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Let Σ be an algebraic right-left invariant set in Jk(Cm
0 ,C

n
0 ).

Then there exists a universal polynomial T Σ over Z

in m+ n variables which depends only on Σ, m and n

s.t. for any manifolds Mm, Nn and general map f :M → N

the class dual to Σ(f) = f−1
k (Σ) is equal to

T Σ(c1(M), . . . , cm(M), f∗c1(N), . . . , f∗cn(N)).

where fk :M → Jk(M,N) is the k-jet extension of f .

If a singularity class Σ is “stable” (e.g. closed under the

contact equivalence), then T Σ depends on ci(TM − f∗TN).
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Classifying spaces of singularities
Fix k ∈ N.

Autn:= group of k-jets of automorphisms of (Cn, 0).

J = J (m,n):= space of k-jets of (Cm, 0)→ (Cn, 0).

G := Autm × Autn.

Consider the classifying principal G-bundle EG→ BG, i.e.

a contractible space EG with a free action of the group G.

J̃ := J̃ (m,n) = EG×G J .
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Let Σ ⊂ J be a singularity class, i.e. an analytic closed
G-invariant subset.

Σ̃ := EG×G Σ ⊂ J̃ .

Let T Σ ∈ H2 codim(Σ)(J̃ ,Z) be the dual class of [Σ̃]. Since

H•(J̃ ,Z) ∼= H•(BG,Z) ∼= H•(BGLm × BGLn,Z) ,

T Σ is identified with a polynomial in c1, . . . , cm and
c′1, . . . , c

′
n which are the Chern classes of universal bundles

Rm and Rn on BGLm and BGLn:

T Σ = T Σ(c1, . . . , cm, c
′
1, . . . , c

′
n).

(Rm “parametrizes”TM for dimM = m, similarly for Rn.)
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R. Rimányi, Inv. Math. (2001)

Fix k ∈ N. By a singularity we mean an equivalence class

of stable germs (C•, 0)→ (C•+k, 0), under the equivalence

generated by the right-left equivalence and suspension.

{singularities} ←→ {finite dim’l. C− algebras }

Ai ←→ C[[x]]/(xi+1), i ≥ 0

Thom polynomials andSchur functions – p. 6/45



Singularities
R. Rimányi, Inv. Math. (2001)

Fix k ∈ N. By a singularity we mean an equivalence class

of stable germs (C•, 0)→ (C•+k, 0), under the equivalence

generated by the right-left equivalence and suspension.

{singularities} ←→ {finite dim’l. C− algebras }

Ai ←→ C[[x]]/(xi+1), i ≥ 0

Ia,b ←→ C[[x, y]]/(xy, xa + yb), b ≥ a ≥ 2

Thom polynomials andSchur functions – p. 6/45



Singularities
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Fix k ∈ N. By a singularity we mean an equivalence class

of stable germs (C•, 0)→ (C•+k, 0), under the equivalence

generated by the right-left equivalence and suspension.

{singularities} ←→ {finite dim’l. C− algebras }

Ai ←→ C[[x]]/(xi+1), i ≥ 0

Ia,b ←→ C[[x, y]]/(xy, xa + yb), b ≥ a ≥ 2

IIIa,b ←→ C[[x, y]]/(xy, xa, yb), b ≥ a ≥ 2

Ai, k = 0:

(x, u1, . . . , ui−1)→ (xi+1 +
∑i−1

j=1 ujx
j , u1, . . . , ui−1)
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For a singularity η by T η we mean the Thom polynomial

associated with the closure of the right-left orbit of its
representative.

for k = 0, T A4 = c41 + 6c21c2 + 2c22 + 9c1c3 + 6c4.

T η evaluates for a general f the dual class of

η(f) = {x ∈M : the singularity of f at x is η}

codim(η) = codim η(f).
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Let m = n = 1 and η = A1. Let f :M → N be a surjective
map of compact Riemann surfaces.

ex = number of branches of f at x.

Then η(f), the ramification divisor of f , is
∑

(ex − 1)x.

The Riemann-Hurwitz formula tells us:

∑

x∈M

(ex − 1) = 2g(M)− 2− deg(f)
(
2g(N)− 2

)

T A1(c1(M), c1(N)) = f∗c1(N)− c1(M).
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Let η be a singularity with prototype
κ : (Cm, 0)→ (Cm+k, 0).

Gη = maximal compact subgroup of

Autκ = {(ϕ, ψ) ∈ Diff(Cm, 0)×Diff(Cm+k, 0) : ψ◦κ◦ϕ−1 = κ}

Well defined up to conjugacy; it can be chosen so that the
images of its projections to the factors are linear. Its
representations on the source and target will be denoted by

λ1(η) and λ2(η) .
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We get the vector bundles associated with the universal
principal Gη-bundle EGη → BGη using the representations
λ1(η) and λ2(η):

E′
η and Eη .

The Chern class and Euler classs of η are defined by

c(η) :=
c(Eη)

c(E′
η)

and e(η) := e(E′
η).
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Ai, C[[x]]/(xi+1); Gη = U(1)× U(k).

Let x and y1,. . . , yk be the Chern roots of the universal
bundles on BU(1) and BU(k). Then

c(Ai) =
1 + (i+ 1)x

1 + x

k∏

j=1

(1 + yj),

e(Ai) = i! xi
k∏

j=1

(yj − x)(yj − 2x) · · · (yj − ix).
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I2,2, C[[x, y]]/(xy, x2 + y2); Gη
∼= U(1)× U(1)× U(k).

Thom polynomials andSchur functions – p. 12/45



I2,2, C[[x, y]]/(xy, x2 + y2); Gη
∼= U(1)× U(1)× U(k).

c(I2,2) =
(1 + 2x1)(1 + 2x2)

(1 + x1)(1 + x2)

k∏

j=1

(1 + yj),

Thom polynomials andSchur functions – p. 12/45



I2,2, C[[x, y]]/(xy, x2 + y2); Gη
∼= U(1)× U(1)× U(k).

c(I2,2) =
(1 + 2x1)(1 + 2x2)

(1 + x1)(1 + x2)

k∏

j=1

(1 + yj),

e(I2,2) = x1x2(x1−2x2)(x2−2x1)

k∏

j=1

(yj−x1)(yj−x2)(yj−x1−x2).

