Thom polynomials and Schur functions

Piotr Pragacz
pragacz@impan.pl

IM PAN Warszawa

Thom polynomial

Let Σ be an algebraic right-left invariant set in $J^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.

Thom polynomial

Let Σ be an algebraic right-left invariant set in $J^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z}

Thom polynomial

Let Σ be an algebraic right-left invariant set in $J^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z}
in $m+n$ variables which depends only on Σ, m and n

Thom polynomial

Let Σ be an algebraic right-left invariant set in $J^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z}
in $m+n$ variables which depends only on Σ, m and n
s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$

Thom polynomial

Let Σ be an algebraic right-left invariant set in $J^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z} in $m+n$ variables which depends only on Σ, m and n s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$ the class dual to $\Sigma(f)=f_{k}^{-1}(\Sigma)$ is equal to

Thom polynomial

Let Σ be an algebraic right-left invariant set in $J^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z} in $m+n$ variables which depends only on Σ, m and n
s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$ the class dual to $\Sigma(f)=f_{k}^{-1}(\Sigma)$ is equal to

$$
\mathcal{T}^{\Sigma}\left(c_{1}(M), \ldots, c_{m}(M), f^{*} c_{1}(N), \ldots, f^{*} c_{n}(N)\right)
$$

Thom polynomial

Let Σ be an algebraic right-left invariant set in $J^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z} in $m+n$ variables which depends only on Σ, m and n
s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$ the class dual to $\Sigma(f)=f_{k}^{-1}(\Sigma)$ is equal to

$$
\mathcal{T}^{\Sigma}\left(c_{1}(M), \ldots, c_{m}(M), f^{*} c_{1}(N), \ldots, f^{*} c_{n}(N)\right)
$$

where $f_{k}: M \rightarrow J^{k}(M, N)$ is the k-jet extension of f.

Thom polynomial

Let Σ be an algebraic right-left invariant set in $J^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z} in $m+n$ variables which depends only on Σ, m and n
s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$ the class dual to $\Sigma(f)=f_{k}^{-1}(\Sigma)$ is equal to

$$
\mathcal{T}^{\Sigma}\left(c_{1}(M), \ldots, c_{m}(M), f^{*} c_{1}(N), \ldots, f^{*} c_{n}(N)\right)
$$

where $f_{k}: M \rightarrow J^{k}(M, N)$ is the k-jet extension of f.
If a singularity class Σ is "stable" (e.g. closed under the contact equivalence), then \mathcal{T}^{Σ} depends on $c_{i}\left(T M-f^{*} T N\right)$.

Classifying spaces of singularities

Fix $k \in \mathbf{N}$.

Classifying spaces of singularities

Fix $k \in \mathbf{N}$.
Aut $_{n}:=$ group of k-jets of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$.

Classifying spaces of singularities

Fix $k \in \mathbf{N}$.
Aut $_{n}:=$ group of k-jets of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$.
$\mathcal{J}=\mathcal{J}(m, n):=$ space of k-jets of $\left(\mathbf{C}^{m}, 0\right) \rightarrow\left(\mathbf{C}^{n}, 0\right)$.

Classifying spaces of singularities

Fix $k \in \mathbf{N}$.
Aut $_{n}:=$ group of k-jets of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$.
$\mathcal{J}=\mathcal{J}(m, n):=$ space of k-jets of $\left(\mathbf{C}^{m}, 0\right) \rightarrow\left(\mathbf{C}^{n}, 0\right)$.

$$
G:=\operatorname{Aut}_{m} \times \operatorname{Aut}_{n} .
$$

Classifying spaces of singularities

Fix $k \in \mathbf{N}$.
Aut $_{n}:=$ group of k-jets of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$.
$\mathcal{J}=\mathcal{J}(m, n):=$ space of k-jets of $\left(\mathbf{C}^{m}, 0\right) \rightarrow\left(\mathbf{C}^{n}, 0\right)$.

$$
G:=\operatorname{Aut}_{m} \times \operatorname{Aut}_{n} .
$$

Consider the classifying principal G-bundle $E G \rightarrow B G$, i.e.

Classifying spaces of singularities

Fix $k \in \mathbf{N}$.
Aut $_{n}:=$ group of k-jets of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$.
$\mathcal{J}=\mathcal{J}(m, n):=$ space of k-jets of $\left(\mathbf{C}^{m}, 0\right) \rightarrow\left(\mathbf{C}^{n}, 0\right)$.

$$
G:=\operatorname{Aut}_{m} \times \operatorname{Aut}_{n} .
$$

Consider the classifying principal G-bundle $E G \rightarrow B G$, i.e. a contractible space $E G$ with a free action of the group G.

Classifying spaces of singularities

Fix $k \in \mathbf{N}$.
Aut $_{n}:=$ group of k-jets of automorphisms of $\left(\mathbf{C}^{n}, 0\right)$.
$\mathcal{J}=\mathcal{J}(m, n):=$ space of k-jets of $\left(\mathbf{C}^{m}, 0\right) \rightarrow\left(\mathbf{C}^{n}, 0\right)$.

$$
G:=\operatorname{Aut}_{m} \times \operatorname{Aut}_{n} .
$$

Consider the classifying principal G-bundle $E G \rightarrow B G$, i.e. a contractible space $E G$ with a free action of the group G.

$$
\widetilde{\mathcal{J}}:=\widetilde{\mathcal{J}}(m, n)=E G \times_{G} \mathcal{J} .
$$

Let $\Sigma \subset \mathcal{J}$ be a singularity class, i.e. an analytic closed G-invariant subset.

Let $\Sigma \subset \mathcal{J}$ be a singularity class, i.e. an analytic closed G-invariant subset.

$$
\widetilde{\Sigma}:=E G \times_{G} \Sigma \subset \widetilde{\mathcal{J}}
$$

Let $\Sigma \subset \mathcal{J}$ be a singularity class, i.e. an analytic closed G-invariant subset.

$$
\widetilde{\Sigma}:=E G \times_{G} \Sigma \subset \widetilde{\mathcal{J}}
$$

Let $\mathcal{T}^{\Sigma} \in H^{2 \operatorname{codim}(\Sigma)}(\widetilde{\mathcal{J}}, \mathbf{Z})$ be the dual class of $[\widetilde{\Sigma}]$. Since

Let $\Sigma \subset \mathcal{J}$ be a singularity class, i.e. an analytic closed G-invariant subset.

$$
\widetilde{\Sigma}:=E G \times_{G} \Sigma \subset \widetilde{\mathcal{J}}
$$

Let $\mathcal{T}^{\Sigma} \in H^{2 \operatorname{codim}(\Sigma)}(\widetilde{\mathcal{J}}, \mathbf{Z})$ be the dual class of $[\widetilde{\Sigma}]$. Since

$$
H^{\bullet}(\widetilde{\mathcal{J}}, \mathbf{Z}) \cong H^{\bullet}(B G, \mathbf{Z}) \cong H^{\bullet}\left(B G L_{m} \times B G L_{n}, \mathbf{Z}\right)
$$

Let $\Sigma \subset \mathcal{J}$ be a singularity class, i.e. an analytic closed G-invariant subset.

$$
\widetilde{\Sigma}:=E G \times_{G} \Sigma \subset \widetilde{\mathcal{J}}
$$

Let $\mathcal{T}^{\Sigma} \in H^{2 \operatorname{codim}(\Sigma)}(\widetilde{\mathcal{J}}, \mathbf{Z})$ be the dual class of $[\widetilde{\Sigma}]$. Since

$$
H^{\bullet}(\widetilde{\mathcal{J}}, \mathbf{Z}) \cong H^{\bullet}(B G, \mathbf{Z}) \cong H^{\bullet}\left(B G L_{m} \times B G L_{n}, \mathbf{Z}\right)
$$

\mathcal{T}^{Σ} is identified with a polynomial in c_{1}, \ldots, c_{m} and $c_{1}^{\prime}, \ldots, c_{n}^{\prime}$

Let $\Sigma \subset \mathcal{J}$ be a singularity class, i.e. an analytic closed G-invariant subset.

$$
\widetilde{\Sigma}:=E G \times_{G} \Sigma \subset \widetilde{\mathcal{J}}
$$

Let $\mathcal{T}^{\Sigma} \in H^{2 \operatorname{codim}(\Sigma)}(\widetilde{\mathcal{J}}, \mathbf{Z})$ be the dual class of $[\widetilde{\Sigma}]$. Since

$$
H^{\bullet}(\widetilde{\mathcal{J}}, \mathbf{Z}) \cong H^{\bullet}(B G, \mathbf{Z}) \cong H^{\bullet}\left(B G L_{m} \times B G L_{n}, \mathbf{Z}\right)
$$

\mathcal{T}^{Σ} is identified with a polynomial in c_{1}, \ldots, c_{m} and $c_{1}^{\prime}, \ldots, c_{n}^{\prime}$ which are the Chern classes of universal bundles R_{m} and R_{n} on $B G L_{m}$ and $B G L_{n}$:

Let $\Sigma \subset \mathcal{J}$ be a singularity class, i.e. an analytic closed G-invariant subset.

$$
\widetilde{\Sigma}:=E G \times_{G} \Sigma \subset \widetilde{\mathcal{J}}
$$

Let $\mathcal{T}^{\Sigma} \in H^{2 \operatorname{codim}(\Sigma)}(\widetilde{\mathcal{J}}, \mathbf{Z})$ be the dual class of $[\widetilde{\Sigma}]$. Since

$$
H^{\bullet}(\widetilde{\mathcal{J}}, \mathbf{Z}) \cong H^{\bullet}(B G, \mathbf{Z}) \cong H^{\bullet}\left(B G L_{m} \times B G L_{n}, \mathbf{Z}\right)
$$

\mathcal{T}^{Σ} is identified with a polynomial in c_{1}, \ldots, c_{m} and $c_{1}^{\prime}, \ldots, c_{n}^{\prime}$ which are the Chern classes of universal bundles R_{m} and R_{n} on $B G L_{m}$ and $B G L_{n}$:

$$
\mathcal{T}^{\Sigma}=\mathcal{T}^{\Sigma}\left(c_{1}, \ldots, c_{m}, c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)
$$

Let $\Sigma \subset \mathcal{J}$ be a singularity class, i.e. an analytic closed G-invariant subset.

$$
\widetilde{\Sigma}:=E G \times_{G} \Sigma \subset \widetilde{\mathcal{J}}
$$

Let $\mathcal{T}^{\Sigma} \in H^{2 \operatorname{codim}(\Sigma)}(\widetilde{\mathcal{J}}, \mathbf{Z})$ be the dual class of $[\widetilde{\Sigma}]$. Since

$$
H^{\bullet}(\widetilde{\mathcal{J}}, \mathbf{Z}) \cong H^{\bullet}(B G, \mathbf{Z}) \cong H^{\bullet}\left(B G L_{m} \times B G L_{n}, \mathbf{Z}\right)
$$

\mathcal{T}^{Σ} is identified with a polynomial in c_{1}, \ldots, c_{m} and $c_{1}^{\prime}, \ldots, c_{n}^{\prime}$ which are the Chern classes of universal bundles R_{m} and R_{n} on $B G L_{m}$ and $B G L_{n}$:

$$
\mathcal{T}^{\Sigma}=\mathcal{T}^{\Sigma}\left(c_{1}, \ldots, c_{m}, c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)
$$

(R_{m} "parametrizes" $T M$ for $\operatorname{dim} M=m$, similarly for R_{n}.)

Report on joint work of PP with:

Report on joint work of PP with:
Alain Lascoux AL

Report on joint work of PP with:
Alain Lascoux AL
Andrzej Weber AW

Report on joint work of PP with:
Alain Lascoux AL
Andrzej Weber AW
Malgorzata Mikosz MM

Report on joint work of PP with:
Alain Lascoux AL
Andrzej Weber AW
Malgorzata Mikosz MM
Maxim Kazarian MK

Singularities

R. Rimányi, Inv. Math. (2001)

Singularities

R. Rimányi, Inv. Math. (2001)

Fix $k \in \mathbf{N}$. By a singularity we mean an equivalence class

Singularities

R. Rimányi, Inv. Math. (2001)

Fix $k \in \mathbf{N}$. By a singularity we mean an equivalence class of stable germs $\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+k}, 0\right)$, under the equivalence

Singularities

R. Rimányi, Inv. Math. (2001)

Fix $k \in \mathbf{N}$. By a singularity we mean an equivalence class of stable germs $\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+k}, 0\right)$, under the equivalence generated by the right-left equivalence and suspension.

Singularities

R. Rimányi, Inv. Math. (2001)

Fix $k \in \mathbf{N}$. By a singularity we mean an equivalence class of stable germs $\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+k}, 0\right)$, under the equivalence generated by the right-left equivalence and suspension.

Singularities

R. Rimányi, Inv. Math. (2001)

Fix $k \in \mathbf{N}$. By a singularity we mean an equivalence class of stable germs $\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+k}, 0\right)$, under the equivalence generated by the right-left equivalence and suspension.
\{singularities $\} \quad \longleftrightarrow \quad$ \{finite dim'l. C - algebras \}
$A_{i} \quad \longleftrightarrow \quad \mathbf{C}[[x]] /\left(x^{i+1}\right), \quad i \geq 0$

Singularities

R. Rimányi, Inv. Math. (2001)

Fix $k \in \mathbf{N}$. By a singularity we mean an equivalence class of stable germs $\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+k}, 0\right)$, under the equivalence generated by the right-left equivalence and suspension.

$$
\{\text { singularities }\} \quad \longleftrightarrow \quad\{\text { finite dim'l. } \mathbf{C}-\text { algebras }\}
$$

$A_{i} \quad \longleftrightarrow$
$\mathbf{C}[[x]] /\left(x^{i+1}\right), \quad i \geq 0$
$I_{a, b} \longleftrightarrow$

$$
\mathbf{C}[[x, y]] /\left(x y, x^{a}+y^{b}\right), \quad b \geq a \geq 2
$$

Singularities

R. Rimányi, Inv. Math. (2001)

Fix $k \in \mathbf{N}$. By a singularity we mean an equivalence class of stable germs $\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+k}, 0\right)$, under the equivalence generated by the right-left equivalence and suspension.

