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ample vector bundles.

Let c1, c2, . . . be variables with deg(ci) = i.

Fix n, e ∈ N. Let P (c1, . . . , ce) be a homogeneous polynomial
of degree n.

We say that P is positive for ample vector bundles, if for
every n-dimensional projective variety X
and any ample vector bundle of rank e on X,
deg(P (c1(E), . . . , ce(E)) > 0.

Computations of Griffiths: c1, c2, c21 − c2.

red herring: it was thought that c21− 2c2 is positive but is not.

Positivity in global singularity theory – p. 2/42



Kleiman: polynomials that are positive for ample

Positivity in global singularity theory – p. 3/42



Kleiman: polynomials that are positive for ample
vector bundles on surfaces are nonnegative combinations of c2
and c21 − c2.

Positivity in global singularity theory – p. 3/42



Kleiman: polynomials that are positive for ample
vector bundles on surfaces are nonnegative combinations of c2
and c21 − c2.

Bloch-Gieseker: cn is always positive; important link to Hard
Lefschetz Theorem.

Positivity in global singularity theory – p. 3/42



Kleiman: polynomials that are positive for ample
vector bundles on surfaces are nonnegative combinations of c2
and c21 − c2.

Bloch-Gieseker: cn is always positive; important link to Hard
Lefschetz Theorem.

Fulton-Lazarsfeld showed that a polynomial is positive

Positivity in global singularity theory – p. 3/42



Kleiman: polynomials that are positive for ample
vector bundles on surfaces are nonnegative combinations of c2
and c21 − c2.

Bloch-Gieseker: cn is always positive; important link to Hard
Lefschetz Theorem.

Fulton-Lazarsfeld showed that a polynomial is positive
iff its coefficients in the basis od Schur polynomials are
nonnegative.

Positivity in global singularity theory – p. 3/42



Kleiman: polynomials that are positive for ample
vector bundles on surfaces are nonnegative combinations of c2
and c21 − c2.

Bloch-Gieseker: cn is always positive; important link to Hard
Lefschetz Theorem.

Fulton-Lazarsfeld showed that a polynomial is positive
iff its coefficients in the basis od Schur polynomials are
nonnegative.

n = 3 c3, c2c1 − c3, c31 − 2c2c1 + c3.

Positivity in global singularity theory – p. 3/42



Kleiman: polynomials that are positive for ample
vector bundles on surfaces are nonnegative combinations of c2
and c21 − c2.

Bloch-Gieseker: cn is always positive; important link to Hard
Lefschetz Theorem.

Fulton-Lazarsfeld showed that a polynomial is positive
iff its coefficients in the basis od Schur polynomials are
nonnegative.

n = 3 c3, c2c1 − c3, c31 − 2c2c1 + c3.

For globally generated bundles, a very closed result was
obtained by Usui-Tango.

Positivity in global singularity theory – p. 3/42



Kleiman: polynomials that are positive for ample
vector bundles on surfaces are nonnegative combinations of c2
and c21 − c2.

Bloch-Gieseker: cn is always positive; important link to Hard
Lefschetz Theorem.

Fulton-Lazarsfeld showed that a polynomial is positive
iff its coefficients in the basis od Schur polynomials are
nonnegative.

n = 3 c3, c2c1 − c3, c31 − 2c2c1 + c3.

For globally generated bundles, a very closed result was
obtained by Usui-Tango.

Whenever we speak about the classes of algebraic cycles, we
always mean their Poincaré dual classes in cohomology.

Positivity in global singularity theory – p. 3/42



Thom polynomial

Let Σ be an algebraic right-left invariant set in J k(Cm
0 ,C

n
0 ).

Positivity in global singularity theory – p. 4/42



Thom polynomial

Let Σ be an algebraic right-left invariant set in J k(Cm
0 ,C

n
0 ).

Then there exists a universal polynomial T Σ over Z

Positivity in global singularity theory – p. 4/42



Thom polynomial

Let Σ be an algebraic right-left invariant set in J k(Cm
0 ,C

n
0 ).

Then there exists a universal polynomial T Σ over Z

in m+ n variables which depends only on Σ, m and n

Positivity in global singularity theory – p. 4/42



Thom polynomial

Let Σ be an algebraic right-left invariant set in J k(Cm
0 ,C

n
0 ).

Then there exists a universal polynomial T Σ over Z

in m+ n variables which depends only on Σ, m and n

s.t. for any manifolds Mm, Nn and general map f :M → N

Positivity in global singularity theory – p. 4/42



Thom polynomial

Let Σ be an algebraic right-left invariant set in J k(Cm
0 ,C

n
0 ).

Then there exists a universal polynomial T Σ over Z

in m+ n variables which depends only on Σ, m and n

s.t. for any manifolds Mm, Nn and general map f :M → N

the class of Σ(f) = f−1
k (Σ) is equal to

Positivity in global singularity theory – p. 4/42



Thom polynomial

Let Σ be an algebraic right-left invariant set in J k(Cm
0 ,C

n
0 ).

Then there exists a universal polynomial T Σ over Z

in m+ n variables which depends only on Σ, m and n

s.t. for any manifolds Mm, Nn and general map f :M → N

the class of Σ(f) = f−1
k (Σ) is equal to

T Σ(c1(M), . . . , cm(M), f∗c1(N), . . . , f∗cn(N)).

Positivity in global singularity theory – p. 4/42



Thom polynomial

Let Σ be an algebraic right-left invariant set in J k(Cm
0 ,C

n
0 ).

Then there exists a universal polynomial T Σ over Z

in m+ n variables which depends only on Σ, m and n

s.t. for any manifolds Mm, Nn and general map f :M → N

the class of Σ(f) = f−1
k (Σ) is equal to

T Σ(c1(M), . . . , cm(M), f∗c1(N), . . . , f∗cn(N)).

where fk :M → J k(M,N) is the k-jet extension of f .

Positivity in global singularity theory – p. 4/42



Thom polynomial

Let Σ be an algebraic right-left invariant set in J k(Cm
0 ,C

n
0 ).

Then there exists a universal polynomial T Σ over Z

in m+ n variables which depends only on Σ, m and n

s.t. for any manifolds Mm, Nn and general map f :M → N

the class of Σ(f) = f−1
k (Σ) is equal to

T Σ(c1(M), . . . , cm(M), f∗c1(N), . . . , f∗cn(N)).

where fk :M → J k(M,N) is the k-jet extension of f .

If a singularity class Σ is “stable” (e.g. closed under the

contact equivalence), then T Σ depends on ci(TM − f∗TN).
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Autn:= group of k-jets of automorphisms of (Cn, 0).

J = J k(m,n):= space of k-jets of (Cm, 0)→ (Cn, 0).

G := Autm × Autn.

Consider the classifying principal G-bundle EG→ BG, i.e.

a contractible space EG with a free action of the group G.

J̃ := J̃ (m,n) = EG×G J .
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Let Σ ⊂ J be a singularity class, i.e. an analytic closed
G-invariant subset.

Σ̃ := EG×G Σ ⊂ J̃ .

Let T Σ ∈ H2 codim(Σ)(J̃ ,Z) be the class of Σ̃. Since

H•(J̃ ,Z) ∼= H•(BG,Z) ∼= H•(BGLm × BGLn,Z) ,

T Σ is identified with a polynomial in c1, . . . , cm and
c′1, . . . , c

′
n which are the Chern classes of universal bundles

Rm and Rn on BGLm and BGLn:

T Σ = T Σ(c1, . . . , cm, c
′
1, . . . , c

′
n).

(Rm “parametrizes”TM for dimM = m, similarly for Rn.)
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of stable germs (C•, 0)→ (C•+k, 0), under the equivalence

generated by the right-left equivalence and suspension.

{singularities} ←→ {finite dim’l. C− algebras }

Ai ←→ C[[x]]/(xi+1), i ≥ 0

Ia,b ←→ C[[x, y]]/(xy, xa + yb), b ≥ a ≥ 2

IIIa,b ←→ C[[x, y]]/(xy, xa, yb), b ≥ a ≥ 2

Ai, k = 0:

(x, u1, . . . , ui−1)→ (xi+1 +
∑i−1

j=1 ujx
j , u1, . . . , ui−1)
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Computing Thom polynomials
For a singularity η by T η we mean the Thom polynomial
associated with the closure of the right-left orbit of its
representative.