Thom polynomials andSchur functions – p. 12/45



I2,2, C[[x, y]]/(xy, x2 + y2); Gη
∼= U(1)× U(1)× U(k).

c(I2,2) =
(1 + 2x1)(1 + 2x2)

(1 + x1)(1 + x2)

k∏

j=1

(1 + yj),

e(I2,2) = x1x2(x1−2x2)(x2−2x1)

k∏

j=1

(yj−x1)(yj−x2)(yj−x1−x2).

III2,2, C[[x, y]]/(xy, x2, y2); Gη = U(2)× U(k−1).

Thom polynomials andSchur functions – p. 12/45
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∼= U(1)× U(1)× U(k).

c(I2,2) =
(1 + 2x1)(1 + 2x2)

(1 + x1)(1 + x2)

k∏

j=1

(1 + yj),

e(I2,2) = x1x2(x1−2x2)(x2−2x1)

k∏

j=1

(yj−x1)(yj−x2)(yj−x1−x2).

III2,2, C[[x, y]]/(xy, x2, y2); Gη = U(2)× U(k−1).
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Theorem of Rimanyi
Fix a singularity η. Assume that the number of singularities
of codimension ≤ codim η is finite. Suppose that the Euler

classes of all singularities of smaller codimension than
codim(η), are not zero-divisors. Then

(i) if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;

(ii) T η(c(η)) = e(η).

This system of equations (taken for all such ξ’s) determines
the Thom polynomial T η in a unique way.
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For k = 0:
A1, . . . , A8, I2,2, I2,3, I2,4, I3,3, I2,5,, I3,4, I2,6, I3,5, I4,4.
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For k = 0:
A1, . . . , A8, I2,2, I2,3, I2,4, I3,3, I2,5,, I3,4, I2,6, I3,5, I4,4.

For k = 1: A1, . . . , A4, III2,2, III2,3, I2,2.
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For k = 0:
A1, . . . , A8, I2,2, I2,3, I2,4, I3,3, I2,5,, I3,4, I2,6, I3,5, I4,4.

For k = 1: A1, . . . , A4, III2,2, III2,3, I2,2.

I2,2: c22 − c1c3
I2,3: 2c1c22 − c

2
1c3 + 2c2c3 − 2c1c4

I2,4: 2c21c
2
2+ c32− 2c31c3+2c1c2c3− 3c33− 5c21c4+9c2c4− 6c1c5

I3,3: c21c
2
2 − c

3
2 − c

3
1c3 + 3c1c2c3 + 3c23 − 2c21c4 − 3c2c4
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Notation: “shifted”parameter r := k + 1;
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Notation: “shifted”parameter r := k + 1;

η(r) = η : (C•, 0)→ (C•+r−1, 0);

T η
r = Thom polynomial of η(r).
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Schur functions
Alphabet A: a finite set of indeterminates.
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Take another alphabet B.

∑
Si(A−B)zi =

∏

b∈B

(1−bz)/
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a∈A

(1−az) .

Given a partition I = (0 ≤ i1 ≤ · · · ≤ ih), the Schur function
SI(A−B) is
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Schur functions
Alphabet A: a finite set of indeterminates.

We identify an alphabet A = {a1, . . . , am} with the sum
a1 + · · ·+ am.

Take another alphabet B.

∑
Si(A−B)zi =

∏

b∈B

(1−bz)/
∏

a∈A

(1−az) .

Given a partition I = (0 ≤ i1 ≤ · · · ≤ ih), the Schur function
SI(A−B) is

SI(A−B) :=
∣∣∣Siq+q−p(A−B)

∣∣∣
1≤p,q≤h

.
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E.g., writing Si = Si(A−B),

S33344(A−B) =

∣∣∣∣∣∣∣∣∣∣∣

S3 S4 S5 S7 S8

S2 S3 S4 S6 S7

S1 S2 S3 S5 S6

1 S1 S2 S4 S5

0 1 S1 S3 S4

∣∣∣∣∣∣∣∣∣∣∣

.

Thom polynomials andSchur functions – p. 17/45



E.g., writing Si = Si(A−B),

S33344(A−B) =

∣∣∣∣∣∣∣∣∣∣∣

S3 S4 S5 S7 S8

S2 S3 S4 S6 S7

S1 S2 S3 S5 S6

1 S1 S2 S4 S5

0 1 S1 S3 S4

∣∣∣∣∣∣∣∣∣∣∣

.

For vector bundles E,F , we write SI(E−F ) for A and B
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For vector bundles E,F , we write SI(E−F ) for A and B

specialized to the Chern roots of E and F .
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.

For vector bundles E,F , we write SI(E−F ) for A and B

specialized to the Chern roots of E and F .

Giambelli’s formula: The dual of the class of a Schubert
variety in a Grassmannian
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E.g., writing Si = Si(A−B),

S33344(A−B) =

∣∣∣∣∣∣∣∣∣∣∣

S3 S4 S5 S7 S8

S2 S3 S4 S6 S7

S1 S2 S3 S5 S6

1 S1 S2 S4 S5

0 1 S1 S3 S4

∣∣∣∣∣∣∣∣∣∣∣

.

For vector bundles E,F , we write SI(E−F ) for A and B

specialized to the Chern roots of E and F .

Giambelli’s formula: The dual of the class of a Schubert
variety in a Grassmannian is given by a Schur polynomial of
the tautological bundle on it.
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Cancellation: SI((A+C)− (B+C)) = SI(A− B) .
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Cancellation: SI((A+C)− (B+C)) = SI(A− B) .

Vanishing: If I is not contained in the (m,n)-hook, then
SI(Am − Bn) = 0
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SI(Am − Bn) = 0

The functions SI(Am − Bn), for I running over partitions
contained in the (m,n)-hook,
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Cancellation: SI((A+C)− (B+C)) = SI(A− B) .

Vanishing: If I is not contained in the (m,n)-hook, then
SI(Am − Bn) = 0

The functions SI(Am − Bn), for I running over partitions
contained in the (m,n)-hook, are Z-linearly independent.
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R(A,B) :=
∏

a∈A, b∈B(a−b) .
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R(A,B) :=
∏

a∈A, b∈B(a−b) .