\{singularities $\} \quad \longleftrightarrow \quad$ \{finite dim'l. C - algebras \}

$$
\begin{array}{lll}
A_{i} & \longleftrightarrow & \mathbf{C}[[x]] /\left(x^{i+1}\right), \quad i \geq 0 \\
I_{a, b} & \longleftrightarrow & \mathbf{C}[[x, y]] /\left(x y, x^{a}+y^{b}\right), \quad b \geq a \geq 2 \\
I I I_{a, b} & \longleftrightarrow & \mathbf{C}[[x, y]] /\left(x y, x^{a}, y^{b}\right), \quad b \geq a \geq 2
\end{array}
$$

Singularities

R. Rimányi, Inv. Math. (2001)

Fix $k \in \mathbf{N}$. By a singularity we mean an equivalence class of stable germs $\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+k}, 0\right)$, under the equivalence generated by the right-left equivalence and suspension.

\{singularities $\} \quad \longleftrightarrow \quad$ \{finite dim'l. $\mathbf{C}-$ algebras $\}$

$$
\begin{aligned}
& A_{i} \quad \longleftrightarrow \\
& I_{a, b} \quad \mathbf{C}[[x]] /\left(x^{i+1}\right), \quad i \geq 0 \\
& I I I_{a, b} \quad \longleftrightarrow \quad \mathbf{C}[[x, y]] /\left(x y, x^{a}+y^{b}\right), \quad b \geq a \geq 2 \\
& A_{i}, k=0: \\
& \left(x, u_{1}, \ldots, u_{i-1}\right) \rightarrow([x, y]] /\left(x y, x^{a}, y^{b}\right), \quad b \geq a \geq 2 \\
& \left.i+1+\sum_{j=1}^{i-1} u_{j} x^{j}, u_{1}, \ldots, u_{i-1}\right)
\end{aligned}
$$

For a singularity η by \mathcal{T}^{η} we mean the Thom polynomial

For a singularity η by \mathcal{T}^{η} we mean the Thom polynomial associated with the closure of the right-left orbit of its representative.

For a singularity η by \mathcal{T}^{η} we mean the Thom polynomial associated with the closure of the right-left orbit of its representative.

$$
\text { for } k=0, \mathcal{T}^{A_{4}}=c_{1}^{4}+6 c_{1}^{2} c_{2}+2 c_{2}^{2}+9 c_{1} c_{3}+6 c_{4} .
$$

For a singularity η by \mathcal{T}^{η} we mean the Thom polynomial associated with the closure of the right-left orbit of its representative.

$$
\text { for } k=0, \mathcal{T}^{A_{4}}=c_{1}^{4}+6 c_{1}^{2} c_{2}+2 c_{2}^{2}+9 c_{1} c_{3}+6 c_{4} .
$$

\mathcal{T}^{η} evaluates for a general f the dual class of

For a singularity η by \mathcal{T}^{η} we mean the Thom polynomial associated with the closure of the right-left orbit of its representative.

$$
\text { for } k=0, \mathcal{T}^{A_{4}}=c_{1}^{4}+6 c_{1}^{2} c_{2}+2 c_{2}^{2}+9 c_{1} c_{3}+6 c_{4} .
$$

\mathcal{T}^{η} evaluates for a general f the dual class of

$$
\eta(f)=\overline{\{x \in M \text { : the singularity of } f \text { at } x \text { is } \eta\}}
$$

For a singularity η by \mathcal{T}^{η} we mean the Thom polynomial associated with the closure of the right-left orbit of its representative.

$$
\text { for } k=0, \mathcal{T}^{A_{4}}=c_{1}^{4}+6 c_{1}^{2} c_{2}+2 c_{2}^{2}+9 c_{1} c_{3}+6 c_{4} .
$$

\mathcal{T}^{η} evaluates for a general f the dual class of

$$
\eta(f)=\overline{\{x \in M \text { : the singularity of } f \text { at } x \text { is } \eta\}}
$$

$\operatorname{codim}(\eta)=\operatorname{codim} \eta(f)$.

Let $m=n=1$ and $\eta=A_{1}$. Let $f: M \rightarrow N$ be a surjective map of compact Riemann surfaces.

Let $m=n=1$ and $\eta=A_{1}$. Let $f: M \rightarrow N$ be a surjective map of compact Riemann surfaces.

$$
e_{x}=\text { number of branches of } f \text { at } x .
$$

Let $m=n=1$ and $\eta=A_{1}$. Let $f: M \rightarrow N$ be a surjective map of compact Riemann surfaces.

$$
e_{x}=\text { number of branches of } f \text { at } x .
$$

Then $\eta(f)$, the ramification divisor of f, is $\sum\left(e_{x}-1\right) x$.

Let $m=n=1$ and $\eta=A_{1}$. Let $f: M \rightarrow N$ be a surjective map of compact Riemann surfaces.

$$
e_{x}=\text { number of branches of } f \text { at } x .
$$

Then $\eta(f)$, the ramification divisor of f, is $\sum\left(e_{x}-1\right) x$.
The Riemann-Hurwitz formula tells us:

Let $m=n=1$ and $\eta=A_{1}$. Let $f: M \rightarrow N$ be a surjective map of compact Riemann surfaces.

$$
e_{x}=\text { number of branches of } f \text { at } x .
$$

Then $\eta(f)$, the ramification divisor of f, is $\sum\left(e_{x}-1\right) x$.
The Riemann-Hurwitz formula tells us:

$$
\sum_{x \in M}\left(e_{x}-1\right)=2 g(M)-2-\operatorname{deg}(f)(2 g(N)-2)
$$

Let $m=n=1$ and $\eta=A_{1}$. Let $f: M \rightarrow N$ be a surjective map of compact Riemann surfaces.

$$
e_{x}=\text { number of branches of } f \text { at } x \text {. }
$$

Then $\eta(f)$, the ramification divisor of f, is $\sum\left(e_{x}-1\right) x$.
The Riemann-Hurwitz formula tells us:

$$
\begin{gathered}
\sum_{x \in M}\left(e_{x}-1\right)=2 g(M)-2-\operatorname{deg}(f)(2 g(N)-2) \\
\mathcal{T}^{A_{1}}\left(c_{1}(M), c_{1}(N)\right)=f^{*} c_{1}(N)-c_{1}(M) .
\end{gathered}
$$

Let η be a singularity with prototype $\kappa:\left(\mathbf{C}^{m}, 0\right) \rightarrow\left(\mathbf{C}^{m+k}, 0\right)$.

Let η be a singularity with prototype
$\kappa:\left(\mathbf{C}^{m}, 0\right) \rightarrow\left(\mathbf{C}^{m+k}, 0\right)$.
$G_{\eta}=$ maximal compact subgroup of
Aut $\kappa=\left\{(\varphi, \psi) \in \operatorname{Diff}\left(\mathbf{C}^{m}, 0\right) \times \operatorname{Diff}\left(\mathbf{C}^{m+k}, 0\right): \psi \circ \kappa \circ \varphi^{-1}=\kappa\right\}$

Let η be a singularity with prototype
$\kappa:\left(\mathbf{C}^{m}, 0\right) \rightarrow\left(\mathbf{C}^{m+k}, 0\right)$.
$G_{\eta}=$ maximal compact subgroup of
Aut $\kappa=\left\{(\varphi, \psi) \in \operatorname{Diff}\left(\mathbf{C}^{m}, 0\right) \times \operatorname{Diff}\left(\mathbf{C}^{m+k}, 0\right): \psi \circ \kappa \circ \varphi^{-1}=\kappa\right\}$
Well defined up to conjugacy; it can be chosen so that

Let η be a singularity with prototype
$\kappa:\left(\mathbf{C}^{m}, 0\right) \rightarrow\left(\mathbf{C}^{m+k}, 0\right)$.
$G_{\eta}=$ maximal compact subgroup of
Aut $\kappa=\left\{(\varphi, \psi) \in \operatorname{Diff}\left(\mathbf{C}^{m}, 0\right) \times \operatorname{Diff}\left(\mathbf{C}^{m+k}, 0\right): \psi \circ \kappa \circ \varphi^{-1}=\kappa\right\}$
Well defined up to conjugacy; it can be chosen so that the images of its projections to the factors are linear.

Let η be a singularity with prototype
$\kappa:\left(\mathbf{C}^{m}, 0\right) \rightarrow\left(\mathbf{C}^{m+k}, 0\right)$.
$G_{\eta}=$ maximal compact subgroup of
Aut $\kappa=\left\{(\varphi, \psi) \in \operatorname{Diff}\left(\mathbf{C}^{m}, 0\right) \times \operatorname{Diff}\left(\mathbf{C}^{m+k}, 0\right): \psi \circ \kappa \circ \varphi^{-1}=\kappa\right\}$
Well defined up to conjugacy; it can be chosen so that the images of its projections to the factors are linear. Its representations on the source and target will be denoted by

$$
\lambda_{1}(\eta) \quad \text { and } \quad \lambda_{2}(\eta)
$$

We get the vector bundles associated with the universal

We get the vector bundles associated with the universal principal G_{η}-bundle $E G_{\eta} \rightarrow B G_{\eta}$ using the representations $\lambda_{1}(\eta)$ and $\lambda_{2}(\eta)$:

We get the vector bundles associated with the universal principal G_{η}-bundle $E G_{\eta} \rightarrow B G_{\eta}$ using the representations $\lambda_{1}(\eta)$ and $\lambda_{2}(\eta)$:

$$
E_{\eta}^{\prime} \quad \text { and } \quad E_{\eta}
$$

We get the vector bundles associated with the universal principal G_{η}-bundle $E G_{\eta} \rightarrow B G_{\eta}$ using the representations $\lambda_{1}(\eta)$ and $\lambda_{2}(\eta)$:

$$
E_{\eta}^{\prime} \quad \text { and } \quad E_{\eta}
$$

The Chern class and Euler classs of η are defined by

We get the vector bundles associated with the universal principal G_{η}-bundle $E G_{\eta} \rightarrow B G_{\eta}$ using the representations $\lambda_{1}(\eta)$ and $\lambda_{2}(\eta)$:

$$
E_{\eta}^{\prime} \quad \text { and } \quad E_{\eta} .
$$

The Chern class and Euler classs of η are defined by

$$
c(\eta):=\frac{c\left(E_{\eta}\right)}{c\left(E_{\eta}^{\prime}\right)} \quad \text { and } \quad e(\eta):=e\left(E_{\eta}^{\prime}\right)
$$

$$
A_{i}, \quad \mathbf{C}[[x]] /\left(x^{i+1}\right) ; \quad G_{\eta}=U(1) \times U(k) .
$$

$A_{i}, \quad \mathbf{C}[[x]] /\left(x^{i+1}\right) ; \quad G_{\eta}=U(1) \times U(k)$.
Let x and y_{1}, \ldots, y_{k} be the Chern roots of the universal bundles on $B U(1)$ and $B U(k)$. Then
$A_{i}, \quad \mathbf{C}[[x]] /\left(x^{i+1}\right) ; \quad G_{\eta}=U(1) \times U(k)$.
Let x and y_{1}, \ldots, y_{k} be the Chern roots of the universal bundles on $B U(1)$ and $B U(k)$. Then

$$
c\left(A_{i}\right)=\frac{1+(i+1) x}{1+x} \prod_{j=1}^{k}\left(1+y_{j}\right),
$$

$A_{i}, \quad \mathbf{C}[[x]] /\left(x^{i+1}\right) ; \quad G_{\eta}=U(1) \times U(k)$.
Let x and y_{1}, \ldots, y_{k} be the Chern roots of the universal bundles on $B U(1)$ and $B U(k)$. Then

$$
\begin{gathered}
c\left(A_{i}\right)=\frac{1+(i+1) x}{1+x} \prod_{j=1}^{k}\left(1+y_{j}\right), \\
e\left(A_{i}\right)=i!x^{i} \prod_{j=1}^{k}\left(y_{j}-x\right)\left(y_{j}-2 x\right) \cdots\left(y_{j}-i x\right) .
\end{gathered}
$$

$I_{2,2}, \mathbf{C}[[x, y]] /\left(x y, x^{2}+y^{2}\right) ; G_{\eta} \cong U(1) \times U(1) \times U(k)$.
$I_{2,2}, \mathbf{C}[[x, y]] /\left(x y, x^{2}+y^{2}\right) ; G_{\eta} \cong U(1) \times U(1) \times U(k)$.

$$
c\left(I_{2,2}\right)=\frac{\left(1+2 x_{1}\right)\left(1+2 x_{2}\right)}{\left(1+x_{1}\right)\left(1+x_{2}\right)} \prod_{j=1}^{k}\left(1+y_{j}\right),
$$

$I_{2,2}, \mathbf{C}[[x, y]] /\left(x y, x^{2}+y^{2}\right) ; G_{\eta} \cong U(1) \times U(1) \times U(k)$.

$$
\begin{gathered}
c\left(I_{2,2}\right)=\frac{\left(1+2 x_{1}\right)\left(1+2 x_{2}\right)}{\left(1+x_{1}\right)\left(1+x_{2}\right)} \prod_{j=1}^{k}\left(1+y_{j}\right) \\
e\left(I_{2,2}\right)=x_{1} x_{2}\left(x_{1}-2 x_{2}\right)\left(x_{2}-2 x_{1}\right) \prod_{j=1}^{k}\left(y_{j}-x_{1}\right)\left(y_{j}-x_{2}\right)\left(y_{j}-x_{1}-x_{2}\right) .
\end{gathered}
$$

$I_{2,2}, \mathbf{C}[[x, y]] /\left(x y, x^{2}+y^{2}\right) ; G_{\eta} \cong U(1) \times U(1) \times U(k)$.

$$
c\left(I_{2,2}\right)=\frac{\left(1+2 x_{1}\right)\left(1+2 x_{2}\right)}{\left(1+x_{1}\right)\left(1+x_{2}\right)} \prod_{j=1}^{k}\left(1+y_{j}\right),
$$

$e\left(I_{2,2}\right)=x_{1} x_{2}\left(x_{1}-2 x_{2}\right)\left(x_{2}-2 x_{1}\right) \prod_{j=1}^{k}\left(y_{j}-x_{1}\right)\left(y_{j}-x_{2}\right)\left(y_{j}-x_{1}-x_{2}\right)$.
$I I I_{2,2}, \mathbf{C}[[x, y]] /\left(x y, x^{2}, y^{2}\right) ; G_{\eta}=U(2) \times U(k-1)$.
$I_{2,2}, \mathbf{C}[[x, y]] /\left(x y, x^{2}+y^{2}\right) ; G_{\eta} \cong U(1) \times U(1) \times U(k)$.

$$
c\left(I_{2,2}\right)=\frac{\left(1+2 x_{1}\right)\left(1+2 x_{2}\right)}{\left(1+x_{1}\right)\left(1+x_{2}\right)} \prod_{j=1}^{k}\left(1+y_{j}\right),
$$

$e\left(I_{2,2}\right)=x_{1} x_{2}\left(x_{1}-2 x_{2}\right)\left(x_{2}-2 x_{1}\right) \prod_{j=1}^{k}\left(y_{j}-x_{1}\right)\left(y_{j}-x_{2}\right)\left(y_{j}-x_{1}-x_{2}\right)$.
$I I I_{2,2}, \mathbf{C}[[x, y]] /\left(x y, x^{2}, y^{2}\right) ; G_{\eta}=U(2) \times U(k-1)$.

$$
c\left(I I I_{2,2}\right)=\frac{\left(1+2 x_{1}\right)\left(1+2 x_{2}\right)\left(1+x_{1}+x_{2}\right)}{\left(1+x_{1}\right)\left(1+x_{2}\right)} \prod_{j=1}^{k-1}\left(1+y_{j}\right) .
$$

Theorem of Rimanyi

Fix a singularity η.

