On positivity of Thom polynomials
 (Hefei, 26.07.2011)

Piotr Pragacz
pragacz@impan.pl

IM PAN Warszawa

Pioneering results on positivity

Griffiths' program (1969): Find positive polynomials for ample vector bundles.

Pioneering results on positivity

Griffiths' program (1969): Find positive polynomials for ample vector bundles.

Let c_{1}, c_{2}, \ldots be variables with $\operatorname{deg}\left(c_{i}\right)=i$.

Pioneering results on positivity

Griffiths' program (1969): Find positive polynomials for ample vector bundles. Let c_{1}, c_{2}, \ldots be variables with $\operatorname{deg}\left(c_{i}\right)=i$.
Fix $n, e \in \mathbf{N}$. Let $P\left(c_{1}, \ldots, c_{e}\right)$ be a homogeneous polynomial of degree n.

Pioneering results on positivity

Griffiths' program (1969): Find positive polynomials for ample vector bundles. Let c_{1}, c_{2}, \ldots be variables with $\operatorname{deg}\left(c_{i}\right)=i$.
Fix $n, e \in \mathbf{N}$. Let $P\left(c_{1}, \ldots, c_{e}\right)$ be a homogeneous polynomial of degree n.
We say that P is positive for ample vector bundles, if for every n-dimensional projective variety X

Pioneering results on positivity

Griffiths' program (1969): Find positive polynomials for ample vector bundles. Let c_{1}, c_{2}, \ldots be variables with $\operatorname{deg}\left(c_{i}\right)=i$.

Fix $n, e \in \mathbf{N}$. Let $P\left(c_{1}, \ldots, c_{e}\right)$ be a homogeneous polynomial of degree n.

We say that P is positive for ample vector bundles, if for every n-dimensional projective variety X and any ample vector bundle of rank e on X, $\operatorname{deg}\left(P\left(c_{1}(E), \ldots, c_{e}(E)\right)>0\right.$.

Pioneering results on positivity

Griffiths' program (1969): Find positive polynomials for ample vector bundles.

Let c_{1}, c_{2}, \ldots be variables with $\operatorname{deg}\left(c_{i}\right)=i$.
Fix $n, e \in \mathbf{N}$. Let $P\left(c_{1}, \ldots, c_{e}\right)$ be a homogeneous polynomial of degree n.

We say that P is positive for ample vector bundles, if for every n-dimensional projective variety X and any ample vector bundle of rank e on X, $\operatorname{deg}\left(P\left(c_{1}(E), \ldots, c_{e}(E)\right)>0\right.$.

Computations of Griffiths: $c_{1}, c_{2}, c_{1}^{2}-c_{2}$.

Pioneering results on positivity

Griffiths' program (1969): Find positive polynomials for ample vector bundles.

Let c_{1}, c_{2}, \ldots be variables with $\operatorname{deg}\left(c_{i}\right)=i$.
Fix $n, e \in \mathbf{N}$. Let $P\left(c_{1}, \ldots, c_{e}\right)$ be a homogeneous polynomial of degree n.

We say that P is positive for ample vector bundles, if for every n-dimensional projective variety X and any ample vector bundle of rank e on X, $\operatorname{deg}\left(P\left(c_{1}(E), \ldots, c_{e}(E)\right)>0\right.$.

Computations of Griffiths: $c_{1}, c_{2}, c_{1}^{2}-c_{2}$.
red herring: it was thought that $c_{1}^{2}-2 c_{2}$ is positive but is not.

Kleiman: polynomials that are positive for ample

Kleiman: polynomials that are positive for ample vector bundles on surfaces are nonnegative combinations of c_{2} and $c_{1}^{2}-c_{2}$.

Kleiman: polynomials that are positive for ample vector bundles on surfaces are nonnegative combinations of c_{2} and $c_{1}^{2}-c_{2}$.
Bloch-Gieseker: c_{n} is always positive; important link to Hard Lefschetz Theorem.

Kleiman: polynomials that are positive for ample vector bundles on surfaces are nonnegative combinations of c_{2} and $c_{1}^{2}-c_{2}$.
Bloch-Gieseker: c_{n} is always positive; important link to Hard Lefschetz Theorem.

Fulton-Lazarsfeld showed that a polynomial is positive

Kleiman: polynomials that are positive for ample vector bundles on surfaces are nonnegative combinations of c_{2} and $c_{1}^{2}-c_{2}$.

Bloch-Gieseker: c_{n} is always positive; important link to Hard Lefschetz Theorem.

Fulton-Lazarsfeld showed that a polynomial is positive iff its coefficients in the basis od Schur polynomials are nonnegative.

Kleiman: polynomials that are positive for ample vector bundles on surfaces are nonnegative combinations of c_{2} and $c_{1}^{2}-c_{2}$.

Bloch-Gieseker: c_{n} is always positive; important link to Hard Lefschetz Theorem.

Fulton-Lazarsfeld showed that a polynomial is positive iff its coefficients in the basis od Schur polynomials are nonnegative.
$n=3 \quad c_{3}, \quad c_{2} c_{1}-c_{3}, \quad c_{1}^{3}-2 c_{2} c_{1}+c_{3}$.

Kleiman: polynomials that are positive for ample vector bundles on surfaces are nonnegative combinations of c_{2} and $c_{1}^{2}-c_{2}$.

Bloch-Gieseker: c_{n} is always positive; important link to Hard Lefschetz Theorem.

Fulton-Lazarsfeld showed that a polynomial is positive iff its coefficients in the basis od Schur polynomials are nonnegative.
$n=3 \quad c_{3}, \quad c_{2} c_{1}-c_{3}, \quad c_{1}^{3}-2 c_{2} c_{1}+c_{3}$.
For globally generated bundles, a very closed result was obtained by Usui-Tango.

Kleiman: polynomials that are positive for ample vector bundles on surfaces are nonnegative combinations of c_{2} and $c_{1}^{2}-c_{2}$.

Bloch-Gieseker: c_{n} is always positive; important link to Hard Lefschetz Theorem.

Fulton-Lazarsfeld showed that a polynomial is positive iff its coefficients in the basis od Schur polynomials are nonnegative.
$n=3 \quad c_{3}, \quad c_{2} c_{1}-c_{3}, \quad c_{1}^{3}-2 c_{2} c_{1}+c_{3}$.
For globally generated bundles, a very closed result was obtained by Usui-Tango.

Whenever we speak about the classes of algebraic cycles, we always mean their Poincaré dual classes in cohomology.

Thom polynomial

Let Σ be an algebraic right-left invariant set in $\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.

Thom polynomial

Let Σ be an algebraic right-left invariant set in $\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z}

Thom polynomial

Let Σ be an algebraic right-left invariant set in $\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z}
in $m+n$ variables which depends only on Σ, m and n

Thom polynomial

Let Σ be an algebraic right-left invariant set in $\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z}
in $m+n$ variables which depends only on Σ, m and n
s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$

Thom polynomial

Let Σ be an algebraic right-left invariant set in $\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z} in $m+n$ variables which depends only on Σ, m and n
s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$ the class of $\Sigma(f)=f_{k}^{-1}(\Sigma)$ is equal to

Thom polynomial

Let Σ be an algebraic right-left invariant set in $\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z} in $m+n$ variables which depends only on Σ, m and n
s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$ the class of $\Sigma(f)=f_{k}^{-1}(\Sigma)$ is equal to

$$
\mathcal{T}^{\Sigma}\left(c_{1}(M), \ldots, c_{m}(M), f^{*} c_{1}(N), \ldots, f^{*} c_{n}(N)\right)
$$

Thom polynomial

Let Σ be an algebraic right-left invariant set in $\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z} in $m+n$ variables which depends only on Σ, m and n
s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$ the class of $\Sigma(f)=f_{k}^{-1}(\Sigma)$ is equal to

$$
\mathcal{T}^{\Sigma}\left(c_{1}(M), \ldots, c_{m}(M), f^{*} c_{1}(N), \ldots, f^{*} c_{n}(N)\right)
$$

where $f_{k}: M \rightarrow \mathcal{J}^{k}(M, N)$ is the k-jet extension of f.

