then the assignment [Q(x)]+ [ (0)] defines an
isomorphism of A" (G,(K™) and A" (D,-D, _,).

Proof. - 1t is not difficuit to see that the map D,—D,_; - G(V) x G, (W) such that
fr—=(V/Ker f, Imf) is a locally trivial fibration with the fiber isomorphic to
GL(r, K}. More precisely, it defines an isomorphism

D,-D, ,~X-D,_;(p)

where for G=G"(V)xG, (W) and F=(Q%)g E={(Ry)s X denotes the bundle
Hom(F, E)on G and ¢: F— E is the tautological morphism on X. It follows from
Corollary 3.13 that

A(X=D,_ () = A(G)/F
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where # is the ideal in A" (G) generated by all elements of the form 5(E) —5;(F), where
ili 2 L. By Schubert Calculus A (G) is isomorphic to Z[c. (E), ¢.(F)] modulo the ideal
generated by s, E, [ ¢ (n—r) and 5,F, J & (m—r). This implies that the ring A (G)/ #
is isomorphic to Z[c.(E)] modulo the ideal generated by s,(E), I ¢ (n—~r) i. e. isomorphic
to A(G,(W)). Therefore A"(D,—D,_,) can be identified with A" (G (K") via the
isomorphism described above. B

In above notation let Q{x) be the closure of Q(a) in D,
PrOPOSITION 4.2, - Assume that m = n. Then the assignment [Q (0] [Q ()] defines
an isomorphism of A (G,(K") and A (D,). In particular for every k, AYD) ~® Z, the
I
sum over all partitions 1 = (ry""", |1|=k.

Proof. — Apply the geometric construction (14) to the above situation. Recall that
Z = G, (W) is the subscheme of zeros of the section '

G, (Wy) — Vé,. (W) ®Q

where Q is the tautological quotient bundle on G,(W,,). Therefore we can identify Z
with the vector bundle Hom(Vg w, Ry on the Grassmannian G,(W). In particular
A’ (Z)=A"(G,(W)) by Thom isomorphism. Moreover, by Lemma 3.7 the induced map
Py A(Z) > A (D) is surjective. The Proposition now follows from Lemma 4.1 and the
chain of surjections

A(Z)~A.(D)SA(D-D,_) ®

This result can be generalized in the following way. Let E and F be two vector
bundles of ranks » and m, on a scheme X. Let D, « Hom (F, E) be the r-th universal
(tautological) degeneracy locus. Then, using the Schubert Calculus for Grassmannian
bundles {see [F] chap. 14) and repeating previous arguments one proves

ProrosiTioN 4.3. — Assume that m =n.  Then
A'(D)=~A (D,—D,_,)~ A (G,(E).
In particular, for every k, A¥(D,) ~ A¥(D,—D,_,) = @ A*1"(X), the sum over all
1

partitions 1 < ()" ™", || < k.
For example, if E, F are trivial we get A*(X x D,) = @®A*~111(X), the sum as above.

5. Chern numbers of kernel and cokernel bundles, Euler-Poincaré characteristic of smooth
degeneracy loci

For the purposes of this chapter we assume that E and F are C® complex vector

bundies on a complex manifold X. Let ¢: F - E be a morphism of vector bundies

on X. Assume that rank F=m, rank E=n. The morphism ¢ induces the section
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sq,eH"(X, Hom(F, E)). Let D, be the universal (tautological) degeneracy locus of
rank r in Hom(F, E). We say that ¢ is general if s, is transversal to D, for all
r=0, ..., min(m, n)—1, For the rest of this section ¢: F > E will always denote
a general morphism of vector bundles. The morphism ¢ has rank exactly r over
D.(0)—D,_, (@), so we may define its kernel and cokernel bundles over D,(p)—D,_, (©)
by the exact sequence

Of course rank K=m—r and rank C=n—r. Suppose D,_,(p) is empty. Then
D, (¢) is smooth because it is isomorphic to the transversal intersection of the section Se
with the universal degeneracy locus D,~D,_; in Hom(F, E) which is known to be
smooth (see [G-G]). Moreover the (complex) codimension of D, (@) is (m—r)(n—r). In
this chapter we use the usual singular cohomology groups H (—)=H (-, Z) rather than
the Chow groups. In particular G@y¥: H(X)-H (D, (o) (resp.
{(i,),: H (D,(9)) — H (X)) denotes the multiplicative (resp. additive push forward) morph-
ism associated with the inclusion i,: D,(¢@) - X. Recall that the formula for Gysin push
forward of cycles established in Lemma 3.1 remains true in the category of complex
manifolds and C® complex vector bundles.

LeMMA 5.1. — In the above situation, let 1, J be two partitions such that I(I} S n-—r,
IJ™YEm-—r. Then for aeH (X)

(ir)* [SI(C) ’ SJ( _K) ’ t;k U.] 1m'S(m—r)"_"-i'l,J(E'""F) e

Proof. — Consider the geometric construction (11):

zZ 5 G
$° "
D,(¢) > X
described in Proposition 3.2. Recall that n: G=G"(F) x 3y G,(E) = X is a product of
Grassmannian bundles and that Z is the set of zeros of the section of the bundle
Hom (F, E)g/Hom(Qy, Ry), induced by s, Since D,_, (@)=, p establishes an iso-

morphism D, () >~ Z, This isomorphism aliows us to identify K with (i))*(Ry), C with
(i)*(Qg) and i, with ifex. Therefore by the projection formula we get

()4 [5i (O s, (= K) - i¥ e} =m, (i), {(0)* [5(Qp) " 5, ( —Ry) - m* ]}
=1, (51{Qe) 8;(—Rp) (N [Z) n* 0} =5, -y s (E—F) -0,

where the last equality follows from Lemma 3.1 (¢f. Remark 2.9). E

Remark 5.2. — Assume that i: D — X is a complex submanifold, say with connected
components DY, .. ., D, then the push forward map

i,: H?(D, 2)=2%° > H"*(X, Z)=Z
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assigns to (zy, ..., z) in HP(D, Z} the sum: ) z, in H'P(X, Z). Therefore for a

i=1

given vector bundle E on D the Chern number [[¢,(E)y*N[D]= Y []c:{(E)*N[DY,

i=1 i

where Y io;=dim D, may be written as i*(n ¢;(E)*). The same remark applies to the

1

Chern numbers of the submanifold D itself. However, since i,: H(D, Z) - H (X, 7)
is not usually injective it may be not possible to invert i, to get the Chern classes of E
and D. In [H-T] an example is given, which shows that the Chern classes of K are not
in general restrictions of polynomials in the Chern classes of E and F.