Let η be a singularity with prototype
κ : (Cm, 0)→ (Cm+k, 0).

Gη = maximal compact subgroup of

Autκ = {(ϕ, ψ) ∈ Diff(Cm, 0)×Diff(Cm+k, 0) : ψ◦κ◦ϕ−1 = κ}

Well defined up to conjugacy; it can be chosen so that the
images of its projections to the factors are linear. Its
representations on the source and target will be denoted by

λ1(η) and λ2(η) .
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We get the vector bundles associated with the universal
principal Gη-bundle EGη → BGη using the representations
λ1(η) and λ2(η): E′

η and Eη. The Chern class and Euler

classs of η are defined by

c(η) :=
c(Eη)

c(E′
η)

and e(η) := e(E′
η).

Ai, C[[x]]/(xi+1); Gη = U(1)× U(k).

c(Ai) =
1 + (i+ 1)x

1 + x

k∏

j=1

(1 + yj),

e(Ai) = i! xi
k∏

j=1

(yj − x)(yj − 2x) · · · (yj − ix).
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of codimension ≤ codim η is finite. Suppose that the Euler

classes of all singularities of smaller codimension than
codim(η), are not zero-divisors. Then

(i) if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;

(ii) T η(c(η)) = e(η).

This system of equations (taken for all such ξ’s) determines
the Thom polynomial T η in a unique way.

Notation: “shifted”parameter r := k + 1;
η(r) = η : (C•, 0)→ (C•+r−1, 0);
T η
r = Thom polynomial of η(r).
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Alphabet A: a finite set of indeterminates.

We identify an alphabet A = {a1, . . . , am} with the sum
a1 + · · ·+ am.

Take another alphabet B.

∑
Si(A−B)zi =

∏

b∈B

(1−bz)/
∏

a∈A

(1−az) .

Given a partition I = (0 ≥ i1 ≥ · · · ≥ ih ≥ 0), the Schur
function SI(A−B) is

SI(A−B) :=
∣∣∣Sip−p+q(A−B)

∣∣∣
1≤p,q≤h

.
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E.g., writing Si = Si(A−B),
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E.g., writing Si = Si(A−B),

S44333(A−B) =

∣∣∣∣∣∣∣∣∣∣∣

S4 S5 S6 S7 S8

S3 S4 S5 S6 S7

S1 S2 S3 S4 S5

1 S1 S2 S3 S4

0 1 S1 S2 S3

∣∣∣∣∣∣∣∣∣∣∣

.
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S44333(A−B) =

∣∣∣∣∣∣∣∣∣∣∣

S4 S5 S6 S7 S8

S3 S4 S5 S6 S7

S1 S2 S3 S4 S5

1 S1 S2 S3 S4

0 1 S1 S2 S3

∣∣∣∣∣∣∣∣∣∣∣

.

The factorization formula!
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.

The factorization formula!

For vector bundles E,F , we write SI(E−F ) for A and B
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E.g., writing Si = Si(A−B),

S44333(A−B) =

∣∣∣∣∣∣∣∣∣∣∣

S4 S5 S6 S7 S8

S3 S4 S5 S6 S7

S1 S2 S3 S4 S5

1 S1 S2 S3 S4

0 1 S1 S2 S3

∣∣∣∣∣∣∣∣∣∣∣

.

The factorization formula!

For vector bundles E,F , we write SI(E−F ) for A and B

specialized to the Chern roots of E and F .

Positivity in global singularity theory – p. 12/42



E.g., writing Si = Si(A−B),

S44333(A−B) =

∣∣∣∣∣∣∣∣∣∣∣

S4 S5 S6 S7 S8

S3 S4 S5 S6 S7

S1 S2 S3 S4 S5

1 S1 S2 S3 S4

0 1 S1 S2 S3

∣∣∣∣∣∣∣∣∣∣∣

.

The factorization formula!

For vector bundles E,F , we write SI(E−F ) for A and B

specialized to the Chern roots of E and F .

Giambelli’s formula: The class of a Schubert variety in a
Grassmannian
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E.g., writing Si = Si(A−B),

S44333(A−B) =

∣∣∣∣∣∣∣∣∣∣∣

S4 S5 S6 S7 S8

S3 S4 S5 S6 S7

S1 S2 S3 S4 S5

1 S1 S2 S3 S4

0 1 S1 S2 S3

∣∣∣∣∣∣∣∣∣∣∣

.

The factorization formula!

For vector bundles E,F , we write SI(E−F ) for A and B

specialized to the Chern roots of E and F .

Giambelli’s formula: The class of a Schubert variety in a
Grassmannian is given by a Schur polynomial of the
tautological bundle on it.
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In the Chern class monomial basis, the expansions of Thom
polynomials are not necesarry positive:
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In the Chern class monomial basis, the expansions of Thom
polynomials are not necesarry positive:

r = 1, I2,2: c22 − c1c3, I2,3: 2c1c
2
2 − c

2
1c3 + 2c2c3 − 2c1c4
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In the Chern class monomial basis, the expansions of Thom
polynomials are not necesarry positive:

r = 1, I2,2: c22 − c1c3, I2,3: 2c1c
2
2 − c

2
1c3 + 2c2c3 − 2c1c4

We got positive expansions in the basis of Schur functions of
Thom polynomials of singularities A1(r), A2(r), A3(r),
I2,2(r), III2,3(r), III3,3(r), A4(r), r = 1, ..., 4
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In the Chern class monomial basis, the expansions of Thom
polynomials are not necesarry positive:

r = 1, I2,2: c22 − c1c3, I2,3: 2c1c
2
2 − c

2
1c3 + 2c2c3 − 2c1c4

We got positive expansions in the basis of Schur functions of
Thom polynomials of singularities A1(r), A2(r), A3(r),
I2,2(r), III2,3(r), III3,3(r), A4(r), r = 1, ..., 4

Theorem. (PP+AW, 2006) Let Σ be a singularity class.
Then for any partition I the coefficient αI in the Schur
function expansion of the Thom polynomial

T Σ =
∑

αISI(T
∗M − f∗T ∗N) ,

is nonnegative.
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In the Chern class monomial basis, the expansions of Thom
polynomials are not necesarry positive:

r = 1, I2,2: c22 − c1c3, I2,3: 2c1c
2
2 − c

2
1c3 + 2c2c3 − 2c1c4

We got positive expansions in the basis of Schur functions of
Thom polynomials of singularities A1(r), A2(r), A3(r),
I2,2(r), III2,3(r), III3,3(r), A4(r), r = 1, ..., 4

Theorem. (PP+AW, 2006) Let Σ be a singularity class.
Then for any partition I the coefficient αI in the Schur
function expansion of the Thom polynomial

T Σ =
∑

αISI(T
∗M − f∗T ∗N) ,

is nonnegative.

– conjectured by Feher-Komuves (2004).
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If C is a cone in a v.b. E, z(C,E) := sE
∗([C]).
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If C is a cone in a v.b. E, z(C,E) := sE
∗([C]).

If E is ample, and dim(C) = rank(E), then deg(z(C,E) > 0.
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If C is a cone in a v.b. E, z(C,E) := sE
∗([C]).

If E is ample, and dim(C) = rank(E), then deg(z(C,E) > 0.

In the def. of Thom polynomial via classifying spaces of
singularities,
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If C is a cone in a v.b. E, z(C,E) := sE
∗([C]).

If E is ample, and dim(C) = rank(E), then deg(z(C,E) > 0.

In the def. of Thom polynomial via classifying spaces of
singularities, we replace Rm and Rn on BGL(m)× BGL(n)
by arbitrary vector bundles E and F on an arbitrary common
base.
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If C is a cone in a v.b. E, z(C,E) := sE
∗([C]).

If E is ample, and dim(C) = rank(E), then deg(z(C,E) > 0.