Thom polynomial

Let Σ be an algebraic right-left invariant set in $\mathcal{J}^{k}\left(\mathbf{C}_{0}^{m}, \mathbf{C}_{0}^{n}\right)$.
Then there exists a universal polynomial \mathcal{T}^{Σ} over \mathbf{Z} in $m+n$ variables which depends only on Σ, m and n
s.t. for any manifolds M^{m}, N^{n} and general map $f: M \rightarrow N$ the class of $\Sigma(f)=f_{k}^{-1}(\Sigma)$ is equal to

$$
\mathcal{T}^{\Sigma}\left(c_{1}(M), \ldots, c_{m}(M), f^{*} c_{1}(N), \ldots, f^{*} c_{n}(N)\right) .
$$

where $f_{k}: M \rightarrow \mathcal{J}^{k}(M, N)$ is the k-jet extension of f.
If a singularity class Σ is "stable" (e.g. closed under the contact equivalence), then \mathcal{T}^{Σ} depends on $c_{i}\left(T M-f^{*} T N\right)$.

Schur functions

Alphabet \mathbb{A} : a finite set of indeterminates.

Schur functions

Alphabet \mathbb{A} : a finite set of indeterminates.
We identify an alphabet $\mathbb{A}=\left\{a_{1}, \ldots, a_{m}\right\}$ with the sum $a_{1}+\cdots+a_{m}$.

Schur functions

Alphabet A: a finite set of indeterminates.
We identify an alphabet $\mathbb{A}=\left\{a_{1}, \ldots, a_{m}\right\}$ with the sum $a_{1}+\cdots+a_{m}$.

Take another alphabet \mathbb{B}.

$$
\sum S_{i}(\mathbb{A}-\mathbb{B}) z^{i}=\prod_{b \in \mathbb{B}}(1-b z) / \prod_{a \in \mathbb{A}}(1-a z)
$$

Schur functions

Alphabet A: a finite set of indeterminates.
We identify an alphabet $\mathbb{A}=\left\{a_{1}, \ldots, a_{m}\right\}$ with the sum $a_{1}+\cdots+a_{m}$.

Take another alphabet \mathbb{B}.

$$
\sum S_{i}(\mathbb{A}-\mathbb{B}) z^{i}=\prod_{b \in \mathbb{B}}(1-b z) / \prod_{a \in \mathbb{A}}(1-a z)
$$

Given a partition $I=\left(0 \geq i_{1} \geq \cdots \geq i_{h} \geq 0\right)$, the Schur function $S_{I}(\mathbb{A}-\mathbb{B})$ is

Schur functions

Alphabet \mathbb{A} : a finite set of indeterminates.
We identify an alphabet $\mathbb{A}=\left\{a_{1}, \ldots, a_{m}\right\}$ with the sum $a_{1}+\cdots+a_{m}$.

Take another alphabet \mathbb{B}.

$$
\sum S_{i}(\mathbb{A}-\mathbb{B}) z^{i}=\prod_{b \in \mathbb{B}}(1-b z) / \prod_{a \in \mathbb{A}}(1-a z)
$$

Given a partition $I=\left(0 \geq i_{1} \geq \cdots \geq i_{h} \geq 0\right)$, the Schur function $S_{I}(\mathbb{A}-\mathbb{B})$ is

$$
S_{I}(\mathbb{A}-\mathbb{B}):=\left|S_{i_{p}-p+q}(\mathbb{A}-\mathbb{B})\right|_{1 \leq p, q \leq h}
$$

E.g., writing $S_{i}=S_{i}(\mathbb{A}-\mathbb{B})$,

E.g., writing $S_{i}=S_{i}(\mathbb{A}-\mathbb{B})$,

$$
S_{44333}(\mathbb{A}-\mathbb{B})=\left|\begin{array}{ccccc}
S_{4} & S_{5} & S_{6} & S_{7} & S_{8} \\
S_{3} & S_{4} & S_{5} & S_{6} & S_{7} \\
S_{1} & S_{2} & S_{3} & S_{4} & S_{5} \\
1 & S_{1} & S_{2} & S_{3} & S_{4} \\
0 & 1 & S_{1} & S_{2} & S_{3}
\end{array}\right| .
$$

E.g., writing $S_{i}=S_{i}(\mathbb{A}-\mathbb{B})$,

$$
S_{44333}(\mathbb{A}-\mathbb{B})=\left|\begin{array}{ccccc}
S_{4} & S_{5} & S_{6} & S_{7} & S_{8} \\
S_{3} & S_{4} & S_{5} & S_{6} & S_{7} \\
S_{1} & S_{2} & S_{3} & S_{4} & S_{5} \\
1 & S_{1} & S_{2} & S_{3} & S_{4} \\
0 & 1 & S_{1} & S_{2} & S_{3}
\end{array}\right| .
$$

The factorization formula!
E.g., writing $S_{i}=S_{i}(\mathbb{A}-\mathbb{B})$,

$$
S_{44333}(\mathbb{A}-\mathbb{B})=\left|\begin{array}{ccccc}
S_{4} & S_{5} & S_{6} & S_{7} & S_{8} \\
S_{3} & S_{4} & S_{5} & S_{6} & S_{7} \\
S_{1} & S_{2} & S_{3} & S_{4} & S_{5} \\
1 & S_{1} & S_{2} & S_{3} & S_{4} \\
0 & 1 & S_{1} & S_{2} & S_{3}
\end{array}\right| .
$$

The factorization formula!
For vector bundles E, F, we write $S_{I}(E-F)$ for \mathbb{A} and \mathbb{B}
E.g., writing $S_{i}=S_{i}(\mathbb{A}-\mathbb{B})$,

$$
S_{44333}(\mathbb{A}-\mathbb{B})=\left|\begin{array}{ccccc}
S_{4} & S_{5} & S_{6} & S_{7} & S_{8} \\
S_{3} & S_{4} & S_{5} & S_{6} & S_{7} \\
S_{1} & S_{2} & S_{3} & S_{4} & S_{5} \\
1 & S_{1} & S_{2} & S_{3} & S_{4} \\
0 & 1 & S_{1} & S_{2} & S_{3}
\end{array}\right| .
$$

The factorization formula!
For vector bundles E, F, we write $S_{I}(E-F)$ for \mathbb{A} and \mathbb{B} specialized to the Chern roots of E and F.
E.g., writing $S_{i}=S_{i}(\mathbb{A}-\mathbb{B})$,

$$
S_{44333}(\mathbb{A}-\mathbb{B})=\left|\begin{array}{ccccc}
S_{4} & S_{5} & S_{6} & S_{7} & S_{8} \\
S_{3} & S_{4} & S_{5} & S_{6} & S_{7} \\
S_{1} & S_{2} & S_{3} & S_{4} & S_{5} \\
1 & S_{1} & S_{2} & S_{3} & S_{4} \\
0 & 1 & S_{1} & S_{2} & S_{3}
\end{array}\right| .
$$

The factorization formula!
For vector bundles E, F, we write $S_{I}(E-F)$ for \mathbb{A} and \mathbb{B} specialized to the Chern roots of E and F.
Giambelli's formula: The class of a Schubert variety in a Grassmannian
E.g., writing $S_{i}=S_{i}(\mathbb{A}-\mathbb{B})$,

$$
S_{44333}(\mathbb{A}-\mathbb{B})=\left|\begin{array}{ccccc}
S_{4} & S_{5} & S_{6} & S_{7} & S_{8} \\
S_{3} & S_{4} & S_{5} & S_{6} & S_{7} \\
S_{1} & S_{2} & S_{3} & S_{4} & S_{5} \\
1 & S_{1} & S_{2} & S_{3} & S_{4} \\
0 & 1 & S_{1} & S_{2} & S_{3}
\end{array}\right| .
$$

The factorization formula!
For vector bundles E, F, we write $S_{I}(E-F)$ for \mathbb{A} and \mathbb{B} specialized to the Chern roots of E and F.
Giambelli's formula: The class of a Schubert variety in a Grassmannian is given by a Schur polynomial of the tautological bundle on it.

In the Chern class monomial basis, a Thom polynomial can have negative coefficients:

In the Chern class monomial basis, a Thom polynomial can have negative coefficients: $m=n, I_{2,2}: c_{2}^{2}-c_{1} c_{3}$

In the Chern class monomial basis, a Thom polynomial can have negative coefficients: $m=n, I_{2,2}$: $c_{2}^{2}-c_{1} c_{3}$

Theorem. ($P P+A W$, 2006) Let Σ be a nontrivial stable singularity class. Then for any partition I the coefficient α_{I} in

$$
\mathcal{T}^{\Sigma}=\sum \alpha_{I} S_{I}\left(T^{*} M-f^{*} T^{*} N\right)
$$

is nonnegative and $\sum \alpha_{I}>0$.