Factorization: For partitions I = (i1, . . . , im) and
J = (j1, . . . , jk),
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R(A,B) :=
∏

a∈A, b∈B(a−b) .

Factorization: For partitions I = (i1, . . . , im) and
J = (j1, . . . , jk), consider the partition

(j1, . . . , jk, i1 + n, . . . , im + n).

Thom polynomials andSchur functions – p. 19/45



R(A,B) :=
∏

a∈A, b∈B(a−b) .

Factorization: For partitions I = (i1, . . . , im) and
J = (j1, . . . , jk), consider the partition

(j1, . . . , jk, i1 + n, . . . , im + n).

We have

S(j1,...,jk,i1+n,...,im+n)(Am − Bn) = SI(A) R(A,B) SJ(−B) .

Thom polynomials andSchur functions – p. 19/45



R(A,B) :=
∏

a∈A, b∈B(a−b) .

Factorization: For partitions I = (i1, . . . , im) and
J = (j1, . . . , jk), consider the partition

(j1, . . . , jk, i1 + n, . . . , im + n).

We have

S(j1,...,jk,i1+n,...,im+n)(Am − Bn) = SI(A) R(A,B) SJ(−B) .

- proved by Berele-Regev in their study of polynomial
characters of Lie superalgebras; particular cases known to
19th century algebraists: Pomey etc.
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I2,2: c22 − c1c3
I2,3: 2c1c22 − c

2
1c3 + 2c2c3 − 2c1c4

I2,4: 2c21c
2
2+ c32− 2c31c3+2c1c2c3− 3c33− 5c21c4+9c2c4− 6c1c5

I3,3: c21c
2
2 − c

3
2 − c

3
1c3 + 3c1c2c3 + 3c23 − 2c21c4 − 3c2c4
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I2,2: c22 − c1c3
I2,3: 2c1c22 − c

2
1c3 + 2c2c3 − 2c1c4

I2,4: 2c21c
2
2+ c32− 2c31c3+2c1c2c3− 3c33− 5c21c4+9c2c4− 6c1c5

I3,3: c21c
2
2 − c

3
2 − c

3
1c3 + 3c1c2c3 + 3c23 − 2c21c4 − 3c2c4

I2,2: S22
I2,3: 4S23 + 2S122
I2,4: 16S24 + 4S33 + 12S123 + 5S222 + 2S1122
I3,3: 2S24 + 6S33 + 3S123 + S1122
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Theorem. (PP+AW, 2006) Let Σ be a singularity class.
Then for any partition I the coefficient αI in the Schur
function expansion of the Thom polynomial

T Σ =
∑

αISI(T
∗M − f∗T ∗N) ,

is nonnegative.
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– conjectured by Feher-Komuves (2004).

Thom polynomials andSchur functions – p. 21/45



Theorem. (PP+AW, 2006) Let Σ be a singularity class.
Then for any partition I the coefficient αI in the Schur
function expansion of the Thom polynomial

T Σ =
∑

αISI(T
∗M − f∗T ∗N) ,

is nonnegative.

– conjectured by Feher-Komuves (2004).

The theorem is not obvious.
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Theorem. (PP+AW, 2006) Let Σ be a singularity class.
Then for any partition I the coefficient αI in the Schur
function expansion of the Thom polynomial

T Σ =
∑

αISI(T
∗M − f∗T ∗N) ,

is nonnegative.

– conjectured by Feher-Komuves (2004).

The theorem is not obvious. But its proof is obvious.
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In the definition of Thom polynomial via classifying spaces of
singularities,
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In the definition of Thom polynomial via classifying spaces of
singularities,
we replace Rm and Rn on BGL(m)× BGL(n) by arbitrary
vector bundles E and F on an arbitrary common base.
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In the definition of Thom polynomial via classifying spaces of
singularities,
we replace Rm and Rn on BGL(m)× BGL(n) by arbitrary
vector bundles E and F on an arbitrary common base.
Given a singularity class Σ, we then get

Σ(E,F ) =
∑

I

αISI(E
∗ − F ∗).
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vector bundles E and F on an arbitrary common base.
Given a singularity class Σ, we then get

Σ(E,F ) =
∑

I
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We can specialize E and F and use:
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we replace Rm and Rn on BGL(m)× BGL(n) by arbitrary
vector bundles E and F on an arbitrary common base.
Given a singularity class Σ, we then get

Σ(E,F ) =
∑

I

αISI(E
∗ − F ∗).

We can specialize E and F and use:

1. (cone of dim = rk) · (zero section) ≥ 0 for gg v.b. - Easy.

Thom polynomials andSchur functions – p. 22/45



In the definition of Thom polynomial via classifying spaces of
singularities,
we replace Rm and Rn on BGL(m)× BGL(n) by arbitrary
vector bundles E and F on an arbitrary common base.
Given a singularity class Σ, we then get

Σ(E,F ) =
∑

I

αISI(E
∗ − F ∗).

We can specialize E and F and use:

1. (cone of dim = rk) · (zero section) ≥ 0 for gg v.b. - Easy.
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nonnegative combination of Schur polynomials - uses the
Giambelli formula.
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In the definition of Thom polynomial via classifying spaces of
singularities,
we replace Rm and Rn on BGL(m)× BGL(n) by arbitrary
vector bundles E and F on an arbitrary common base.
Given a singularity class Σ, we then get

Σ(E,F ) =
∑

I

αISI(E
∗ − F ∗).

We can specialize E and F and use:

1. (cone of dim = rk) · (zero section) ≥ 0 for gg v.b. - Easy.

2. Any polynomial numerically nonnegative for gg v.b. is a
nonnegative combination of Schur polynomials - uses the
Giambelli formula.

