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Classical Thom polynomials for f : M → N .

Theorem. (PP+A.Weber, 2006) Let Σ be a singularity
class. Then for any partition I the coefficient αI in the
Schur function expansion of the Thom polynomial

T Σ =
∑

αISI(T
∗M − f∗T ∗N) ,

is nonnegative.
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is nonnegative.

Theorem. (M.Mikosz+PP+AW, 2007) For any Lagrange

singularity class Σ, the Thom polynomial T Σ is a

nonnegative combination of Q̃-functions.
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Classical Thom polynomials for f : M → N .

Theorem. (PP+A.Weber, 2006) Let Σ be a singularity
class. Then for any partition I the coefficient αI in the
Schur function expansion of the Thom polynomial

T Σ =
∑

αISI(T
∗M − f∗T ∗N) ,

is nonnegative.

Theorem. (M.Mikosz+PP+AW, 2007) For any Lagrange

singularity class Σ, the Thom polynomial T Σ is a

nonnegative combination of Q̃-functions.

Kazarian: What about Legendrian singularities?

Positivity of Legendrian Thom polynomials – p. 2/23



Classical Thom polynomials for f : M → N .

Theorem. (PP+A.Weber, 2006) Let Σ be a singularity
class. Then for any partition I the coefficient αI in the
Schur function expansion of the Thom polynomial

T Σ =
∑

αISI(T
∗M − f∗T ∗N) ,

is nonnegative.

Theorem. (M.Mikosz+PP+AW, 2007) For any Lagrange

singularity class Σ, the Thom polynomial T Σ is a

nonnegative combination of Q̃-functions.

Kazarian: What about Legendrian singularities?

Joint work with M. Mikosz and A. Weber
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Legendrian geometry
Fix n ∈ N.
W and ξ are vector spaces of dimension n and 1.
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Legendrian geometry
Fix n ∈ N.
W and ξ are vector spaces of dimension n and 1.

V := W ⊕ (W ∗ ⊗ ξ) .

Standard contact space

V ⊕ ξ = W ⊕ (W ∗ ⊗ ξ)⊕ ξ ,
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Legendrian geometry
Fix n ∈ N.
W and ξ are vector spaces of dimension n and 1.

V := W ⊕ (W ∗ ⊗ ξ) .

Standard contact space

V ⊕ ξ = W ⊕ (W ∗ ⊗ ξ)⊕ ξ ,

equipped with the standard contact form

α := dx−

n∑

i=1

pi dqi ,

where x is a coordinate of ξ, qi are the coordinates of W and
pi are dual coordinates of W ∗ ⊗ ξ.
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Legendrian submanifolds of V ⊕ ξ are maximal integral
submanifolds of α, i.e. the manifolds of dimension n with
tangent spaces contained in Ker(α).
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Legendrian submanifolds of V ⊕ ξ are maximal integral
submanifolds of α, i.e. the manifolds of dimension n with
tangent spaces contained in Ker(α).

Example: The plane x = const, z = const in the standard
contact space with coordinates x, y, z and with form
α = dz − ydz is Legendrian.
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Legendrian submanifolds of V ⊕ ξ are maximal integral
submanifolds of α, i.e. the manifolds of dimension n with
tangent spaces contained in Ker(α).

Example: The plane x = const, z = const in the standard
contact space with coordinates x, y, z and with form
α = dz − ydz is Legendrian.

The space V is equipped with the symplectic form

ω :=

n∑

i=1

dpi ∧ dqi,

which again depends on the coordinate of ξ. It is well defined

as an element of
∧2

V ∗ ⊗ ξ. A submanifold of V is
Lagrangian if ω restricted to its tangent spaces vanishes.
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By Legendrian (resp. Lagrangian) submanifolds we shall
mean the germs of such submanifolds through the origin in
V ⊕ ξ and V , respectively.
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By Legendrian (resp. Lagrangian) submanifolds we shall
mean the germs of such submanifolds through the origin in
V ⊕ ξ and V , respectively.

Lemma. The projection of a Legendrian submanifold from
V ⊕ ξ to V is a Lagrangian submanifold. All the
Lagrangian submanifolds of V are obtainable in this way.
Moreover, a Legendrian submanifold of V ⊕ ξ is uniquely
determined by its Lagrangian image.
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mean the germs of such submanifolds through the origin in
V ⊕ ξ and V , respectively.

Lemma. The projection of a Legendrian submanifold from
V ⊕ ξ to V is a Lagrangian submanifold. All the
Lagrangian submanifolds of V are obtainable in this way.
Moreover, a Legendrian submanifold of V ⊕ ξ is uniquely
determined by its Lagrangian image.