In the def. of Thom polynomial via classifying spaces of
singularities, we replace Rm and Rn on BGL(m)× BGL(n)
by arbitrary vector bundles E and F on an arbitrary common
base.

Given Σ of codim c, we get Σ(E,F ) with class∑
I αISI(E

∗−F ∗).
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If E is ample, and dim(C) = rank(E), then deg(z(C,E) > 0.

In the def. of Thom polynomial via classifying spaces of
singularities, we replace Rm and Rn on BGL(m)× BGL(n)
by arbitrary vector bundles E and F on an arbitrary common
base.

Given Σ of codim c, we get Σ(E,F ) with class∑
I αISI(E

∗−F ∗).

We specialize: X proj. of dim c, E trivial, F ample.
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If C is a cone in a v.b. E, z(C,E) := sE
∗([C]).

If E is ample, and dim(C) = rank(E), then deg(z(C,E) > 0.

In the def. of Thom polynomial via classifying spaces of
singularities, we replace Rm and Rn on BGL(m)× BGL(n)
by arbitrary vector bundles E and F on an arbitrary common
base.

Given Σ of codim c, we get Σ(E,F ) with class∑
I αISI(E

∗−F ∗).

We specialize: X proj. of dim c, E trivial, F ample.
Σ(E,F ) is a cone in J (E,F ) and
z(Σ(E,F ),J (E,F )) =

∑
I αISI(E

∗ − F ∗) =
∑

I αISI∼(F ).
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If C is a cone in a v.b. E, z(C,E) := sE
∗([C]).

If E is ample, and dim(C) = rank(E), then deg(z(C,E) > 0.

In the def. of Thom polynomial via classifying spaces of
singularities, we replace Rm and Rn on BGL(m)× BGL(n)
by arbitrary vector bundles E and F on an arbitrary common
base.

Given Σ of codim c, we get Σ(E,F ) with class∑
I αISI(E

∗−F ∗).

We specialize: X proj. of dim c, E trivial, F ample.
Σ(E,F ) is a cone in J (E,F ) and
z(Σ(E,F ),J (E,F )) =

∑
I αISI(E

∗ − F ∗) =
∑

I αISI∼(F ).

Since J (E,F ) = FN is ample, the latter polynomial is
positive for ample v.b., so is a positive combination of Schur
polynomials.

Positivity in global singularity theory – p. 14/42



T A3

r = Fr +Hr
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T A3

r = Fr +Hr

Fr :=
∑

r≥j1≥j2
S(j1,j2)( 2 + 3 )S(r+j1+j2,r−j2,r−j1)
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T A3

r = Fr +Hr

Fr :=
∑

r≥j1≥j2
S(j1,j2)( 2 + 3 )S(r+j1+j2,r−j2,r−j1)

H1 = 0
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T A3

r = Fr +Hr

Fr :=
∑

r≥j1≥j2
S(j1,j2)( 2 + 3 )S(r+j1+j2,r−j2,r−j1)

H1 = 0

H2 = 5S33
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T A3

r = Fr +Hr

Fr :=
∑

r≥j1≥j2
S(j1,j2)( 2 + 3 )S(r+j1+j2,r−j2,r−j1)

H1 = 0

H2 = 5S33

H3 = 5S441 + 24S54
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T A3

r = Fr +Hr

Fr :=
∑

r≥j1≥j2
S(j1,j2)( 2 + 3 )S(r+j1+j2,r−j2,r−j1)

H1 = 0

H2 = 5S33

H3 = 5S441 + 24S54

...
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T A3

r = Fr +Hr

Fr :=
∑

r≥j1≥j2
S(j1,j2)( 2 + 3 )S(r+j1+j2,r−j2,r−j1)

H1 = 0

H2 = 5S33

H3 = 5S441 + 24S54

...

H7 = 5S885 + 24S984 + 24S993 + 89S10,8,3 + 113S10,9,3 +
300S11,8,2 + 113S10,10,1 + 413S11,9,1 + 965S12,8,1 + 526S11,10 +
1378S12,9 + 3024S13,8
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T A3

r = Fr +Hr

Fr :=
∑

r≥j1≥j2
S(j1,j2)( 2 + 3 )S(r+j1+j2,r−j2,r−j1)

H1 = 0

H2 = 5S33

H3 = 5S441 + 24S54

...

H7 = 5S885 + 24S984 + 24S993 + 89S10,8,3 + 113S10,9,3 +
300S11,8,2 + 113S10,10,1 + 413S11,9,1 + 965S12,8,1 + 526S11,10 +
1378S12,9 + 3024S13,8

...
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T A3

r = Fr +Hr

Fr :=
∑

r≥j1≥j2
S(j1,j2)( 2 + 3 )S(r+j1+j2,r−j2,r−j1)

H1 = 0

H2 = 5S33

H3 = 5S441 + 24S54

...

H7 = 5S885 + 24S984 + 24S993 + 89S10,8,3 + 113S10,9,3 +
300S11,8,2 + 113S10,10,1 + 413S11,9,1 + 965S12,8,1 + 526S11,10 +
1378S12,9 + 3024S13,8

...

Theorem. (PP, 1988) Let η be of Thom-Boardman type

Σi,.... Then all summands in the Schur function expansion
of T η

r are indexed by partitions containing the rectangle
partition (r+i−1, . . . , r+i−1) (i times).
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.
Classically, in real symplectic geometry, the Maslov class is
represented by the cycle
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.
Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W
∗) > 0}.
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.
Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W
∗) > 0}.

This cycle is the locus of singularities of L→ W . Its
cohomology class is integral, and mod 2 equals w1(T

∗L).
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.
Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W
∗) > 0}.

This cycle is the locus of singularities of L→ W . Its
cohomology class is integral, and mod 2 equals w1(T

∗L).

We fix an integer k >> 0 and identify two germs of
Lagrangian submanifolds if the degree of their tangency at 0
is greater than k.
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.
Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W
∗) > 0}.

This cycle is the locus of singularities of L→ W . Its
cohomology class is integral, and mod 2 equals w1(T

∗L).

We fix an integer k >> 0 and identify two germs of
Lagrangian submanifolds if the degree of their tangency at 0
is greater than k.
We obtain the space of k-jets of Lagrangian submanifolds,
denoted J k(V ).
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.
Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W
∗) > 0}.

This cycle is the locus of singularities of L→ W . Its
cohomology class is integral, and mod 2 equals w1(T

∗L).

We fix an integer k >> 0 and identify two germs of
Lagrangian submanifolds if the degree of their tangency at 0
is greater than k.
We obtain the space of k-jets of Lagrangian submanifolds,
denoted J k(V ).
Every germ of a Lagrangian submanifold of V is the image of
W via a certain germ symplectomorphism.
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J k(V ) = Aut(V )/P ,

where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).

Positivity in global singularity theory – p. 17/42
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where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).

Of course, LG(V ) is contained in J k(V ).
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J k(V ) = Aut(V )/P ,

where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).

Of course, LG(V ) is contained in J k(V ).

One has also J k(V )→ LG(V ) s.t. L 7→ T0L (which is not a
vector bundle for k ≥ 3).

Positivity in global singularity theory – p. 17/42



J k(V ) = Aut(V )/P ,

where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).

Of course, LG(V ) is contained in J k(V ).

One has also J k(V )→ LG(V ) s.t. L 7→ T0L (which is not a
vector bundle for k ≥ 3).

Let H be the subgroup of Aut(V ) consisting of holomorphic
symplectomorphisms preserving the fibration V → W . Two
Lagrangian jets are Lagrangian equivalent if they belong to
the same orbit of H.
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J k(V ) = Aut(V )/P ,

where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).

Of course, LG(V ) is contained in J k(V ).

One has also J k(V )→ LG(V ) s.t. L 7→ T0L (which is not a
vector bundle for k ≥ 3).

Let H be the subgroup of Aut(V ) consisting of holomorphic
symplectomorphisms preserving the fibration V → W . Two
Lagrangian jets are Lagrangian equivalent if they belong to
the same orbit of H.