(..., Usui-Tango, Fulton-Lazarsfeld)
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Klyachko and, independently, Kazarian proposed recently
another, even“more obvious”proof:
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Using some Veronese map,“materialize”all singularity classes
in sufficiently large Grassmannians; to write down all details
will be a good subject for a Master Thesis.
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Fix a singularity class Σ and take the Schur expansion of T Σ.
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will be a good subject for a Master Thesis.
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lose any Schur summand.
Identify – by the Giambelli formula – a Schur polynomial of Q
with a Schubert cycle in the Grassmannian.
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To test a coefficient, intersect [Σ] with the corresponding
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By the Bertini-Kleiman theorem, put the cycles in a general
position, so that
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Klyachko and, independently, Kazarian proposed recently
another, even“more obvious”proof:

Using some Veronese map,“materialize”all singularity classes
in sufficiently large Grassmannians; to write down all details
will be a good subject for a Master Thesis.
Fix a singularity class Σ and take the Schur expansion of T Σ.
Take sufficiently large Grassmannian containing Σ and such
that specializing T Σ in the tautological bundle Q, we do not
lose any Schur summand.
Identify – by the Giambelli formula – a Schur polynomial of Q
with a Schubert cycle in the Grassmannian.
To test a coefficient, intersect [Σ] with the corresponding
dual Schubert cycle.
By the Bertini-Kleiman theorem, put the cycles in a general
position, so that we can reduce to set-theoretic intersection,
which is nonnegative.
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Theorem. (PP, 1988) Let η be of Thom-Boardman type

Σi,.... Then all summands in the Schur function expansion
of T η

r are indexed by partitions containing the rectangle
partition (r+i−1, . . . , r+i−1) (i times).
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Theorem. (PP, 1988) Let η be of Thom-Boardman type

Σi,.... Then all summands in the Schur function expansion
of T η

r are indexed by partitions containing the rectangle
partition (r+i−1, . . . , r+i−1) (i times).

This result is obvious.
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Theorem. (PP, 1988) Let η be of Thom-Boardman type

Σi,.... Then all summands in the Schur function expansion
of T η

r are indexed by partitions containing the rectangle
partition (r+i−1, . . . , r+i−1) (i times).

This result is obvious. But its proof is not obvious.
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Σi,.... Then all summands in the Schur function expansion
of T η

r are indexed by partitions containing the rectangle
partition (r+i−1, . . . , r+i−1) (i times).

This result is obvious. But its proof is not obvious.

Let P i be the ideal of polynomials in m+ n variables which –
after specialization to the Chern classes of M and N –
support cycles in the locus D where

dim
(
Ker(df : TM → f∗TN)

)
≥ i
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Σi,.... Then all summands in the Schur function expansion
of T η

r are indexed by partitions containing the rectangle
partition (r+i−1, . . . , r+i−1) (i times).

This result is obvious. But its proof is not obvious.

Let P i be the ideal of polynomials in m+ n variables which –
after specialization to the Chern classes of M and N –
support cycles in the locus D where

dim
(
Ker(df : TM → f∗TN)

)
≥ i

for a general map f :M → N .
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r are indexed by partitions containing the rectangle
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after specialization to the Chern classes of M and N –
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)
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Theorem. (PP, 1988) Let η be of Thom-Boardman type

Σi,.... Then all summands in the Schur function expansion
of T η

r are indexed by partitions containing the rectangle
partition (r+i−1, . . . , r+i−1) (i times).

This result is obvious. But its proof is not obvious.

Let P i be the ideal of polynomials in m+ n variables which –
after specialization to the Chern classes of M and N –
support cycles in the locus D where

dim
(
Ker(df : TM → f∗TN)

)
≥ i

for a general map f :M → N .

(This means that the class of a cycle on M in H(M,Z) is in
the image of H(D,Z)→ H(M,Z).)

Thom polynomials andSchur functions – p. 24/45



P i = Z · S(r+i−1)i + terms of higher degree.
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1. Any SI(T
∗M − f∗T ∗N), where I contains (r + i− 1)i

belongs to P i.
- using a ”two Grassmannians”desingularization of D and a
pushforward formula.

2. No nonzero Z[c•(M)]-linear combination of the
SI(T

∗M − f∗T ∗N)’s,
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Giambelli-Thom-Porteous formula).

Use two results of PP (1988):

1. Any SI(T
∗M − f∗T ∗N), where I contains (r + i− 1)i

belongs to P i.
- using a ”two Grassmannians”desingularization of D and a
pushforward formula.

2. No nonzero Z[c•(M)]-linear combination of the
SI(T

∗M − f∗T ∗N)’s, where all I’s do not contain

(r + i− 1)i, belongs to P i.
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P i = Z · S(r+i−1)i + terms of higher degree.

The generator of the minimal degree component is the Thom

polynomial of the singularity class Σi (the
Giambelli-Thom-Porteous formula).

Use two results of PP (1988):

1. Any SI(T
∗M − f∗T ∗N), where I contains (r + i− 1)i

belongs to P i.
- using a ”two Grassmannians”desingularization of D and a
pushforward formula.

2. No nonzero Z[c•(M)]-linear combination of the
SI(T

∗M − f∗T ∗N)’s, where all I’s do not contain

(r + i− 1)i, belongs to P i.

- interpreting P i as a“generalized resultant”and using some
specialization trick.
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Singularity I2,2(r), codim(I2,2(r)) = 3r + 1.
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Singularity I2,2(r), codim(I2,2(r)) = 3r + 1. T1 = S22
(Porteous 1971). So assume that r ≥ 2.

Equations characterizing the Thom polynomial: A0, A1, A2:

Tr(−Br−1) = Tr(x− 2x −Br−1) = Tr(x− 3x −Br−1) = 0 ,
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Singularity I2,2(r), codim(I2,2(r)) = 3r + 1. T1 = S22
(Porteous 1971). So assume that r ≥ 2.

Equations characterizing the Thom polynomial: A0, A1, A2:

Tr(−Br−1) = Tr(x− 2x −Br−1) = Tr(x− 3x −Br−1) = 0 ,

I2,2:

Tr(X2− 2x1 − 2x2 −Br−1) =

= x1x2(x1−2x2)(x2−2x1) R(X2+ x1+x2 ,Br−1)
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Introduce the alphabet:

D := 2x1 + 2x2 + x1 + x2
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Introduce the alphabet:

D := 2x1 + 2x2 + x1 + x2

III2,2 :

Tr(X2 −D− Br−2) = 0
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Introduce the alphabet:

D := 2x1 + 2x2 + x1 + x2

III2,2 :

Tr(X2 −D− Br−2) = 0

(The variables here correspond now to the Chern roots of the
cotangent bundles).
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Goal: give a presentation of Tr as a Z-linear combination of
Schur functions
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Goal: give a presentation of Tr as a Z-linear combination of
Schur functions with explicit algebraic expressions of the
coefficients.
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Goal: give a presentation of Tr as a Z-linear combination of
Schur functions with explicit algebraic expressions of the
coefficients.