Let us fix integers oy, a,, ..., o,., =0 (resp. By, Bss - - -5 Bu—yr = 0). Define nonne-
gative integers »; (resp. m;) by the formula

[TeACy =Y n5(C) (resp. [T c;(K)Pi=Y m,s,(K)).
i 1 Ji ]

The numbers n, can be evaluated from Pieri’s formula (see {M]L5.17), and if
a=(ay, ..., &,_,) is a partition, they are the Kostka numbers K~ , in the notation of
[M] L6. The same remark applies to the m,.

Lemma 5.1 yields the following closed form expression for the Chern numbers of K
and C. Let d=dimD, (o).

PROPOSITION 5.3, - Assume that } ia;=3) jB,=dimD,(¢). Then
[TeCr* N D, (@)=3. # Su—pyr-ry (E—F),
8

i

HC,‘(K)ﬂf N D, (p)]=(— 1)"ij Stm—pnr, 1™ (E-F).
i 1

Example 5.4. — dimD, (@) =2.

(G} M [Dr((P)}=S(m—r)""+(1, 1) (E-F)
C‘;’ (C)N D, (o) =S - +(2) (E-F) F S mo 11, 1) (E~F)
& (KY N DA} =5 —pyn -7 12y (E—F)
CE(K) M [Dr((P)]:-g(m»r)"", (2} (E—-F) F S (1, 1) (E-F).
Remark 5.5. — The Chern numbers of K and C were originally investigated by Harris

and Tu in [H-T], where they gave a certain rule for calculation of these numbers. OQur
approach seems to be simpier. Indeed, if []c,(K)%=3} m;5(K), then the algorithm of
1

Harris and Tu reguires one to evaluate Z m, dim V; monomials in the Chern roots of K
I

on [D,(9)], and to perform numerous cancellations of pairwise opposite terms
(V, denotes here the irreducible polynomial representation of G I(m—r, C) corresponding
to the weight [}. On the contrary our recipe requires only the evaluation of
card {I, m, s 0} expressions, which is much more economical in practice.
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Let a, b be two positive integers such that @ £ b.  For two partitions I=(i,, ..., i,),
J={, ..., j,) define

. o
D?.‘}’=Det[(l”ﬂ“_+a+ 7 qﬂ, l1£pg=a
i,+a—p

LemMa 5.6([L-S] 4.2). — Let A, B be two vector bundles of ranks a and b, a £b. Then
the total Segre class of A ® B is given by

a0

s(A®B)= Y s5,(A®B)=) Df/s(A)s(B),
L3I

p=0

where the sum is over all partitions 1=(i;, ..., i), I=(, ..., j).

Lemmas 5.1 and 5.6 yield an algorithm for computation of the Chern numbers of
D=D,((p).* Let T be the tangent bundle on X and T, be the tangent bundle on
D. According to Remark 5.2 we want to calculate

(s [I__I ¢;(Tp)*].

This expression can be rewritten as

(18) (ir)* [Z dy 5 (Tp)]

where 4 come from  Pieri's formula. Then the exact  sequence
0-Tp - Tx,, > Nx(D) — 0 allows us to rewrite (18) as

(19) (i) [Z dy 1 5x (Tx i) St Nx(D)]

where di , can be obtained from d, and from the universal coefficients appearing in the
linearity formula for 51(Tx |, ~Nx(D)). Since Ny(D)=K" ® C (see [G-G] p. 145) the
expression (19) can be replaced by

(i) [Z dg o, w8k (Ty o) S —K) 55 (C)]

where dy  w are computable from dy ; with the help of Lemma 5.6. Finally, by
Lemma 5.1 we obtain the equality

(‘ir)* (1_1 ¢ (Tp))= Z d;(’, M, NSim—r" T+ N, M (E—F) s¢ (Ty)

A partic)ulariy simple case is the computation of the Euler-Poincaré characteristic of
D,(9).**

Prorosirion 5.7, — Assume that m = n.  Then the (topological) Euler-Poincaré charac-
teristic of the smooth degeneracy locus D, () is given by the expression

z (‘U“HE”D?,“JP' T ST, 3 (E_F)CJ—IIE~IJ|(X)
LJ
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where the sum is over all partitions 1=(i,, ..., i,_,), J=(; ..., J.-.). Here ¢, (X}
denotes the k-th Chern class of Ty and if k < 0 we define ¢,(X) to be zero.

Proof. — By the Gauss-Bonnet theorem the Euier-Poincaré characteristic of D=D, (o)
is equal to ¢,,,(Tp) M [DL 1")'l"herefore we have to calculate (i), (¢, Tp). We follow the
notation and the strategy described above. The expression in guestion is equal to

(g lea( Ty, —K¥ @ C)] (l)*[z (=D'si(KY @ C)irey- .(X)]

=(i,), (2 (=D"HIDE T 75 (C) sy~ (=KD i gy -y (X

I J

=y (=phtt=iippirmorg e~ (BE=Feg_ -y (X)
I

where the sum is over all partitions I=(i,, ..., i,_)and J=(,, ..., j,.,). B

Example 5.8. — (i) The Euler-Poincaré characteristic of a smooth determinantal curve
is given by the expression:

Sm—ry-r (E—F} ¢, (X)—(n—r) Sp- o=, (1, (E=F) ~(m—1) s pyp=r (1, (E—F).
(ii) The Euler-Poincaré characteristic of a smooth determinantal surface is equal to:

Sim—ry*~ H(E—F) ey (X) ")S(m gy (E=F)+{m—r) S(m—r)""+(1)(E_F)}c1(X)

n—r+1 m—r+1
( ) -t (4, 1)(E F)+( 2 )S(m—r)"“’ﬂz)(E"F)

m-—r
( )S(m e (2) E F) ( 3 )S(m~r)"*’+(i.1}(E‘_F)

+{(m—r)y(n—r)+ 1] S pp-r 1), 1y (E—F).

6. The structure of the ideal .7,

The ideal .#, of Z [¢.(A), ¢.(B)] admits various interpretations. In Section 3 a geomet-
ric interpretation of #, was discussed. In [P,] we have interpreted the ideal .#, as a
generalization of the resultant in elimination theory. Therefore #, seems to be an
interesting object and its algebraic structure is worth studying. In lec. cit. we proved
that .#, is a prime ideal. In this section, as a by product of the previous geometrical
considerations we obtain some informations concering sets of generators and a Z-basis
of the ideal .#,.

Prorosrmion 6.1, —(a} The ideal ¥
Spn—py-ra1 (A —B), where L < (r)" 7.