We describe a space which parametrizes pairs of Legendrian
submanifolds L1, L2. We say that two pairs of Legendrian
submanifolds in V ⊕ ξ are contact equivalent if they differ by
a holomorphic contactomorphism of V ⊕ ξ.
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By Legendrian (resp. Lagrangian) submanifolds we shall
mean the germs of such submanifolds through the origin in
V ⊕ ξ and V , respectively.

Lemma. The projection of a Legendrian submanifold from
V ⊕ ξ to V is a Lagrangian submanifold. All the
Lagrangian submanifolds of V are obtainable in this way.
Moreover, a Legendrian submanifold of V ⊕ ξ is uniquely
determined by its Lagrangian image.

We describe a space which parametrizes pairs of Legendrian
submanifolds L1, L2. We say that two pairs of Legendrian
submanifolds in V ⊕ ξ are contact equivalent if they differ by
a holomorphic contactomorphism of V ⊕ ξ.

Lemma. Any pair of Lagrangian submanifolds is
symplectic equivalent to a pair (L1, L2) such that L1 is a
linear Lagrangian submanifold and the tangent space T0L2

is equal to W .
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A vector space ξ has no distinguished coordinate. We have to
work with ξ – a line bundle over some base space X. The
same applies to W – now possibly a nontrivial bundle.
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A vector space ξ has no distinguished coordinate. We have to
work with ξ – a line bundle over some base space X. The
same applies to W – now possibly a nontrivial bundle.
Let

τ : Leg(W, ξ) → X

denote the Legendre Grassmann bundle parametrizing
Legendrian submanifolds in Vx ⊕ ξx, x ∈ X whose projections
to Vx are linear spaces.
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A vector space ξ has no distinguished coordinate. We have to
work with ξ – a line bundle over some base space X. The
same applies to W – now possibly a nontrivial bundle.
Let

τ : Leg(W, ξ) → X

denote the Legendre Grassmann bundle parametrizing
Legendrian submanifolds in Vx ⊕ ξx, x ∈ X whose projections
to Vx are linear spaces.
We shall often identify Leg(W, ξ) with the Lagrange
Grassmann bundle

τ : LG(V, ω) → X

since any Legendre submanifold in Vx ⊕ ξx is determined by
its projection to Vx.

Positivity of Legendrian Thom polynomials – p. 6/23



Tautological bundle over Leg(W, ξ) is denoted by R.
We have the tautological sequence on Leg(W, ξ):

0 → R → V → R∗ ⊗ ξ → 0 .
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Tautological bundle over Leg(W, ξ) is denoted by R.
We have the tautological sequence on Leg(W, ξ):

0 → R → V → R∗ ⊗ ξ → 0 .

Fix k ∈ N. We identify two Legendrian submanifolds if the
degree of their tangency at 0 is greater than or equal to k.
The equivalence class will be called“a k-jet of a submanifold”.
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Tautological bundle over Leg(W, ξ) is denoted by R.
We have the tautological sequence on Leg(W, ξ):

0 → R → V → R∗ ⊗ ξ → 0 .

Fix k ∈ N. We identify two Legendrian submanifolds if the
degree of their tangency at 0 is greater than or equal to k.
The equivalence class will be called“a k-jet of a submanifold”.

Let Ck(W, ξ) be the set of pairs of k-jets of Legendrian
submanifolds (L1, L2) ⊂ Vx ⊕ ξx s.t. the projection of L1 to
Vx is a linear space and T0L2 = Wx. Let

π : Ck(W, ξ) → Leg(W, ξ)

denote the projection such that π(L1, L2) = L1.
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Local study
Every k-jet of a Legendrian submanifold L in Vx ⊕ ξx is the
graph of a 1-form

α : Wx → (W ∗
x ⊗ ξx)⊕ ξx .

The condition that L is Legendrian is equivalent to dα = 0.
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Local study
Every k-jet of a Legendrian submanifold L in Vx ⊕ ξx is the
graph of a 1-form

α : Wx → (W ∗
x ⊗ ξx)⊕ ξx .

The condition that L is Legendrian is equivalent to dα = 0.
Therefore there exists a polynomial function

f : Wx → ξx

of degree k + 1 such that α = df . The assumption 0 ∈ L is
equivalent to df(0) = 0. In other words, L is the graph of the
1-jet of f .
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Local study
Every k-jet of a Legendrian submanifold L in Vx ⊕ ξx is the
graph of a 1-form

α : Wx → (W ∗
x ⊗ ξx)⊕ ξx .