A Lagrange singularity class is any closed pure dimensional
algebraic subset of J k(V ) which is invariant w.r.t. the action
of H.
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Given any alphabet X = {x1, x2, . . .}, we set Q̃i(X) = ei(X),
the ith elementary symmetric function in X .
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Given any alphabet X = {x1, x2, . . .}, we set Q̃i(X) = ei(X),
the ith elementary symmetric function in X .
For i ≥ j, we set

Q̃i,j(X) = Q̃i(X)Q̃j(X) + 2

j∑

p=1

(−1)pQ̃i+p(X)Q̃j−p(X) .
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Given any alphabet X = {x1, x2, . . .}, we set Q̃i(X) = ei(X),
the ith elementary symmetric function in X .
For i ≥ j, we set

Q̃i,j(X) = Q̃i(X)Q̃j(X) + 2

j∑

p=1

(−1)pQ̃i+p(X)Q̃j−p(X) .

Given any partition I = (i1 ≥ · · · ≥ ih ≥ 0), where we can
assume h to be even, we set

Q̃I(X) = Pfaffian(Q̃ip,iq(X)) .
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Given any alphabet X = {x1, x2, . . .}, we set Q̃i(X) = ei(X),
the ith elementary symmetric function in X .
For i ≥ j, we set

Q̃i,j(X) = Q̃i(X)Q̃j(X) + 2

j∑

p=1

(−1)pQ̃i+p(X)Q̃j−p(X) .

Given any partition I = (i1 ≥ · · · ≥ ih ≥ 0), where we can
assume h to be even, we set

Q̃I(X) = Pfaffian(Q̃ip,iq(X)) .

ρ := (n, n− 1, . . . , 1)
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Let c1, c2, . . . be commuting variables, where deg(ci) = i. We
identify Z[c1, c2, . . .] with the ring of symmetric functions in
X.
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Let c1, c2, . . . be commuting variables, where deg(ci) = i. We
identify Z[c1, c2, . . .] with the ring of symmetric functions in
X.
Given a partition I, we denote by Q̃I ∈ Z[c1, c2, . . .] the

polynomial corresponding to Q̃I(X). If E is a vector bundle,

then Q̃I(E) := Q̃I(X), where X is the alphabet of the Chern
roots of E.
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Given a partition I, we denote by Q̃I ∈ Z[c1, c2, . . .] the

polynomial corresponding to Q̃I(X). If E is a vector bundle,

then Q̃I(E) := Q̃I(X), where X is the alphabet of the Chern
roots of E.

Suppose that a general flag V• : V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ V of
isotropic subspaces with dim Vi = i, is given.
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Let c1, c2, . . . be commuting variables, where deg(ci) = i. We
identify Z[c1, c2, . . .] with the ring of symmetric functions in
X.
Given a partition I, we denote by Q̃I ∈ Z[c1, c2, . . .] the

polynomial corresponding to Q̃I(X). If E is a vector bundle,

then Q̃I(E) := Q̃I(X), where X is the alphabet of the Chern
roots of E.

Suppose that a general flag V• : V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ V of
isotropic subspaces with dim Vi = i, is given.
Given a strict partition I ⊂ ρ, i.e.
I = (n ≥ i1 > · · · > ih > 0), we define

ΩI(V•) = {L ∈ LG(V ) : dim
(
L∩Vn+1−ip

)
≥ p, p = 1, . . . , h}.
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Let c1, c2, . . . be commuting variables, where deg(ci) = i. We
identify Z[c1, c2, . . .] with the ring of symmetric functions in
X.
Given a partition I, we denote by Q̃I ∈ Z[c1, c2, . . .] the

polynomial corresponding to Q̃I(X). If E is a vector bundle,

then Q̃I(E) := Q̃I(X), where X is the alphabet of the Chern
roots of E.

Suppose that a general flag V• : V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ V of
isotropic subspaces with dim Vi = i, is given.
Given a strict partition I ⊂ ρ, i.e.
I = (n ≥ i1 > · · · > ih > 0), we define

ΩI(V•) = {L ∈ LG(V ) : dim
(
L∩Vn+1−ip

)
≥ p, p = 1, . . . , h}.

Theorem. (P, 1986) ΩI = Q̃I(R
∗), where R is the

tautological subbundle on LG(V ).
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A Lagrange singularity class Σ ⊂ J k(V ) defines the
cohomology class

[Σ] ∈ H∗(J k(V ),Z) ∼= H∗(LG(V ),Z) .
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A Lagrange singularity class Σ ⊂ J k(V ) defines the
cohomology class

[Σ] ∈ H∗(J k(V ),Z) ∼= H∗(LG(V ),Z) .

Suppose that this class is equal to
∑

I αI Q̃I(R
∗) , where the

sum runs over strict partitions I ⊂ ρ and αI ∈ Z (it is
important here to use the bundle R∗).
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Suppose that this class is equal to
∑

I αI Q̃I(R
∗) , where the

sum runs over strict partitions I ⊂ ρ and αI ∈ Z (it is
important here to use the bundle R∗).

Then T Σ :=
∑

I αI Q̃I is called the Thom polynomial
associated with the Lagrange singularity class Σ.
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A Lagrange singularity class Σ ⊂ J k(V ) defines the
cohomology class

[Σ] ∈ H∗(J k(V ),Z) ∼= H∗(LG(V ),Z) .

Suppose that this class is equal to
∑

I αI Q̃I(R
∗) , where the

sum runs over strict partitions I ⊂ ρ and αI ∈ Z (it is
important here to use the bundle R∗).

Then T Σ :=
∑

I αI Q̃I is called the Thom polynomial
associated with the Lagrange singularity class Σ.

Theorem. (MM+PP+AW, 2007) For any Lagrange

singularity class Σ, the Thom polynomial T Σ is a

nonnegative combination of Q̃-functions.
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Proposition. For a strict partition I ⊂ ρ, there exists
only one strict partition I ′ ⊂ ρ and |I ′| = dimLG(V )− |I| ,

for which Q̃I(R
∗) · ΩI ′ 6= 0. (I ′ complements I in ρ).
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Proposition. For a strict partition I ⊂ ρ, there exists
only one strict partition I ′ ⊂ ρ and |I ′| = dimLG(V )− |I| ,

for which Q̃I(R
∗) · ΩI ′ 6= 0. (I ′ complements I in ρ).

Lemma. Let π : E → X be a globally generated bundle on
a proper homogeneous variety X. Let C be a cone in E,
and let Z be any algebraic cycle in X of the complementary
dimension. Then the intersection [C] · [Z] is nonnegative.
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Proposition. For a strict partition I ⊂ ρ, there exists
only one strict partition I ′ ⊂ ρ and |I ′| = dimLG(V )− |I| ,

for which Q̃I(R
∗) · ΩI ′ 6= 0. (I ′ complements I in ρ).

Lemma. Let π : E → X be a globally generated bundle on
a proper homogeneous variety X. Let C be a cone in E,
and let Z be any algebraic cycle in X of the complementary
dimension. Then the intersection [C] · [Z] is nonnegative.

Lemma. We have a natural isomorphism

NGJ
k ∼=

k+1⊕

i=3

Symi(R∗) .
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Suppose that Σ is a Lagrange singularity class.
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Suppose that Σ is a Lagrange singularity class.
Let i : G →֒ J be the inclusion, and denote by

i∗ : H∗(J ,Z)→ H∗(G,Z)

the induced map on cohomology rings.
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Let i : G →֒ J be the inclusion, and denote by

i∗ : H∗(J ,Z)→ H∗(G,Z)

the induced map on cohomology rings.
We have to examine the coefficients αI of the expression

i∗[Σ] =
∑

αI Q̃I(R
∗) .
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Suppose that Σ is a Lagrange singularity class.
Let i : G →֒ J be the inclusion, and denote by

i∗ : H∗(J ,Z)→ H∗(G,Z)

the induced map on cohomology rings.
We have to examine the coefficients αI of the expression

i∗[Σ] =
∑

αI Q̃I(R
∗) .