(b) The ideal .#, is generated by Schur S-polynomials s,,_,n-r y(A—B), where
Je(m—r).

is generated by Schur S-polynomials

r
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Proaf. — (a) This follows immediately from .#, < £2,, Lemmas 3.9 and 3.11, by letting
v, w—on. Indeed if v, w tend to the infinity then A" (X) becomes Sym (A, B) and
#.(E, F) becomes ...

(b) The proof can be carried out in a similar way but instead of the construction (14)
one needs to consider the following one (¢f. [F] chap. 14)

Z=Zeros(R - Fg > Eg) > G=G, ., (F)
l l
D, () 500x% B
We use the notation introduced to describe the construction (13). By Lemma 4.1 we
obtain the following presentation of A" (D,—D,_,) in the generic situation (13):

(20) A'(D,—-D,_) ~ A (FI™"(V)xFl, ,(W)/.¥,

where FI™ (V) is the flag manifold parametrizing the flags of rank m, rank r quotients
of V, FI (W) is the flag manifold parametrizing the flags of rank r, rank n subspaces
of W. Moreover #, is the ideal generated by elements of the form s (R%)—s,(Q%),
where |I| =z 1 and Ry, Qf denote the corresponding tautological bundles on Fi, (W)
and F ™" (V).

Let A, A""7, B,,_,, B" be four sets of algebraically independent elements over Z of
cardinality r, n—r, m—r and r respectively.

ProposiTION 6.2. — The polynomials s, (A —B) 5, (A} where 1, contains the partition
(m—1i)""" and does not contain the partition (m —i+ 1Y~ HI) <6, i=0, 1, ..., r, form
a Z-basis of F,. Another Z-basis of £, is given by s, (A —B)s,, (B) for the same 1,
IJao=ii=0,1, ..., r

Proof. -- Consider the exact sequence (y=(m—r)(n—r))
(21) A*7Y(D,(», w)—D,_, (s, w)) > A*(X, ,—D,_, (1, w)) » A*(X, ,— D, (1, w)) > 0.

Let us identify A,, A*™", B,_, and B" with the Chern roots of the following vector
bundles R%, R%/RY, ker(Qy — Q%) and QF, if », w tend to the infinity. By (20), if
v, w— o0, then {21} gives the exact sequence

S/¢, SRLE,_ oRLF, >0

where R =Sym (A, B), S=Sym(B,,_,, B", A,, A""") and _#, is the ideal generated by all

elements of the form s;(A,) — s, (B, |[1] = 1.

Claim. —~ o is a monomorphism.

To see it, consider the ring homomorphism B: R/#,_, - §/#, induced by the injection
R—-S8 If v, w— oo then the self-intersection formula applied to the inclusion
D.(v, w)—D, (v, w} = X, ,—D,_, (v, w) gives Pa(s)=s4p—,n-r (A" "B, _)s, where
se8/ ¢, The claim now follows from the easy observation that a polynomial which is
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not in the ideal generated by Schur S-polynomials in A,— B’ cannot belong to this ideal
after multiplication by Sgmopyn-r (A"7"—B,, ).

In particular we obtain an isomorphism I I,y =8/ #, of abelian groups. Observe
that 5/#, is a free abelian group with a Z-basis given by polynomials of the form
$;{ =B ) sk {A) 5 (A7), where [(J™) S m—r, I(K) < r, N En—r

It was essentially proved in Lemma 5.1 that

(22} afs (A"") s;(—B,,-,J] = Sm— T 41, i(A—B).

It follows easily from the projection formula applied to the inclusion
D, (v, w)~D,_, (v, w) > X, ,~D,_, (v, w) that o is a morphism of R-modules. Thus

G[SJ(_Bm—r) SK(Ar) sl(An"r)}:& [SJ( %Bm*r) SK (A ‘“"*A"_r) SI (Anvr)]
=al ¥ (=15 (~By ) s (A) s~ (A" )5, (A1)

L=K

=al 2 Y (=DMUL™, I M)s,(—B,,_,) s (A) sy (A™]

LK M

= Z Z(_“I)IH(L~, IQ M)S(m—r}’“wM,J(A"‘B)SK/L(A)

LK M

where (L™, I; M)eZ. This last expression can be rewritten as

(23) Stmenn=r o1 (A B) s (A) + Z dy. (A —B) sg-(A)

K' '« K

where dy.(A—B) are Z-combinations of Schur S-polynomials s;(A—B) where
Tom—r)""and T (m—r4 1)L

It follows from (22) and (23) by induction on |K |, that s5,(A ~B) s;(A), where
Is(m—r)""" and ILp(m—r+1D"""', 1(J) <r, generate the image of a. Since the

isomorphism in question S/¢, 5 #,/#, ., is induced by o, the above elements generate
FSF .

To show a Z-linear independence of these elements we use the specialization
B’=A,. Indeed, by the factorization formula and the linearity formula we easily get
that

Stm-rr=r+1,3 (A —B) s¢ (A) =Sm—p=r (A" =B, _ )} 5(A" ") 5¢ (A) §(—B,.,)
=S(m—r)"_'(AnerBmmr) [S[(AnAr) SK(Ar) SJ( _Bm-r)
+ Z dr, k., 151 (A" ") s (A 5,(—B,,_,)]

IK P < K]

where dy, ¢. yeZ.  Since the different elements of the form 5 (A" ) sy (A,) 5,(—B,,_,) are
Z-linearly independent, the Z-linear independence in question follows.

The final assertion now follows by induction on r, the case r=0 being an immediate
consequence of the factorization formula.

This finishes the proof of Proposition 6.2. &
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7. The symmetric and antisymmetric form case

The aim of this Section is to develop a theory similar to the one in Sections 3, 4, 5, 6
in the case of degeneracy loci associated with symmetric (resp. antisymmetric) morphisms
of vector bundles. We will follow the main lines of the quoted Sections; and the
arguments which are analogous to the corresponding ones given in previous sections will
be just skeiched.

Let ¢: EY — E be a symmetric (resp. antisymmetric) morphism of vector bundles on
a scheme X. Assume that rank E=n. Let r be a nonnegative integer; if ¢ is antisymme-
tric we assume that r is even. Let g=n—r. Consider the Grassmannian bundle
n: G=G {E)=G*(E) - X endowed with the tantological sequence

0—-R—-E;—-Q—0

Apply to the morphism ¢: EY — E the geometric construction (14)

Z=Zeros(EY S Eg — Q) » G=G,(E)

Lo o
D,=D, (¢) S~ X

te

Here i, i, are the inclusions, 7 is the canonical projection, p is the restriction of n to Z

Lemma 7.1, — Let ae A (X).
(i} If @ is symmetric, then for any partition 1, I{I) < n—r,

Qp,.,..,,+[(E) m aelm (ir)*'

(i} If ¢ is antisymmetric, then for any partition I, [(I) £ n-r,
P, wi(B)Neelm(),.