Theorem of Rimanyi

Fix a singularity η. Assume that the number of singularities of codimension \leq codim η is finite.

Theorem of Rimanyi

Fix a singularity η. Assume that the number of singularities of codimension $\leq \operatorname{codim} \eta$ is finite. Suppose that the Euler classes of all singularities of smaller codimension than $\operatorname{codim}(\eta)$, are not zero-divisors. Then

Theorem of Rimanyi

Fix a singularity η. Assume that the number of singularities of codimension $\leq \operatorname{codim} \eta$ is finite. Suppose that the Euler classes of all singularities of smaller codimension than $\operatorname{codim}(\eta)$, are not zero-divisors. Then
(i) if $\xi \neq \eta$ and $\operatorname{codim}(\xi) \leq \operatorname{codim}(\eta)$, then $\mathcal{T}^{\eta}(c(\xi))=0$;

Theorem of Rimanyi

Fix a singularity η. Assume that the number of singularities of codimension $\leq \operatorname{codim} \eta$ is finite. Suppose that the Euler classes of all singularities of smaller codimension than $\operatorname{codim}(\eta)$, are not zero-divisors. Then
(i) if $\xi \neq \eta$ and $\operatorname{codim}(\xi) \leq \operatorname{codim}(\eta)$, then $\mathcal{T}^{\eta}(c(\xi))=0$;
(ii) $\mathcal{T}^{\eta}(c(\eta))=e(\eta)$.

Theorem of Rimanyi

Fix a singularity η. Assume that the number of singularities of codimension $\leq \operatorname{codim} \eta$ is finite. Suppose that the Euler classes of all singularities of smaller codimension than $\operatorname{codim}(\eta)$, are not zero-divisors. Then
(i) if $\xi \neq \eta$ and $\operatorname{codim}(\xi) \leq \operatorname{codim}(\eta)$, then $\mathcal{T}^{\eta}(c(\xi))=0$;
(ii) $\mathcal{T}^{\eta}(c(\eta))=e(\eta)$.

This system of equations (taken for all such ξ^{\prime} s) determines the Thom polynomial \mathcal{T}^{η} in a unique way.

For $k=0$:
$A_{1}, \ldots, A_{8}, I_{2,2}, I_{2,3}, I_{2,4}, I_{3,3}, I_{2,5}, I_{3,4}, I_{2,6}, I_{3,5}, I_{4,4}$.

For $k=0$:
$A_{1}, \ldots, A_{8}, I_{2,2}, I_{2,3}, I_{2,4}, I_{3,3}, I_{2,5}, I_{3,4}, I_{2,6}, I_{3,5}, I_{4,4}$.
For $k=1: A_{1}, \ldots, A_{4}, I I I_{2,2}, I I I_{2,3}, I_{2,2}$.

For $k=0$:
$A_{1}, \ldots, A_{8}, I_{2,2}, I_{2,3}, I_{2,4}, I_{3,3}, I_{2,5}, I_{3,4}, I_{2,6}, I_{3,5}, I_{4,4}$.
For $k=1: A_{1}, \ldots, A_{4}, I I I_{2,2}, I I I_{2,3}, I_{2,2}$.

$$
\begin{aligned}
& I_{2,2}: c_{2}^{2}-c_{1} c_{3} \\
& I_{2,3}: 2 c_{1} c_{2}^{2}-c_{1}^{2} c_{3}+2 c_{2} c_{3}-2 c_{1} c_{4} \\
& I_{2,4}: 2 c_{1}^{2} c_{2}^{2}+c_{2}^{3}-2 c_{1}^{3} c_{3}+2 c_{1} c_{2} c_{3}-3 c_{3}^{3}-5 c_{1}^{2} c_{4}+9 c_{2} c_{4}-6 c_{1} c_{5} \\
& I_{3,3}: c_{1}^{2} c_{2}^{2}-c_{2}^{3}-c_{1}^{3} c_{3}+3 c_{1} c_{2} c_{3}+3 c_{3}^{2}-2 c_{1}^{2} c_{4}-3 c_{2} c_{4}
\end{aligned}
$$

Notation: "shifted" parameter $r:=k+1$;

Notation: "shifted" parameter $r:=k+1$;
$\eta(r)=\eta:\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+r-1}, 0\right)$;

Notation: "shifted" parameter $r:=k+1$;
$\eta(r)=\eta:\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+r-1}, 0\right)$;
$\mathcal{T}_{r}^{\eta}=$ Thom polynomial of $\eta(r)$.

Schur functions

Alphabet \mathbb{A} : a finite set of indeterminates.

Schur functions

Alphabet \mathbb{A} : a finite set of indeterminates.
We identify an alphabet $\mathbb{A}=\left\{a_{1}, \ldots, a_{m}\right\}$ with the sum $a_{1}+\cdots+a_{m}$.

Schur functions

Alphabet A: a finite set of indeterminates.
We identify an alphabet $\mathbb{A}=\left\{a_{1}, \ldots, a_{m}\right\}$ with the sum $a_{1}+\cdots+a_{m}$.

Take another alphabet \mathbb{B}.

$$
\sum S_{i}(\mathbb{A}-\mathbb{B}) z^{i}=\prod_{b \in \mathbb{B}}(1-b z) / \prod_{a \in \mathbb{A}}(1-a z)
$$

Schur functions

Alphabet A: a finite set of indeterminates.
We identify an alphabet $\mathbb{A}=\left\{a_{1}, \ldots, a_{m}\right\}$ with the sum $a_{1}+\cdots+a_{m}$.

Take another alphabet \mathbb{B}.

$$
\sum S_{i}(\mathbb{A}-\mathbb{B}) z^{i}=\prod_{b \in \mathbb{B}}(1-b z) / \prod_{a \in \mathbb{A}}(1-a z)
$$

Given a partition $I=\left(0 \leq i_{1} \leq \cdots \leq i_{h}\right)$, the Schur function $S_{I}(\mathbb{A}-\mathbb{B})$ is

Schur functions

Alphabet \mathbb{A} : a finite set of indeterminates.
We identify an alphabet $\mathbb{A}=\left\{a_{1}, \ldots, a_{m}\right\}$ with the sum $a_{1}+\cdots+a_{m}$.

Take another alphabet \mathbb{B}.

$$
\sum S_{i}(\mathbb{A}-\mathbb{B}) z^{i}=\prod_{b \in \mathbb{B}}(1-b z) / \prod_{a \in \mathbb{A}}(1-a z)
$$

Given a partition $I=\left(0 \leq i_{1} \leq \cdots \leq i_{h}\right)$, the Schur function $S_{I}(\mathbb{A}-\mathbb{B})$ is

$$
S_{I}(\mathbb{A}-\mathbb{B}):=\left|S_{i_{q}+q-p}(\mathbb{A}-\mathbb{B})\right|_{1 \leq p, q \leq h}
$$

E.g., writing $S_{i}=S_{i}(\mathbb{A}-\mathbb{B})$,

E.g., writing $S_{i}=S_{i}(\mathbb{A}-\mathbb{B})$,

$$
S_{33344}(\mathbb{A}-\mathbb{B})=\left|\begin{array}{ccccc}
S_{3} & S_{4} & S_{5} & S_{7} & S_{8} \\
S_{2} & S_{3} & S_{4} & S_{6} & S_{7} \\
S_{1} & S_{2} & S_{3} & S_{5} & S_{6} \\
1 & S_{1} & S_{2} & S_{4} & S_{5} \\
0 & 1 & S_{1} & S_{3} & S_{4}
\end{array}\right| .
$$

E.g., writing $S_{i}=S_{i}(\mathbb{A}-\mathbb{B})$,

$$
S_{33344}(\mathbb{A}-\mathbb{B})=\left|\begin{array}{ccccc}
S_{3} & S_{4} & S_{5} & S_{7} & S_{8} \\
S_{2} & S_{3} & S_{4} & S_{6} & S_{7} \\
S_{1} & S_{2} & S_{3} & S_{5} & S_{6} \\
1 & S_{1} & S_{2} & S_{4} & S_{5} \\
0 & 1 & S_{1} & S_{3} & S_{4}
\end{array}\right| .
$$

For vector bundles E, F, we write $S_{I}(E-F)$ for \mathbb{A} and \mathbb{B}
E.g., writing $S_{i}=S_{i}(\mathbb{A}-\mathbb{B})$,

$$
S_{33344}(\mathbb{A}-\mathbb{B})=\left|\begin{array}{ccccc}
S_{3} & S_{4} & S_{5} & S_{7} & S_{8} \\
S_{2} & S_{3} & S_{4} & S_{6} & S_{7} \\
S_{1} & S_{2} & S_{3} & S_{5} & S_{6} \\
1 & S_{1} & S_{2} & S_{4} & S_{5} \\
0 & 1 & S_{1} & S_{3} & S_{4}
\end{array}\right| .
$$

For vector bundles E, F, we write $S_{I}(E-F)$ for \mathbb{A} and \mathbb{B} specialized to the Chern roots of E and F.
E.g., writing $S_{i}=S_{i}(\mathbb{A}-\mathbb{B})$,

$$
S_{33344}(\mathbb{A}-\mathbb{B})=\left|\begin{array}{ccccc}
S_{3} & S_{4} & S_{5} & S_{7} & S_{8} \\
S_{2} & S_{3} & S_{4} & S_{6} & S_{7} \\
S_{1} & S_{2} & S_{3} & S_{5} & S_{6} \\
1 & S_{1} & S_{2} & S_{4} & S_{5} \\
0 & 1 & S_{1} & S_{3} & S_{4}
\end{array}\right| .
$$

For vector bundles E, F, we write $S_{I}(E-F)$ for \mathbb{A} and \mathbb{B} specialized to the Chern roots of E and F.

Giambelli's formula: The dual of the class of a Schubert variety in a Grassmannian
E.g., writing $S_{i}=S_{i}(\mathbb{A}-\mathbb{B})$,

$$
S_{33344}(\mathbb{A}-\mathbb{B})=\left|\begin{array}{ccccc}
S_{3} & S_{4} & S_{5} & S_{7} & S_{8} \\
S_{2} & S_{3} & S_{4} & S_{6} & S_{7} \\
S_{1} & S_{2} & S_{3} & S_{5} & S_{6} \\
1 & S_{1} & S_{2} & S_{4} & S_{5} \\
0 & 1 & S_{1} & S_{3} & S_{4}
\end{array}\right| .
$$

For vector bundles E, F, we write $S_{I}(E-F)$ for \mathbb{A} and \mathbb{B} specialized to the Chern roots of E and F.

Giambelli's formula: The dual of the class of a Schubert variety in a Grassmannian is given by a Schur polynomial of the tautological bundle on it.

Cancellation: $S_{I}((\mathbb{A}+\mathbb{C})-(\mathbb{B}+\mathbb{C}))=S_{I}(\mathbb{A}-\mathbb{B})$.