The condition that L is Legendrian is equivalent to dα = 0.
Therefore there exists a polynomial function

f : Wx → ξx

of degree k + 1 such that α = df . The assumption 0 ∈ L is
equivalent to df(0) = 0. In other words, L is the graph of the
1-jet of f .
If, in addition, the tangency condition

T0L = Wx

holds, then the second jet of f vanish at 0.
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Global picture

Thus we can identify π−1(Wx) with

k+1⊕

i=3

Symi(W ∗
x )⊗ ξx .

In fact, we obtain the following Cartesian square:

π

Ck(W, ξ) → Leg(W, ξ)

↓ ↓ τ

⊕k+1
i=3 Symi(W ∗)⊗ ξ → X .
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By a Legendre singularity class we mean a closed algebraic
subset Σ ⊂ Ck(Cn,C) , invariant with respect to holomorphic

contactomorphisms of C2n+1. (It is a union of contact
equivalence classes.) Additionally, we assume that the
singularity class Σ is stable with respect to enlarging the
dimension of W . Since any changes of coordinates of W and
ξ induce holomorphic contactomorphisms of V ⊕ ξ, any
Legendre singularity class Σ defines a cycle

Σ(W, ξ) ⊂ Ck(W, ξ).
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By a Legendre singularity class we mean a closed algebraic
subset Σ ⊂ Ck(Cn,C) , invariant with respect to holomorphic

contactomorphisms of C2n+1. (It is a union of contact
equivalence classes.) Additionally, we assume that the
singularity class Σ is stable with respect to enlarging the
dimension of W . Since any changes of coordinates of W and
ξ induce holomorphic contactomorphisms of V ⊕ ξ, any
Legendre singularity class Σ defines a cycle

Σ(W, ξ) ⊂ Ck(W, ξ).

The element PD[Σ(W, ξ)] of H∗(Ck(W, ξ),Z), which is the
Poincaré dual of [Σ(W, ξ)] is called the Legendrian Thom
polynomial of Σ.
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By a Legendre singularity class we mean a closed algebraic
subset Σ ⊂ Ck(Cn,C) , invariant with respect to holomorphic

contactomorphisms of C2n+1. (It is a union of contact
equivalence classes.) Additionally, we assume that the
singularity class Σ is stable with respect to enlarging the
dimension of W . Since any changes of coordinates of W and
ξ induce holomorphic contactomorphisms of V ⊕ ξ, any
Legendre singularity class Σ defines a cycle

Σ(W, ξ) ⊂ Ck(W, ξ).

The element PD[Σ(W, ξ)] of H∗(Ck(W, ξ),Z), which is the
Poincaré dual of [Σ(W, ξ)] is called the Legendrian Thom
polynomial of Σ.
To understand the structure of these polynomials, we need a
bit of Schubert Calculus.
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Legendrian Grassmann bundles
Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=

n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .
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Legendrian Grassmann bundles
Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=

n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .

We have a symplectic form ω defined on V with values in ξ.
LG(V, ω) is a homogeneous space for the symplectic group
Sp(V, ω) ⊂ End(V ).
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Legendrian Grassmann bundles
Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=

n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .

We have a symplectic form ω defined on V with values in ξ.
LG(V, ω) is a homogeneous space for the symplectic group
Sp(V, ω) ⊂ End(V ).
Fix two“opposite” standard isotropic flags in V :

F+
h

:=

h⊕

i=1

αi , F−
h

:=

h⊕

i=1

α∗
n−i+1⊗ξ , (h = 1, 2, . . . , n)
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Legendrian Grassmann bundles
Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=

n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .

We have a symplectic form ω defined on V with values in ξ.
LG(V, ω) is a homogeneous space for the symplectic group
Sp(V, ω) ⊂ End(V ).
Fix two“opposite” standard isotropic flags in V :

F+
h

:=

h⊕

i=1

αi , F−
h

:=

h⊕

i=1

α∗
n−i+1⊗ξ , (h = 1, 2, . . . , n)

Consider two Borel groups B± ⊂ Sp(V, ω), preserving the
flags F±

• . The orbits of B± in LG(V, ω) form two“opposite”
cell decompositions {ΩI(F

±
• , ξ)} of LG(V, ω).
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The decompositions are indexed by strict partitions I
contained in ρ = (n, n− 1, . . . , 2, 1).

The“+”cells are transverse to the“−”cells.
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The decompositions are indexed by strict partitions I
contained in ρ = (n, n− 1, . . . , 2, 1).

The“+”cells are transverse to the“−”cells.