(Recal! that p,=(k, k—1, ..., 2, 1))

Proof. — (i) Since ¢ is symmetric, the section G — E, ® Q induced by E& b Eq—Q
is in fact a section of H=Ker(E;® Q—A*Q). Observe that in K(G) we have
[E®QHA’QI=[R ® Q+S,Q]. By Lemma 112, ¢,,(5,Q=2¢ 5,,{Q-. Now the
proof is the same mutatis mutandis as the one of Lemma 3.2; we use factorization
property from Lemma 1.13 instead of Lemma 1.1, and Proposition 2.8 instead of
Proposition 2.2.

(i1} The proof is the same. B

et Zic.(Al=ZIc,(A), ..., ¢,(A)] be a graded polynomial Z-algebra where
dego, (A)=k. Let & (resp. %, r-even) be the ideal of all polynomials in Z{c. (A)] such
that for every symmetric (resp. antisymmetric) morphism ¢: EY — E of vector bundles
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on an arbitrary scheme X and any ae A (X)
P(c {Eh Naelm(i),.

¢.{E) denotes here the Chern classes of the bundle E.

Now let A=(a,, ..., a,) be a sequence of algebraically independent elements over
Z. The assignment

¢, (A) = (k-th elementary symmetric function in A)

allows us to identify Z[c.(A)] with Sym(A) and to treat #° and #* as ideals of Sym{A).

TueoreM 7.2. — (i) The ideal 25 of Sym (A) is generated by Schur Q-polynomials Q,(A)
where 1 ranges over all strict partitions | o p, _,.

(1) The ideal 2% of Sym(A) is generated by Schur P-polynomials P,(A) where I ranges
over all strict partitions 1 o p,_,_, (r-even).

Let 47 (resp. #7°) be the ideal generated by all Schur Q-polynomials (resp. P-
polynomials) Q;{A) where I > p, ., (resp. Pj(A) where I o p__,_,).

It follows from Lemma 7.1 applied for i=0, ..., r instead of r itself that % c 2
and #7° < #F. We will give now a proof of the inclusion #¢ = .#% which uses no
geometric constructions over D, (¢). Consider the following situation. Let V be a
vector space over a field K of dimension v > n. Let G,=G,(V) be the Grassmannian
of n-subspaces of V. Let R be the tautological (sub)bundle on G, (V). Let

(24) X=S$,(R), E=Ry.

On X we have the canonical (tautologicall morphism @:E¥ —E. Let
D,=D,(p). Observe that by Thom isomorphism we have A"(X) ~ A*(G,); moreover
1) The morphism @ is given locally by a symmetric n x n matrix of variables.
2) Every element s(E), {(I)<n is non-zero for v>»0 and every finite set
{5, (E), ..., 5, (E}}, I # L, if p # g, becomes a family of Z-linearly independent elements
forv > 0.

We will prove by induction on r (n can vary), that for v > 0 Im(i,), =.#,(E), where
#,{E) is the ideal in A(X) generated by all polynomials Q,(E) where I = p,_, This
implies our assertion, since we do not lose any of the polynomials from 2, in this
counting because of 2).

D, can be identified with G, imbedded by the zero section in X. Therefore, by
Lemma 3.6 we get that Im(i,), as an A (X)-module is generated by Cap(S2 E)=Q, (E).

To make the inductive step r—1 — r we consider a commutative diagram

ky
A.(D,_)—>A.(D)»A.(D,—~D,_,)—0
(25) (o), | G

A.(X)
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where the row is the corresponding exact sequence and k,: D,—D,_, — D, is the
inclusion. From Schubert Caiculus we know that A (X) is generated by polynomials in
the Chern classes of E and F. Thanks to the theory developed in [F], which allows us
to treat polynomials in Chern classes as operators on A.( ), we can treat the above
diagram as a diagram of A (X)-modules.

ProposiTioN 7.3, — For v = O there exist elements x,€ A (D,), where 1 ranges over all
partitions contained in (r)" ™', satisfying the following conditions

() (e (x)=Q,,_, (B

(i) The elements (k,)*(x,) generate the A (X)-module A (D,—D,_ ).

Observe that this Proposition implies that Im(i,), = (E). Indeed, reasoning by
induction on r we assume that Im(j,_,), is generated by Q, _..,.(E) where I, < (i)™
and i=0, ..., r—1. The above Proposition applied to the exact sequence (25) gives us
then, that Im(i,}, is generated by Q, ., {E) where I, = (i)" " and i=0, ..., r. Butall
these elements belong to £ (E). Therefore Im(i,),=.#.(E). To prove Proposition 7.3
consider arbitrary clements x;€A.(D,) satisfying (i}. Their existence follows from
Lemma 7.1. Let K and C be the kernel and cokernel bundles of the morphism ¢
restricted to D, —D,_,. Since o is symmetric we have K¥ ~ C.

Lemma 7.4

Q

Proof. - Consider the following cartesian square

(O [k (x) =5(O)]=0 in A(D,—D,_ ).

R—r

lkl’

2D -D

[l 2

Dl’
j iy [
l

X

l?

|
l
X -D

r-1

By [F] Proposition 1.7, we infer that IFi =), k¥ Thus
GO* P (x) =50 (i), k¥ (x). We have

(i )=y F(Q, _ i (E)) (by the definition of x,)
=Q, ,(C) (by Lemma 1.9(ii) and 1.10, because [Ej=[Im ¢} +[Cland Im ¢=(Im @) ")
=Q, _(C)'5(C) (by Lemma 1.13).
On the other hand denoting by N the normal bundle Ny_,  (D,—D,_)=8,C
(cf. [3-G]) we have

¥ (), k) (x) = o I KT () (bY the self-intersection formula)
= Clop (Sz C) ' k:'k (xt)
=Q, _ (C) k}(x) (by Lemma 1.12).