Cancellation: $S_{I}((\mathbb{A}+\mathbb{C})-(\mathbb{B}+\mathbb{C}))=S_{I}(\mathbb{A}-\mathbb{B})$.
Vanishing: If I is not contained in the (m, n)-hook, then $S_{I}\left(\mathbb{A}_{m}-\mathbb{B}_{n}\right)=0$

Cancellation: $S_{I}((\mathbb{A}+\mathbb{C})-(\mathbb{B}+\mathbb{C}))=S_{I}(\mathbb{A}-\mathbb{B})$.
Vanishing: If I is not contained in the (m, n)-hook, then $S_{I}\left(\mathbb{A}_{m}-\mathbb{B}_{n}\right)=0$

The functions $S_{I}\left(\mathbb{A}_{m}-\mathbb{B}_{n}\right)$, for I running over partitions contained in the (m, n)-hook,

Cancellation: $S_{I}((\mathbb{A}+\mathbb{C})-(\mathbb{B}+\mathbb{C}))=S_{I}(\mathbb{A}-\mathbb{B})$.
Vanishing: If I is not contained in the (m, n)-hook, then $S_{I}\left(\mathbb{A}_{m}-\mathbb{B}_{n}\right)=0$

The functions $S_{I}\left(\mathbb{A}_{m}-\mathbb{B}_{n}\right)$, for I running over partitions contained in the (m, n)-hook, are \mathbf{Z}-linearly independent.

$$
R(\mathbb{A}, \mathbb{B}):=\prod_{a \in \mathbb{A}, b \in \mathbb{B}}(a-b)
$$

$$
R(\mathbb{A}, \mathbb{B}):=\prod_{a \in \mathbb{A}, b \in \mathbb{B}}(a-b) .
$$

Factorization: For partitions $I=\left(i_{1}, \ldots, i_{m}\right)$ and $J=\left(j_{1}, \ldots, j_{k}\right)$,

$$
R(\mathbb{A}, \mathbb{B}):=\prod_{a \in \mathbb{A}, b \in \mathbb{B}}(a-b) .
$$

Factorization: For partitions $I=\left(i_{1}, \ldots, i_{m}\right)$ and $J=\left(j_{1}, \ldots, j_{k}\right)$, consider the partition

$$
\left(j_{1}, \ldots, j_{k}, i_{1}+n, \ldots, i_{m}+n\right) .
$$

$R(\mathbb{A}, \mathbb{B}):=\prod_{a \in \mathbb{A}, b \in \mathbb{B}}(a-b)$.
Factorization: For partitions $I=\left(i_{1}, \ldots, i_{m}\right)$ and $J=\left(j_{1}, \ldots, j_{k}\right)$, consider the partition

$$
\left(j_{1}, \ldots, j_{k}, i_{1}+n, \ldots, i_{m}+n\right) .
$$

We have

$$
S_{\left(j_{1}, \ldots, j_{k}, i_{1}+n, \ldots, i_{m}+n\right)}\left(\mathbb{A}_{m}-\mathbb{B}_{n}\right)=S_{I}(\mathbb{A}) R(\mathbb{A}, \mathbb{B}) S_{J}(-\mathbb{B})
$$

$R(\mathbb{A}, \mathbb{B}):=\prod_{a \in \mathbb{A}, b \in \mathbb{B}}(a-b)$.
Factorization: For partitions $I=\left(i_{1}, \ldots, i_{m}\right)$ and $J=\left(j_{1}, \ldots, j_{k}\right)$, consider the partition

$$
\left(j_{1}, \ldots, j_{k}, i_{1}+n, \ldots, i_{m}+n\right) .
$$

We have

$$
S_{\left(j_{1}, \ldots, j_{k}, i_{1}+n, \ldots, i_{m}+n\right)}\left(\mathbb{A}_{m}-\mathbb{B}_{n}\right)=S_{I}(\mathbb{A}) R(\mathbb{A}, \mathbb{B}) S_{J}(-\mathbb{B}) .
$$

- proved by Berele-Regev in their study of polynomial characters of Lie superalgebras; particular cases known to 19th century algebraists: Pomey etc.

$$
I_{2,2}: c_{2}^{2}-c_{1} c_{3}
$$

$$
I_{2,3}: 2 c_{1} c_{2}^{2}-c_{1}^{2} c_{3}+2 c_{2} c_{3}-2 c_{1} c_{4}
$$

$$
I_{2,4}: 2 c_{1}^{2} c_{2}^{2}+c_{2}^{3}-2 c_{1}^{3} c_{3}+2 c_{1} c_{2} c_{3}-3 c_{3}^{3}-5 c_{1}^{2} c_{4}+9 c_{2} c_{4}-6 c_{1} c_{5}
$$

$$
I_{3,3}: c_{1}^{2} c_{2}^{2}-c_{2}^{3}-c_{1}^{3} c_{3}+3 c_{1} c_{2} c_{3}+3 c_{3}^{2}-2 c_{1}^{2} c_{4}-3 c_{2} c_{4}
$$

$$
\begin{aligned}
& I_{2,2}: c_{2}^{2}-c_{1} c_{3} \\
& I_{2,3}: 2 c_{1} c_{2}^{2}-c_{1}^{2} c_{3}+2 c_{2} c_{3}-2 c_{1} c_{4} \\
& I_{2,4}: 2 c_{1}^{2} c_{2}^{2}+c_{2}^{3}-2 c_{1}^{3} c_{3}+2 c_{1} c_{2} c_{3}-3 c_{3}^{3}-5 c_{1}^{2} c_{4}+9 c_{2} c_{4}-6 c_{1} c_{5} \\
& I_{3,3}: c_{1}^{2} c_{2}^{2}-c_{2}^{3}-c_{1}^{3} c_{3}+3 c_{1} c_{2} c_{3}+3 c_{3}^{2}-2 c_{1}^{2} c_{4}-3 c_{2} c_{4} \\
& \\
& I_{2,2}: S_{22} \\
& I_{2,3}: 4 S_{23}+2 S_{122} \\
& I_{2,4}: 16 S_{24}+4 S_{33}+12 S_{123}+5 S_{222}+2 S_{1122} \\
& I_{3,3}:
\end{aligned} 2 S_{24}+6 S_{33}+3 S_{123}+S_{1122} .
$$

Theorem. ($P P+A W$, 2006) Let Σ be a singularity class. Then for any partition I the coefficient α_{I} in the Schur function expansion of the Thom polynomial

$$
\mathcal{T}^{\Sigma}=\sum \alpha_{I} S_{I}\left(T^{*} M-f^{*} T^{*} N\right),
$$

is nonnegative.

Theorem. ($P P+A W$, 2006) Let Σ be a singularity class. Then for any partition I the coefficient α_{I} in the Schur function expansion of the Thom polynomial

$$
\mathcal{T}^{\Sigma}=\sum \alpha_{I} S_{I}\left(T^{*} M-f^{*} T^{*} N\right),
$$

is nonnegative.

- conjectured by Feher-Komuves (2004).

Theorem. ($P P+A W$, 2006) Let Σ be a singularity class. Then for any partition I the coefficient α_{I} in the Schur function expansion of the Thom polynomial

$$
\mathcal{T}^{\Sigma}=\sum \alpha_{I} S_{I}\left(T^{*} M-f^{*} T^{*} N\right),
$$

is nonnegative.

- conjectured by Feher-Komuves (2004).

The theorem is not obvious.

Theorem. ($P P+A W$, 2006) Let Σ be a singularity class. Then for any partition I the coefficient α_{I} in the Schur function expansion of the Thom polynomial

$$
\mathcal{T}^{\Sigma}=\sum \alpha_{I} S_{I}\left(T^{*} M-f^{*} T^{*} N\right),
$$

is nonnegative.

- conjectured by Feher-Komuves (2004).

The theorem is not obvious. But its proof is obvious.

In the definition of Thom polynomial via classifying spaces of singularities,

In the definition of Thom polynomial via classifying spaces of singularities,
we replace R_{m} and R_{n} on $B G L(m) \times B G L(n)$ by arbitrary vector bundles E and F on an arbitrary common base.

In the definition of Thom polynomial via classifying spaces of singularities,
we replace R_{m} and R_{n} on $B G L(m) \times B G L(n)$ by arbitrary vector bundles E and F on an arbitrary common base.
Given a singularity class Σ, we then get

$$
\Sigma(E, F)=\sum_{I} \alpha_{I} S_{I}\left(E^{*}-F^{*}\right)
$$

In the definition of Thom polynomial via classifying spaces of singularities,
we replace R_{m} and R_{n} on $B G L(m) \times B G L(n)$ by arbitrary vector bundles E and F on an arbitrary common base.
Given a singularity class Σ, we then get

$$
\Sigma(E, F)=\sum_{I} \alpha_{I} S_{I}\left(E^{*}-F^{*}\right)
$$

We can specialize E and F and use:

In the definition of Thom polynomial via classifying spaces of singularities,
we replace R_{m} and R_{n} on $B G L(m) \times B G L(n)$ by arbitrary vector bundles E and F on an arbitrary common base.
Given a singularity class Σ, we then get

$$
\Sigma(E, F)=\sum_{I} \alpha_{I} S_{I}\left(E^{*}-F^{*}\right)
$$

We can specialize E and F and use:

1. (cone of $\operatorname{dim}=r k) \cdot($ zero section $) \geq 0$ for gg v.b. - Easy.

In the definition of Thom polynomial via classifying spaces of singularities,
we replace R_{m} and R_{n} on $B G L(m) \times B G L(n)$ by arbitrary vector bundles E and F on an arbitrary common base.
Given a singularity class Σ, we then get

$$
\Sigma(E, F)=\sum_{I} \alpha_{I} S_{I}\left(E^{*}-F^{*}\right)
$$

We can specialize E and F and use:

1. (cone of $\operatorname{dim}=r k) \cdot($ zero section $) \geq 0$ for gg v.b. - Easy.
2. Any polynomial numerically nonnegative for gg v.b. is a nonnegative combination of Schur polynomials - uses the Giambelli formula.

In the definition of Thom polynomial via classifying spaces of singularities,
we replace R_{m} and R_{n} on $B G L(m) \times B G L(n)$ by arbitrary vector bundles E and F on an arbitrary common base.
Given a singularity class Σ, we then get

$$
\Sigma(E, F)=\sum_{I} \alpha_{I} S_{I}\left(E^{*}-F^{*}\right)
$$

We can specialize E and F and use:

1. (cone of $\operatorname{dim}=r k) \cdot($ zero section $) \geq 0$ for gg v.b. - Easy.
2. Any polynomial numerically nonnegative for gg v.b. is a nonnegative combination of Schur polynomials - uses the Giambelli formula.
(..., Usui-Tango, Fulton-Lazarsfeld)

Klyachko and, independently, Kazarian proposed recently another, even "more obvious" proof:

Klyachko and, independently, Kazarian proposed recently another, even "more obvious" proof:

Using some Veronese map, "materialize" all singularity classes in sufficiently large Grassmannians; to write down all details will be a good subject for a Master Thesis.

Klyachko and, independently, Kazarian proposed recently another, even "more obvious" proof:

Using some Veronese map, "materialize" all singularity classes in sufficiently large Grassmannians; to write down all details will be a good subject for a Master Thesis. Fix a singularity class Σ and take the Schur expansion of \mathcal{T}^{Σ}.

Klyachko and, independently, Kazarian proposed recently another, even "more obvious" proof:

Using some Veronese map, "materialize" all singularity classes in sufficiently large Grassmannians; to write down all details will be a good subject for a Master Thesis. Fix a singularity class Σ and take the Schur expansion of \mathcal{T}^{Σ}. Take sufficiently large Grassmannian containing Σ and such that specializing

Klyachko and, independently, Kazarian proposed recently another, even "more obvious" proof:

Using some Veronese map, "materialize" all singularity classes in sufficiently large Grassmannians; to write down all details will be a good subject for a Master Thesis. Fix a singularity class Σ and take the Schur expansion of \mathcal{T}^{Σ}. Take sufficiently large Grassmannian containing Σ and such that specializing \mathcal{T}^{Σ} in the tautological bundle Q, we do not lose any Schur summand.

Klyachko and, independently, Kazarian proposed recently another, even "more obvious" proof:

Using some Veronese map, "materialize" all singularity classes in sufficiently large Grassmannians; to write down all details will be a good subject for a Master Thesis.
Fix a singularity class Σ and take the Schur expansion of \mathcal{T}^{Σ}. Take sufficiently large Grassmannian containing Σ and such that specializing \mathcal{T}^{Σ} in the tautological bundle Q, we do not lose any Schur summand. Identify - by the Giambelli formula - a Schur polynomial of Q with a Schubert cycle in the Grassmannian.

Klyachko and, independently, Kazarian proposed recently another, even "more obvious" proof:

Using some Veronese map, "materialize" all singularity classes in sufficiently large Grassmannians; to write down all details will be a good subject for a Master Thesis.
Fix a singularity class Σ and take the Schur expansion of \mathcal{T}^{Σ}. Take sufficiently large Grassmannian containing Σ and such that specializing \mathcal{T}^{Σ} in the tautological bundle Q, we do not lose any Schur summand.
Identify - by the Giambelli formula - a Schur polynomial of Q with a Schubert cycle in the Grassmannian.
To test a coefficient, intersect [Σ] with the corresponding dual Schubert cycle.

Klyachko and, independently, Kazarian proposed recently another, even "more obvious" proof:

Using some Veronese map, "materialize" all singularity classes in sufficiently large Grassmannians; to write down all details will be a good subject for a Master Thesis.
Fix a singularity class Σ and take the Schur expansion of \mathcal{T}^{Σ}. Take sufficiently large Grassmannian containing Σ and such that specializing \mathcal{T}^{Σ} in the tautological bundle Q, we do not lose any Schur summand.
Identify - by the Giambelli formula - a Schur polynomial of Q with a Schubert cycle in the Grassmannian.
To test a coefficient, intersect [Σ] with the corresponding dual Schubert cycle.
By the Bertini-Kleiman theorem, put the cycles in a general position, so that

Klyachko and, independently, Kazarian proposed recently another, even "more obvious" proof:

Using some Veronese map, "materialize" all singularity classes in sufficiently large Grassmannians; to write down all details will be a good subject for a Master Thesis.
Fix a singularity class Σ and take the Schur expansion of \mathcal{T}^{Σ}. Take sufficiently large Grassmannian containing Σ and such that specializing \mathcal{T}^{Σ} in the tautological bundle Q, we do not lose any Schur summand.
Identify - by the Giambelli formula - a Schur polynomial of Q with a Schubert cycle in the Grassmannian.
To test a coefficient, intersect $[\Sigma]$ with the corresponding dual Schubert cycle.
By the Bertini-Kleiman theorem, put the cycles in a general position, so that we can reduce to set-theoretic intersection, which is nonnegative.

Theorem. (PP, 1988) Let η be of Thom-Boardman type $\Sigma^{i, \ldots}$. Then all summands in the Schur function expansion of \mathcal{T}_{r}^{η} are indexed by partitions containing the rectangle partition $(r+i-1, \ldots, r+i-1)$ (i times).

Theorem. (PP, 1988) Let η be of Thom-Boardman type $\Sigma^{i, \ldots}$. Then all summands in the Schur function expansion of \mathcal{T}_{r}^{η} are indexed by partitions containing the rectangle partition ($r+i-1, \ldots, r+i-1$) (i times).
This result is obvious.

Theorem. (PP, 1988) Let η be of Thom-Boardman type $\Sigma^{i, \ldots}$. Then all summands in the Schur function expansion of \mathcal{T}_{r}^{η} are indexed by partitions containing the rectangle partition ($r+i-1, \ldots, r+i-1$) (i times).
This result is obvious. But its proof is not obvious.

Theorem. (PP, 1988) Let η be of Thom-Boardman type $\Sigma^{i, \ldots}$. Then all summands in the Schur function expansion of \mathcal{T}_{r}^{η} are indexed by partitions containing the rectangle partition $(r+i-1, \ldots, r+i-1)$ (i times).