All that is functorial w.r.t. the automorphisms of the lines ξ
and αi’s, (they form a torus (C∗)n+1). Thus the construction
of the cell decompositions can be repeated for bundles ξ and
{αi}

n
i=1 over any base X. We get a Lagrange Grassmann

bundle
τ : LG(V, ω) = Leg(W, ξ) → X

together with two subgroup bundles B± → X.
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The decompositions are indexed by strict partitions I
contained in ρ = (n, n− 1, . . . , 2, 1).

The“+”cells are transverse to the“−”cells.

All that is functorial w.r.t. the automorphisms of the lines ξ
and αi’s, (they form a torus (C∗)n+1). Thus the construction
of the cell decompositions can be repeated for bundles ξ and
{αi}

n
i=1 over any base X. We get a Lagrange Grassmann

bundle
τ : LG(V, ω) = Leg(W, ξ) → X

together with two subgroup bundles B± → X.

Leg(W, ξ) admits two (relative) stratifications

{ΩI(F
±
• , ξ) → X}I
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Assume that X is a compact homogeneous space under G;
X = G/P . Then X admits an algebraic cell decomposition
{σλ}.
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Assume that X is a compact homogeneous space under G;
X = G/P . Then X admits an algebraic cell decomposition
{σλ}.

The subsets
Z−
Iλ

:= τ−1(σλ) ∩ ΩI(F
−
• , ξ)

form an algebraic cell decomposition of the space of
Leg(W, ξ) → X.
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Assume that X is a compact homogeneous space under G;
X = G/P . Then X admits an algebraic cell decomposition
{σλ}.

The subsets
Z−
Iλ

:= τ−1(σλ) ∩ ΩI(F
−
• , ξ)

form an algebraic cell decomposition of the space of
Leg(W, ξ) → X. The classes of their closures give a basis of
homology.
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Assume that X is a compact homogeneous space under G;
X = G/P . Then X admits an algebraic cell decomposition
{σλ}.

The subsets
Z−
Iλ

:= τ−1(σλ) ∩ ΩI(F
−
• , ξ)

form an algebraic cell decomposition of the space of
Leg(W, ξ) → X. The classes of their closures give a basis of

homology. Each Z−
Iλ

is transverse to each stratum

ΩJ(F
+
• , ξ).
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Assume that X is a compact homogeneous space under G;
X = G/P . Then X admits an algebraic cell decomposition
{σλ}.

The subsets
Z−
Iλ

:= τ−1(σλ) ∩ ΩI(F
−
• , ξ)

form an algebraic cell decomposition of the space of
Leg(W, ξ) → X. The classes of their closures give a basis of

homology. Each Z−
Iλ

is transverse to each stratum

ΩJ(F
+
• , ξ).

Consider F :=
⊕k+1

i=3 Symi(W ∗)⊗ ξ → X.
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Assume that X is a compact homogeneous space under G;
X = G/P . Then X admits an algebraic cell decomposition
{σλ}.

The subsets
Z−
Iλ

:= τ−1(σλ) ∩ ΩI(F
−
• , ξ)

form an algebraic cell decomposition of the space of
Leg(W, ξ) → X. The classes of their closures give a basis of

homology. Each Z−
Iλ

is transverse to each stratum

ΩJ(F
+
• , ξ).

Consider F :=
⊕k+1

i=3 Symi(W ∗)⊗ ξ → X.

Pulling back F to Leg(W, ξ) → X, we get the following jet
bundle:

π : E := τ∗F → Leg(W, ξ).
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Assume that X is a compact homogeneous space under G;
X = G/P . Then X admits an algebraic cell decomposition
{σλ}.

The subsets
Z−
Iλ

:= τ−1(σλ) ∩ ΩI(F
−
• , ξ)

form an algebraic cell decomposition of the space of
Leg(W, ξ) → X. The classes of their closures give a basis of

homology. Each Z−
Iλ

is transverse to each stratum

ΩJ(F
+
• , ξ).

Consider F :=
⊕k+1

i=3 Symi(W ∗)⊗ ξ → X.

Pulling back F to Leg(W, ξ) → X, we get the following jet
bundle:

π : E := τ∗F → Leg(W, ξ).

The space of the bundle E is equal to Ck(W, ξ).
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A singularity class Σ defines the subset Σ(W, ξ) ⊂ E, which is
Zariski fibered over X.
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A singularity class Σ defines the subset Σ(W, ξ) ⊂ E, which is
Zariski fibered over X.