Lemma. A partition appearing in the Schur function
expansion of Tr contains (r + 1, r + 1) and has at most
three parts.
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Linear endomorphism Φ: Si1,i2,i3 7→ Si1+1,i2+1,i3+1.
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Linear endomorphism Φ: Si1,i2,i3 7→ Si1+1,i2+1,i3+1.

Tr = sum of terms “ αijSij ” in Tr.
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Linear endomorphism Φ: Si1,i2,i3 7→ Si1+1,i2+1,i3+1.

Tr = sum of terms “ αijSij ” in Tr.

Lemma. Tr = T r + Φ(Tr−1).
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Proposition. T r(X2) = (x1x2)
r+1 Sr−1(D).
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Proposition. T r(X2) = (x1x2)
r+1 Sr−1(D).

Sr−1(D)=sr−1(Sym
2(E)), the Segre class, rank(E) = 2.
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Proposition. T r(X2) = (x1x2)
r+1 Sr−1(D).

Sr−1(D)=sr−1(Sym
2(E)), the Segre class, rank(E) = 2.

Complete quadrics: Schubert, Giambelli (19th century);
reneval: De Concini-Procesi, Laksov, Vainsencher, Lascoux,
Thorup (in the 80’s)
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Proposition. T r(X2) = (x1x2)
r+1 Sr−1(D).

Sr−1(D)=sr−1(Sym
2(E)), the Segre class, rank(E) = 2.

Complete quadrics: Schubert, Giambelli (19th century);
reneval: De Concini-Procesi, Laksov, Vainsencher, Lascoux,
Thorup (in the 80’s)

Chern numbers of symmetric degeneracy loci; PP, 1988
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Proposition. T r(X2) = (x1x2)
r+1 Sr−1(D).

Sr−1(D)=sr−1(Sym
2(E)), the Segre class, rank(E) = 2.

Complete quadrics: Schubert, Giambelli (19th century);
reneval: De Concini-Procesi, Laksov, Vainsencher, Lascoux,
Thorup (in the 80’s)

Chern numbers of symmetric degeneracy loci; PP, 1988

The Segre class sr−1(Sym
2(E)) is:

∑

p≤q, p+q=r−1

[( r

p+1

)
+

(
r

p+2

)
+ · · ·+

(
r

q+1

)]
Sp,q(E) .
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T 2 = 3S34
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T 2 = 3S34

T2 = Φ(T1)+T 2 = Φ(S22)+3S34 = S133+3S34

Thom polynomials andSchur functions – p. 31/45



T 2 = 3S34

T2 = Φ(T1)+T 2 = Φ(S22)+3S34 = S133+3S34

T 3 = 7S46 + 3S55, etc.
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T 2 = 3S34

T2 = Φ(T1)+T 2 = Φ(S22)+3S34 = S133+3S34

T 3 = 7S46 + 3S55, etc.

T3 = Φ(T2)+T 3 = Φ(S133+3S34)+T 3 = S244+3S145+7S46+3S55, etc.
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T 2 = 3S34

T2 = Φ(T1)+T 2 = Φ(S22)+3S34 = S133+3S34

T 3 = 7S46 + 3S55, etc.

T3 = Φ(T2)+T 3 = Φ(S133+3S34)+T 3 = S244+3S145+7S46+3S55, etc.

One gets a parametric (in“r”) expression: T
I2,2
r =

∑
αISI
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Morin singularities Ai(r). We define:

F
(i)
r (−) :=

∑

J

SJ( 2 + 3 + · · ·+ i )Sr−ji−1,...,r−j1,r+|J |(−) ,
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Morin singularities Ai(r). We define:

F
(i)
r (−) :=

∑

J

SJ( 2 + 3 + · · ·+ i )Sr−ji−1,...,r−j1,r+|J |(−) ,

where the sum is over partitions J ⊂ (ri−1), and

F
(1)
r (−) = Sr(−).
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A1 : T A1

r (−Br−1) = 0, T A1

r (x−Br−1− 2x ) = R(x,Br−1+ 2x )
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A1 : T A1

r (−Br−1) = 0, T A1

r (x−Br−1− 2x ) = R(x,Br−1+ 2x )

A2 :
T A2

r (−Br−1) = T
A2

r (x− Br−1 − 2x ) = 0,

T A2

r (x−Br−1 − 3x ) = R(x+ 2x ,Br−1+ 3x )
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A1 : T A1

r (−Br−1) = 0, T A1

r (x−Br−1− 2x ) = R(x,Br−1+ 2x )

A2 :
T A2

r (−Br−1) = T
A2

r (x− Br−1 − 2x ) = 0,

T A2

r (x−Br−1 − 3x ) = R(x+ 2x ,Br−1+ 3x )

Theorem. F
(1)
r = Sr and F

(2)
r =

∑
j≤r 2

jSr−j,r+j are

the Thom polynomials of A1(r) and A2(r).
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A1 : T A1

r (−Br−1) = 0, T A1

r (x−Br−1− 2x ) = R(x,Br−1+ 2x )

A2 :
T A2

r (−Br−1) = T
A2

r (x− Br−1 − 2x ) = 0,

T A2

r (x−Br−1 − 3x ) = R(x+ 2x ,Br−1+ 3x )

Theorem. F
(1)
r = Sr and F

(2)
r =

∑
j≤r 2

jSr−j,r+j are

the Thom polynomials of A1(r) and A2(r).

– results of Thom and Ronga.
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Theorem. (PP) Suppose that Σj(f) = ∅ for j ≥ 2. (This

says that on Σ1(f), the kernel of df : TM → f∗TN is a
line bundle.) Then, for any r ≥ 1,

T Ai

r = F
(i)
r .
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Theorem. (PP) Suppose that Σj(f) = ∅ for j ≥ 2. (This

says that on Σ1(f), the kernel of df : TM → f∗TN is a
line bundle.) Then, for any r ≥ 1,

T Ai

r = F
(i)
r .