In the Chern class monomial basis, a Thom polynomial can have negative coefficients: $m=n, I_{2,2}: \quad c_{2}^{2}-c_{1} c_{3}$

Theorem. ($P P+A W$, 2006) Let Σ be a nontrivial stable singularity class. Then for any partition I the coefficient α_{I} in

$$
\mathcal{T}^{\Sigma}=\sum \alpha_{I} S_{I}\left(T^{*} M-f^{*} T^{*} N\right),
$$

is nonnegative and $\sum \alpha_{I}>0$.

- conjectured for Thom-Boardman singularities by Feher and Komuves (2004) who computed $\mathcal{T}^{\mathcal{L}^{i, j}[-i+1]}$.

In the Chern class monomial basis, a Thom polynomial can have negative coefficients: $m=n, I_{2,2}: c_{2}^{2}-c_{1} c_{3}$

Theorem. (PP+AW, 2006) Let Σ be a nontrivial stable singularity class. Then for any partition I the coefficient α_{I} in

$$
\mathcal{T}^{\Sigma}=\sum \alpha_{I} S_{I}\left(T^{*} M-f^{*} T^{*} N\right),
$$

is nonnegative and $\sum \alpha_{I}>0$.

- conjectured for Thom-Boardman singularities by Feher and Komuves (2004) who computed $\mathcal{T}^{\mathcal{L}^{i, j}[-i+1]}$. For any singularity class Σ, the coefficients in

$$
\mathcal{T}^{\Sigma}=\sum \alpha_{I, J} S_{I}\left(T^{*} M\right) S_{J}\left(f^{*} T N\right)
$$

are nonnegative.

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.
Classically, in real symplectic geometry, the Maslov class is represented by the cycle

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.
Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\} .
$$

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.
Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\} .
$$

This cycle is the locus of singularities of $L \rightarrow W$. Its cohomology class is integral, and mod 2 equals $w_{1}\left(T^{*} L\right)$.

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.
Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\} .
$$

This cycle is the locus of singularities of $L \rightarrow W$. Its cohomology class is integral, and mod 2 equals $w_{1}\left(T^{*} L\right)$.
We fix an integer $k \gg 0$ and identify two germs of Lagrangian submanifolds if the degree of their tangency at 0 is greater than k.

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.
Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\} .
$$

This cycle is the locus of singularities of $L \rightarrow W$. Its cohomology class is integral, and mod 2 equals $w_{1}\left(T^{*} L\right)$.
We fix an integer $k \gg 0$ and identify two germs of Lagrangian submanifolds if the degree of their tangency at 0 is greater than k .
We obtain the space of k-jets of Lagrangian submanifolds, denoted $\mathcal{J}^{k}(V)$.

Lagrangian Thom polynomials

Let L be a Lagrangian submanifold in the linear symplectic space $V=W \oplus W^{*}$ equipped with the standard symplectic form.
Classically, in real symplectic geometry, the Maslov class is represented by the cycle

$$
\Sigma=\left\{x \in L: \operatorname{dim}\left(T_{x} L \cap W^{*}\right)>0\right\} .
$$

This cycle is the locus of singularities of $L \rightarrow W$. Its cohomology class is integral, and mod 2 equals $w_{1}\left(T^{*} L\right)$.
We fix an integer $k \gg 0$ and identify two germs of Lagrangian submanifolds if the degree of their tangency at 0 is greater than k .
We obtain the space of k-jets of Lagrangian submanifolds, denoted $\mathcal{J}^{k}(V)$.
Every germ of a Lagrangian submanifold of V is the image of W via a certain germ symplectomorphism.

$$
\mathcal{J}^{k}(V)=\operatorname{Aut}(V) / P
$$

where $\operatorname{Aut}(V)$ is the group of k-jet symplectomorphisms, and P is the stabilizer of W (k is fixed).

$$
\mathcal{J}^{k}(V)=\operatorname{Aut}(V) / P
$$

where $\operatorname{Aut}(V)$ is the group of k-jet symplectomorphisms, and P is the stabilizer of W (k is fixed). Of course, $L G(V)$ is contained in $\mathcal{J}^{k}(V)$.

$$
\mathcal{J}^{k}(V)=\operatorname{Aut}(V) / P
$$

where $\operatorname{Aut}(V)$ is the group of k-jet symplectomorphisms, and P is the stabilizer of W (k is fixed). Of course, $L G(V)$ is contained in $\mathcal{J}^{k}(V)$.
One has also $\mathcal{J}^{k}(V) \rightarrow L G(V)$ s.t. $L \mapsto T_{0} L$ (which is not a vector bundle for $k \geq 3$).

$$
\mathcal{J}^{k}(V)=\operatorname{Aut}(V) / P,
$$

where $\operatorname{Aut}(V)$ is the group of k-jet symplectomorphisms, and P is the stabilizer of W (k is fixed). Of course, $L G(V)$ is contained in $\mathcal{J}^{k}(V)$.
One has also $\mathcal{J}^{k}(V) \rightarrow L G(V)$ s.t. $L \mapsto T_{0} L$ (which is not a vector bundle for $k \geq 3$).

Let H be the subgroup of $\operatorname{Aut}(V)$ consisting of holomorphic symplectomorphisms preserving the fibration $V \rightarrow W$. Two Lagrangian jets are Lagrangian equivalent if they belong to the same orbit of H.

$$
\mathcal{J}^{k}(V)=\operatorname{Aut}(V) / P,
$$

where $\operatorname{Aut}(V)$ is the group of k-jet symplectomorphisms, and P is the stabilizer of W (k is fixed). Of course, $L G(V)$ is contained in $\mathcal{J}^{k}(V)$.
One has also $\mathcal{J}^{k}(V) \rightarrow L G(V)$ s.t. $L \mapsto T_{0} L$ (which is not a vector bundle for $k \geq 3$).

Let H be the subgroup of $\operatorname{Aut}(V)$ consisting of holomorphic symplectomorphisms preserving the fibration $V \rightarrow W$. Two Lagrangian jets are Lagrangian equivalent if they belong to the same orbit of H.

A Lagrange singularity class is any closed pure dimensional algebraic subset of $\mathcal{J}^{k}(V)$ which is invariant w.r.t. the action of H.

Given any alphabet $\mathbb{X}=\left\{x_{1}, x_{2}, \ldots\right\}$, we set $\widetilde{Q}_{i}(\mathbb{X})=e_{i}(\mathbb{X})$, the i th elementary symmetric function in \mathbb{X}.

Given any alphabet $\mathbb{X}=\left\{x_{1}, x_{2}, \ldots\right\}$, we set $\widetilde{Q}_{i}(\mathbb{X})=e_{i}(\mathbb{X})$, the i th elementary symmetric function in \mathbb{X}.
For $i \geq j$, we set

$$
\widetilde{Q}_{i, j}(\mathbb{X})=\widetilde{Q}_{i}(\mathbb{X}) \widetilde{Q}_{j}(\mathbb{X})+2 \sum_{p=1}^{j}(-1)^{p} \widetilde{Q}_{i+p}(\mathbb{X}) \widetilde{Q}_{j-p}(\mathbb{X})
$$

Given any alphabet $\mathbb{X}=\left\{x_{1}, x_{2}, \ldots\right\}$, we set $\widetilde{Q}_{i}(\mathbb{X})=e_{i}(\mathbb{X})$, the i th elementary symmetric function in \mathbb{X}.
For $i \geq j$, we set

$$
\widetilde{Q}_{i, j}(\mathbb{X})=\widetilde{Q}_{i}(\mathbb{X}) \widetilde{Q}_{j}(\mathbb{X})+2 \sum_{p=1}^{j}(-1)^{p} \widetilde{Q}_{i+p}(\mathbb{X}) \widetilde{Q}_{j-p}(\mathbb{X})
$$

Given any partition $I=\left(i_{1} \geq \cdots \geq i_{h} \geq 0\right)$, where we can assume h to be even, we set

$$
\widetilde{Q}_{I}(\mathbb{X})=\operatorname{Pfaffian}\left(\widetilde{Q}_{i_{p}, i_{q}}(\mathbb{X})\right)
$$