This proves the Lemma. B
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Notice that all elements k* (x))} are in codimension-graded components A'(D,—D,_,)
where i < dim G, (n)=N(n, r), say, i.e, iis bounded by a number which does not depend
on v,

The next two facts require an analysis of a geometry of D,—D,_,. A point in
D,—D,_; is a pair (N, f: N¥ — N} where N is a n-dimensional subspace of V and
J:NY =N is a lincar, symmetric map of rank r. To this point we assign the point
(Im f o N) in FI, (V) where FI (V) is the flag manifold parametrizing the flags of
rank r, rank n subspaces of V. This makes D,—D,_, a locally trivial fibration with
fiber isomorphic to the set of nondegenerate symmetric » x r matrices. More precisely if
R’ is the tautological bundle of rank r on F/, , then D,—D,_, is the open complement
of the r—1—th degeneracy locus D,_, (9"} associated with the tautological morphism
o' (RN = (RN on X'=(8; R, - In other words we have
D.—D,.;, =X'—D,_;(9"). Consider now the Grassmannian G,=G,(V). Denole the
corresponding tautological bundle on G, by R" for short. Then for the tautological
morphism ©”: (R")x~ = (R")x. on X”=8,{R");, we know the image of the map
A.(D,_, () > A.(X") by our inductive hypothesis. Namely this image is generated
by all Schur Q-polynomials in R”. Let now

p: X' = X" and pp: D,_, (¢) = D,_, (¢")

be the natural projections. We have the following cartesian square

D,_, () > X’
fo e

D, ()= X"

where p: X" — X" is the Grassmannian bundle

Gy (Vi /(R ).

Thus A(X") is a free A(X")—module via p*. Moreover there exist clements €=
= 5, {Q) (where Qis the tautological quotient vector bundle on X’ ) such that

AX)=® A(X")Q, and denoting by € the operator 5,(()*Q )N —  on
k

A(D,.((¢")), we have  A(D,.,(¢)=@ QP N A(D,_,(¢”). Consider the follow-
k

ing commutative diagram (see [F] Proposition 1.7)

A(D,.,(¢) 5 AX)
?p;) Tp'

AD,_, (¢") ' AX")
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Wehave i/ (3. 2~ pf(d))= 2 ) @ =Y p* i ( QP dy ) in A(X). This implies
k k k

that Im (7, ) is generated by p* (Im i} ) i.e. by all Schur Q-polynomials Q,((R")y.), I-strict,
iz 1

Lemma 7.5, -~ If v » 0, then multiplication
‘Q,,,(C): A{(D,—D,.,) > A" (D,-D,_)),
is a monomorphism for i S Nn, r), (Y=m—-rY(n—r+1)/2).
Proof. — From the above description and {rom the exact sequence
A(D,_(¢)) +A(X)—>A(D,-D,_ )0
where A (X'} >~ A(F/_,) by Thom isomorphism, we get
(26) A(D,—D,_) = A(FI JIQ(R",

Iz 1.

Under the above identification C=(R"/R")p ., _,. Let A,, A"™" be two sets of algebrai-
cally independent elements over Z of the cardinality r and n—r respectively. The
assignment sfA )5, A" s{R")-5,(R"/R"), gives a ring homomorphism from the ring

(27) Sym(A, A" AQ(A) Tiz 1)

to (26). Here Sym (A, A"™") is the ring of partially symmetric polynomials in two
distinguished sets of variables. If » > 0 then the components of degree < N(n, r) in (26)
and (27) are isomorphic. Thus it suffices to prove that multiplication by Q,,_, (A"77)
in (27} is a monomorphism. But the polynomial which is not in the ideal generated by
Q-polynomials in A of positive degree, cannot belong to this ideal after multiplication
by Q, ., (A""") (e.g. consider the specialization {A,}={A} and use Lemma 1.10). ®&

Comparing Lemma 7.4 and 7.5 we see that if © > 0 then k*(x) =s,(C). Thus to end
the proof of Proposition 7.3 we need

LEMMA 7.6. — The elements (C), where 1< (r)"™", generate the A(X)-module
A(D,—D,_,).

Proof. — Recall that the A (X)-module structure on A(D,~D,_,) is given by the
action of polynomials in the Chern classes of E.  Consider the following map

2 A(X)=A(G,) & A(FL, )=A(X) 5 A(D,—D,_))

where ¢: Fi, , = G, is the projection and I: D,—D,_, — Xm’( ‘gﬁlcthe injection. It is easy
to see that a(¢;(E)) =c;(Ep -p,.,). Thus the above A (X)-structure on A.(D,—D,_)) is
the same as the one defined as follows: for xeA (X), deA(D,—D,_,) the effect of the
action of x on d4 is u(x)'d. Since the last A(X)-homomorphism [ * is surjective, it
suffices to prove that A(X") as the A(X)-module is generated by s,[(Q" ")x], where
L= (""" But A(Fl ,) as the A(G,)-module is generated by 5,(Q"™") with the same I,
by Schubert Calcuius, This implies the desired assertion. B
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This completes the proof of Proposition 7.3 and thus also the proof of the inclusion
7 I

Remark 7.7. — By a similar method one can prove the inclusions %, < #, and
PE c F¥ (r-even).

CHERN NUMBERS

Let ¢: EY — E be a symmetric morphism {resp. antisymmetric} of C* complex vector
bundles on a complex manifold X. Assume that D,_ (@)=¢J. Then the kernel K and
the cokernel C of the morphism @ restricted to D,(¢) are vector bundles of rank n—r,
It is easy to see that KY = C. Assume that ¢ is general (see Section 5) and write
dimD, (¢)=4d.

ProrosiTion 7.8, — (i) Assume that ¢ E¥ — E is symmetric. Then
codimy D, (@) =(n—r) (r—r41)/2
Let 1 be a partition such that I{I) < n—r, {I| S d. Then for any o€ H (X, Z)
(1) [5:(C)- T 2] =Q,, 11 (E)- o
(if) Assume that ¢ EY — E is antisymmetric. Then
codimy D, (@) =(n—r—1H{n—r)/2

(r is even). Let | be a partition such that 1(I) £ n—r, II{ =d Then for any
1e H (X, Z)
(i) [5(C)iFa}=P, _ _ (E)

The proof is the same as the one of Lemma 5.1. We use the construction (14) instead
of (11) and Proposition 2.8 instead of Proposition 3.1.

Let us fix integers o, @5, ..., ,., = 0. Define nonnegative integers »; by the identity

H i (C)i= 2 5 (C)

i

{compare the discussion before Proposition 3.3).

PrOPOSITION 7.9. ~~ Assume that Y ioa,=d. With the notation as above,
(1) if @ is symmetric, then

[Te(CNDPI=Y mQ, . (E).
i

{il) if @ is antisymmetric, then

[Te QN D (@)=} m P, ..(E).
1

The proof is analogous to the one of Proposition 5.2.
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Example 7.10. — d=2, ¢ is symmetric.
c, (COYN[D, (@) =Qp,,_,+u, 1)(E)
C% (CNI[Db, ((P)]*_*Qp,,ﬂuz)(E)+Qp,,_,+(1. 1, (E).