This result is obvious. But its proof is not obvious.
Let \mathcal{P}^{i} be the ideal of polynomials in $m+n$ variables

Theorem. (PP, 1988) Let η be of Thom-Boardman type $\Sigma^{i, \ldots}$. Then all summands in the Schur function expansion of \mathcal{T}_{r}^{η} are indexed by partitions containing the rectangle partition $(r+i-1, \ldots, r+i-1)$ (i times).

This result is obvious. But its proof is not obvious.
Let \mathcal{P}^{i} be the ideal of polynomials in $m+n$ variables which after specialization to the Chern classes of M and N support

Theorem. (PP, 1988) Let η be of Thom-Boardman type $\Sigma^{i, \ldots}$. Then all summands in the Schur function expansion of \mathcal{T}_{r}^{η} are indexed by partitions containing the rectangle partition $(r+i-1, \ldots, r+i-1)$ (i times).

This result is obvious. But its proof is not obvious.
Let \mathcal{P}^{i} be the ideal of polynomials in $m+n$ variables which after specialization to the Chern classes of M and N support cycles in the locus D where

Theorem. (PP, 1988) Let η be of Thom-Boardman type $\Sigma^{i, \ldots}$. Then all summands in the Schur function expansion of \mathcal{T}_{r}^{η} are indexed by partitions containing the rectangle partition $(r+i-1, \ldots, r+i-1)$ (i times).

This result is obvious. But its proof is not obvious.
Let \mathcal{P}^{i} be the ideal of polynomials in $m+n$ variables which after specialization to the Chern classes of M and N support cycles in the locus D where

$$
\operatorname{dim}\left(\operatorname{Ker}\left(d f: T M \rightarrow f^{*} T N\right)\right) \geq i
$$

Theorem. (PP, 1988) Let η be of Thom-Boardman type $\Sigma^{i, \ldots}$. Then all summands in the Schur function expansion of \mathcal{T}_{r}^{η} are indexed by partitions containing the rectangle partition $(r+i-1, \ldots, r+i-1)$ (i times).

This result is obvious. But its proof is not obvious.
Let \mathcal{P}^{i} be the ideal of polynomials in $m+n$ variables which after specialization to the Chern classes of M and N support cycles in the locus D where

$$
\operatorname{dim}\left(\operatorname{Ker}\left(d f: T M \rightarrow f^{*} T N\right)\right) \geq i
$$

for a general $\operatorname{map} f: M \rightarrow N$.

Theorem. (PP, 1988) Let η be of Thom-Boardman type $\Sigma^{i, \ldots}$. Then all summands in the Schur function expansion of \mathcal{T}_{r}^{η} are indexed by partitions containing the rectangle partition $(r+i-1, \ldots, r+i-1)$ (i times).

This result is obvious. But its proof is not obvious.
Let \mathcal{P}^{i} be the ideal of polynomials in $m+n$ variables which after specialization to the Chern classes of M and N support cycles in the locus D where

$$
\operatorname{dim}\left(\operatorname{Ker}\left(d f: T M \rightarrow f^{*} T N\right)\right) \geq i
$$

for a general map $f: M \rightarrow N$.
(This means that the class of a cycle on M in $H(M, \mathbf{Z})$ is in the image of

Theorem. (PP, 1988) Let η be of Thom-Boardman type $\Sigma^{i, \ldots}$. Then all summands in the Schur function expansion of \mathcal{T}_{r}^{η} are indexed by partitions containing the rectangle partition $(r+i-1, \ldots, r+i-1)$ (i times).

This result is obvious. But its proof is not obvious.
Let \mathcal{P}^{i} be the ideal of polynomials in $m+n$ variables which after specialization to the Chern classes of M and N support cycles in the locus D where

$$
\operatorname{dim}\left(\operatorname{Ker}\left(d f: T M \rightarrow f^{*} T N\right)\right) \geq i
$$

for a general map $f: M \rightarrow N$.
(This means that the class of a cycle on M in $H(M, \mathbf{Z})$ is in the image of $H(D, \mathbf{Z}) \rightarrow H(M, \mathbf{Z})$.)

$\mathcal{P}^{i}=\mathbf{Z} \cdot S_{(r+i-1)^{i}}+$ terms of higher degree.

$$
\mathcal{P}^{i}=\mathbf{Z} \cdot S_{(r+i-1)^{i}}+\text { terms of higher degree. }
$$

The generator of the minimal degree component is the Thom polynomial of

$$
\mathcal{P}^{i}=\mathbf{Z} \cdot S_{(r+i-1)^{i}}+\text { terms of higher degree } .
$$

The generator of the minimal degree component is the Thom polynomial of the singularity class $\overline{\Sigma^{i}}$ (the Giambelli-Thom-Porteous formula).

$$
\mathcal{P}^{i}=\mathbf{Z} \cdot S_{(r+i-1)^{i}}+\text { terms of higher degree } .
$$

The generator of the minimal degree component is the Thom polynomial of the singularity class $\overline{\Sigma^{i}}$ (the Giambelli-Thom-Porteous formula).
Use two results of PP (1988):

$$
\mathcal{P}^{i}=\mathbf{Z} \cdot S_{(r+i-1)^{i}}+\text { terms of higher degree } .
$$

The generator of the minimal degree component is the Thom polynomial of the singularity class $\overline{\Sigma^{i}}$ (the Giambelli-Thom-Porteous formula).
Use two results of PP (1988):

1. Any $S_{I}\left(T^{*} M-f^{*} T^{*} N\right)$, where I contains $(r+i-1)^{i}$ belongs to \mathcal{P}^{i}.

$$
\mathcal{P}^{i}=\mathbf{Z} \cdot S_{(r+i-1)^{i}}+\text { terms of higher degree. }
$$

The generator of the minimal degree component is the Thom polynomial of the singularity class $\overline{\Sigma^{i}}$ (the Giambelli-Thom-Porteous formula).
Use two results of PP (1988):

1. Any $S_{I}\left(T^{*} M-f^{*} T^{*} N\right)$, where I contains $(r+i-1)^{i}$ belongs to \mathcal{P}^{i}.

- using a "two Grassmannians" desingularization of D and a pushforward formula.

$$
\mathcal{P}^{i}=\mathbf{Z} \cdot S_{(r+i-1)^{i}}+\text { terms of higher degree. }
$$

The generator of the minimal degree component is the Thom polynomial of the singularity class $\overline{\Sigma^{i}}$ (the Giambelli-Thom-Porteous formula).
Use two results of PP (1988):

1. Any $S_{I}\left(T^{*} M-f^{*} T^{*} N\right)$, where I contains $(r+i-1)^{i}$ belongs to \mathcal{P}^{i}.

- using a "two Grassmannians" desingularization of D and a pushforward formula.

2. No nonzero $\mathbf{Z}\left[c_{\bullet}(M)\right]$-linear combination of the $S_{I}\left(T^{*} M-f^{*} T^{*} N\right)$'s,

$$
\mathcal{P}^{i}=\mathbf{Z} \cdot S_{(r+i-1)^{i}}+\text { terms of higher degree. }
$$

The generator of the minimal degree component is the Thom polynomial of the singularity class $\overline{\Sigma^{i}}$ (the Giambelli-Thom-Porteous formula).
Use two results of PP (1988):

1. Any $S_{I}\left(T^{*} M-f^{*} T^{*} N\right)$, where I contains $(r+i-1)^{i}$ belongs to \mathcal{P}^{i}.

- using a "two Grassmannians" desingularization of D and a pushforward formula.

2. No nonzero $\mathbf{Z}\left[c_{\bullet}(M)\right]$-linear combination of the $S_{I}\left(T^{*} M-f^{*} T^{*} N\right)$'s, where all I's do not contain $(r+i-1)^{i}$, belongs to \mathcal{P}^{i}.

$$
\mathcal{P}^{i}=\mathbf{Z} \cdot S_{(r+i-1)^{i}}+\text { terms of higher degree. }
$$

The generator of the minimal degree component is the Thom polynomial of the singularity class $\overline{\Sigma^{i}}$ (the Giambelli-Thom-Porteous formula).
Use two results of PP (1988):

1. Any $S_{I}\left(T^{*} M-f^{*} T^{*} N\right)$, where I contains $(r+i-1)^{i}$ belongs to \mathcal{P}^{i}.

- using a "two Grassmannians" desingularization of D and a pushforward formula.

2. No nonzero $\mathbf{Z}\left[c_{\bullet}(M)\right]$-linear combination of the $S_{I}\left(T^{*} M-f^{*} T^{*} N\right)$'s, where all I's do not contain $(r+i-1)^{i}$, belongs to \mathcal{P}^{i}.

- interpreting \mathcal{P}^{i} as a "generalized resultant" and using some specialization trick.

Singularity $I_{2,2}(r), \operatorname{codim}\left(I_{2,2}(r)\right)=3 r+1$.

Singularity $I_{2,2}(r), \operatorname{codim}\left(I_{2,2}(r)\right)=3 r+1 . \quad \mathcal{T}_{1}=S_{22}$ (Porteous 1971). So assume that $r \geq 2$.
Equations characterizing the Thom polynomial: A_{0}, A_{1}, A_{2} :

$$
\mathcal{T}_{r}\left(-\mathbb{B}_{r-1}\right)=\mathcal{T}_{r}\left(x-2 x-\mathbb{B}_{r-1}\right)=\mathcal{T}_{r}\left(x-3 x-\mathbb{B}_{r-1}\right)=0,
$$

Singularity $I_{2,2}(r), \operatorname{codim}\left(I_{2,2}(r)\right)=3 r+1 . \quad \mathcal{T}_{1}=S_{22}$ (Porteous 1971). So assume that $r \geq 2$.
Equations characterizing the Thom polynomial: A_{0}, A_{1}, A_{2} :

$$
\mathcal{T}_{r}\left(-\mathbb{B}_{r-1}\right)=\mathcal{T}_{r}\left(x-2 x-\mathbb{B}_{r-1}\right)=\mathcal{T}_{r}\left(x-3 x-\mathbb{B}_{r-1}\right)=0,
$$

$I_{2,2}:$

$$
\begin{aligned}
& \mathcal{T}_{r}\left(\mathbb{X}_{2}-2 x_{1}\right.\left.-2 x_{2}-\mathbb{B}_{r-1}\right)= \\
&=x_{1} x_{2}\left(x_{1}-2 x_{2}\right)\left(x_{2}-2 x_{1}\right) R\left(\mathbb{X}_{2}+x_{1}+x_{2}\right. \\
&\left., \mathbb{B}_{r-1}\right)
\end{aligned}
$$

Introduce the alphabet:

$$
\mathbb{D}:=2 x_{1}+2 x_{2}+x_{1}+x_{2}
$$

Introduce the alphabet:

$$
\mathbb{D}:=2 x_{1}+2 x_{2}+2 x_{1}+x_{2}
$$

$I I I_{2,2}$:

$$
\mathcal{T}_{r}\left(\mathbb{X}_{2}-\mathbb{D}-\mathbb{B}_{r-2}\right)=0
$$

Introduce the alphabet:

$$
\mathbb{D}:=2 x_{1}+2 x_{2}+x_{1}+x_{2}
$$

$I I I_{2,2}$:

$$
\mathcal{T}_{r}\left(\mathbb{X}_{2}-\mathbb{D}-\mathbb{B}_{r-2}\right)=0
$$

(The variables here correspond now to the Chern roots of the cotangent bundles).

Goal: give a presentation of \mathcal{T}_{r} as a Z-linear combination of Schur functions

Goal: give a presentation of \mathcal{T}_{r} as a Z-linear combination of Schur functions with explicit algebraic expressions of the coefficients.

Goal: give a presentation of \mathcal{T}_{r} as a Z-linear combination of Schur functions with explicit algebraic expressions of the coefficients.

Lemma. A partition appearing in the Schur function expansion of \mathcal{T}_{r} contains $(r+1, r+1)$ and has at most three parts.

Linear endomorphism $\Phi: S_{i_{1}, i_{2}, i_{3}} \mapsto S_{i_{1}+1, i_{2}+1, i_{3}+1}$.

Linear endomorphism $\Phi: S_{i_{1}, i_{2}, i_{3}} \mapsto S_{i_{1}+1, i_{2}+1, i_{3}+1}$.
$\overline{\mathcal{T}_{r}}=$ sum of terms " $\alpha_{i j} S_{i j}$ " in \mathcal{T}_{r}.

Linear endomorphism $\Phi: S_{i_{1}, i_{2}, i_{3}} \mapsto S_{i_{1}+1, i_{2}+1, i_{3}+1}$.
$\overline{\mathcal{T}_{r}}=$ sum of terms " $\alpha_{i j} S_{i j}$ " in \mathcal{T}_{r}.
Lemma. $\quad \mathcal{T}_{r}=\overline{\mathcal{T}}_{r}+\Phi\left(\mathcal{T}_{r-1}\right)$.

Proposition. $\overline{\mathcal{T}}_{r}\left(\mathbb{X}_{2}\right)=\left(x_{1} x_{2}\right)^{r+1} S_{r-1}(\mathbb{D})$.

Proposition. $\overline{\mathcal{T}}_{r}\left(\mathbb{X}_{2}\right)=\left(x_{1} x_{2}\right)^{r+1} S_{r-1}(\mathbb{D})$.
$S_{r-1}(\mathbb{D})=s_{r-1}\left(\operatorname{Sym}^{2}(E)\right)$, the Segre class, $\operatorname{rank}(E)=2$.