Given any alphabet $\mathbb{X}=\left\{x_{1}, x_{2}, \ldots\right\}$, we set $\widetilde{Q}_{i}(\mathbb{X})=e_{i}(\mathbb{X})$, the i th elementary symmetric function in \mathbb{X}.
For $i \geq j$, we set

$$
\widetilde{Q}_{i, j}(\mathbb{X})=\widetilde{Q}_{i}(\mathbb{X}) \widetilde{Q}_{j}(\mathbb{X})+2 \sum_{p=1}^{j}(-1)^{p} \widetilde{Q}_{i+p}(\mathbb{X}) \widetilde{Q}_{j-p}(\mathbb{X})
$$

Given any partition $I=\left(i_{1} \geq \cdots \geq i_{h} \geq 0\right)$, where we can assume h to be even, we set

$$
\widetilde{Q}_{I}(\mathbb{X})=\operatorname{Pfaffian}\left(\widetilde{Q}_{i_{p}, i_{q}}(\mathbb{X})\right)
$$

$\rho:=(n, n-1, \ldots, 1)$

Let c_{1}, c_{2}, \ldots be commuting variables, where $\operatorname{deg}\left(c_{i}\right)=i$. We identify $\mathbf{Z}\left[c_{1}, c_{2}, \ldots\right]$ with the ring of symmetric functions in \mathbb{X}.

Let c_{1}, c_{2}, \ldots be commuting variables, where $\operatorname{deg}\left(c_{i}\right)=i$. We identify $\mathbf{Z}\left[c_{1}, c_{2}, \ldots\right]$ with the ring of symmetric functions in \mathbb{X}.
Given a partition I, we denote by $\widetilde{Q}_{I} \in \mathbf{Z}\left[c_{1}, c_{2}, \ldots\right]$ the polynomial corresponding to $\widetilde{Q}_{I}(\mathbb{X})$. If E is a vector bundle, then $\widetilde{Q}_{I}(E):=\widetilde{Q}_{I}(\mathbb{X})$, where \mathbb{X} is the alphabet of the Chern roots of E.

Let c_{1}, c_{2}, \ldots be commuting variables, where $\operatorname{deg}\left(c_{i}\right)=i$. We identify $\mathbf{Z}\left[c_{1}, c_{2}, \ldots\right]$ with the ring of symmetric functions in \mathbb{X}.
Given a partition I, we denote by $\widetilde{Q}_{I} \in \mathbf{Z}\left[c_{1}, c_{2}, \ldots\right]$ the polynomial corresponding to $\widetilde{Q}_{I}(\mathbb{X})$. If E is a vector bundle, then $\widetilde{Q}_{I}(E):=\widetilde{Q}_{I}(\mathbb{X})$, where \mathbb{X} is the alphabet of the Chern roots of E.

Suppose that a general flag $V_{\bullet}: V_{1} \subset V_{2} \subset \cdots \subset V_{n} \subset V$ of isotropic subspaces with $\operatorname{dim} V_{i}=i$, is given.

Let c_{1}, c_{2}, \ldots be commuting variables, where $\operatorname{deg}\left(c_{i}\right)=i$. We identify $\mathbf{Z}\left[c_{1}, c_{2}, \ldots\right]$ with the ring of symmetric functions in \mathbb{X}.
Given a partition I, we denote by $\widetilde{Q}_{I} \in \mathbf{Z}\left[c_{1}, c_{2}, \ldots\right]$ the polynomial corresponding to $\widetilde{Q}_{I}(\mathbb{X})$. If E is a vector bundle, then $\widetilde{Q}_{I}(E):=\widetilde{Q}_{I}(\mathbb{X})$, where \mathbb{X} is the alphabet of the Chern roots of E.

Suppose that a general flag $V_{\bullet}: V_{1} \subset V_{2} \subset \cdots \subset V_{n} \subset V$ of isotropic subspaces with $\operatorname{dim} V_{i}=i$, is given.
Given a strict partition $I \subset \rho$, i.e. $I=\left(n \geq i_{1}>\cdots>i_{h}>0\right)$, we define
$\Omega_{I}\left(V_{\bullet}\right)=\left\{L \in L G(V): \operatorname{dim}\left(L \cap V_{n+1-i_{p}}\right) \geq p, p=1, \ldots, h\right\}$.

Let c_{1}, c_{2}, \ldots be commuting variables, where $\operatorname{deg}\left(c_{i}\right)=i$. We identify $\mathbf{Z}\left[c_{1}, c_{2}, \ldots\right]$ with the ring of symmetric functions in \mathbb{X}.
Given a partition I, we denote by $\widetilde{Q}_{I} \in \mathbf{Z}\left[c_{1}, c_{2}, \ldots\right]$ the polynomial corresponding to $\widetilde{Q}_{I}(\mathbb{X})$. If E is a vector bundle, then $\widetilde{Q}_{I}(E):=\widetilde{Q}_{I}(\mathbb{X})$, where \mathbb{X} is the alphabet of the Chern roots of E.

Suppose that a general flag $V_{\bullet}: V_{1} \subset V_{2} \subset \cdots \subset V_{n} \subset V$ of isotropic subspaces with $\operatorname{dim} V_{i}=i$, is given.
Given a strict partition $I \subset \rho$, i.e. $I=\left(n \geq i_{1}>\cdots>i_{h}>0\right)$, we define
$\Omega_{I}\left(V_{\bullet}\right)=\left\{L \in L G(V): \operatorname{dim}\left(L \cap V_{n+1-i_{p}}\right) \geq p, p=1, \ldots, h\right\}$.
Theorem. $(P, 1986) \Omega_{I}=\widetilde{Q}_{I}\left(R^{*}\right)$, where R is the tautological subbundle on $L G(V)$.

A Lagrange singularity class $\Sigma \subset \mathcal{J}^{k}(V)$ defines the cohomology class

$$
[\Sigma] \in H^{*}\left(\mathcal{J}^{k}(V), \mathbf{Z}\right) \cong H^{*}(L G(V), \mathbf{Z}) .
$$

A Lagrange singularity class $\Sigma \subset \mathcal{J}^{k}(V)$ defines the cohomology class

$$
[\Sigma] \in H^{*}\left(\mathcal{J}^{k}(V), \mathbf{Z}\right) \cong H^{*}(L G(V), \mathbf{Z}) .
$$

Suppose that this class is equal to $\sum_{I} \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right)$, where the sum runs over strict partitions $I \subset \rho$ and $\alpha_{I} \in \mathbf{Z}$ (it is important here to use the bundle R^{*}).

A Lagrange singularity class $\Sigma \subset \mathcal{J}^{k}(V)$ defines the cohomology class

$$
[\Sigma] \in H^{*}\left(\mathcal{J}^{k}(V), \mathbf{Z}\right) \cong H^{*}(L G(V), \mathbf{Z}) .
$$

Suppose that this class is equal to $\sum_{I} \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right)$, where the sum runs over strict partitions $I \subset \rho$ and $\alpha_{I} \in \mathbf{Z}$ (it is important here to use the bundle R^{*}).
Then $\mathcal{T}^{\Sigma}:=\sum_{I} \alpha_{I} \widetilde{Q}_{I}$ is called the Thom polynomial associated with the Lagrange singularity class Σ.

A Lagrange singularity class $\Sigma \subset \mathcal{J}^{k}(V)$ defines the cohomology class

$$
[\Sigma] \in H^{*}\left(\mathcal{J}^{k}(V), \mathbf{Z}\right) \cong H^{*}(L G(V), \mathbf{Z}) .
$$

Suppose that this class is equal to $\sum_{I} \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right)$, where the sum runs over strict partitions $I \subset \rho$ and $\alpha_{I} \in \mathbf{Z}$ (it is important here to use the bundle R^{*}).
Then $\mathcal{T}^{\Sigma}:=\sum_{I} \alpha_{I} \widetilde{Q}_{I}$ is called the Thom polynomial associated with the Lagrange singularity class Σ.

Theorem. (MM+PP+AW, 2007) For any Lagrange singularity class Σ, the Thom polynomial \mathcal{T}^{Σ} is a nonnegative combination of \widetilde{Q}-functions.

Let $i: G=L G(V) \hookrightarrow \mathcal{J}$ be the inclusion.