For every sequence (j,,j, ...,J,) where j, >j, > ...j, 20 define the number
(G ja» - - - J2)) inductively as follows:

) (1, 0)=t1
2 aUudo - JD=2F s s i1, ooy i)
k
_{ 0 if j,>0
U=l e =1) 0 =0,

We assume the terms with j,— 1 =j,,, in the above summation to be zero.
Moreover, for every sequence (j,,j,, ...,j.) where a=2b is even and

Ji>Ja> .. >j, = 0define [j,, ..., j] inductively as follows
) [1, 0)=1
(28) 2) b[jl’ "'!ij]_g[jD ---,j;,—‘l, ""jzb]
={ 0 if (ap-1:Jon) # (1, 0
Ul! : '!j2bv2] if Uzwnjzn)*(h 0).

We assume the terms with j, ., =j,—1 in the above summation to be zero. If @ is odd,
we put

U j]= [jb"'!jaAll: if ja=0
PP 0, if j,#0.

The following fact was communicated to me by A. Lascoux.

ProrosiTion 7.11 ([L-L-T)). — Let A be a vector bundle of rank a.
(1) The total Segre class of S; A is given by

5.8, A)=Y (i, +a—1, i, +a—2, ..., i) 5(A)
i

where the summation ranges over all partitions I=(iy, ..., i)

(i) The total Segre class of A* A is given by

s (NA) =Y i, +a—1, i,+a~2, ..., i]5(A)
I

where the summation ranges over all partitions I=(i,, ..., i)).
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By combining the above Proposition with computations due to Schubert (see [S]) one
can obtain the following closed form expression for the coefficients (G4 -+ -, j)) and

Ui - oo Jab
ProposiTioN 7.12. — (i) The coefficients ((j,, . . ., j,)} are given by
(G - ‘,j.,))=Pf[(J"fj")+(J_"ﬂq)+- . +(J."+j")] (1sp<qgsa
ip Je—1 Jo+1

if a is even, and
? p=i -
G )= 2= 27y o s - Ja)
p=1

if a is odd.
(i) The coefficients [j;, . . ., j,], where a is even, are given by

U - Jd=P U= DG, =0, 1Sp<gZa)

Proof. — Since (i) is essentially proved in [S} p. 180, we will only prove (ii). The
arguments are, however, inspired by those of [S]. Define

Up - fall =P S U +ig= DG, —id0 11 (1Sp<g=a)

One checks readily that [1,0F=1 and [, j,}'=U,~1, j,l' +[i;, ja—1). Therefore
Uss Jal=liy, J2I° for every jy, j,. To perform an induction step it is convenient to put

[injz, .. .:j;b—z; 1, —1]=U15j2, .. "j2b“2] and {jl’jz, . "ij—z,ijﬂl,. _1]=0 lf
Jap—1 # 1. Then (28) reads

(29) b[i;, "'!j2b]=ZU1:-"sjk_l"-"j;’,b]-
k

By Laplace-type expansion for Pfaffians we have

2h
(30) Ui - o Jael = Zt[jl’jk]’ Uzs R T TN Y
k=2

We use double induction on b and ) j,. By applying the relation (30) to each term of

o

the right hand side of (29) we get by induction hypothesis

2b

bl o esdasl= Y2 =L 5 + U =12« - oo+ - v daa)
k=2

+Zzt[jlajl]’ij2’ .- -sjnb " '!jk_]! . "ij}’
k1

2b 2b

= ZtUl’jk]’UZa . "j‘;c’ A '5j2b},+(b— 1) fojx,fa]'[.fz, v "j;.’ - - -sjzb]’ (by (29))
k=2 =2
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2k

=[i15 . "ij],"*"(b_l) Zt[jhj[]’ UZ: . -aﬁs .. -’jzb]’
=2

{(by (30) and induction hypothesis)
¥

=bljy, ..., J2p" (by (31) again).

This implies {j;, - - - j2sl=0j1> - - -» j25]> as desired. &

Propositions 7.8 and 7.12 yield an algorithm for a calculation of the Chern numbers
of smooth degeneracy loci D,(¢) analogous to the one described in Section 5. In
particular we obtain

Prorosrtion 7.13:
(i) The Euler-Poincaré characteristic of ~the  degeneracy locus D, () of dimension

d associated with a symmetric morphism @ is given by the expression

Y (=DM (G ra—r—Li+n—r=2, ..., NQ,,.,+1(B) ey (X,

where the summation ranges over all partitions Y=(i;, ..., I, ).
(ii) The Euler-Poincaré characteristic of the  degeneracy locus D (@) of dimen-

sion d , r-even, associated with an antisymmetric morphism © equals

S{-D"M" i An—r—-1 i n—r—2, ..., b d Py (B) eay ) (X),

where the summation ranges over all partitions 1=(i, .. ., i,_,).

The proof is the same as the one of Proposition 5.7. We use Proposition 7.8 instead
of Lemma 5.1 and Proposition 7.12 instead of Lemma 5.6.

Example 7.14. — If d=1 then the Euler-Poincaré characteristic of D,(@) is
(i) Q,,_, (B) e, (X)—(n—r+ NQ, _, +m(E) if @ is symmetric
(ii) P (Byc, (X)—(n—r—1P, (B @is antisymmetric (and r is even).

Pr—-r—1

Let us notice the following analogs of Lemma 4.1 and Proposition 4.3. Let M;: (K)
(resp. M*(K)) be the affine space of all nxn symmetric (resp. antisymmetric) matrices
over a field K. Let D? (resp. DZ, r-even) be the determinantal subscheme in M;(K)

{resp. M®(K)) defined by the vanishing of all (r+ 1)-order minors (resp. (r+2)-order
subpfaffians).

ProrosiTiON 7.15:
(i) A'(Di=D; ) ~ A (G, (K"NAQ(R), ||z 1)
(i) A (D=—D ) =~ A (G (KR (R), |1}z 1)
(R denotes here the tautological subbundle on the corresponding Grassmannians.)

The proof is the same as the one of Lemma 4.1.

One can generalize this fact to the case of universal (tautological) degeneracy loci of
rank r in S,E (resp. AZE) where E is a vector bundle on X. Let Df=S,E and
D™ < A?E be the corresponding universal (tautological) degeneracy loci.
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ProposiTion 7.16:

(i) A'(D;~D5_ ) > A'(G,(EN/Q(R), [T 2 1)

(i) AY(DyF =Dy ) = A (G(E)H(P(R), [1] 2 1)
(R is the tautological subbundle on G, (E).)