Theorem. Fix I ⊂ ρ and λ. Suppose that the vector
bundle E is generated by its global sections. Then, in E,
the intersection of Σ(W, ξ) with the closure of any

π−1(Z−
Iλ
) is represented by a nonnegative cycle.
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A singularity class Σ defines the subset Σ(W, ξ) ⊂ E, which is
Zariski fibered over X.

Theorem. Fix I ⊂ ρ and λ. Suppose that the vector
bundle E is generated by its global sections. Then, in E,
the intersection of Σ(W, ξ) with the closure of any

π−1(Z−
Iλ
) is represented by a nonnegative cycle.

Let ι : Leg(W, ξ) → Ck(W, ξ) be the zero section.
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A singularity class Σ defines the subset Σ(W, ξ) ⊂ E, which is
Zariski fibered over X.

Theorem. Fix I ⊂ ρ and λ. Suppose that the vector
bundle E is generated by its global sections. Then, in E,
the intersection of Σ(W, ξ) with the closure of any

π−1(Z−
Iλ
) is represented by a nonnegative cycle.

Let ι : Leg(W, ξ) → Ck(W, ξ) be the zero section.
For the induced map ι∗ on integral cohomology rings,

ι∗PD[Σ(W, ξ)] =:
∑

I,λ

γIλ[Z
−
Iλ
]∗
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A singularity class Σ defines the subset Σ(W, ξ) ⊂ E, which is
Zariski fibered over X.

Theorem. Fix I ⊂ ρ and λ. Suppose that the vector
bundle E is generated by its global sections. Then, in E,
the intersection of Σ(W, ξ) with the closure of any

π−1(Z−
Iλ
) is represented by a nonnegative cycle.

Let ι : Leg(W, ξ) → Ck(W, ξ) be the zero section.
For the induced map ι∗ on integral cohomology rings,

ι∗PD[Σ(W, ξ)] =:
∑

I,λ

γIλ[Z
−
Iλ
]∗

If F is globally generated, then γIλ ≥ 0 :
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A singularity class Σ defines the subset Σ(W, ξ) ⊂ E, which is
Zariski fibered over X.

Theorem. Fix I ⊂ ρ and λ. Suppose that the vector
bundle E is generated by its global sections. Then, in E,
the intersection of Σ(W, ξ) with the closure of any

π−1(Z−
Iλ
) is represented by a nonnegative cycle.

Let ι : Leg(W, ξ) → Ck(W, ξ) be the zero section.
For the induced map ι∗ on integral cohomology rings,

ι∗PD[Σ(W, ξ)] =:
∑

I,λ

γIλ[Z
−
Iλ
]∗

If F is globally generated, then γIλ ≥ 0 :

γIλ = 〈ι∗PD[Σ(W, ξ)], [Z−
Iλ
]〉 = [Σ(W, ξ)] · [Z−

Iλ
] ≥ 0 .
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Suppose that W = α⊕n and α−m ⊗ ξ is g.g. for m ≥ 3.

.
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Suppose that W = α⊕n and α−m ⊗ ξ is g.g. for m ≥ 3.

Let X = Pn and ξ1 = O(−2), α1 = O(−1)

ξ2 = O(1), α2 = 1 ξ3 = O(−3), α3 = O(−1) ,

.
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Suppose that W = α⊕n and α−m ⊗ ξ is g.g. for m ≥ 3.

Let X = Pn and ξ1 = O(−2), α1 = O(−1)

ξ2 = O(1), α2 = 1 ξ3 = O(−3), α3 = O(−1) ,

Our naive proof of the positivity property in the first case
was the starting point of this project. The positivity property
of the last two cases was suggested to us by Kazarian, and
checked by him on computer up to degree 7.
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Suppose that W = α⊕n and α−m ⊗ ξ is g.g. for m ≥ 3.

Let X = Pn and ξ1 = O(−2), α1 = O(−1)

ξ2 = O(1), α2 = 1 ξ3 = O(−3), α3 = O(−1) ,

Our naive proof of the positivity property in the first case
was the starting point of this project. The positivity property
of the last two cases was suggested to us by Kazarian, and
checked by him on computer up to degree 7.
To overlap all these three cases we consider the product

X := Pn ×Pn

W := p∗1O(−1)⊕n , ξ := p∗1O(−3)⊗ p∗2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections.
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Suppose that W = α⊕n and α−m ⊗ ξ is g.g. for m ≥ 3.