Let $i: G=L G(V) \hookrightarrow \mathcal{J}$ be the inclusion.
We look at the coefficients α_{I} of the expression

$$
i^{*}[\Sigma]=\sum \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right)
$$

Let $i: G=L G(V) \hookrightarrow \mathcal{J}$ be the inclusion.
We look at the coefficients α_{I} of the expression

$$
i^{*}[\Sigma]=\sum \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right) .
$$

Lemma. For a strict partition $I \subset \rho$, there exists only one strict partition $I^{\prime} \subset \rho$ and $\left|I^{\prime}\right|=\operatorname{dim} L G(V)-|I|$, for which $\widetilde{Q}_{I}\left(R^{*}\right) \cdot \Omega_{I^{\prime}} \neq 0$. (I^{\prime} complements I in ρ).

Let $i: G=L G(V) \hookrightarrow \mathcal{J}$ be the inclusion.
We look at the coefficients α_{I} of the expression

$$
i^{*}[\Sigma]=\sum \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right) .
$$

Lemma. For a strict partition $I \subset \rho$, there exists only one strict partition $I^{\prime} \subset \rho$ and $\left|I^{\prime}\right|=\operatorname{dim} L G(V)-|I|$, for which $\widetilde{Q}_{I}\left(R^{*}\right) \cdot \Omega_{I^{\prime}} \neq 0$. (I^{\prime} complements I in ρ).
We have $\alpha_{I}=i^{*}[\Sigma] \cdot \Omega_{I^{\prime}}$.

Let $i: G=L G(V) \hookrightarrow \mathcal{J}$ be the inclusion.
We look at the coefficients α_{I} of the expression

$$
i^{*}[\Sigma]=\sum \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right) .
$$

Lemma. For a strict partition $I \subset \rho$, there exists only one strict partition $I^{\prime} \subset \rho$ and $\left|I^{\prime}\right|=\operatorname{dim} L G(V)-|I|$, for which $\widetilde{Q}_{I}\left(R^{*}\right) \cdot \Omega_{I^{\prime}} \neq 0$. (I^{\prime} complements I in ρ).
We have $\alpha_{I}=i^{*}[\Sigma] \cdot \Omega_{I^{\prime}}$.
Let

$$
C=C_{G \cap \Sigma} \Sigma \subset N_{G} \mathcal{J}
$$

be the normal cone of $G \cap \Sigma$ in Σ. Denote by $j: G \hookrightarrow N_{G} \mathcal{J}$ the zero-section inclusion.

Let $i: G=L G(V) \hookrightarrow \mathcal{J}$ be the inclusion.
We look at the coefficients α_{I} of the expression

$$
i^{*}[\Sigma]=\sum \alpha_{I} \widetilde{Q}_{I}\left(R^{*}\right) .
$$

Lemma. For a strict partition $I \subset \rho$, there exists only one strict partition $I^{\prime} \subset \rho$ and $\left|I^{\prime}\right|=\operatorname{dim} L G(V)-|I|$, for which $\widetilde{Q}_{I}\left(R^{*}\right) \cdot \Omega_{I^{\prime}} \neq 0$. (I^{\prime} complements I in ρ).
We have $\alpha_{I}=i^{*}[\Sigma] \cdot \Omega_{I^{\prime}}$.
Let

$$
C=C_{G \cap \Sigma} \Sigma \subset N_{G} \mathcal{J}
$$

be the normal cone of $G \cap \Sigma$ in Σ. Denote by $j: G \hookrightarrow N_{G} \mathcal{J}$ the zero-section inclusion. By deformation to the normal cone, we have in $A_{*} G$ the equality

$$
i^{*}[\Sigma]=j^{*}[C] .
$$

It follows that

$$
\alpha_{I}=[C] \cdot \Omega_{I^{\prime}}
$$

(intersection in $\left.N_{G} \mathcal{J}\right)$.

It follows that

$$
\alpha_{I}=[C] \cdot \Omega_{I^{\prime}}
$$

(intersection in $N_{G} \mathcal{J}$).
Proposition. Let $\pi: E \rightarrow X$ be a globally generated bundle on a proper homogeneous variety X. Let C be a cone in E, and let Z be any algebraic cycle in X of the complementary dimension. Then the intersection $[C] \cdot[Z]$ is nonnegative.

It follows that

$$
\alpha_{I}=[C] \cdot \Omega_{I^{\prime}}
$$

(intersection in $N_{G} \mathcal{J}$).
Proposition. Let $\pi: E \rightarrow X$ be a globally generated bundle on a proper homogeneous variety X. Let C be a cone in E, and let Z be any algebraic cycle in X of the complementary dimension. Then the intersection $[C] \cdot[Z]$ is nonnegative.

Take $X=G$

It follows that

$$
\alpha_{I}=[C] \cdot \Omega_{I^{\prime}}
$$

(intersection in $N_{G} \mathcal{J}$).
Proposition. Let $\pi: E \rightarrow X$ be a globally generated bundle on a proper homogeneous variety X. Let C be a cone in E, and let Z be any algebraic cycle in X of the complementary dimension. Then the intersection $[C] \cdot[Z]$ is nonnegative.

Take $X=G$
Take $E=N_{G} \mathcal{J} \cong \bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(R^{*}\right)$ is g.g.

It follows that

$$
\alpha_{I}=[C] \cdot \Omega_{I^{\prime}}
$$

(intersection in $N_{G} \mathcal{J}$).
Proposition. Let $\pi: E \rightarrow X$ be a globally generated bundle on a proper homogeneous variety X. Let C be a cone in E, and let Z be any algebraic cycle in X of the complementary dimension. Then the intersection $[C] \cdot[Z]$ is nonnegative.

Take $X=G$
Take $E=N_{G} \mathcal{J} \cong \bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(R^{*}\right)$ is g.g.
Take $Z=\Omega_{I^{\prime}}$.

Some Legendrian geometry

Fix $n \in \mathbf{N}$. Let W be a vector space of dimension n, and let ξ be a vector space of dimension one.

Some Legendrian geometry

Fix $n \in \mathbf{N}$. Let W be a vector space of dimension n, and let ξ be a vector space of dimension one.

$$
V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

Some Legendrian geometry

Fix $n \in \mathbf{N}$. Let W be a vector space of dimension n, and let ξ be a vector space of dimension one.

$$
V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

- standard symplectic space equipped with the twisted symplectic form $\omega \in \Lambda^{2} V^{*} \otimes \xi$. Have Lagrangian submanifolds (germs through the origin).

Some Legendrian geometry

Fix $n \in \mathbf{N}$. Let W be a vector space of dimension n, and let ξ be a vector space of dimension one.

$$
V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

- standard symplectic space equipped with the twisted symplectic form $\omega \in \Lambda^{2} V^{*} \otimes \xi$. Have Lagrangian submanifolds (germs through the origin).
Standard contact space equipped with the contact form α,

$$
V \oplus \xi=W \oplus\left(W^{*} \otimes \xi\right) \oplus \xi
$$

Some Legendrian geometry

Fix $n \in \mathbf{N}$. Let W be a vector space of dimension n, and let ξ be a vector space of dimension one.

$$
V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

- standard symplectic space equipped with the twisted symplectic form $\omega \in \Lambda^{2} V^{*} \otimes \xi$. Have Lagrangian submanifolds (germs through the origin).
Standard contact space equipped with the contact form α,

$$
V \oplus \xi=W \oplus\left(W^{*} \otimes \xi\right) \oplus \xi
$$

Legendrian submanifolds of $V \oplus \xi$ are maximal integral submanifolds of α, i.e. the manifolds of dimension n with tangent spaces contained in $\operatorname{Ker}(\alpha)$.

Some Legendrian geometry

Fix $n \in \mathbf{N}$. Let W be a vector space of dimension n, and let ξ be a vector space of dimension one.

$$
V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

- standard symplectic space equipped with the twisted symplectic form $\omega \in \Lambda^{2} V^{*} \otimes \xi$. Have Lagrangian submanifolds (germs through the origin). Standard contact space equipped with the contact form α,

$$
V \oplus \xi=W \oplus\left(W^{*} \otimes \xi\right) \oplus \xi
$$

Legendrian submanifolds of $V \oplus \xi$ are maximal integral submanifolds of α, i.e. the manifolds of dimension n with tangent spaces contained in $\operatorname{Ker}(\alpha)$.
Any Legendrian submanifold in $V \oplus \xi$ is determined by its Lagrangian projection to V and any Lagrangian submanifold in V lifts to $V \oplus \xi$.