Finally, notice that by methods analogous to those which allowed us to prove
Proposition 6.1 one can obtain the following finite sets of generators of the ideals
S o

Proposition 7.17. — (i) The ideal #: is generated by all Schur Q-polynomials of the
Jorm Q, _ . (A), where I < (r)""".

(i) The ideal F¥° (r-even) is generated by all Schur P-polynomials of the form

P, +1(A), where T < (r)" 7,

P

8. Comments and open probiems

(8.1). The main theorems in Section 3 and 7 were proved in the context of Chow
groups. However, one can consider an anologue of the ideal 2, in other cohomology
theories. The proof of the inclusion .#,  #, remains valid (see Remark 2.9).

ProsLeM. — Is it true that #,=.#, for other cohomology theories?

(8.2). The Giambelli-Thom-Porteous formula is valid if X is a Cohen-Macaulay scheme
and codimy D, (@) =(m—r)(n—r) (cf. [F] 14.4). The following example shows that the
equality Im(i), =.#,(E, F) can fail, if these assumptions are satisfied. Consider the
construction (13) with m=nz2 Then D,_,(p) is equal to D,{¢), where

-

¢=A"0: F=A**F~E=A“PE But the ideal ., (E, F) generated by
s; (E—F)=5,(E—F) is not equal to the ideal ., , (E, F) generated by all s (E-F),
121 -

It would be interesting to characterize a class of morphisms ¢ for which
Im(i),=#4.(E F).

(8.3). Let ¢: F - E be a morphism of vector bundles on X. Assume that the both
vector bundles E and F are filtered

FicF,c... cF,=F
E=E, »E;-»... »E,

Consider the locus

Q={xeX, dimKer(F,(x) 5 F (x) "5 E(x) » E,(x)) 2 i, for every i).

By generalizing the formulas in [Po], {K-L] and [L] one can prove that for “sufficiently
general” ¢ (n;=rank E;, m;=rank F))

[Q]=Detlc, _,.+;(E;~F))] 1Zijsr
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We plan to study these loci from the point of view of the present paper elsewhere.
(8.4). Arguing as in Section 4 one c¢an prove the chains of surjections:
) A(G(K") - A(D) > A (G (KDIQ(R), [T 2 1)
(i)  A(G,(K") - A(DF) - A(G(K/(R(R), [I| 2 1)
where R is the tautological bundle on G,(K"). This gives us certain insight in A (Dj),

A (D*) but does not describe these groups explicitly. On the other hand, from the
sequences

A(D:_ ) > A (D)) -» A(D;—-D;_,),
A(DE )~ A (D) » A(DF-D))

it follows, that if k<dimDi—dimD]_, (resp. k <dimD¥—-dimD{> ) then
A¥(DY ~ A¥(D:—D3_) (resp. A¥(D*) ~ A¥(DZ—D= ). In particular
AY(DH=Z/2Z, A'{D*)=0. As in Section 4, it is possible to generalize these consider-
ations to the case of universal degeneracy loci D, < S, E (resp. D, = A%E, r-even), where
E is a vector bundle on X. For example if E is trivial we get

AlXxD)=A'(X)® 2/2Z and Al (X x D®)=A'(X).

ProsLEM. — Describe the Chow groups of Df, D, D¥, D explicitly.

(8.5). Notice that Proposition 5.7 allows us to calculate the Euler-Poincaré characteristic
of varieties W} parametrizing the linear systems of degree d and dimension 2 r in the
Jacobian of a curve, provided W} is smooth. We plan to discuss this subject in more
details elsewhere.

(8.6). It is known that the formula for the Euler-Poincaré characteristic of degeneracy
loci (see Proposition 5.7) can fail if D,(@) is not smooth. For, in the case when
@: 14 — L is a section of line bundle, and the hypersurface D, (@) has only one isolated
singularity in the point x, then the difference between the Euler-Poincaré characteristic
and formula (5.7) is measured by the Milnor number of x. It would be interesting to
generalize the formula (5.7) to possibly singular degeneracy loci.

(8.7). Consider the homogenous space Sp,/U,. The Schubert varieties €, in this space
are parametrized by strict partitions I=(iy, .. ., i,) where I < p, (see [B-H]). The Schu-
bert varieties Q,=Qq, 5. . o {1 = p £ n) are called special. The authors of [B-H] raised
the following question: Is there a “‘Giambelli-formula” that expresses each Schubert class
as a polynomial in the special Schubert classes? It turns out that by combining results
of [Mo] and of [B-H] one can prove that the formula in question is given by the Schur
Q-polynomial Q,(A), where the role of the g,(A) is played by Q, (recall that this
polynomial is given explicitly in (7)). More precisely, in [Mo} the following “Pieri-
formula” for the multiplication of Schur Q-polynomials was established. Let
I=(i,, ..., i) be a strict partition of length k. Then

Qi (A) g, (A) =2 2"V Qi{(A)
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where the summation ranges over all strict partitions J of length k or k+1 such that
bpo1 2Jp 21, (lo=00, {4, =0), |J|=r+|I. Moreover,

m{J)=card{l S p £k, j,.( < i, <ju

Comparing it with the “Pieri-formula™ for the Chow ring of S p,/U, proved in [B-H],
one obtains that the assignment: Q(A)— Q,, defines a ring homomorphism

Ring of Schur Q-polynomials in n-variables ~ A" (S p,/U,).

This map allows us to identify A'(Sp,/U,) with the quotient ring of the ring of Q-
polynomials by the ideal generated by all Q,(A), where 1 ¢ p,. The same observation
applies to the Chow ring of 8O, ,, /U, (see loc. cit.) but instead of the polynomials
;(A) one should use the P;(A).

For more details see a forthcoming paper [P,].
{8.8). In Propositions 6.1 and 7.17 we have described some finite sets of generators of
the ideals .#,, #% and #%.

Coniecturg, ~ (i) f m 2 n then the elements s,,_,n-r.; (A~B),I ranges over all
partitions I = ()" ", form a minimal set of generators of .#,.

(i) The elements Q, _ ., (A) (resp. P, . _,+1(A)) where I < (ry"", form a minimal
set of generators of .#% (resp. #%),

(ii) If m = n, then the minimal number of generators of each of the ideals £, S
and #® is equal to (n)
r

This Conjecture was checked by the author for n £ 6.

9. Appendix: a result of Schur

We provide here a sketch of the proof of Proposition 1.7 (referring for details to {Sch],
if necessary).