Proposition. $\overline{\mathcal{T}}_{r}\left(\mathbb{X}_{2}\right)=\left(x_{1} x_{2}\right)^{r+1} S_{r-1}(\mathbb{D})$.
$S_{r-1}(\mathbb{D})=s_{r-1}\left(\operatorname{Sym}^{2}(E)\right)$, the Segre class, $\operatorname{rank}(E)=2$.
Complete quadrics: Schubert, Giambelli (19th century); reneval: De Concini-Procesi, Laksov, Vainsencher, Lascoux, Thorup (in the 80's)

Proposition. $\overline{\mathcal{T}}_{r}\left(\mathbb{X}_{2}\right)=\left(x_{1} x_{2}\right)^{r+1} S_{r-1}(\mathbb{D})$.
$S_{r-1}(\mathbb{D})=s_{r-1}\left(\operatorname{Sym}^{2}(E)\right)$, the Segre class, $\operatorname{rank}(E)=2$.
Complete quadrics: Schubert, Giambelli (19th century); reneval: De Concini-Procesi, Laksov, Vainsencher, Lascoux, Thorup (in the 80's)
Chern numbers of symmetric degeneracy loci; PP, 1988

Proposition. $\overline{\mathcal{T}}_{r}\left(\mathbb{X}_{2}\right)=\left(x_{1} x_{2}\right)^{r+1} S_{r-1}(\mathbb{D})$.
$S_{r-1}(\mathbb{D})=s_{r-1}\left(\operatorname{Sym}^{2}(E)\right)$, the Segre class, $\operatorname{rank}(E)=2$.
Complete quadrics: Schubert, Giambelli (19th century); reneval: De Concini-Procesi, Laksov, Vainsencher, Lascoux, Thorup (in the 80's)
Chern numbers of symmetric degeneracy loci; PP, 1988
The Segre class $s_{r-1}\left(\operatorname{Sym}^{2}(E)\right)$ is:

$$
\sum_{p \leq q, p+q=r-1}\left[\binom{r}{p+1}+\binom{r}{p+2}+\cdots+\binom{r}{q+1}\right] S_{p, q}(E) .
$$

$$
\overline{\mathcal{T}}_{2}=3 S_{34}
$$

$$
\begin{gathered}
\overline{\mathcal{T}}_{2}=3 S_{34} \\
\mathcal{T}_{2}=\Phi\left(\mathcal{T}_{1}\right)+\overline{\mathcal{T}}_{2}=\Phi\left(S_{22}\right)+3 S_{34}=S_{133}+3 S_{34}
\end{gathered}
$$

$$
\begin{gathered}
\overline{\mathcal{T}}_{2}=3 S_{34} \\
\mathcal{T}_{2}=\Phi\left(\mathcal{T}_{1}\right)+\overline{\mathcal{T}}_{2}=\Phi\left(S_{22}\right)+3 S_{34}=S_{133}+3 S_{34} \\
\overline{\mathcal{T}}_{3}=7 S_{46}+3 S_{55}, \text { etc. }
\end{gathered}
$$

$$
\begin{gathered}
\overline{\mathcal{T}}_{2}=3 S_{34} \\
\mathcal{T}_{2}=\Phi\left(\mathcal{T}_{1}\right)+\overline{\mathcal{T}}_{2}=\Phi\left(S_{22}\right)+3 S_{34}=S_{133}+3 S_{34} \\
\overline{\mathcal{T}}_{3}=7 S_{46}+3 S_{55}, \text { etc. }
\end{gathered}
$$

$$
\mathcal{T}_{3}=\Phi\left(\mathcal{T}_{2}\right)+\overline{\mathcal{T}}_{3}=\Phi\left(S_{133}+3 S_{34}\right)+\overline{\mathcal{T}}_{3}=S_{244}+3 S_{145}+7 S_{46}+3 S_{55}, \text { etc. }
$$

$$
\begin{gathered}
\overline{\mathcal{T}}_{2}=3 S_{34} \\
\mathcal{T}_{2}=\Phi\left(\mathcal{T}_{1}\right)+\overline{\mathcal{T}}_{2}=\Phi\left(S_{22}\right)+3 S_{34}=S_{133}+3 S_{34} \\
\overline{\mathcal{T}}_{3}=7 S_{46}+3 S_{55}, \text { etc. }
\end{gathered}
$$

$$
\mathcal{T}_{3}=\Phi\left(\mathcal{T}_{2}\right)+\overline{\mathcal{T}}_{3}=\Phi\left(S_{133}+3 S_{34}\right)+\overline{\mathcal{T}}_{3}=S_{244}+3 S_{145}+7 S_{46}+3 S_{55}, \text { etc. }
$$

One gets a parametric (in " r ") expression: $\mathcal{T}_{r}^{I_{2,2}}=\sum \alpha_{I} S_{I}$

Morin singularities $A_{i}(r)$. We define:

$$
F_{r}^{(i)}(-):=\sum_{J} S_{J}(\boxed{2}+\boxed{3}+\cdots+\boxed{i}) S_{r-j_{i-1}, \ldots, r-j_{1}, r+|J|}(-)
$$

Morin singularities $A_{i}(r)$. We define:

$$
F_{r}^{(i)}(-):=\sum_{J} S_{J}(\sqrt{2}+\sqrt[3]{3}+\cdots+\boxed{i}) S_{r-j_{i-1}, \ldots, r-j_{1}, r+|J|}(-),
$$

where the sum is over partitions $J \subset\left(r^{i-1}\right)$, and $F_{r}^{(1)}(-)=S_{r}(-)$.
$\mathbf{A}_{\mathbf{1}}: \mathcal{T}_{r}^{A_{1}}\left(-\mathbb{B}_{r-1}\right)=0, \mathcal{T}_{r}^{A_{1}}\left(x-\mathbb{B}_{r-1}-\boxed{2 x}\right)=R\left(x, \mathbb{B}_{r-1}+\boxed{2 x}\right)$
$\mathbf{A}_{\mathbf{1}}: \mathcal{T}_{r}^{A_{1}}\left(-\mathbb{B}_{r-1}\right)=0, \mathcal{T}_{r}^{A_{1}}\left(x-\mathbb{B}_{r-1}-2 x\right)=R\left(x, \mathbb{B}_{r-1}+2 x\right)$

$$
\begin{aligned}
& \mathcal{T}_{r}^{A_{2}}\left(-\mathbb{B}_{r-1}\right)=\mathcal{T}_{r}^{A_{2}}\left(x-\mathbb{B}_{r-1}-2 x\right)=0, \\
& \mathcal{T}_{r}^{A_{2}}\left(x-\mathbb{B}_{r-1}-3 x\right)=R\left(x+2 x, \mathbb{B}_{r-1}+3 x\right)
\end{aligned}
$$

$\mathbf{A}_{\mathbf{1}}: \mathcal{T}_{r}^{A_{1}}\left(-\mathbb{B}_{r-1}\right)=0, \mathcal{T}_{r}^{A_{1}}\left(x-\mathbb{B}_{r-1}-\boxed{2 x}\right)=R\left(x, \mathbb{B}_{r-1}+2 x\right)$

$$
\begin{array}{r}
\quad \mathcal{T}_{r}^{A_{2}}\left(-\mathbb{B}_{r-1}\right)=\mathcal{T}_{r}^{A_{2}}\left(x-\mathbb{B}_{r-1}-\boxed{2 x}\right)=0, \\
\mathbf{A}_{\mathbf{2}}: \mathcal{T}_{r}^{A_{2}}\left(x-\mathbb{B}_{r-1}-3 x\right)=R\left(x+2 x, \mathbb{B}_{r-1}+3 x\right)
\end{array}
$$

Theorem. $F_{r}^{(1)}=S_{r}$ and $F_{r}^{(2)}=\sum_{j \leq r} 2^{j} S_{r-j, r+j}$ are the Thom polynomials of $A_{1}(r)$ and $A_{2}(r)$.
$\mathbf{A}_{\mathbf{1}}: \mathcal{T}_{r}^{A_{1}}\left(-\mathbb{B}_{r-1}\right)=0, \mathcal{T}_{r}^{A_{1}}\left(x-\mathbb{B}_{r-1}-2 x\right)=R\left(x, \mathbb{B}_{r-1}+2 x\right)$

$$
\begin{array}{r}
\mathcal{T}_{r}^{A_{2}}\left(-\mathbb{B}_{r-1}\right)=\mathcal{T}_{r}^{A_{2}}\left(x-\mathbb{B}_{r-1}-2 x\right)=0, \\
\mathbf{A}_{\mathbf{2}}: \\
\mathcal{T}_{r}^{A_{2}}\left(x-\mathbb{B}_{r-1}-3 x\right)=R\left(x+2 x, \mathbb{B}_{r-1}+3 x\right)
\end{array}
$$

Theorem. $F_{r}^{(1)}=S_{r}$ and $F_{r}^{(2)}=\sum_{j \leq r} 2^{j} S_{r-j, r+j}$ are the Thom polynomials of $A_{1}(r)$ and $A_{2}(r)$.

- results of Thom and Ronga.

Theorem. (PP) Suppose that $\Sigma^{j}(f)=\emptyset$ for $j \geq 2$. (This says that on $\Sigma^{1}(f)$, the kernel of $d f: T M \rightarrow f^{*} T N$ is a line bundle.) Then, for any $r \geq 1$,

$$
\mathcal{T}_{r}^{A_{i}}=F_{r}^{(i)}
$$

Theorem. (PP) Suppose that $\Sigma^{j}(f)=\emptyset$ for $j \geq 2$. (This says that on $\Sigma^{1}(f)$, the kernel of $d f: T M \rightarrow f^{*} T N$ is a line bundle.) Then, for any $r \geq 1$,

$$
\mathcal{T}_{r}^{A_{i}}=F_{r}^{(i)}
$$

The Schur expansion of the Thom polynomial of $A_{3}(r)$ is known (AL+PP).

Theorem. (PP) Suppose that $\Sigma^{j}(f)=\emptyset$ for $j \geq 2$. (This says that on $\Sigma^{1}(f)$, the kernel of $d f: T M \rightarrow f^{*} T N$ is a line bundle.) Then, for any $r \geq 1$,

$$
\mathcal{T}_{r}^{A_{i}}=F_{r}^{(i)}
$$

The Schur expansion of the Thom polynomial of $A_{3}(r)$ is known (AL+PP).

The Schur expansions of the Thom polynomial $\mathcal{T}_{r}^{A_{4}}$ are not known (apart from $r=1,2,3,4$ - Ozer Ozturk).

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.

Classically, in real symplectic geometry, the Maslov class is represented by the cycle

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.

Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\} .
$$

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.

Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\} .
$$

This cycle is the locus of singularities of $L \rightarrow W$.

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.

Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\}
$$

This cycle is the locus of singularities of $L \rightarrow W$.
Its cohomology class is integral, and mod 2 equals $w_{1}\left(T^{*} L\right)$.

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.

Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\}
$$

This cycle is the locus of singularities of $L \rightarrow W$.
Its cohomology class is integral, and mod 2 equals $w_{1}\left(T^{*} L\right)$. In complex symplectic geometry, the same construction applied for a Lagrangian submanifold L

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.

Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\}
$$

This cycle is the locus of singularities of $L \rightarrow W$.
Its cohomology class is integral, and mod 2 equals $w_{1}\left(T^{*} L\right)$. In complex symplectic geometry, the same construction applied for a Lagrangian submanifold L contained in a symplectic manifold

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.

Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\} .
$$

This cycle is the locus of singularities of $L \rightarrow W$.
Its cohomology class is integral, and mod 2 equals $w_{1}\left(T^{*} L\right)$. In complex symplectic geometry, the same construction applied for a Lagrangian submanifold L contained in a symplectic manifold fibering over a base B with Lagrangian fibers,

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.

Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\} .
$$

This cycle is the locus of singularities of $L \rightarrow W$.
Its cohomology class is integral, and mod 2 equals $w_{1}\left(T^{*} L\right)$. In complex symplectic geometry, the same construction applied for a Lagrangian submanifold L contained in a symplectic manifold fibering over a base B with Lagrangian fibers, leads to the cohomology class

$$
c_{1}\left(T^{*} L-T^{*} \underset{T}{B}\right)
$$

The generalizations of the Maslov class are Thom polynomials associated with the higher order types of singularities.

The generalizations of the Maslov class are Thom polynomials associated with the higher order types of singularities. These types are defined by imposing conditions on the higher order jets of L.

The generalizations of the Maslov class are Thom polynomials associated with the higher order types of singularities. These types are defined by imposing conditions on the higher order jets of L.

Real case: Arnold and Fuks, Vassiliev, Audin, ...

The generalizations of the Maslov class are Thom polynomials associated with the higher order types of singularities. These types are defined by imposing conditions on the higher order jets of L.

Real case: Arnold and Fuks, Vassiliev, Audin, ...
Complex case: Kazarian.

The generalizations of the Maslov class are Thom polynomials associated with the higher order types of singularities. These types are defined by imposing conditions on the higher order jets of L.

Real case: Arnold and Fuks, Vassiliev, Audin, ...
Complex case: Kazarian.
These authors used monomials in the Chern classes.

Every germ of a Lagrangian submanifold of V

Every germ of a Lagrangian submanifold of V is the image of W via a certain germ symplectomorphism. Let

Every germ of a Lagrangian submanifold of V is the image of W via a certain germ symplectomorphism. Let

$$
\mathcal{L}(V):=\operatorname{Aut}(V) / P,
$$

Every germ of a Lagrangian submanifold of V is the image of W via a certain germ symplectomorphism. Let

$$
\mathcal{L}(V):=\operatorname{Aut}(V) / P,
$$

where $\operatorname{Aut}(V)$ is the group of k-jet symplectomorphisms, and P is the stabilizer of W (k is fixed).

Every germ of a Lagrangian submanifold of V is the image of W via a certain germ symplectomorphism. Let

$$
\mathcal{L}(V):=\operatorname{Aut}(V) / P,
$$

where $\operatorname{Aut}(V)$ is the group of k-jet symplectomorphisms, and P is the stabilizer of W (k is fixed).

Of course, $L G(V)$ is contained in $\mathcal{L}(V)$.

Every germ of a Lagrangian submanifold of V is the image of W via a certain germ symplectomorphism. Let

$$
\mathcal{L}(V):=\operatorname{Aut}(V) / P,
$$

where $\operatorname{Aut}(V)$ is the group of k-jet symplectomorphisms, and P is the stabilizer of W (k is fixed).

Of course, $L G(V)$ is contained in $\mathcal{L}(V)$.
One has also the "Gauss fibration" $\mathcal{L}(V) \rightarrow L G(V)$ (which is not a vector bundle for $k \geq 3$).

Consider the subgroup of $\operatorname{Aut}(V)$ consisting of holomorphic

Consider the subgroup of $\operatorname{Aut}(V)$ consisting of holomorphic symplectomorphisms preserving the fibration $V \rightarrow W$.