We shall work with pairs of Lagrangian submanifolds and try to classify all the possible relative positions.

We shall work with pairs of Lagrangian submanifolds and try to classify all the possible relative positions.
Two Lagrangian submanifolds, if they are in generic position, intersect transversally. The singular relative positions can be divided into Legendrian singularity classes.

We shall work with pairs of Lagrangian submanifolds and try to classify all the possible relative positions.
Two Lagrangian submanifolds, if they are in generic position, intersect transversally. The singular relative positions can be divided into Legendrian singularity classes.

The group of symplectomorphisms of V acts on the pairs of Lagrangian submanifolds.

We shall work with pairs of Lagrangian submanifolds and try to classify all the possible relative positions.
Two Lagrangian submanifolds, if they are in generic position, intersect transversally. The singular relative positions can be divided into Legendrian singularity classes.
The group of symplectomorphisms of V acts on the pairs of Lagrangian submanifolds.
Lemma. Any pair of Lagrangian submanifolds is symplectic equivalent to a pair $\left(L_{1}, L_{2}\right)$ such that L_{1} is a linear Lagrangian subspace and the tangent space $T_{0} L_{2}$ is equal to W.

We shall work with pairs of Lagrangian submanifolds and try to classify all the possible relative positions.
Two Lagrangian submanifolds, if they are in generic position, intersect transversally. The singular relative positions can be divided into Legendrian singularity classes.
The group of symplectomorphisms of V acts on the pairs of Lagrangian submanifolds.
Lemma. Any pair of Lagrangian submanifolds is symplectic equivalent to a pair $\left(L_{1}, L_{2}\right)$ such that L_{1} is a linear Lagrangian subspace and the tangent space $T_{0} L_{2}$ is equal to W.
Get 2 types of submanifolds: linear subspaces,

We shall work with pairs of Lagrangian submanifolds and try to classify all the possible relative positions.
Two Lagrangian submanifolds, if they are in generic position, intersect transversally. The singular relative positions can be divided into Legendrian singularity classes.
The group of symplectomorphisms of V acts on the pairs of Lagrangian submanifolds.
Lemma. Any pair of Lagrangian submanifolds is symplectic equivalent to a pair $\left(L_{1}, L_{2}\right)$ such that L_{1} is a linear Lagrangian subspace and the tangent space $T_{0} L_{2}$ is equal to W.
Get 2 types of submanifolds: linear subspaces, the submanifolds which have the tangent space at the origin equal to W; they are the graphs of the differentials of the functions $f: W \rightarrow \xi$ satisfying $d f(0)=0$ and $d^{2} f(0)=0$

Let $\mathcal{J}^{k}(W, \xi)$ be the set of pairs $\left(L_{1}, L_{2}\right)$ of k-jets of Lagrangian submanifolds of V such that L_{1} is a linear space and $T_{0} L_{2}=W$.

Let $\mathcal{J}^{k}(W, \xi)$ be the set of pairs $\left(L_{1}, L_{2}\right)$ of k-jets of Lagrangian submanifolds of V such that L_{1} is a linear space and $T_{0} L_{2}=W$.
Let $\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$ be the projection.

Let $\mathcal{J}^{k}(W, \xi)$ be the set of pairs $\left(L_{1}, L_{2}\right)$ of k-jets of Lagrangian submanifolds of V such that L_{1} is a linear space and $T_{0} L_{2}=W$.

Let $\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$ be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:
$\bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(W^{*}\right) \otimes \xi$.

Let $\mathcal{J}^{k}(W, \xi)$ be the set of pairs $\left(L_{1}, L_{2}\right)$ of k-jets of Lagrangian submanifolds of V such that L_{1} is a linear space and $T_{0} L_{2}=W$.

Let $\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$ be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:
$\bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(W^{*}\right) \otimes \xi$.
We are interested in a larger group than the group of symplectomorphisms, the group of contact automorphisms of $V \oplus \xi$.

Let $\mathcal{J}^{k}(W, \xi)$ be the set of pairs $\left(L_{1}, L_{2}\right)$ of k-jets of Lagrangian submanifolds of V such that L_{1} is a linear space and $T_{0} L_{2}=W$.

Let $\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$ be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:
$\bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(W^{*}\right) \otimes \xi$.
We are interested in a larger group than the group of symplectomorphisms, the group of contact automorphisms of $V \oplus \xi$.
By a Legendre singularity class we mean a closed algebraic subset $\Sigma \subset \mathcal{J}^{k}\left(\mathbf{C}^{n}, \mathbf{C}\right)$ invariant with respect to holomorphic contactomorphisms of $\mathbf{C}^{2 n+1}$.

Let $\mathcal{J}^{k}(W, \xi)$ be the set of pairs $\left(L_{1}, L_{2}\right)$ of k-jets of Lagrangian submanifolds of V such that L_{1} is a linear space and $T_{0} L_{2}=W$.
Let $\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$ be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:
$\bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(W^{*}\right) \otimes \xi$.
We are interested in a larger group than the group of symplectomorphisms, the group of contact automorphisms of $V \oplus \xi$.
By a Legendre singularity class we mean a closed algebraic subset $\Sigma \subset \mathcal{J}^{k}\left(\mathbf{C}^{n}, \mathbf{C}\right)$ invariant with respect to holomorphic contactomorphisms of $\mathbf{C}^{2 n+1}$.
Additionally, we assume that Σ is stable with respect to enlarging the dimension of W.

Jet bundle $\mathcal{J}^{k}(W, \xi)$

Let X be a topological space, W a complex rank n vector bundle over X, and ξ a complex line bundle over X.

Jet bundle $\mathcal{J}^{k}(W, \xi)$

Let X be a topological space, W a complex rank n vector bundle over X, and ξ a complex line bundle over X. Let $\tau: L G(V, \omega) \rightarrow X$ denote the Lagrange Grassmann bundle parametrizing Lagrangian linear submanifolds in V_{x}, $x \in X$.

Jet bundle $\mathcal{J}^{k}(W, \xi)$

Let X be a topological space, W a complex rank n vector bundle over X, and ξ a complex line bundle over X. Let $\tau: L G(V, \omega) \rightarrow X$ denote the Lagrange Grassmann bundle parametrizing Lagrangian linear submanifolds in V_{x}, $x \in X$. We have a relative version of the map:
$\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$.

Jet bundle $\mathcal{J}^{k}(W, \xi)$

Let X be a topological space, W a complex rank n vector bundle over X, and ξ a complex line bundle over X. Let $\tau: L G(V, \omega) \rightarrow X$ denote the Lagrange Grassmann bundle parametrizing Lagrangian linear submanifolds in V_{x}, $x \in X$. We have a relative version of the map:
$\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$.
The space $\mathcal{J}^{k}(W, \xi)$ fibers over X. It is equal to the pull-back:

$$
\mathcal{J}^{k}(W, \xi)=\tau^{*}\left(\bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(W^{*}\right) \otimes \xi\right)
$$

Jet bundle $\mathcal{J}^{k}(W, \xi)$

Let X be a topological space, W a complex rank n vector bundle over X, and ξ a complex line bundle over X. Let $\tau: L G(V, \omega) \rightarrow X$ denote the Lagrange Grassmann bundle parametrizing Lagrangian linear submanifolds in V_{x}, $x \in X$. We have a relative version of the map:
$\pi: \mathcal{J}^{k}(W, \xi) \rightarrow L G(V, \omega)$.
The space $\mathcal{J}^{k}(W, \xi)$ fibers over X. It is equal to the pull-back:

$$
\mathcal{J}^{k}(W, \xi)=\tau^{*}\left(\bigoplus_{i=3}^{k+1} \operatorname{Sym}^{i}\left(W^{*}\right) \otimes \xi\right)
$$

Since any changes of coordinates of W and ξ induce holomorphic contactomorphisms of $V \oplus \xi$, any Legendre singularity class Σ defines $\Sigma(W, \xi) \subset \mathcal{J}^{k}(W, \xi)$.

The tautological bundle over $L G(V, \omega)$ is denoted by $R_{W, \xi}$, or by R for short.

The tautological bundle over $L G(V, \omega)$ is denoted by $R_{W, \xi}$, or by R for short.
The symplectic form ω gives an isomorphism $V \cong V^{*} \otimes \xi$.