It is proved in ([M] III 2.3) that the Hall-Littlewood polynomial P, (A; ¢) satisfies:

P(i)(A; = Z (-9 rS(i—-r. 1N (A).

r=0

where A=(a,, ..., a,) is a sequence of independent variables. Thus, by Example 1.6
and Corollary 1.8, the Proposition is true for k=1. Then the relation

Qij(A) =q;(A) Q'j(A)“Q'iH (A) g (A= Qi i1 (A)

allows us to prove the Proposition for k=2 by induction on j=1, ..., i—1. Taking
into account definition (7) and Laplace-type expansion for Pfaffians, it suffices to show
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that the polynomials (I=(i,, ..., i,), I-strict, {([) =k):

Qay, ..., a)=2¢ ¥ wlal. . . ak H (a;+a)(a,—a) ']

w e Sp(S 1) x Sp PE

satisfy the relations

k

QA)=2 (=17 Q;, 1, (A) Qi .4, .., (A),

p=2

if k is even and

&
QA=Y (-1 'q (A)Q, . .;
p=1

tpy wooy

i (A)v

if k is odd,
Consider the foliowing elements in {Z [A]),:

T,=[] @~a)a+a)™", r=1,.. .1

sFr
and for uy, ..., w,eZ[A],

wiy, oou)= T —u)(u,+u)"
LEsp<gsk

Then the above definition of Qj(A) can be rewritten as

n By i
H
arla,g. Lk

Q(A)=2* 3 e Xl .., )
o=t T Ty T, 8 !
Thus, it suffices to prove the following relations
k
wity, o w)= 3 (= DPwuy, w)wlug, oo, U, ., ),
p=2
if k is even
* p=1 .
Wy, ..., )= Z(—-l) Wy, o, U ., ),
p=1

if k is odd.

The second equality follows from the first one, by letting one of variables involved to
be zero. To prove the first equality it remains to show that for even k

Wi - w)=Pflu,—u)w,+u))™', (1£p<qgsk),
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and apply some well-known property of Pfaffians. Finally, for this last claim, notice
that Pf [(u,—u,) (u,+u) '] I1 (u,+u,) vanishes if u,=u, for some p # g and has the
P<q
same degree as |] (u,—u,). Being rational functions with integral coefficients, the
r=<q
above polynomials must differ by certain constant factor. Using Laplace-type expansion
for Pfaffians and induction assumption one shows easily that for even k this factor is

equal to 1.
This finishes the proof of Proposition 1.7. B
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Note added in proof. — (1) Since submitting this paper I have learned that the following special case of our
Proposition 5.7: X =P8, F=0y(—d )+ ... +0x( —d), E=0y, r=0, was established by other methods in the
paper: V. NAVARRO AZNAR, On the Chern classes and the Euler characteristic for nonsingular complete
intersections, Proc. of the Amer. Math. Soc., Vol. 78, pp. 143-148, 1980.

{2) The assumption I(I) =g~ | in Proposition 2.8 can be dropped-see [P;].

{3) Methods similar to those used in Section 4. allow one to study the Chow groups of projective determinan-
tal varieties. We plane to treat this subject in some future article.
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Note {added in 1995)

1) Several misprints are corrected and some {minor) revisions are performed. Moreover:

Proposition 2.8 is stated incorrectly for (/) = ¢ — 1. (For I([) = q, it is correct as well as the proof
given.} The correct formulation for I(I) = ¢ —11s: 7 mleip(R® Q) P{Q) N 7 a] = Pr(E)Na if
rank R 15 even, and 0 if rank R is odd 7. Since in Section 7 we use precisely this formula when rank
R is even, the correction affects no other results ond proofs in the paper. More generally one has for
i{I)=#k <y,

Tulcton(R® Q) Pr{Q) N7 a] = dP{EYNa,

where d is zero if {g — k){n — ¢) is odd and ([[E’;:f;)};g]]) - otherwise. For details and a generalization

consult Proposition 3 in Section 1 in:
P. Pragacz, Symmetric polynomials and divided differences in formulas of intersection
theory - in "Parameter Spaces”, Banach Center Publications, volume in preparation.

We point out also the following complement of the proof of Lemma 7.5. The Lemma (and its proof)
remains correct when we tensorize the Chow groups involved by Z[1/2]. (This is because Q,(A4) =
TS, (A), where p = p,_,.) Then the arguments given on pp. 440-444 show that P} C 72 @ Z[1/2].
We claim that for any strict partition I D p, 2°Pr{A) € P2 iff e > n —r. Indeed, let o' = p & id :
EY @ 1% — E® 1% be a morphism on X, where (X,¢) is given by (24) with rkE = n — r. Since
D.(¢") = Do(yp) and 2°Py{ay, ...,an-,) € P§ iff € > n — r, the claim follows and implies P? ¢ I2.
The second proof of the theorem in the generic and antisymmetric cases works without this additional
argument.

2) Problem (8.1) is treated and solved affirmatively in the case of singular homology, Borel-Moore
homology ete. in the paper:

P. Pragacz, J. Ratajski, Polynomials homologically supported on determinantal loci, Pre-
print no.61 - Mathematics Department, University of Bergen (1991); to appear in Ann.
Scuola Norm, Sup. di Pisa.

3) In the paper:

W. Fulton, Flags, Schubert polynomials, degeneracy loci and determinantal formulas,
Duke Math. J., 65 (1992), 381-420,

the author gives a far reaching generalization of the formula for flag degeneracy loci stated in (8.3).

4) Problem (8.6) is treated in the following papers:

A. Parusifiski, P. Pragacz, Characteristic numbers of degeneracy loci, in Enumerative
Algebraic Geometry, The 1989 Zeuthen Symposium (5. Kleiman and A, Thorup, eds.} -
Contemporary Mathematics A.M.S., 123 (1991}, 189-197;

A. Parusinski, P. Pragacz, Chern-Schwartz-MacPherson classes and the Euler character-
istic of degeneracy loci and special divisors, Journal of the A.M.S. 8 (1995), 793-817;

A. Parusiiski, P. Pragacz, A formula for the Euler characteristic of singular hypersur-
faces, Journal of Alg. Geom. 4 (1995), 337-351.

A closed form formula for the Euler characteristic of {possibly singular) degeneracy locus associated with
a general morphism is given. More generally, the image of the Chern-Schwartz-MacPherson class of such
a degeneracy locus in the homology of the ambient variety is computed. In the case of a nongeneral
hypersurface 1ts Euler characteristic is obtained with the help of Whitney stratifications and generalized
Milnor numbers. Moreover the former paper gives a solution to problem (8.5) by establishing a formula
for the Euler characteristic of the variety W} of special divisors.