Consider the subgroup of $\operatorname{Aut}(V)$ consisting of holomorphic symplectomorphisms preserving the fibration $V \rightarrow W$. This group defines the Lagrangian equivalence of jets of Lagrangian submanifolds.

Consider the subgroup of $\operatorname{Aut}(V)$ consisting of holomorphic symplectomorphisms preserving the fibration $V \rightarrow W$. This group defines the Lagrangian equivalence of jets of Lagrangian submanifolds.
A Lagrange singularity class is a closed algebraic set which is a sum of Lagrangian equivalence classes.

Consider the subgroup of $\operatorname{Aut}(V)$ consisting of holomorphic symplectomorphisms preserving the fibration $V \rightarrow W$. This group defines the Lagrangian equivalence of jets of Lagrangian submanifolds.
A Lagrange singularity class is a closed algebraic set which is a sum of Lagrangian equivalence classes.

Theorem. ($M M+P P+A W$, 2007) For any Lagrange singularity class Σ, the Thom polynomial \mathcal{T}^{Σ} is a nonnegative combination of \widetilde{Q}-functions.

Consider the subgroup of $\operatorname{Aut}(V)$ consisting of holomorphic symplectomorphisms preserving the fibration $V \rightarrow W$. This group defines the Lagrangian equivalence of jets of Lagrangian submanifolds.
A Lagrange singularity class is a closed algebraic set which is a sum of Lagrangian equivalence classes.

Theorem. ($M M+P P+A W$, 2007) For any Lagrange singularity class Σ, the Thom polynomial \mathcal{T}^{Σ} is a nonnegative combination of \widetilde{Q}-functions.

Geometric insight: The fundamental classes of the Schubert varieties in the Lagrangian Grassmannian $L G(V)$ are given by the appropriate \widetilde{Q}-functions of the tautological bundle on that Grassmannian (PP, 1986).

Thom polynomials of Lagrange and Legendre singularities up to codim 6.

Thom polynomials of Lagrange and Legendre singularities up to codim 6 . Here $\widetilde{Q}_{I}:=\widetilde{Q}_{I}\left(\left(T^{*} L-1^{n}\right) \otimes \xi^{\frac{1}{2}}\right)$, where ξ is the line bundle of the contact structure.

Thom polynomials of Lagrange and Legendre singularities up to codim 6.
Here $\widetilde{Q}_{I}:=\widetilde{Q}_{I}\left(\left(T^{*} L-\mathbf{1}^{n}\right) \otimes \xi^{\frac{1}{2}}\right)$, where ξ is the line bundle of the contact structure.
Moreover, $t:=\frac{1}{2} c_{1}\left(\xi^{*}\right)$.

Thom polynomials of Lagrange and Legendre singularities up to codim 6.
Here $\widetilde{Q}_{I}:=\widetilde{Q}_{I}\left(\left(T^{*} L-1^{n}\right) \otimes \xi^{\frac{1}{2}}\right)$, where ξ is the line bundle of the contact structure.
Moreover, $t:=\frac{1}{2} c_{1}\left(\xi^{*}\right)$.
$A_{2}: \widetilde{\mathbf{Q}}_{1}$

Thom polynomials of Lagrange and Legendre singularities up to codim 6 .
Here $\widetilde{Q}_{I}:=\widetilde{Q}_{I}\left(\left(T^{*} L-1^{n}\right) \otimes \xi^{\frac{1}{2}}\right)$, where ξ is the line bundle of the contact structure.
Moreover, $t:=\frac{1}{2} c_{1}\left(\xi^{*}\right)$.
$A_{2}: \widetilde{\mathbf{Q}}_{1}$
$A_{3}: \mathbf{3} \widetilde{\mathbf{Q}}_{\mathbf{2}}+t \widetilde{Q}_{1}$

Thom polynomials of Lagrange and Legendre singularities up to codim 6 .
Here $\widetilde{Q}_{I}:=\widetilde{Q}_{I}\left(\left(T^{*} L-1^{n}\right) \otimes \xi^{\frac{1}{2}}\right)$, where ξ is the line bundle of the contact structure.
Moreover, $t:=\frac{1}{2} c_{1}\left(\xi^{*}\right)$.
$A_{2}: \widetilde{\mathbf{Q}}_{1}$
$A_{3}: 3 \widetilde{\mathbf{Q}}_{2}+t \widetilde{Q}_{1}$
$A_{4}: \quad \mathbf{3} \widetilde{\mathbf{Q}}_{\mathbf{2 1}}+\mathbf{1 2} \widetilde{\mathbf{Q}}_{\mathbf{3}}+t 10 \widetilde{Q}_{2}+t^{2} 2 \widetilde{Q}_{1}$

Thom polynomials of Lagrange and Legendre singularities up to codim 6 .
Here $\widetilde{Q}_{I}:=\widetilde{Q}_{I}\left(\left(T^{*} L-1^{n}\right) \otimes \xi^{\frac{1}{2}}\right)$, where ξ is the line bundle of the contact structure.
Moreover, $t:=\frac{1}{2} c_{1}\left(\xi^{*}\right)$.
$A_{2}: \widetilde{\mathbf{Q}}_{1}$
$A_{3}: 3 \widetilde{\mathrm{Q}}_{2}+t \widetilde{Q}_{1}$
$A_{4}: \mathbf{3} \widetilde{\mathbf{Q}}_{\mathbf{2 1}}+\mathbf{1 2} \widetilde{\mathbf{Q}}_{\mathbf{3}}+t 10 \widetilde{Q}_{2}+t^{2} 2 \widetilde{Q}_{1}$
$D_{4}: \widetilde{\mathbf{Q}}_{21}$

Thom polynomials of Lagrange and Legendre singularities up to codim 6 .
Here $\widetilde{Q}_{I}:=\widetilde{Q}_{I}\left(\left(T^{*} L-1^{n}\right) \otimes \xi^{\frac{1}{2}}\right)$, where ξ is the line bundle of the contact structure.
Moreover, $t:=\frac{1}{2} c_{1}\left(\xi^{*}\right)$.
$A_{2}: \widetilde{\mathbf{Q}}_{1}$
$A_{3}: 3 \widetilde{\mathrm{Q}}_{2}+t \widetilde{Q}_{1}$
$A_{4}: \mathbf{3} \widetilde{\mathbf{Q}}_{\mathbf{2 1}}+\mathbf{1 2} \widetilde{\mathbf{Q}}_{\mathbf{3}}+t 10 \widetilde{Q}_{2}+t^{2} 2 \widetilde{Q}_{1}$
$D_{4}: \widetilde{\mathbf{Q}}_{21}$
$A_{5}: \quad \mathbf{2 7} \widetilde{\mathbf{Q}}_{\mathbf{3 1}}+\mathbf{6 0} \widetilde{\mathbf{Q}}_{\mathbf{4}}+t\left(22 \widetilde{Q}_{21}+86 \widetilde{Q}_{3}\right)+t^{2} 40 \widetilde{Q}_{2}+t^{3} 6 \widetilde{Q}_{1}$

Thom polynomials of Lagrange and Legendre singularities up to codim 6 .
Here $\widetilde{Q}_{I}:=\widetilde{Q}_{I}\left(\left(T^{*} L-1^{n}\right) \otimes \xi^{\frac{1}{2}}\right)$, where ξ is the line bundle of the contact structure.
Moreover, $t:=\frac{1}{2} c_{1}\left(\xi^{*}\right)$.
$A_{2}: \widetilde{\mathbf{Q}}_{1}$
$A_{3}: 3 \widetilde{\mathrm{Q}}_{2}+t \widetilde{Q}_{1}$
$A_{4}: \mathbf{3} \widetilde{\mathbf{Q}}_{\mathbf{2 1}}+\mathbf{1 2} \widetilde{\mathbf{Q}}_{\mathbf{3}}+t 10 \widetilde{Q}_{2}+t^{2} 2 \widetilde{Q}_{1}$
$D_{4}: \widetilde{\mathrm{Q}}_{21}$
$A_{5}: \quad \mathbf{2 7} \widetilde{\mathbf{Q}}_{\mathbf{3 1}}+\mathbf{6 0} \widetilde{\mathbf{Q}}_{\mathbf{4}}+t\left(22 \widetilde{Q}_{21}+86 \widetilde{Q}_{3}\right)+t^{2} 40 \widetilde{Q}_{2}+t^{3} 6 \widetilde{Q}_{1}$
$D_{5}: \mathbf{6} \widetilde{\mathbf{Q}}_{\mathbf{3 1}}+t 4 \widetilde{Q}_{21}$
$A_{6}: \mathbf{8 7} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{2 2 8} \widetilde{\mathbf{Q}}_{\mathbf{4 1}}+\mathbf{3 6 0} \widetilde{\mathbf{Q}}_{\mathbf{5}}+t\left(343 \widetilde{Q}_{31}+756 \widetilde{Q}_{4}\right)+$ $t^{2}\left(151 \widetilde{Q}_{21}+584 \widetilde{Q}_{3}\right)+t^{3} 196 \widetilde{Q}_{2}+t^{4} 24 \widetilde{Q}_{1}$
$A_{6}: \mathbf{8 7} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{2 2 8} \widetilde{\mathbf{Q}}_{\mathbf{4 1}}+\mathbf{3 6 0} \widetilde{\mathbf{Q}}_{\mathbf{5}}+t\left(343 \widetilde{Q}_{31}+756 \widetilde{Q}_{4}\right)+$ $t^{2}\left(151 \widetilde{Q}_{21}+584 \widetilde{Q}_{3}\right)+t^{3} 196 \widetilde{Q}_{2}+t^{4} 24 \widetilde{Q}_{1}$
$D_{6}: \mathbf{1 2} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{2 4} \widetilde{\mathbf{Q}}_{41}+t 32 \widetilde{Q}_{31}+t^{2} 12 \widetilde{Q}_{21}$
$A_{6}: \mathbf{8 7} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{2 2 8} \widetilde{\mathbf{Q}}_{\mathbf{4 1}}+\mathbf{3 6 0} \widetilde{\mathbf{Q}}_{\mathbf{5}}+t\left(343 \widetilde{Q}_{31}+756 \widetilde{Q}_{4}\right)+$ $t^{2}\left(151 \widetilde{Q}_{21}+584 \widetilde{Q}_{3}\right)+t^{3} 196 \widetilde{Q}_{2}+t^{4} 24 \widetilde{Q}_{1}$
$D_{6}: \mathbf{1 2} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{2 4} \widetilde{\mathbf{Q}}_{\mathbf{4 1}}+t 32 \widetilde{Q}_{31}+t^{2} 12 \widetilde{Q}_{21}$
$E_{6}: \mathbf{9} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{6} \widetilde{\mathbf{Q}}_{41}+t 9 \widetilde{Q}_{31}+t^{2} 3 \widetilde{Q}_{21}$
$A_{6}: \mathbf{8 7} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{2 2 8} \widetilde{\mathbf{Q}}_{\mathbf{4 1}}+\mathbf{3 6 0} \widetilde{\mathbf{Q}}_{\mathbf{5}}+t\left(343 \widetilde{Q}_{31}+756 \widetilde{Q}_{4}\right)+$ $t^{2}\left(151 \widetilde{Q}_{21}+584 \widetilde{Q}_{3}\right)+t^{3} 196 \widetilde{Q}_{2}+t^{4} 24 \widetilde{Q}_{1}$
$D_{6}: \mathbf{1 2} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{2 4} \widetilde{\mathbf{Q}}_{\mathbf{4 1}}+t 32 \widetilde{Q}_{31}+t^{2} 12 \widetilde{Q}_{21}$
$E_{6}: 9 \widetilde{\mathrm{Q}}_{32}+\mathbf{6} \widetilde{\mathrm{Q}}_{41}+t 9 \widetilde{Q}_{31}+t^{2} 3 \widetilde{Q}_{21}$
$A_{7}: 135 \widetilde{\mathbf{Q}}_{321}+1275 \widetilde{\mathrm{Q}}_{42}+2004 \widetilde{\mathrm{Q}}_{51}+2520 \widetilde{\mathrm{Q}}_{6}+$ $t\left(7092 \widetilde{Q}_{5}+4439 \widetilde{Q}_{41}+1713 \widetilde{Q}_{32}\right)+t^{2}\left(3545 \widetilde{Q}_{31}+7868 \widetilde{Q}_{4}\right)+$ $t^{3}\left(1106 \widetilde{Q}_{21}+4292 \widetilde{Q}_{3}\right)+t^{4} 1148 \widetilde{Q}_{2}+t^{5} 120 \widetilde{Q}_{1}$
$A_{6}: \mathbf{8 7} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{2 2 8} \widetilde{\mathbf{Q}}_{\mathbf{4 1}}+\mathbf{3 6 0} \widetilde{\mathbf{Q}}_{\mathbf{5}}+t\left(343 \widetilde{Q}_{31}+756 \widetilde{Q}_{4}\right)+$ $t^{2}\left(151 \widetilde{Q}_{21}+584 \widetilde{Q}_{3}\right)+t^{3} 196 \widetilde{Q}_{2}+t^{4} 24 \widetilde{Q}_{1}$
$D_{6}: \mathbf{1 2} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{2 4} \widetilde{\mathbf{Q}}_{\mathbf{4 1}}+t 32 \widetilde{Q}_{31}+t^{2} 12 \widetilde{Q}_{21}$
$E_{6}: 9 \widetilde{\mathrm{Q}}_{32}+\mathbf{6} \widetilde{\mathrm{Q}}_{41}+t 9 \widetilde{Q}_{31}+t^{2} 3 \widetilde{Q}_{21}$
$A_{7}: 135 \widetilde{\mathbf{Q}}_{321}+1275 \widetilde{\mathrm{Q}}_{42}+2004 \widetilde{\mathrm{Q}}_{51}+2520 \widetilde{\mathrm{Q}}_{6}+$ $t\left(7092 \widetilde{Q}_{5}+4439 \widetilde{Q}_{41}+1713 \widetilde{Q}_{32}\right)+t^{2}\left(3545 \widetilde{Q}_{31}+7868 \widetilde{Q}_{4}\right)+$ $t^{3}\left(1106 \widetilde{Q}_{21}+4292 \widetilde{Q}_{3}\right)+t^{4} 1148 \widetilde{Q}_{2}+t^{5} 120 \widetilde{Q}_{1}$
$D_{7}: \mathbf{2 4} \widetilde{\mathbf{Q}}_{\mathbf{3 2 1}}+\mathbf{1 2 0} \widetilde{\mathbf{Q}}_{\mathbf{4 2}}+\mathbf{1 4 4} \widetilde{\mathbf{Q}}_{\mathbf{5 1}}+t\left(152 \widetilde{Q}_{32}+288 \widetilde{Q}_{41}\right)+$ $t^{2} 208 \widetilde{Q}_{31}+t^{3} 56 \widetilde{Q}_{21}$
$A_{6}: \mathbf{8 7} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{2 2 8} \widetilde{\mathbf{Q}}_{\mathbf{4 1}}+\mathbf{3 6 0} \widetilde{\mathbf{Q}}_{\mathbf{5}}+t\left(343 \widetilde{Q}_{31}+756 \widetilde{Q}_{4}\right)+$ $t^{2}\left(151 \widetilde{Q}_{21}+584 \widetilde{Q}_{3}\right)+t^{3} 196 \widetilde{Q}_{2}+t^{4} 24 \widetilde{Q}_{1}$
$D_{6}: \mathbf{1 2} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{2 4} \widetilde{\mathbf{Q}}_{\mathbf{4 1}}+t 32 \widetilde{Q}_{31}+t^{2} 12 \widetilde{Q}_{21}$
$E_{6}: 9 \widetilde{\mathrm{Q}}_{32}+\mathbf{6} \widetilde{\mathrm{Q}}_{41}+t 9 \widetilde{Q}_{31}+t^{2} 3 \widetilde{Q}_{21}$
$A_{7}: 135 \widetilde{\mathbf{Q}}_{321}+1275 \widetilde{\mathrm{Q}}_{42}+2004 \widetilde{\mathrm{Q}}_{51}+2520 \widetilde{\mathrm{Q}}_{6}+$ $t\left(7092 \widetilde{Q}_{5}+4439 \widetilde{Q}_{41}+1713 \widetilde{Q}_{32}\right)+t^{2}\left(3545 \widetilde{Q}_{31}+7868 \widetilde{Q}_{4}\right)+$ $t^{3}\left(1106 \widetilde{Q}_{21}+4292 \widetilde{Q}_{3}\right)+t^{4} 1148 \widetilde{Q}_{2}+t^{5} 120 \widetilde{Q}_{1}$
$D_{7}: \mathbf{2 4} \widetilde{\mathbf{Q}}_{\mathbf{3 2 1}}+\mathbf{1 2 0} \widetilde{\mathbf{Q}}_{\mathbf{4 2}}+\mathbf{1 4 4} \widetilde{\mathbf{Q}}_{\mathbf{5 1}}+t\left(152 \widetilde{Q}_{32}+288 \widetilde{Q}_{41}\right)+$ $t^{2} 208 \widetilde{Q}_{31}+t^{3} 56 \widetilde{Q}_{21}$
$E_{7}: 9 \widetilde{\mathbf{Q}}_{\mathbf{3 2 1}}+\mathbf{6 0} \widetilde{\mathbf{Q}}_{\mathbf{4 2}}+\mathbf{2 4} \widetilde{\mathbf{Q}}_{\mathbf{5 1}}+t\left(56 \widetilde{Q}_{41}+66 \widetilde{Q}_{32}\right)+$ $t^{2} 42 \widetilde{Q}_{31}+t^{3} 10 \widetilde{Q}_{21}$
$A_{6}: \mathbf{8 7} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{2 2 8} \widetilde{\mathbf{Q}}_{\mathbf{4 1}}+\mathbf{3 6 0} \widetilde{\mathbf{Q}}_{\mathbf{5}}+t\left(343 \widetilde{Q}_{31}+756 \widetilde{Q}_{4}\right)+$ $t^{2}\left(151 \widetilde{Q}_{21}+584 \widetilde{Q}_{3}\right)+t^{3} 196 \widetilde{Q}_{2}+t^{4} 24 \widetilde{Q}_{1}$
$D_{6}: \mathbf{1 2} \widetilde{\mathbf{Q}}_{\mathbf{3 2}}+\mathbf{2 4} \widetilde{\mathbf{Q}}_{\mathbf{4 1}}+t 32 \widetilde{Q}_{31}+t^{2} 12 \widetilde{Q}_{21}$
$E_{6}: \mathbf{9} \widetilde{\mathbf{Q}}_{32}+\mathbf{6} \widetilde{\mathbf{Q}}_{41}+t 9 \widetilde{Q}_{31}+t^{2} 3 \widetilde{Q}_{21}$
$A_{7}: 135 \widetilde{\mathbf{Q}}_{321}+1275 \widetilde{\mathrm{Q}}_{42}+2004 \widetilde{\mathrm{Q}}_{51}+2520 \widetilde{\mathbf{Q}}_{6}+$ $t\left(7092 \widetilde{Q}_{5}+4439 \widetilde{Q}_{41}+1713 \widetilde{Q}_{32}\right)+t^{2}\left(3545 \widetilde{Q}_{31}+7868 \widetilde{Q}_{4}\right)+$ $t^{3}\left(1106 \widetilde{Q}_{21}+4292 \widetilde{Q}_{3}\right)+t^{4} 1148 \widetilde{Q}_{2}+t^{5} 120 \widetilde{Q}_{1}$
$D_{7}: \mathbf{2 4} \widetilde{\mathbf{Q}}_{\mathbf{3 2 1}}+\mathbf{1 2 0} \widetilde{\mathbf{Q}}_{\mathbf{4 2}}+\mathbf{1 4 4} \widetilde{\mathbf{Q}}_{\mathbf{5 1}}+t\left(152 \widetilde{Q}_{32}+288 \widetilde{Q}_{41}\right)+$ $t^{2} 208 \widetilde{Q}_{31}+t^{3} 56 \widetilde{Q}_{21}$
$E_{7}: 9 \widetilde{\mathbf{Q}}_{\mathbf{3 2 1}}+\mathbf{6 0} \widetilde{\mathbf{Q}}_{\mathbf{4 2}}+\mathbf{2 4} \widetilde{\mathbf{Q}}_{\mathbf{5 1}}+t\left(56 \widetilde{Q}_{41}+66 \widetilde{Q}_{32}\right)+$ $t^{2} 42 \widetilde{Q}_{31}+t^{3} 10 \widetilde{Q}_{21}$
$P_{8}: \widetilde{\mathbf{Q}}_{321}$.