Let us fix now a strict partition I ⊂ ρ. The coefficient αI is
equal to i∗[Σ] · ΩI ′.
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Suppose that Σ is a Lagrange singularity class.
Let i : G →֒ J be the inclusion, and denote by

i∗ : H∗(J ,Z)→ H∗(G,Z)

the induced map on cohomology rings.
We have to examine the coefficients αI of the expression

i∗[Σ] =
∑

αI Q̃I(R
∗) .

Let us fix now a strict partition I ⊂ ρ. The coefficient αI is
equal to i∗[Σ] · ΩI ′.
Let

C = CG∩ΣΣ ⊂ NGJ

be the normal cone of G ∩ Σ in Σ. Denote by j : G →֒ NGJ
the zero-section inclusion.
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By deformation to the normal cone, we have in A∗G the
equality

i∗[Σ] = j∗[C] ,

where i∗ and j∗ are the pull-back maps of the corresponding
Chow groups.
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where i∗ and j∗ are the pull-back maps of the corresponding
Chow groups.

It follows that
αI = [C] · ΩI ′

(intersection in NGJ ).
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By deformation to the normal cone, we have in A∗G the
equality

i∗[Σ] = j∗[C] ,

where i∗ and j∗ are the pull-back maps of the corresponding
Chow groups.

It follows that
αI = [C] · ΩI ′

(intersection in NGJ ). The bundle R∗ is globally generated;
therefore the vector bundle NGJ is globally generated.
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By deformation to the normal cone, we have in A∗G the
equality

i∗[Σ] = j∗[C] ,

where i∗ and j∗ are the pull-back maps of the corresponding
Chow groups.

It follows that
αI = [C] · ΩI ′

(intersection in NGJ ). The bundle R∗ is globally generated;
therefore the vector bundle NGJ is globally generated.

The Lagrangian Grassmannian G = LG(V ) is a homogeneous
space with respect to the action of the symplectic group
Sp(V ). The lemma applied to the bundle NGJ → G, entails
[C] · ΩI ′ nonnegative.
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Some Legendrian geometry
Fix n ∈ N. Let W be a vector space of dimension n, and let
ξ be a vector space of dimension one.
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Some Legendrian geometry
Fix n ∈ N. Let W be a vector space of dimension n, and let
ξ be a vector space of dimension one.

V := W ⊕ (W ∗ ⊗ ξ).

– standard symplectic space equipped with the twisted
symplectic form ω ∈ Λ2V ∗ ⊗ ξ. Have Lagrangian
submanifolds (germs through the origin).
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V := W ⊕ (W ∗ ⊗ ξ).

– standard symplectic space equipped with the twisted
symplectic form ω ∈ Λ2V ∗ ⊗ ξ. Have Lagrangian
submanifolds (germs through the origin).
Standard contact space equipped with the contact form α,
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Some Legendrian geometry
Fix n ∈ N. Let W be a vector space of dimension n, and let
ξ be a vector space of dimension one.

V := W ⊕ (W ∗ ⊗ ξ).

– standard symplectic space equipped with the twisted
symplectic form ω ∈ Λ2V ∗ ⊗ ξ. Have Lagrangian
submanifolds (germs through the origin).
Standard contact space equipped with the contact form α,

V ⊕ ξ = W ⊕ (W ∗ ⊗ ξ)⊕ ξ .

Legendrian submanifolds of V ⊕ ξ are maximal integral
submanifolds of α, i.e. the manifolds of dimension n with
tangent spaces contained in Ker(α).
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Some Legendrian geometry
Fix n ∈ N. Let W be a vector space of dimension n, and let
ξ be a vector space of dimension one.

V := W ⊕ (W ∗ ⊗ ξ).

– standard symplectic space equipped with the twisted
symplectic form ω ∈ Λ2V ∗ ⊗ ξ. Have Lagrangian
submanifolds (germs through the origin).
Standard contact space equipped with the contact form α,

V ⊕ ξ = W ⊕ (W ∗ ⊗ ξ)⊕ ξ .

Legendrian submanifolds of V ⊕ ξ are maximal integral
submanifolds of α, i.e. the manifolds of dimension n with
tangent spaces contained in Ker(α).
Any Legendrian submanifold in V ⊕ ξ is determined by its
Lagrangian projection to V and any Lagrangian submanifold
in V lifts to V ⊕ ξ. Positivity in global singularity theory – p. 24/42



We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.
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We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.

Two Lagrangian submanifolds, if they are in generic position,
intersect transversally. The singular relative positions can be
divided into Legendrian singularity classes.
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We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.

Two Lagrangian submanifolds, if they are in generic position,
intersect transversally. The singular relative positions can be
divided into Legendrian singularity classes.

The group of symplectomorphisms of V acts on the pairs of
Lagrangian submanifolds.
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We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.

Two Lagrangian submanifolds, if they are in generic position,
intersect transversally. The singular relative positions can be
divided into Legendrian singularity classes.

The group of symplectomorphisms of V acts on the pairs of
Lagrangian submanifolds.

Lemma. Any pair of Lagrangian submanifolds is
symplectic equivalent to a pair (L1, L2) such that L1 is a
linear Lagrangian subspace and the tangent space T0L2 is
equal to W .
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We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.

Two Lagrangian submanifolds, if they are in generic position,
intersect transversally. The singular relative positions can be
divided into Legendrian singularity classes.

The group of symplectomorphisms of V acts on the pairs of
Lagrangian submanifolds.

Lemma. Any pair of Lagrangian submanifolds is
symplectic equivalent to a pair (L1, L2) such that L1 is a
linear Lagrangian subspace and the tangent space T0L2 is
equal to W .

Get 2 types of submanifolds: linear subspaces,
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We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.

Two Lagrangian submanifolds, if they are in generic position,
intersect transversally. The singular relative positions can be
divided into Legendrian singularity classes.

The group of symplectomorphisms of V acts on the pairs of
Lagrangian submanifolds.

Lemma. Any pair of Lagrangian submanifolds is
symplectic equivalent to a pair (L1, L2) such that L1 is a
linear Lagrangian subspace and the tangent space T0L2 is
equal to W .

Get 2 types of submanifolds: linear subspaces,
the submanifolds which have the tangent space at the
origin equal to W ; they are the graphs of the differentials of
the functions f : W → ξ satisfying df(0) = 0 and d2f(0) = 0

Positivity in global singularity theory – p. 25/42



Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .
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Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .

Let π : J k(W, ξ)→ LG(V, ω) be the projection.
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Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .

Let π : J k(W, ξ)→ LG(V, ω) be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:⊕k+1

i=3 Symi(W ∗)⊗ ξ.
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Let π : J k(W, ξ)→ LG(V, ω) be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:⊕k+1

i=3 Symi(W ∗)⊗ ξ.

We are interested in a larger group than the group of
symplectomorphisms, the group of contact automorphisms of
V ⊕ ξ.
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Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .

Let π : J k(W, ξ)→ LG(V, ω) be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:⊕k+1

i=3 Symi(W ∗)⊗ ξ.

We are interested in a larger group than the group of
symplectomorphisms, the group of contact automorphisms of
V ⊕ ξ.
By a Legendre singularity class we mean a closed algebraic
subset Σ ⊂ J k(Cn,C) invariant with respect to holomorphic

contactomorphisms of C2n+1.
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Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .

Let π : J k(W, ξ)→ LG(V, ω) be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:⊕k+1

i=3 Symi(W ∗)⊗ ξ.

We are interested in a larger group than the group of
symplectomorphisms, the group of contact automorphisms of
V ⊕ ξ.
By a Legendre singularity class we mean a closed algebraic
subset Σ ⊂ J k(Cn,C) invariant with respect to holomorphic

contactomorphisms of C2n+1.
Additionally, we assume that Σ is stable with respect to
enlarging the dimension of W .
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
Let τ : LG(V, ω)→ X denote the Lagrange Grassmann
bundle parametrizing Lagrangian linear submanifolds in Vx,
x ∈ X.
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
Let τ : LG(V, ω)→ X denote the Lagrange Grassmann
bundle parametrizing Lagrangian linear submanifolds in Vx,
x ∈ X. We have a relative version of the map:
π : J k(W, ξ)→ LG(V, ω) .
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
Let τ : LG(V, ω)→ X denote the Lagrange Grassmann
bundle parametrizing Lagrangian linear submanifolds in Vx,
x ∈ X. We have a relative version of the map:
π : J k(W, ξ)→ LG(V, ω) .