The Schur expansion of the Thom polynomial of A3(r) is
known (AL+PP).
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Theorem. (PP) Suppose that Σj(f) = ∅ for j ≥ 2. (This

says that on Σ1(f), the kernel of df : TM → f∗TN is a
line bundle.) Then, for any r ≥ 1,

T Ai

r = F
(i)
r .

The Schur expansion of the Thom polynomial of A3(r) is
known (AL+PP).

The Schur expansions of the Thom polynomial T A4

r are not
known (apart from r = 1, 2,3,4 – Ozer Ozturk).
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.

Classically, in real symplectic geometry, the Maslov class is
represented by the cycle
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.

Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W
∗) > 0}.
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.

Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W
∗) > 0}.

This cycle is the locus of singularities of L→ W .
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.

Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W
∗) > 0}.

This cycle is the locus of singularities of L→ W .

Its cohomology class is integral, and mod 2 equals w1(T
∗L).
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.

Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W
∗) > 0}.

This cycle is the locus of singularities of L→ W .

Its cohomology class is integral, and mod 2 equals w1(T
∗L).

In complex symplectic geometry, the same construction
applied for a Lagrangian submanifold L
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.

Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W
∗) > 0}.

This cycle is the locus of singularities of L→ W .

Its cohomology class is integral, and mod 2 equals w1(T
∗L).

In complex symplectic geometry, the same construction
applied for a Lagrangian submanifold L contained in a
symplectic manifold
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.

Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W
∗) > 0}.

This cycle is the locus of singularities of L→ W .

Its cohomology class is integral, and mod 2 equals w1(T
∗L).

In complex symplectic geometry, the same construction
applied for a Lagrangian submanifold L contained in a
symplectic manifold fibering over a base B with Lagrangian
fibers,
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.

Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W
∗) > 0}.

This cycle is the locus of singularities of L→ W .

Its cohomology class is integral, and mod 2 equals w1(T
∗L).

In complex symplectic geometry, the same construction
applied for a Lagrangian submanifold L contained in a
symplectic manifold fibering over a base B with Lagrangian
fibers, leads to the cohomology class

c1(T
∗L− T ∗B)
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The generalizations of the Maslov class are Thom polynomials
associated with the higher order types of singularities.
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The generalizations of the Maslov class are Thom polynomials
associated with the higher order types of singularities.
These types are defined by imposing conditions on the higher
order jets of L.
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The generalizations of the Maslov class are Thom polynomials
associated with the higher order types of singularities.
These types are defined by imposing conditions on the higher
order jets of L.

Real case: Arnold and Fuks, Vassiliev, Audin, ...
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The generalizations of the Maslov class are Thom polynomials
associated with the higher order types of singularities.
These types are defined by imposing conditions on the higher
order jets of L.

Real case: Arnold and Fuks, Vassiliev, Audin, ...

Complex case: Kazarian.
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The generalizations of the Maslov class are Thom polynomials
associated with the higher order types of singularities.
These types are defined by imposing conditions on the higher
order jets of L.

Real case: Arnold and Fuks, Vassiliev, Audin, ...

Complex case: Kazarian.

These authors used monomials in the Chern classes.
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Every germ of a Lagrangian submanifold of V
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Every germ of a Lagrangian submanifold of V is the image of
W via a certain germ symplectomorphism. Let
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Every germ of a Lagrangian submanifold of V is the image of
W via a certain germ symplectomorphism. Let

L(V ) := Aut(V )/P ,
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Every germ of a Lagrangian submanifold of V is the image of
W via a certain germ symplectomorphism. Let

L(V ) := Aut(V )/P ,

where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).
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Every germ of a Lagrangian submanifold of V is the image of
W via a certain germ symplectomorphism. Let

L(V ) := Aut(V )/P ,

where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).

Of course, LG(V ) is contained in L(V ).
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Every germ of a Lagrangian submanifold of V is the image of
W via a certain germ symplectomorphism. Let

L(V ) := Aut(V )/P ,

where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).

Of course, LG(V ) is contained in L(V ).

One has also the“Gauss fibration” L(V )→ LG(V ) (which is
not a vector bundle for k ≥ 3).
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Consider the subgroup of Aut(V ) consisting of holomorphic
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Consider the subgroup of Aut(V ) consisting of holomorphic
symplectomorphisms preserving the fibration V → W .
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Consider the subgroup of Aut(V ) consisting of holomorphic
symplectomorphisms preserving the fibration V → W . This
group defines the Lagrangian equivalence of jets of
Lagrangian submanifolds.
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Consider the subgroup of Aut(V ) consisting of holomorphic
symplectomorphisms preserving the fibration V → W . This
group defines the Lagrangian equivalence of jets of
Lagrangian submanifolds.

A Lagrange singularity class is a closed algebraic set which
is a sum of Lagrangian equivalence classes.
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Consider the subgroup of Aut(V ) consisting of holomorphic
symplectomorphisms preserving the fibration V → W . This
group defines the Lagrangian equivalence of jets of
Lagrangian submanifolds.

A Lagrange singularity class is a closed algebraic set which
is a sum of Lagrangian equivalence classes.

Theorem. (MM+PP+AW, 2007) For any Lagrange

singularity class Σ, the Thom polynomial T Σ is a

nonnegative combination of Q̃-functions.
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Consider the subgroup of Aut(V ) consisting of holomorphic
symplectomorphisms preserving the fibration V → W . This
group defines the Lagrangian equivalence of jets of
Lagrangian submanifolds.

A Lagrange singularity class is a closed algebraic set which
is a sum of Lagrangian equivalence classes.

Theorem. (MM+PP+AW, 2007) For any Lagrange

singularity class Σ, the Thom polynomial T Σ is a

nonnegative combination of Q̃-functions.