For the Legendre singularities, this result admits some generalizations.

For the Legendre singularities, this result admits some generalizations.
MM + PP +AW found a basis with nonnegativity property:
$\widetilde{Q}_{I} \cdot t^{j}$, where
$\widetilde{Q}_{I}:=\widetilde{Q}_{I}\left(\left(T^{*} L-1^{n}\right) \otimes \xi^{\frac{1}{2}}\right)$

For the Legendre singularities, this result admits some generalizations.
MM + PP +AW found a basis with nonnegativity property:
$\widetilde{Q}_{I} \cdot t^{j}$, where
$\widetilde{Q}_{I}:=\widetilde{Q}_{I}\left(\left(T^{*} L-1^{n}\right) \otimes \xi^{\frac{1}{2}}\right)$
and $t:=\frac{1}{2} c_{1}\left(\xi^{*}\right)$.

For the Legendre singularities, this result admits some generalizations.
$\mathrm{MM}+\mathrm{PP}+\mathrm{AW}$ found a basis with nonnegativity property:
$\widetilde{Q}_{I} \cdot t^{j}$, where
$\widetilde{Q}_{I}:=\widetilde{Q}_{I}\left(\left(T^{*} L-1^{n}\right) \otimes \xi^{\frac{1}{2}}\right)$
and $t:=\frac{1}{2} c_{1}\left(\xi^{*}\right)$.
MK found experimentally another such basis.

For the Legendre singularities, this result admits some generalizations.
MM + PP +AW found a basis with nonnegativity property:
$\widetilde{Q}_{I} \cdot t^{j}$, where
$\widetilde{Q}_{I}:=\widetilde{Q}_{I}\left(\left(T^{*} L-1^{n}\right) \otimes \xi^{\frac{1}{2}}\right)$
and $t:=\frac{1}{2} c_{1}\left(\xi^{*}\right)$.
MK found experimentally another such basis.
Then MK+MM+PP+AW generalized that to a 1-parameter basis with nonnegativity property.

For the Legendre singularities, this result admits some generalizations.
MM + PP +AW found a basis with nonnegativity property:
$\widetilde{Q}_{I} \cdot t^{j}$, where
$\widetilde{Q}_{I}:=\widetilde{Q}_{I}\left(\left(T^{*} L-1^{n}\right) \otimes \xi^{\frac{1}{2}}\right)$
and $t:=\frac{1}{2} c_{1}\left(\xi^{*}\right)$.
MK found experimentally another such basis.
Then MK+MM+PP+AW generalized that to a 1-parameter basis with nonnegativity property. By specializing the parameters, we recover the previous bases.

Our methods are based on nonnegativity of cone classes in gg vector bundles and on the Bertini-Kleiman "general translate theorem".

Our methods are based on nonnegativity of cone classes in gg vector bundles and on the Bertini-Kleiman "general translate theorem".

For some positivity properties of homogeneous spaces, a recent result of Anderson on transversality inspired by equivariant cohomology is useful: here some larger transformation group to move cycles is used .

Our methods are based on nonnegativity of cone classes in gg vector bundles and on the Bertini-Kleiman "general translate theorem".

For some positivity properties of homogeneous spaces, a recent result of Anderson on transversality inspired by equivariant cohomology is useful: here some larger transformation group to move cycles is used .

We also prove positivity; this ameliorates our former result for the Lagrange singularities.

Final comments

The most difficult explicitly computed Schur expansion is that for $A_{3}(r)$.

Final comments

The most difficult explicitly computed Schur expansion is that for $A_{3}(r)$.
Thom polynomial is here the sum of two "parts" supported on two different degeneracy loci of the tangent map.

Final comments

The most difficult explicitly computed Schur expansion is that for $A_{3}(r)$.
Thom polynomial is here the sum of two "parts" supported on two different degeneracy loci of the tangent map.
Berczi-Feher-Rimanyi announced without proof in 2003 an expression in monomials in Chern classes.

Final comments

The most difficult explicitly computed Schur expansion is that for $A_{3}(r)$.
Thom polynomial is here the sum of two "parts" supported on two different degeneracy loci of the tangent map.
Berczi-Feher-Rimanyi announced without proof in 2003 an expression in monomials in Chern classes.

Ozer Ozturk: $I I I_{2,3}(r)$.

Final comments

The most difficult explicitly computed Schur expansion is that for $A_{3}(r)$.
Thom polynomial is here the sum of two "parts" supported on two different degeneracy loci of the tangent map.
Berczi-Feher-Rimanyi announced without proof in 2003 an expression in monomials in Chern classes.
Ozer Ozturk: $I I I_{2,3}(r)$.
Ozturk is working now on $I_{2,3}(r)$, where the growth of the coefficients with r is much faster than in all former cases.

Final comments

The most difficult explicitly computed Schur expansion is that for $A_{3}(r)$.
Thom polynomial is here the sum of two "parts" supported on two different degeneracy loci of the tangent map.
Berczi-Feher-Rimanyi announced without proof in 2003 an expression in monomials in Chern classes.
Ozer Ozturk: $I I I_{2,3}(r)$.
Ozturk is working now on $I_{2,3}(r)$, where the growth of the coefficients with r is much faster than in all former cases.

The Schur expansion for $I I I_{2,3}$ has been also obtained by Feher-Rimanyi using a localization formula "a la Bott", and fairly nontrivial computations of Segre classes by Laksov, Lascoux, PP, Thorup.

Final comments

The most difficult explicitly computed Schur expansion is that for $A_{3}(r)$.
Thom polynomial is here the sum of two "parts" supported on two different degeneracy loci of the tangent map.
Berczi-Feher-Rimanyi announced without proof in 2003 an expression in monomials in Chern classes.

Ozer Ozturk: $I I I_{2,3}(r)$.
Ozturk is working now on $I_{2,3}(r)$, where the growth of the coefficients with r is much faster than in all former cases.

The Schur expansion for $I I I_{2,3}$ has been also obtained by Feher-Rimanyi using a localization formula "a la Bott", and fairly nontrivial computations of Segre classes by Laksov, Lascoux, PP, Thorup.
A localization formula was used earlier for Morin singularities by Berczi-Szenes.

For the moment, people do not see how to get the Schur expansion for $A_{4}(r)$.

For the moment, people do not see how to get the Schur expansion for $A_{4}(r)$.

How to get the known - obtained elementary - S.e. for $A_{3}(r)$, from the localization formula?

For the moment, people do not see how to get the Schur expansion for $A_{4}(r)$.

How to get the known - obtained elementary - S.e. for $A_{3}(r)$, from the localization formula?

A good sign that localization formulas can be also used to find S.e. of Thom polynomials, is the following translation of a recent result of Feher and Rimanyi proved using I.f. (they state the result using monomials in Chern classes) :

Theorem. Let η be a stable singularity.

1. By erasing the maximal columns from the S.e. of \mathcal{T}_{r}^{η} we get \mathcal{T}_{r-1}^{η}.
2. The length of any partition in S.e. of \mathcal{T}_{r}^{η} is $\leq \operatorname{dim}\left(Q_{\eta}\right)-1$.

Theorem. Let η be a stable singularity.

1. By erasing the maximal columns from the S.e. of \mathcal{T}_{r}^{η} we get \mathcal{T}_{r-1}^{η}.
2. The length of any partition in S.e. of \mathcal{T}_{r}^{η} is $\leq \operatorname{dim}\left(Q_{\eta}\right)-1$.
(Communicated to me by Ozer Ozturk and Andrzej Weber).

Theorem. Let η be a stable singularity.

1. By erasing the maximal columns from the S.e. of \mathcal{T}_{r}^{η} we get \mathcal{T}_{r-1}^{η}.
2. The length of any partition in S.e. of \mathcal{T}_{r}^{η} is
$\leq \operatorname{dim}\left(Q_{\eta}\right)-1$.
(Communicated to me by Ozer Ozturk and Andrzej Weber).

THE END