The space J k(W, ξ) fibers over X. It is equal to the
pull-back:

J k(W, ξ) = τ∗

(
k+1⊕

i=3

Symi(W ∗)⊗ ξ

)
.
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
Let τ : LG(V, ω)→ X denote the Lagrange Grassmann
bundle parametrizing Lagrangian linear submanifolds in Vx,
x ∈ X. We have a relative version of the map:
π : J k(W, ξ)→ LG(V, ω) .

The space J k(W, ξ) fibers over X. It is equal to the
pull-back:

J k(W, ξ) = τ∗

(
k+1⊕

i=3

Symi(W ∗)⊗ ξ

)
.

Since any changes of coordinates of W and ξ induce
holomorphic contactomorphisms of V ⊕ ξ, any Legendre
singularity class Σ defines Σ(W, ξ) ⊂ J k(W, ξ).

Positivity in global singularity theory – p. 27/42



The tautological bundle over LG(V, ω) is denoted by RW,ξ, or
by R for short.
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The symplectic form ω gives an isomorphism V ∼= V ∗ ⊗ ξ.
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The tautological bundle over LG(V, ω) is denoted by RW,ξ, or
by R for short.

The symplectic form ω gives an isomorphism V ∼= V ∗ ⊗ ξ.

There is a tautological sequence of vector bundles on
LG(V, ω): 0→ R→ V → R∗ ⊗ ξ → 0.
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The tautological bundle over LG(V, ω) is denoted by RW,ξ, or
by R for short.

The symplectic form ω gives an isomorphism V ∼= V ∗ ⊗ ξ.

There is a tautological sequence of vector bundles on
LG(V, ω): 0→ R→ V → R∗ ⊗ ξ → 0.

Consider the virtual bundle A := W ∗ ⊗ ξ −RW,ξ.
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The tautological bundle over LG(V, ω) is denoted by RW,ξ, or
by R for short.

The symplectic form ω gives an isomorphism V ∼= V ∗ ⊗ ξ.

There is a tautological sequence of vector bundles on
LG(V, ω): 0→ R→ V → R∗ ⊗ ξ → 0.

Consider the virtual bundle A := W ∗ ⊗ ξ −RW,ξ.

We have the relation A+ A∗ ⊗ ξ = 0.
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The tautological bundle over LG(V, ω) is denoted by RW,ξ, or
by R for short.

The symplectic form ω gives an isomorphism V ∼= V ∗ ⊗ ξ.

There is a tautological sequence of vector bundles on
LG(V, ω): 0→ R→ V → R∗ ⊗ ξ → 0.

Consider the virtual bundle A := W ∗ ⊗ ξ −RW,ξ.

We have the relation A+ A∗ ⊗ ξ = 0.

The Chern classes ai = ci(A) generate the cohomology

H∗(LG(V, ω),Z) ∼= H∗(J k(W, ξ),Z) as an algebra over
H∗(X,Z).
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Let us fix an approximation of BU(1) =
⋃

n∈NPn, that is we

set X = Pn, ξ = O(1). Let W = 1n be the trivial bundle of
rank n.
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Let us fix an approximation of BU(1) =
⋃

n∈NPn, that is we

set X = Pn, ξ = O(1). Let W = 1n be the trivial bundle of
rank n.

Then H∗(LG(V, ω),Z) ∼= H∗(J k(W, ξ),Z) is isomorphic to
the ring of Legendrian characteristic classes for degrees
smaller than or equal to n.
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Let us fix an approximation of BU(1) =
⋃

n∈NPn, that is we

set X = Pn, ξ = O(1). Let W = 1n be the trivial bundle of
rank n.

Then H∗(LG(V, ω),Z) ∼= H∗(J k(W, ξ),Z) is isomorphic to
the ring of Legendrian characteristic classes for degrees
smaller than or equal to n.

The element [Σ(W, ξ)] of H∗(J k(W, ξ),Z), is called the
Legendrian Thom polynomial of Σ.
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Let us fix an approximation of BU(1) =
⋃

n∈NPn, that is we

set X = Pn, ξ = O(1). Let W = 1n be the trivial bundle of
rank n.

Then H∗(LG(V, ω),Z) ∼= H∗(J k(W, ξ),Z) is isomorphic to
the ring of Legendrian characteristic classes for degrees
smaller than or equal to n.

The element [Σ(W, ξ)] of H∗(J k(W, ξ),Z), is called the
Legendrian Thom polynomial of Σ.
and is often denoted by T Σ. It is written in terms of the
generators ai and s = c1(ξ).
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Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=

n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .
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Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=

n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .

We have a symplectic form ω defined on V with values in ξ.
LG(V, ω) is a homogeneous space for the symplectic group
Sp(V, ω) ⊂ End(V ).
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Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=

n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .

We have a symplectic form ω defined on V with values in ξ.
LG(V, ω) is a homogeneous space for the symplectic group
Sp(V, ω) ⊂ End(V ).
Fix two“opposite” standard isotropic flags in V :

F+
h :=

h⊕

i=1

αi , F−
h :=

h⊕

i=1

α∗
n−i+1⊗ξ , (h = 1, 2, . . . , n)
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Let ξ, α1, α2, . . . , αn be vector spaces of dimension one and let

W :=

n⊕

i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) .

We have a symplectic form ω defined on V with values in ξ.
LG(V, ω) is a homogeneous space for the symplectic group
Sp(V, ω) ⊂ End(V ).
Fix two“opposite” standard isotropic flags in V :

F+
h :=

h⊕

i=1

αi , F−
h :=

h⊕

i=1

α∗
n−i+1⊗ξ , (h = 1, 2, . . . , n)

Consider two Borel groups B± ⊂ Sp(V, ω), preserving the
flags F±

• . The orbits of B± in LG(V, ω) form two“opposite”
cell decompositions {ΩI(F

±
• , ξ)} of LG(V, ω).
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The decompositions are indexed by strict partitions I
contained in ρ.
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The decompositions are indexed by strict partitions I
contained in ρ.

The“+”cells are transverse to the“−”cells.

Positivity in global singularity theory – p. 31/42



The decompositions are indexed by strict partitions I
contained in ρ.

The“+”cells are transverse to the“−”cells.

All that is functorial w.r.t. the automorphisms of the lines ξ
and αi’s, (they form a torus (C∗)n+1). Thus the construction
of the cell decompositions can be repeated for bundles ξ and
{αi}

n
i=1 over any base X. We get a Lagrange Grassmann

bundle
τ : LG(V, ω)→ X

together with two subgroup bundles B± → X.
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The decompositions are indexed by strict partitions I
contained in ρ.

The“+”cells are transverse to the“−”cells.

All that is functorial w.r.t. the automorphisms of the lines ξ
and αi’s, (they form a torus (C∗)n+1). Thus the construction
of the cell decompositions can be repeated for bundles ξ and
{αi}

n
i=1 over any base X. We get a Lagrange Grassmann

bundle
τ : LG(V, ω)→ X

together with two subgroup bundles B± → X.

LG(V, ω) admits two (relative) stratifications

{ΩI(F
±
• , ξ)→ X}I
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Assume that X = G/P is a compact manifold, homogeneous
with respect to an action of a linear group G. Then X admits
an algebraic cell decomposition {σλ}.

Positivity in global singularity theory – p. 32/42



Assume that X = G/P is a compact manifold, homogeneous
with respect to an action of a linear group G. Then X admits
an algebraic cell decomposition {σλ}.

The subsets
Z−
Iλ := τ−1(σλ) ∩ ΩI(F

−
• , ξ)

form an algebraic cell decomposition of LG(V, ω), called
Z−-decomposition or distinguished decomposition.
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Assume that X = G/P is a compact manifold, homogeneous
with respect to an action of a linear group G. Then X admits
an algebraic cell decomposition {σλ}.