Geometric insight: The fundamental classes of the Schubert
varieties in the Lagrangian Grassmannian LG(V ) are given

by the appropriate Q̃-functions of the tautological bundle on
that Grassmannian (PP, 1986).
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Thom polynomials of Lagrange and Legendre singularities up
to codim 6.
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Thom polynomials of Lagrange and Legendre singularities up
to codim 6.
Here Q̃I := Q̃I((T

∗L− 1n)⊗ ξ
1

2 ), where ξ is the line bundle
of the contact structure.
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Thom polynomials of Lagrange and Legendre singularities up
to codim 6.
Here Q̃I := Q̃I((T

∗L− 1n)⊗ ξ
1

2 ), where ξ is the line bundle
of the contact structure.

Moreover, t := 1
2c1(ξ

∗).
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Thom polynomials of Lagrange and Legendre singularities up
to codim 6.
Here Q̃I := Q̃I((T

∗L− 1n)⊗ ξ
1

2 ), where ξ is the line bundle
of the contact structure.

Moreover, t := 1
2c1(ξ

∗).

A2: Q̃1
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Thom polynomials of Lagrange and Legendre singularities up
to codim 6.
Here Q̃I := Q̃I((T

∗L− 1n)⊗ ξ
1

2 ), where ξ is the line bundle
of the contact structure.

Moreover, t := 1
2c1(ξ

∗).

A2: Q̃1

A3: 3 Q̃2 + t Q̃1
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Thom polynomials of Lagrange and Legendre singularities up
to codim 6.
Here Q̃I := Q̃I((T

∗L− 1n)⊗ ξ
1

2 ), where ξ is the line bundle
of the contact structure.

Moreover, t := 1
2c1(ξ

∗).

A2: Q̃1

A3: 3 Q̃2 + t Q̃1

A4: 3 Q̃21+12 Q̃3 + t 10 Q̃2+t
22 Q̃1
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Thom polynomials of Lagrange and Legendre singularities up
to codim 6.
Here Q̃I := Q̃I((T

∗L− 1n)⊗ ξ
1

2 ), where ξ is the line bundle
of the contact structure.

Moreover, t := 1
2c1(ξ

∗).

A2: Q̃1

A3: 3 Q̃2 + t Q̃1

A4: 3 Q̃21+12 Q̃3 + t 10 Q̃2+t
22 Q̃1

D4: Q̃21
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Thom polynomials of Lagrange and Legendre singularities up
to codim 6.
Here Q̃I := Q̃I((T

∗L− 1n)⊗ ξ
1

2 ), where ξ is the line bundle
of the contact structure.

Moreover, t := 1
2c1(ξ

∗).

A2: Q̃1

A3: 3 Q̃2 + t Q̃1

A4: 3 Q̃21+12 Q̃3 + t 10 Q̃2+t
22 Q̃1

D4: Q̃21

A5: 27 Q̃31+60 Q̃4 + t(22 Q̃21+86 Q̃3) + t240 Q̃2+t
36 Q̃1
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Thom polynomials of Lagrange and Legendre singularities up
to codim 6.
Here Q̃I := Q̃I((T

∗L− 1n)⊗ ξ
1

2 ), where ξ is the line bundle
of the contact structure.

Moreover, t := 1
2c1(ξ

∗).

A2: Q̃1

A3: 3 Q̃2 + t Q̃1

A4: 3 Q̃21+12 Q̃3 + t 10 Q̃2+t
22 Q̃1

D4: Q̃21

A5: 27 Q̃31+60 Q̃4 + t(22 Q̃21+86 Q̃3) + t240 Q̃2+t
36 Q̃1

D5: 6 Q̃31 + t 4 Q̃21
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A6: 87 Q̃32+228 Q̃41+360 Q̃5 + t(343 Q̃31+756 Q̃4) +

t2(151 Q̃21+584 Q̃3) + t3196 Q̃2+t
424 Q̃1
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A6: 87 Q̃32+228 Q̃41+360 Q̃5 + t(343 Q̃31+756 Q̃4) +

t2(151 Q̃21+584 Q̃3) + t3196 Q̃2+t
424 Q̃1

D6: 12 Q̃32+24 Q̃41 + t32 Q̃31+t
212 Q̃21
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A6: 87 Q̃32+228 Q̃41+360 Q̃5 + t(343 Q̃31+756 Q̃4) +

t2(151 Q̃21+584 Q̃3) + t3196 Q̃2+t
424 Q̃1

D6: 12 Q̃32+24 Q̃41 + t32 Q̃31+t
212 Q̃21

E6: 9 Q̃32+6 Q̃41 + t9 Q̃31+t
23 Q̃21

A7: 135 Q̃321+1275 Q̃42+2004 Q̃51+2520 Q̃6+

t(7092 Q̃5+4439 Q̃41+1713 Q̃32) + t2(3545 Q̃31+7868 Q̃4)+

t3(1106 Q̃21+4292 Q̃3) + t41148 Q̃2+t
5120 Q̃1
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A6: 87 Q̃32+228 Q̃41+360 Q̃5 + t(343 Q̃31+756 Q̃4) +

t2(151 Q̃21+584 Q̃3) + t3196 Q̃2+t
424 Q̃1

D6: 12 Q̃32+24 Q̃41 + t32 Q̃31+t
212 Q̃21

E6: 9 Q̃32+6 Q̃41 + t9 Q̃31+t
23 Q̃21

A7: 135 Q̃321+1275 Q̃42+2004 Q̃51+2520 Q̃6+

t(7092 Q̃5+4439 Q̃41+1713 Q̃32) + t2(3545 Q̃31+7868 Q̃4)+

t3(1106 Q̃21+4292 Q̃3) + t41148 Q̃2+t
5120 Q̃1

D7: 24 Q̃321+120 Q̃42+144 Q̃51 + t(152 Q̃32+288 Q̃41) +

t2208 Q̃31+t
356 Q̃21
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A6: 87 Q̃32+228 Q̃41+360 Q̃5 + t(343 Q̃31+756 Q̃4) +