Let X = Pn and ξ1 = O(−2), α1 = O(−1)

ξ2 = O(1), α2 = 1 ξ3 = O(−3), α3 = O(−1) ,

Our naive proof of the positivity property in the first case
was the starting point of this project. The positivity property
of the last two cases was suggested to us by Kazarian, and
checked by him on computer up to degree 7.
To overlap all these three cases we consider the product

X := Pn ×Pn

W := p∗1O(−1)⊕n , ξ := p∗1O(−3)⊗ p∗2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections. Restricting
the bundles W and ξ to the diagonal, or to the factors we
obtain our three cases. Positivity of Legendrian Thom polynomials – p. 15/23



The space Leg(W, ξ) has a cell decomposition Z−
Iλ

= Z−

I(a,b)
,
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The space Leg(W, ξ) has a cell decomposition Z−
Iλ

= Z−

I(a,b)
,

where strict I ⊂ ρ, a ≤ n, b ≤ n.
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The space Leg(W, ξ) has a cell decomposition Z−
Iλ

= Z−

I(a,b)
,

where strict I ⊂ ρ, a ≤ n, b ≤ n.
The classes of closures of the cells of this decomposition give
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= Z−

I(a,b)
,

where strict I ⊂ ρ, a ≤ n, b ≤ n.
The classes of closures of the cells of this decomposition give
a basis of the homology of Leg(W, ξ).
The dual basis of cohomology is denoted by

eI,a,b := [Z−
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The space Leg(W, ξ) has a cell decomposition Z−
Iλ

= Z−

I(a,b)
,

where strict I ⊂ ρ, a ≤ n, b ≤ n.
The classes of closures of the cells of this decomposition give
a basis of the homology of Leg(W, ξ).
The dual basis of cohomology is denoted by

eI,a,b := [Z−

I(a,b)
]∗ .

Theorem. Let Σ be a Legendre singularity class. Then
PD[Σ(W, ξ)] has nonnegative coefficients in the basis
{eI,a,b}.
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The space Leg(W, ξ) has a cell decomposition Z−
Iλ

= Z−

I(a,b)
,

where strict I ⊂ ρ, a ≤ n, b ≤ n.
The classes of closures of the cells of this decomposition give
a basis of the homology of Leg(W, ξ).
The dual basis of cohomology is denoted by

eI,a,b := [Z−

I(a,b)
]∗ .

Theorem. Let Σ be a Legendre singularity class. Then
PD[Σ(W, ξ)] has nonnegative coefficients in the basis
{eI,a,b}.

The vector bundle F on X = Pn ×Pn is globally generated:

F =

k+1⊕

j=3

Symj(W ∗)⊗ξ =

k+1⊕

j=3

Symj(1n)⊗p∗1O(j−3)⊗p∗2O(1).
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Let for i = 1, 2, vi = c1(p
∗
i (O(1)).
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Let for i = 1, 2, vi = c1(p
∗
i (O(1)).

T Σ =
∑

I,a,b

γI,a,b eI,a,b =
∑

I,a,b

γI,a,bPD[ΩI(F
+
• , ξ)]va1v

b
2 .
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Want: an additive basis of the ring of Legendrian
characteristic classes with the property that any Legendrian
Thom polynomial is a nonnegative combination of basis
elements.
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γI,a,bPD[ΩI(F
+
• , ξ)]va1v
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Want: an additive basis of the ring of Legendrian
characteristic classes with the property that any Legendrian
Thom polynomial is a nonnegative combination of basis
elements.

Take a pair of integers p, q.
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Let for i = 1, 2, vi = c1(p
∗
i (O(1)).

T Σ =
∑

I,a,b

γI,a,b eI,a,b =
∑

I,a,b

γI,a,bPD[ΩI(F
+
• , ξ)]va1v

b
2 .

Want: an additive basis of the ring of Legendrian
characteristic classes with the property that any Legendrian
Thom polynomial is a nonnegative combination of basis
elements.

Take a pair of integers p, q.

ξ(p,q) = ξ⊗p
2 ⊗ ξ⊗q

3

α = α(p,q) = α⊗p
2 ⊗ α⊗q

3 = α⊗q
3
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Divide H∗(Leg(W, ξ),Q) by the relation

q · v1 = p · v2
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Divide H∗(Leg(W, ξ),Q) by the relation

q · v1 = p · v2

that is specializing the parameters to v1 = p · t, v2 = q · t, we

obtain the ring H∗(Leg(W (p,q), ξ(p,q)),Q) isomorphic to the
ring of Legendrian characteristic classes in degrees up to n
(provided that c1(ξ) = v2 − 3v1 is not specialized to 0 and
(p, q) 6= (0, 0).)