The subsets
Z−
Iλ := τ−1(σλ) ∩ ΩI(F

−
• , ξ)

form an algebraic cell decomposition of LG(V, ω), called
Z−-decomposition or distinguished decomposition.
The classes of their closures give a basis of homology, called
Z−-basis. Note that each Z−

Iλ is transverse to each stratum

ΩJ(F
+
• , ξ), where J ⊂ ρ is a strict partition.
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Assume that X = G/P is a compact manifold, homogeneous
with respect to an action of a linear group G. Then X admits
an algebraic cell decomposition {σλ}.

The subsets
Z−
Iλ := τ−1(σλ) ∩ ΩI(F

−
• , ξ)

form an algebraic cell decomposition of LG(V, ω), called
Z−-decomposition or distinguished decomposition.
The classes of their closures give a basis of homology, called
Z−-basis. Note that each Z−

Iλ is transverse to each stratum

ΩJ(F
+
• , ξ), where J ⊂ ρ is a strict partition.

We pass now to a nonnegativity result on the Legendrian
Thom polynomials and the Z−-decomposition.
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Recall that our goal is to study cycles Σ(W, ξ) in:

J = J k(W, ξ) = τ∗

(
k+1⊕

i=3

Symi(W ∗)⊗ ξ

)
.
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Recall that our goal is to study cycles Σ(W, ξ) in:

J = J k(W, ξ) = τ∗

(
k+1⊕

i=3

Symi(W ∗)⊗ ξ

)
.

π τ

Σ(W, ξ) ⊂ J ։ LG(V, ω) ։ X

	 	 	

B+ B+ Sp(V, ω)
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Recall that our goal is to study cycles Σ(W, ξ) in:

J = J k(W, ξ) = τ∗

(
k+1⊕

i=3

Symi(W ∗)⊗ ξ

)
.

π τ

Σ(W, ξ) ⊂ J ։ LG(V, ω) ։ X

	 	 	

B+ B+ Sp(V, ω)

Theorem. Fix I ⊂ ρ and λ. Suppose that the vector
bundle J is globally generated. Then, in J , the
intersection of Σ(W, ξ) with the closure of any π−1(Z−

Iλ) is
represented by a nonnegative cycle.
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We shall apply the Theorem in the situation when all αi are
equal to the same line bundle α (i.e. W = α⊕n) and α−m ⊗ ξ
is globally generated for m ≥ 3.
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We shall apply the Theorem in the situation when all αi are
equal to the same line bundle α (i.e. W = α⊕n) and α−m ⊗ ξ
is globally generated for m ≥ 3.
Consider the following three cases: the base is always
X = Pn and

ξ1 = O(−2) , α1 = O(−1) ,

ξ2 = O(1) , α2 = 1 ,

ξ3 = O(−3) , α3 = O(−1) ,

We obtain symplectic bundles Vi = α⊕n
i ⊕ (α∗

i ⊗ ξi)
⊕n with

twisted symplectic forms ωi for i = 1, 2, 3.
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We shall apply the Theorem in the situation when all αi are
equal to the same line bundle α (i.e. W = α⊕n) and α−m ⊗ ξ
is globally generated for m ≥ 3.
Consider the following three cases: the base is always
X = Pn and

ξ1 = O(−2) , α1 = O(−1) ,

ξ2 = O(1) , α2 = 1 ,

ξ3 = O(−3) , α3 = O(−1) ,

We obtain symplectic bundles Vi = α⊕n
i ⊕ (α∗

i ⊗ ξi)
⊕n with

twisted symplectic forms ωi for i = 1, 2, 3.

Some bases giving positivity properties in these 3 cases were
known formerly.
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To overlap all these three cases we consider the product
X := Pn ×Pn
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To overlap all these three cases we consider the product
X := Pn ×Pn and set

W := p∗1O(−1)
⊕n , ξ := p∗1O(−3)⊗ p

∗
2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections.
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To overlap all these three cases we consider the product
X := Pn ×Pn and set

W := p∗1O(−1)
⊕n , ξ := p∗1O(−3)⊗ p

∗
2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections.

Restricting the bundles W and ξ to the diagonal, or to the
factors we obtain the three cases considered above. We
should keep in mind that X is an approximation of the
classifying space B(U(1)× U(1)).
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To overlap all these three cases we consider the product
X := Pn ×Pn and set

W := p∗1O(−1)
⊕n , ξ := p∗1O(−3)⊗ p

∗
2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections.

Restricting the bundles W and ξ to the diagonal, or to the
factors we obtain the three cases considered above. We
should keep in mind that X is an approximation of the
classifying space B(U(1)× U(1)).

The space LG(V, ω) has a distinguished cell decomposition

Z−
Iλ where I runs over strict partitions contained in ρ, and

λ = (a, b) with a and b natural numbers ≤ n.
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The classes of closures of the cells of this decomposition give
a basis of the homology of LG(V, ω). The dual basis of
cohomology (in the sense of linear algebra) is denoted by

eI,a,b = [Z−
I,a,b]

∗.
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The classes of closures of the cells of this decomposition give
a basis of the homology of LG(V, ω). The dual basis of
cohomology (in the sense of linear algebra) is denoted by

eI,a,b = [Z−
I,a,b]

∗.

We have eI,a,b = eI,0,0 v
a
1v

b
2 and eI,0,0 = [ΩI(F

+
• , ξ)].
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The classes of closures of the cells of this decomposition give
a basis of the homology of LG(V, ω). The dual basis of
cohomology (in the sense of linear algebra) is denoted by

eI,a,b = [Z−
I,a,b]

∗.

We have eI,a,b = eI,0,0 v
a
1v

b
2 and eI,0,0 = [ΩI(F

+
• , ξ)].

Theorem. (MM+PP+AW 2010) Let Σ be a Legendre
singularity class. Then [Σ(W, ξ)] has nonnegative
coefficients in the basis {eI,a,b}.
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The classes of closures of the cells of this decomposition give
a basis of the homology of LG(V, ω). The dual basis of
cohomology (in the sense of linear algebra) is denoted by

eI,a,b = [Z−
I,a,b]

∗.

We have eI,a,b = eI,0,0 v
a
1v

b
2 and eI,0,0 = [ΩI(F

+
• , ξ)].

Theorem. (MM+PP+AW 2010) Let Σ be a Legendre
singularity class. Then [Σ(W, ξ)] has nonnegative
coefficients in the basis {eI,a,b}.

The bundle J here is gg (hence desired intersections in J are
nonnegative):

τ∗
(⊕k+1

j=3 Sym
j(W ∗)⊗ ξ

)
=

τ∗
(⊕k+1

j=3 Sym
j(1n)⊗ p∗1O(j−3)⊗ p

∗
2O(1)

)
.
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Let Σ be a Legendre singularity class. Thom polynomial of Σ,
evaluated at the Chern classes of A = W ∗ ⊗ ξ −R and
c1(ξ) = v2 − 3v1, is a nonnegative Z-linear combination:

T Σ =
∑

I,a,b

γI,a,b eI,a,b =
∑

I,a,b

γI,a,b[ΩI(F
+
• , ξ)]v

a
1v

b
2 .
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Let Σ be a Legendre singularity class. Thom polynomial of Σ,
evaluated at the Chern classes of A = W ∗ ⊗ ξ −R and
c1(ξ) = v2 − 3v1, is a nonnegative Z-linear combination:

T Σ =
∑

I,a,b

γI,a,b eI,a,b =
∑

I,a,b

γI,a,b[ΩI(F
+
• , ξ)]v

a
1v

b
2 .

Want: an additive basis of the ring of Legendrian
characteristic classes with the property that any Legendrian
Thom polynomial is a nonnegative combination of basis
elements.
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Let Σ be a Legendre singularity class. Thom polynomial of Σ,
evaluated at the Chern classes of A = W ∗ ⊗ ξ −R and
c1(ξ) = v2 − 3v1, is a nonnegative Z-linear combination:

T Σ =
∑

I,a,b

γI,a,b eI,a,b =
∑

I,a,b

γI,a,b[ΩI(F
+
• , ξ)]v

a
1v

b
2 .