The tautological bundle over $L G(V, \omega)$ is denoted by $R_{W, \xi}$, or by R for short.
The symplectic form ω gives an isomorphism $V \cong V^{*} \otimes \xi$.
There is a tautological sequence of vector bundles on $L G(V, \omega): 0 \rightarrow R \rightarrow V \rightarrow R^{*} \otimes \xi \rightarrow 0$.

The tautological bundle over $L G(V, \omega)$ is denoted by $R_{W, \xi}$, or by R for short.
The symplectic form ω gives an isomorphism $V \cong V^{*} \otimes \xi$.
There is a tautological sequence of vector bundles on $L G(V, \omega): 0 \rightarrow R \rightarrow V \rightarrow R^{*} \otimes \xi \rightarrow 0$.
Consider the virtual bundle $A:=W^{*} \otimes \xi-R_{W, \xi}$.

The tautological bundle over $L G(V, \omega)$ is denoted by $R_{W, \xi}$, or by R for short.
The symplectic form ω gives an isomorphism $V \cong V^{*} \otimes \xi$.
There is a tautological sequence of vector bundles on $L G(V, \omega): 0 \rightarrow R \rightarrow V \rightarrow R^{*} \otimes \xi \rightarrow 0$.
Consider the virtual bundle $A:=W^{*} \otimes \xi-R_{W, \xi}$.
We have the relation $A+A^{*} \otimes \xi=0$.

The tautological bundle over $L G(V, \omega)$ is denoted by $R_{W, \xi}$, or by R for short.

The symplectic form ω gives an isomorphism $V \cong V^{*} \otimes \xi$.
There is a tautological sequence of vector bundles on $L G(V, \omega): 0 \rightarrow R \rightarrow V \rightarrow R^{*} \otimes \xi \rightarrow 0$.

Consider the virtual bundle $A:=W^{*} \otimes \xi-R_{W, \xi}$.
We have the relation $A+A^{*} \otimes \xi=0$.
The Chern classes $a_{i}=c_{i}(A)$ generate the cohomology $H^{*}(L G(V, \omega), \mathbf{Z}) \cong H^{*}\left(\mathcal{J}^{k}(W, \xi), \mathbf{Z}\right)$ as an algebra over $H^{*}(X, \mathbf{Z})$.

Let us fix an approximation of $B U(1)=\bigcup_{n \in \mathbf{N}} \mathbf{P}^{n}$, that is we set $X=\mathbf{P}^{n}, \xi=\mathcal{O}(1)$. Let $W=\mathbf{1}^{n}$ be the trivial bundle of rank n.

Let us fix an approximation of $B U(1)=\bigcup_{n \in \mathbf{N}} \mathbf{P}^{n}$, that is we set $X=\mathbf{P}^{n}, \xi=\mathcal{O}(1)$. Let $W=\mathbf{1}^{n}$ be the trivial bundle of rank n.

Then $H^{*}(L G(V, \omega), \mathbf{Z}) \cong H^{*}\left(\mathcal{J}^{k}(W, \xi), \mathbf{Z}\right)$ is isomorphic to the ring of Legendrian characteristic classes for degrees smaller than or equal to n.

Let us fix an approximation of $B U(1)=\bigcup_{n \in \mathbf{N}} \mathbf{P}^{n}$, that is we set $X=\mathbf{P}^{n}, \xi=\mathcal{O}(1)$. Let $W=1^{n}$ be the trivial bundle of rank n.

Then $H^{*}(L G(V, \omega), \mathbf{Z}) \cong H^{*}\left(\mathcal{J}^{k}(W, \xi), \mathbf{Z}\right)$ is isomorphic to the ring of Legendrian characteristic classes for degrees smaller than or equal to n.

The element $[\Sigma(W, \xi)]$ of $H^{*}\left(\mathcal{J}^{k}(W, \xi), \mathbf{Z}\right)$, is called the Legendrian Thom polynomial of Σ.

Let us fix an approximation of $B U(1)=\bigcup_{n \in \mathbf{N}} \mathbf{P}^{n}$, that is we set $X=\mathbf{P}^{n}, \xi=\mathcal{O}(1)$. Let $W=\mathbf{1}^{n}$ be the trivial bundle of rank n.

Then $H^{*}(L G(V, \omega), \mathbf{Z}) \cong H^{*}\left(\mathcal{J}^{k}(W, \xi), \mathbf{Z}\right)$ is isomorphic to the ring of Legendrian characteristic classes for degrees smaller than or equal to n.

The element $[\Sigma(W, \xi)]$ of $H^{*}\left(\mathcal{J}^{k}(W, \xi), \mathbf{Z}\right)$, is called the Legendrian Thom polynomial of Σ. and is often denoted by \mathcal{T}^{Σ}. It is written in terms of the generators a_{i} and $s=c_{1}(\xi)$.

Let $\xi, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be vector spaces of dimension one and let

$$
W:=\bigoplus^{n} \alpha_{i}, \quad V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

Let $\xi, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be vector spaces of dimension one and let

$$
W:=\bigoplus_{i=1}^{n} \alpha_{i}, \quad V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

We have a symplectic form ω defined on V with values in ξ. $L G(V, \omega)$ is a homogeneous space for the symplectic group $S p(V, \omega) \subset \operatorname{End}(V)$.

Let $\xi, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be vector spaces of dimension one and let

$$
W:=\bigoplus_{i=1}^{n} \alpha_{i}, \quad V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

We have a symplectic form ω defined on V with values in ξ. $L G(V, \omega)$ is a homogeneous space for the symplectic group $S p(V, \omega) \subset \operatorname{End}(V)$.
Fix two "opposite" standard isotropic flags in V :

$$
F_{h}^{+}:=\bigoplus_{i=1}^{h} \alpha_{i}, \quad F_{h}^{-}:=\bigoplus_{i=1}^{h} \alpha_{n-i+1}^{*} \otimes \xi, \quad(h=1,2, \ldots, n)
$$

Let $\xi, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be vector spaces of dimension one and let

$$
W:=\bigoplus_{i=1}^{n} \alpha_{i}, \quad V:=W \oplus\left(W^{*} \otimes \xi\right)
$$

We have a symplectic form ω defined on V with values in ξ. $L G(V, \omega)$ is a homogeneous space for the symplectic group $S p(V, \omega) \subset \operatorname{End}(V)$.
Fix two "opposite" standard isotropic flags in V :

$$
F_{h}^{+}:=\bigoplus_{i=1}^{h} \alpha_{i}, \quad F_{h}^{-}:=\bigoplus_{i=1}^{h} \alpha_{n-i+1}^{*} \otimes \xi, \quad(h=1,2, \ldots, n)
$$

Consider two Borel groups $B^{ \pm} \subset S p(V, \omega)$, preserving the flags $F_{\bullet}^{ \pm}$. The orbits of $B^{ \pm}$in $L G(V, \omega)$ form two "opposite" cell decompositions $\left\{\Omega_{I}\left(F_{\bullet}^{ \pm}, \xi\right)\right\}$ of $L G(V, \omega)$, indexed by

All that is functorial w.r.t. the automorphisms of the lines ξ and α_{i} 's, (they form a torus $\left(\mathbf{C}^{*}\right)^{n+1}$). Thus the construction of the cell decompositions can be repeated for bundles ξ and $\left\{\alpha_{i}\right\}_{i=1}^{n}$ over any base X. We get a Lagrange Grassmann bundle

$$
\tau: L G(V, \omega) \rightarrow X
$$

All that is functorial w.r.t. the automorphisms of the lines ξ and α_{i} 's, (they form a torus $\left(\mathbf{C}^{*}\right)^{n+1}$). Thus the construction of the cell decompositions can be repeated for bundles ξ and $\left\{\alpha_{i}\right\}_{i=1}^{n}$ over any base X. We get a Lagrange Grassmann bundle

$$
\tau: L G(V, \omega) \rightarrow X
$$

$L G(V, \omega)$ admits two (relative) stratifications

$$
\left\{\Omega_{I}\left(F_{\bullet}^{ \pm}, \xi\right) \rightarrow X\right\}_{I}
$$

All that is functorial w.r.t. the automorphisms of the lines ξ and α_{i} 's, (they form a torus $\left(\mathbf{C}^{*}\right)^{n+1}$). Thus the construction of the cell decompositions can be repeated for bundles ξ and $\left\{\alpha_{i}\right\}_{i=1}^{n}$ over any base X. We get a Lagrange Grassmann bundle

$$
\tau: L G(V, \omega) \rightarrow X
$$

$L G(V, \omega)$ admits two (relative) stratifications

$$
\left\{\Omega_{I}\left(F_{\bullet}^{ \pm}, \xi\right) \rightarrow X\right\}_{I}
$$

Assume that $X=G / P$ is a compact manifold, homogeneous with respect to an action of a linear group G. Then X admits an algebraic cell decomposition $\left\{\sigma_{\lambda}\right\}$.