t2(151 Q̃21+584 Q̃3) + t3196 Q̃2+t
424 Q̃1

D6: 12 Q̃32+24 Q̃41 + t32 Q̃31+t
212 Q̃21

E6: 9 Q̃32+6 Q̃41 + t9 Q̃31+t
23 Q̃21

A7: 135 Q̃321+1275 Q̃42+2004 Q̃51+2520 Q̃6+

t(7092 Q̃5+4439 Q̃41+1713 Q̃32) + t2(3545 Q̃31+7868 Q̃4)+

t3(1106 Q̃21+4292 Q̃3) + t41148 Q̃2+t
5120 Q̃1

D7: 24 Q̃321+120 Q̃42+144 Q̃51 + t(152 Q̃32+288 Q̃41) +

t2208 Q̃31+t
356 Q̃21

E7: 9 Q̃321+60 Q̃42+24 Q̃51 + t(56 Q̃41+66 Q̃32) +

t242 Q̃31+t
310 Q̃21
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A6: 87 Q̃32+228 Q̃41+360 Q̃5 + t(343 Q̃31+756 Q̃4) +

t2(151 Q̃21+584 Q̃3) + t3196 Q̃2+t
424 Q̃1

D6: 12 Q̃32+24 Q̃41 + t32 Q̃31+t
212 Q̃21

E6: 9 Q̃32+6 Q̃41 + t9 Q̃31+t
23 Q̃21

A7: 135 Q̃321+1275 Q̃42+2004 Q̃51+2520 Q̃6+

t(7092 Q̃5+4439 Q̃41+1713 Q̃32) + t2(3545 Q̃31+7868 Q̃4)+

t3(1106 Q̃21+4292 Q̃3) + t41148 Q̃2+t
5120 Q̃1

D7: 24 Q̃321+120 Q̃42+144 Q̃51 + t(152 Q̃32+288 Q̃41) +

t2208 Q̃31+t
356 Q̃21

E7: 9 Q̃321+60 Q̃42+24 Q̃51 + t(56 Q̃41+66 Q̃32) +

t242 Q̃31+t
310 Q̃21

P8: Q̃321.
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For the Legendre singularities, this result admits some
generalizations.
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For the Legendre singularities, this result admits some
generalizations.
MM+PP+AW found a basis with nonnegativity property:

Q̃I ·t
j , where

Q̃I := Q̃I((T
∗L− 1n)⊗ ξ

1

2 )
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For the Legendre singularities, this result admits some
generalizations.
MM+PP+AW found a basis with nonnegativity property:

Q̃I ·t
j , where

Q̃I := Q̃I((T
∗L− 1n)⊗ ξ

1

2 )

and t := 1
2c1(ξ

∗).

MK found experimentally another such basis.

Then MK+MM+PP+AW generalized that to a 1-parameter
basis with nonnegativity property. By specializing the
parameters, we recover the previous bases.
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Our methods are based on nonnegativity of cone classes in gg
vector bundles and on the Bertini-Kleiman“general translate
theorem”.
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Our methods are based on nonnegativity of cone classes in gg
vector bundles and on the Bertini-Kleiman“general translate
theorem”.

For some positivity properties of homogeneous spaces, a
recent result of Anderson on transversality inspired by
equivariant cohomology is useful: here some larger
transformation group to move cycles is used .
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Our methods are based on nonnegativity of cone classes in gg
vector bundles and on the Bertini-Kleiman“general translate
theorem”.

For some positivity properties of homogeneous spaces, a
recent result of Anderson on transversality inspired by
equivariant cohomology is useful: here some larger
transformation group to move cycles is used .

We also prove positivity; this ameliorates our former result for
the Lagrange singularities.
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Final comments
The most difficult explicitly computed Schur expansion is that
for A3(r).
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two different degeneracy loci of the tangent map.
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Berczi-Feher-Rimanyi announced without proof in 2003 an
expression in monomials in Chern classes.
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expression in monomials in Chern classes.

Ozer Ozturk: III2,3(r).
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Thom polynomials andSchur functions – p. 43/45



Final comments
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for A3(r).
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two different degeneracy loci of the tangent map.

Berczi-Feher-Rimanyi announced without proof in 2003 an
expression in monomials in Chern classes.

Ozer Ozturk: III2,3(r).

Ozturk is working now on I2,3(r), where the growth of the
coefficients with r is much faster than in all former cases.

The Schur expansion for III2,3 has been also obtained by
Feher-Rimanyi using a localization formula“a la Bott”, and
fairly nontrivial computations of Segre classes by Laksov,
Lascoux, PP, Thorup.
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Final comments
The most difficult explicitly computed Schur expansion is that
for A3(r).
Thom polynomial is here the sum of two“parts” supported on
two different degeneracy loci of the tangent map.

Berczi-Feher-Rimanyi announced without proof in 2003 an
expression in monomials in Chern classes.

Ozer Ozturk: III2,3(r).

Ozturk is working now on I2,3(r), where the growth of the
coefficients with r is much faster than in all former cases.

The Schur expansion for III2,3 has been also obtained by
Feher-Rimanyi using a localization formula“a la Bott”, and
fairly nontrivial computations of Segre classes by Laksov,
Lascoux, PP, Thorup.

A localization formula was used earlier for Morin singularities
by Berczi-Szenes.
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For the moment, people do not see how to get the Schur
expansion for A4(r).
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For the moment, people do not see how to get the Schur
expansion for A4(r).

How to get the known – obtained elementary – S.e. for
A3(r), from the localization formula?
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For the moment, people do not see how to get the Schur
expansion for A4(r).

How to get the known – obtained elementary – S.e. for
A3(r), from the localization formula?

A good sign that localization formulas can be also used to
find S.e. of Thom polynomials, is the following translation of
a recent result of Feher and Rimanyi proved using l.f. (they
state the result using monomials in Chern classes) :
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Theorem. Let η be a stable singularity.

1. By erasing the maximal columns from the S.e. of T η
r we

get T η
r−1.

2. The length of any partition in S.e. of T η
r is

≤ dim(Qη)− 1.
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Theorem. Let η be a stable singularity.

1. By erasing the maximal columns from the S.e. of T η
r we

get T η
r−1.

2. The length of any partition in S.e. of T η
r is

≤ dim(Qη)− 1.

(Communicated to me by Ozer Ozturk and Andrzej Weber).
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Theorem. Let η be a stable singularity.

1. By erasing the maximal columns from the S.e. of T η
r we

get T η
r−1.

2. The length of any partition in S.e. of T η
r is

≤ dim(Qη)− 1.

(Communicated to me by Ozer Ozturk and Andrzej Weber).

THE END
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