Want: an additive basis of the ring of Legendrian
characteristic classes with the property that any Legendrian
Thom polynomial is a nonnegative combination of basis
elements.

Take a pair of integers p, q.
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Let Σ be a Legendre singularity class. Thom polynomial of Σ,
evaluated at the Chern classes of A = W ∗ ⊗ ξ −R and
c1(ξ) = v2 − 3v1, is a nonnegative Z-linear combination:

T Σ =
∑

I,a,b

γI,a,b eI,a,b =
∑

I,a,b

γI,a,b[ΩI(F
+
• , ξ)]v

a
1v

b
2 .

Want: an additive basis of the ring of Legendrian
characteristic classes with the property that any Legendrian
Thom polynomial is a nonnegative combination of basis
elements.

Take a pair of integers p, q.

ξ(p,q) = ξ⊗p
2 ⊗ ξ

⊗q
3

α = α(p,q) = α⊗p
2 ⊗ α

⊗q
3 = α⊗q

3
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Divide H∗(LG(V, ω),Q) by the relation:

q · v1 = p · v2
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Divide H∗(LG(V, ω),Q) by the relation:

q · v1 = p · v2

that is specializing the parameters to v1 = p · t, v2 = q · t, we

obtain the ring H∗(LG(V (p,q), ω(p,q)),Q) isomorphic to the
ring of Legendrian characteristic classes in degrees up to n
(provided that c1(ξ) = v2 − 3v1 is not specialized to 0.)
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Divide H∗(LG(V, ω),Q) by the relation:

q · v1 = p · v2

that is specializing the parameters to v1 = p · t, v2 = q · t, we

obtain the ring H∗(LG(V (p,q), ω(p,q)),Q) isomorphic to the
ring of Legendrian characteristic classes in degrees up to n
(provided that c1(ξ) = v2 − 3v1 is not specialized to 0.)

Theorem. If p and q are nonnegative, q− 3p 6= 0, then the
Thom polynomial is a nonnegative combination of the
[ΩI(F

+
• , ξ)] t

i’s.
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Divide H∗(LG(V, ω),Q) by the relation:

q · v1 = p · v2

that is specializing the parameters to v1 = p · t, v2 = q · t, we

obtain the ring H∗(LG(V (p,q), ω(p,q)),Q) isomorphic to the
ring of Legendrian characteristic classes in degrees up to n
(provided that c1(ξ) = v2 − 3v1 is not specialized to 0.)

Theorem. If p and q are nonnegative, q− 3p 6= 0, then the
Thom polynomial is a nonnegative combination of the
[ΩI(F

+
• , ξ)] t

i’s.

The family [ΩI(F
+
• , ξ)] t

i is a one-parameter family of bases
depending on the parameter p/q.
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Case 1. ξ1 = O(−2), α1 = O(−1). This corresponds to fixing
the parameter to be 1; p = 1 and q = 1 ; v1 = v2 = t.
Geometrically, this means that we study the restriction of the
bundles W and ξ to the diagonal of Pn ×Pn.
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Case 1. ξ1 = O(−2), α1 = O(−1). This corresponds to fixing
the parameter to be 1; p = 1 and q = 1 ; v1 = v2 = t.
Geometrically, this means that we study the restriction of the
bundles W and ξ to the diagonal of Pn ×Pn.

In the next theorem A is a virtual bundle W ∗ ⊗ ξ −R, and t
is half the first Chern class of ξ∗.
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Case 1. ξ1 = O(−2), α1 = O(−1). This corresponds to fixing
the parameter to be 1; p = 1 and q = 1 ; v1 = v2 = t.
Geometrically, this means that we study the restriction of the
bundles W and ξ to the diagonal of Pn ×Pn.

In the next theorem A is a virtual bundle W ∗ ⊗ ξ −R, and t
is half the first Chern class of ξ∗.

Theorem. The Thom polynomial of a Legendre
singularity class Σ is a combination:

T Σ =
∑

j≥0

∑

I

αI,j Q̃I(A⊗ ξ
− 1

2 ) · tj .

Here I runs over strict partitions in ρ, and αI,j are
nonnegative integers.

Positivity in global singularity theory – p. 39/42



Legendrian vs. classical
t = v1 = v2
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Legendrian vs. classical
t = v1 = v2
Proposition. For a nonempty stable Legendre singularity
class Σ, the Lagrangian Thom polynomial (i.e. T Σ

evaluated at t = 0) is nonzero. (So, also T Σ is nonzero.)
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Legendrian vs. classical
t = v1 = v2
Proposition. For a nonempty stable Legendre singularity
class Σ, the Lagrangian Thom polynomial (i.e. T Σ

evaluated at t = 0) is nonzero. (So, also T Σ is nonzero.)

Kazarian: The classification of Legendre singularities is
parallel to the classification of critical point singularities w.r.t.
stable right equivalence. For a Legendre singularity class Σ
consider the associated singularity class of maps f :M → C
from n-dimensional manifolds to curves. We denote the
related Thom polynomial by TpΣ.
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Legendrian vs. classical
t = v1 = v2
Proposition. For a nonempty stable Legendre singularity
class Σ, the Lagrangian Thom polynomial (i.e. T Σ

evaluated at t = 0) is nonzero. (So, also T Σ is nonzero.)

Kazarian: The classification of Legendre singularities is
parallel to the classification of critical point singularities w.r.t.
stable right equivalence. For a Legendre singularity class Σ
consider the associated singularity class of maps f :M → C
from n-dimensional manifolds to curves. We denote the
related Thom polynomial by TpΣ.
We have

TpΣ = T Σ · cn(T
∗M ⊗ f∗TC) .
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Legendrian vs. classical
t = v1 = v2
Proposition. For a nonempty stable Legendre singularity
class Σ, the Lagrangian Thom polynomial (i.e. T Σ

evaluated at t = 0) is nonzero. (So, also T Σ is nonzero.)

Kazarian: The classification of Legendre singularities is
parallel to the classification of critical point singularities w.r.t.
stable right equivalence. For a Legendre singularity class Σ
consider the associated singularity class of maps f :M → C
from n-dimensional manifolds to curves. We denote the
related Thom polynomial by TpΣ.
We have

TpΣ = T Σ · cn(T
∗M ⊗ f∗TC) .

We know that TpΣ is nonzero. One shows that TpΣ,
specialized with f∗TC = 1 i.e. t = 0, is also nonzero. The
assertion follows from the equation.
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Green-Griffiths conjecture: Every projective algebraic variety
of general type contains a proper subvariety Y ⊂ X such that
all nonconstant entire holomorphic curves f : C→ X must
necessarily lie in Y .
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Green-Griffiths conjecture: Every projective algebraic variety
of general type contains a proper subvariety Y ⊂ X such that
all nonconstant entire holomorphic curves f : C→ X must
necessarily lie in Y .
Siu: For a general hypersurface X in projective space, the
Green-Griffiths conjecture is true if deg(X) >> 0.
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Green-Griffiths conjecture: Every projective algebraic variety
of general type contains a proper subvariety Y ⊂ X such that
all nonconstant entire holomorphic curves f : C→ X must
necessarily lie in Y .
Siu: For a general hypersurface X in projective space, the
Green-Griffiths conjecture is true if deg(X) >> 0.

Rimanyi conjecture: The Thom polynomials of Ai(r) have
positive expansion in the Chern class monomial basis.
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Green-Griffiths conjecture: Every projective algebraic variety
of general type contains a proper subvariety Y ⊂ X such that
all nonconstant entire holomorphic curves f : C→ X must
necessarily lie in Y .
Siu: For a general hypersurface X in projective space, the
Green-Griffiths conjecture is true if deg(X) >> 0.

Rimanyi conjecture: The Thom polynomials of Ai(r) have
positive expansion in the Chern class monomial basis.

Theorem of Berczi: Assume that the Rimanyi conjecture
holds. Then for a general hypersurface X ⊂ Pn+1, the
Green-Griffiths conjecture is true if deg(X) > n6.
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THE END
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