Positivity of Legendrian Thom polynomials – p. 18/23



Divide H∗(Leg(W, ξ),Q) by the relation

q · v1 = p · v2

that is specializing the parameters to v1 = p · t, v2 = q · t, we

obtain the ring H∗(Leg(W (p,q), ξ(p,q)),Q) isomorphic to the
ring of Legendrian characteristic classes in degrees up to n
(provided that c1(ξ) = v2 − 3v1 is not specialized to 0 and
(p, q) 6= (0, 0).)

Theorem. If p and q are nonnegative, q − 3p 6= 0 and
(p, q) 6= (0, 0) then the Thom polynomial is a nonnegative

combination of the PD[ΩI(F
+
• , ξ)] ti’s.
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Divide H∗(Leg(W, ξ),Q) by the relation

q · v1 = p · v2

that is specializing the parameters to v1 = p · t, v2 = q · t, we

obtain the ring H∗(Leg(W (p,q), ξ(p,q)),Q) isomorphic to the
ring of Legendrian characteristic classes in degrees up to n
(provided that c1(ξ) = v2 − 3v1 is not specialized to 0 and
(p, q) 6= (0, 0).)

Theorem. If p and q are nonnegative, q − 3p 6= 0 and
(p, q) 6= (0, 0) then the Thom polynomial is a nonnegative

combination of the PD[ΩI(F
+
• , ξ)] ti’s.

The family PD[ΩI(F
+
• , ξ)] ti is a one-parameter family of

bases depending on the parameter p/q.

Positivity of Legendrian Thom polynomials – p. 18/23



Case 1. ξ1 = O(−2), α1 = O(−1). This corresponds to fixing
the parameter to be 1; p = 1 and q = 1 ; v1 = v2 = t.
Geometrically, this means that we study the restriction of the
bundles W and ξ to the diagonal of Pn ×Pn.
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is half the first Chern class of ξ∗.
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Case 1. ξ1 = O(−2), α1 = O(−1). This corresponds to fixing
the parameter to be 1; p = 1 and q = 1 ; v1 = v2 = t.
Geometrically, this means that we study the restriction of the
bundles W and ξ to the diagonal of Pn ×Pn.

In the next theorem A is a virtual bundle W ∗ ⊗ ξ −R, and t
is half the first Chern class of ξ∗.

Theorem. The Thom polynomial of a Legendre
singularity class Σ is a combination:

T Σ =
∑

j≥0

∑

I

αI,j Q̃I(A⊗ ξ−
1

2 ) · tj .

Here I runs over strict partitions in ρ, and αI,j are
nonnegative integers.
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Legendrian vs. classical
t = v1 = v2
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Legendrian vs. classical
t = v1 = v2
Proposition. For a nonempty stable Legendre singularity
class Σ, the Lagrangian Thom polynomial (i.e. T Σ

evaluated at t = 0) is nonzero. (So, also T Σ is nonzero.)
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Legendrian vs. classical
t = v1 = v2
Proposition. For a nonempty stable Legendre singularity
class Σ, the Lagrangian Thom polynomial (i.e. T Σ

evaluated at t = 0) is nonzero. (So, also T Σ is nonzero.)

Kazarian: The classification of Legendre singularities is
parallel to the classification of critical point singularities w.r.t.
stable right equivalence. For a Legendre singularity class Σ
consider the associated singularity class of maps f : M → C
from n-dimensional manifolds to curves. We denote the
related Thom polynomial by TpΣ.
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evaluated at t = 0) is nonzero. (So, also T Σ is nonzero.)

Kazarian: The classification of Legendre singularities is
parallel to the classification of critical point singularities w.r.t.
stable right equivalence. For a Legendre singularity class Σ
consider the associated singularity class of maps f : M → C
from n-dimensional manifolds to curves. We denote the
related Thom polynomial by TpΣ.
We have

TpΣ = T Σ · cn(T
∗M ⊗ f∗TC) .
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Legendrian vs. classical
t = v1 = v2
Proposition. For a nonempty stable Legendre singularity
class Σ, the Lagrangian Thom polynomial (i.e. T Σ

evaluated at t = 0) is nonzero. (So, also T Σ is nonzero.)

Kazarian: The classification of Legendre singularities is
parallel to the classification of critical point singularities w.r.t.
stable right equivalence. For a Legendre singularity class Σ
consider the associated singularity class of maps f : M → C
from n-dimensional manifolds to curves. We denote the
related Thom polynomial by TpΣ.
We have

TpΣ = T Σ · cn(T
∗M ⊗ f∗TC) .

We know that TpΣ is nonzero. One shows that TpΣ,
specialized with f∗TC = 1 i.e. t = 0, is also nonzero. The
assertion follows from the equation.
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Final remarks
Chern class formula for

PD[ΩI(F
+
• , ξ)]

depending on the Chern classes of ξ, R, W , F+
i i = 1, . . . , n

– still to be found: PP(1986), PP-Ratajski, Lascoux-PP,
Buch-Kresch-Tamvakis, Kazarian (2009).
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The Legendrian coefficients are difficult to compute. Knowing
that they are nonnegative, find upper bounds for them!
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First method uses the equation relating Legendrian and
classical Thom polynomials. Algebraically it is some instance
of the“factorization formula” for super Schur functions.
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Final remarks
Chern class formula for

PD[ΩI(F
+
• , ξ)]

depending on the Chern classes of ξ, R, W , F+
i i = 1, . . . , n

– still to be found: PP(1986), PP-Ratajski, Lascoux-PP,
Buch-Kresch-Tamvakis, Kazarian (2009).

The Legendrian coefficients are difficult to compute. Knowing
that they are nonnegative, find upper bounds for them!

First method uses the equation relating Legendrian and
classical Thom polynomials. Algebraically it is some instance
of the“factorization formula” for super Schur functions.

Second method combines different specializations in the one
parameter family of positive bases.
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Examples

A2: Q̃1 A3: 3Q̃2 + v2Q̃1

A4: 12Q̃3 + 3Q̃21 + (3v1 + 7v2)Q̃2 + (v1v2 + v22)Q̃1

D4: Q̃21.
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Examples

A2: Q̃1 A3: 3Q̃2 + v2Q̃1

A4: 12Q̃3 + 3Q̃21 + (3v1 + 7v2)Q̃2 + (v1v2 + v22)Q̃1

D4: Q̃21.

P8 = Q̃321.

A5: 60Q̃4 + 27Q̃31 + (6v1 + 16v2)Q̃21 + (39v1 + 47v2)Q̃3+

(6v21 + 22v1v2 + 12v22)Q̃2 + (2v21v2 + 3v1v
2
2 + v32)Q̃1

D5: 6Q̃31 + 4v2Q̃21,

P9: 12Q̃421 + 12v2Q̃321.
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Examples

A2: Q̃1 A3: 3Q̃2 + v2Q̃1

A4: 12Q̃3 + 3Q̃21 + (3v1 + 7v2)Q̃2 + (v1v2 + v22)Q̃1

D4: Q̃21.

P8 = Q̃321.

A5: 60Q̃4 + 27Q̃31 + (6v1 + 16v2)Q̃21 + (39v1 + 47v2)Q̃3+

(6v21 + 22v1v2 + 12v22)Q̃2 + (2v21v2 + 3v1v
2
2 + v32)Q̃1

D5: 6Q̃31 + 4v2Q̃21,

P9: 12Q̃421 + 12v2Q̃321.

A8 : 18840Q̃61 + 20160Q̃7 + 3123Q̃421 + 5556Q̃43 + 15564Q̃52+

t(71856Q̃6 + 3999Q̃321 + 55672Q̃51 + 34780Q̃42)+

t2(64524Q̃41 + 24616Q̃32 + 105496Q̃5) + t3(36048Q̃31 + 81544Q̃4)+

t4(8876Q̃21 + 34936Q̃3) + t57848Q̃2 + t6720Q̃1 ;
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E8 :

93Q̃421 + 108Q̃43 + 204Q̃52 + 72Q̃61+

t(99Q̃321 + 216Q̃51 + 414Q̃42)+

t2(246Q̃41 + 246Q̃32) + t3126Q̃31 + t424Q̃21 ;
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93Q̃421 + 108Q̃43 + 204Q̃52 + 72Q̃61+

t(99Q̃321 + 216Q̃51 + 414Q̃42)+

t2(246Q̃41 + 246Q̃32) + t3126Q̃31 + t424Q̃21 ;

X9 :

18Q̃52 + 27Q̃43 + t(42Q̃42 + 6Q̃51) + t2(21Q̃32 + 11Q̃41)+

t36Q̃31 + t4Q̃21 ;
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E8 :

93Q̃421 + 108Q̃43 + 204Q̃52 + 72Q̃61+

t(99Q̃321 + 216Q̃51 + 414Q̃42)+

t2(246Q̃41 + 246Q̃32) + t3126Q̃31 + t424Q̃21 ;

X9 :

18Q̃52 + 27Q̃43 + t(42Q̃42 + 6Q̃51) + t2(21Q̃32 + 11Q̃41)+

t36Q̃31 + t4Q̃21 ;

P9 :

12Q̃421 + t12Q̃321 .
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