All that is functorial w.r.t. the automorphisms of the lines ξ and α_{i} 's, (they form a torus $\left(\mathbf{C}^{*}\right)^{n+1}$). Thus the construction of the cell decompositions can be repeated for bundles ξ and $\left\{\alpha_{i}\right\}_{i=1}^{n}$ over any base X. We get a Lagrange Grassmann bundle

$$
\tau: L G(V, \omega) \rightarrow X
$$

$L G(V, \omega)$ admits two (relative) stratifications

$$
\left\{\Omega_{I}\left(F_{\bullet}^{ \pm}, \xi\right) \rightarrow X\right\}_{I}
$$

Assume that $X=G / P$ is a compact manifold, homogeneous with respect to an action of a linear group G. Then X admits an algebraic cell decomposition $\left\{\sigma_{\lambda}\right\}$.
The subsets

$$
Z_{I \lambda}^{-}:=\tau^{-1}\left(\sigma_{\lambda}\right) \cap \Omega_{I}\left(F_{\bullet}^{-}, \xi\right)
$$

form an algebraic cell decomposition of $\operatorname{L} L G(V, \omega)$.

Theorem. Fix $I \subset \rho$ and λ. Suppose that the vector bundle \mathcal{J} is globally generated. Then, in \mathcal{J}, the intersection of $\Sigma(W, \xi)$ with the closure of any $\pi^{-1}\left(Z_{I \lambda}^{-}\right)$is represented by a nonnegative cycle.

Theorem. Fix $I \subset \rho$ and λ. Suppose that the vector bundle \mathcal{J} is globally generated. Then, in \mathcal{J}, the intersection of $\Sigma(W, \xi)$ with the closure of any $\pi^{-1}\left(Z_{I \lambda}^{-}\right)$is represented by a nonnegative cycle.
We shall apply the Theorem in the situation when all α_{i} are equal to the same line bundle α (i.e. $W=\alpha^{\oplus n}$) and $\alpha^{-m} \otimes \xi$ is globally generated for $m \geq 3$.

Theorem. Fix $I \subset \rho$ and λ. Suppose that the vector bundle \mathcal{J} is globally generated. Then, in \mathcal{J}, the intersection of $\Sigma(W, \xi)$ with the closure of any $\pi^{-1}\left(Z_{I \lambda}^{-}\right)$is represented by a nonnegative cycle.
We shall apply the Theorem in the situation when all α_{i} are equal to the same line bundle α (i.e. $W=\alpha^{\oplus n}$) and $\alpha^{-m} \otimes \xi$ is globally generated for $m \geq 3$.
Consider the following three cases: the base is always $X=\mathbf{P}^{n}$ and

$$
\begin{gathered}
\xi_{1}=\mathcal{O}(-2), \quad \alpha_{1}=\mathcal{O}(-1) \\
\xi_{2}=\mathcal{O}(1), \quad \alpha_{2}=\mathbf{1} \\
\xi_{3}=\mathcal{O}(-3), \quad \alpha_{3}=\mathcal{O}(-1)
\end{gathered}
$$

We obtain symplectic bundles $V_{i}=\alpha_{i}^{\oplus n} \oplus\left(\alpha_{i}^{*} \otimes \xi_{i}\right)^{\oplus n}$ with twisted symplectic forms ω_{i} for $i=1,2_{\mathcal{O}_{n}} 3$.

To overlap all these three cases we consider the product $X:=\mathbf{P}^{n} \times \mathbf{P}^{n}$

To overlap all these three cases we consider the product $X:=\mathbf{P}^{n} \times \mathbf{P}^{n}$ and set

$$
W:=p_{1}^{*} \mathcal{O}(-1)^{\oplus n}, \quad \xi:=p_{1}^{*} \mathcal{O}(-3) \otimes p_{2}^{*} \mathcal{O}(1)
$$

where $p_{i}: X \rightarrow \mathbf{P}^{n}, i=1,2$, are the projections.

To overlap all these three cases we consider the product $X:=\mathbf{P}^{n} \times \mathbf{P}^{n}$ and set

$$
W:=p_{1}^{*} \mathcal{O}(-1)^{\oplus n}, \quad \xi:=p_{1}^{*} \mathcal{O}(-3) \otimes p_{2}^{*} \mathcal{O}(1)
$$

where $p_{i}: X \rightarrow \mathbf{P}^{n}, i=1,2$, are the projections.
Restricting the bundles W and ξ to the diagonal, or to the factors we obtain the three cases considered above.

To overlap all these three cases we consider the product $X:=\mathbf{P}^{n} \times \mathbf{P}^{n}$ and set

$$
W:=p_{1}^{*} \mathcal{O}(-1)^{\oplus n}, \quad \xi:=p_{1}^{*} \mathcal{O}(-3) \otimes p_{2}^{*} \mathcal{O}(1)
$$

where $p_{i}: X \rightarrow \mathbf{P}^{n}, i=1,2$, are the projections.
Restricting the bundles W and ξ to the diagonal, or to the factors we obtain the three cases considered above.

The space $L G(V, \omega)$ has a cell decomposition $Z_{I, a, b}^{-}$. The dual basis of cohomology (in the sense of linear algebra) is denoted by

$$
e_{I, a, b}=\left[\overline{Z_{I, a, b}^{-}}\right]^{*}
$$

To overlap all these three cases we consider the product $X:=\mathbf{P}^{n} \times \mathbf{P}^{n}$ and set

$$
W:=p_{1}^{*} \mathcal{O}(-1)^{\oplus n}, \quad \xi:=p_{1}^{*} \mathcal{O}(-3) \otimes p_{2}^{*} \mathcal{O}(1)
$$

where $p_{i}: X \rightarrow \mathbf{P}^{n}, i=1,2$, are the projections.
Restricting the bundles W and ξ to the diagonal, or to the factors we obtain the three cases considered above.

The space $L G(V, \omega)$ has a cell decomposition $Z_{I, a, b}^{-}$. The dual basis of cohomology (in the sense of linear algebra) is denoted by

$$
e_{I, a, b}=\left[\overline{Z_{I, a, b}^{-}}\right]^{*}
$$

We have $e_{I, a, b}=e_{I, 0,0} v_{1}^{a} v_{2}^{b}$ and $e_{I, 0,0}=\left[\overline{\Omega_{I}\left(F_{\bullet}^{+}, \xi\right)}\right]$.

Theorem. (MM+PP+AW 2010) Let Σ be a Legendre singularity class. Then $[\Sigma(W, \xi)]$ has nonnegative coefficients in the basis $\left\{e_{I, a, b}\right\}$.

Theorem. ($M M+P P+A W$ 2010) Let Σ be a Legendre singularity class. Then $[\Sigma(W, \xi)]$ has nonnegative coefficients in the basis $\left\{e_{I, a, b}\right\}$.
The bundle \mathcal{J} here is $g g$ (hence desired intersections in \mathcal{J} are nonnegative):
$\tau^{*}\left(\bigoplus_{j=3}^{k+1} \operatorname{Sym}^{j}\left(W^{*}\right) \otimes \xi\right)=$
$\tau^{*}\left(\bigoplus_{j=3}^{k+1} \operatorname{Sym}^{j}\left(\mathbf{1}^{n}\right) \otimes p_{1}^{*} \mathcal{O}(j-3) \otimes p_{2}^{*} \mathcal{O}(1)\right)$.

Theorem. ($M M+P P+A W$ 2010) Let Σ be a Legendre singularity class. Then $[\Sigma(W, \xi)]$ has nonnegative coefficients in the basis $\left\{e_{I, a, b}\right\}$.
The bundle \mathcal{J} here is gg (hence desired intersections in \mathcal{J} are nonnegative):
$\tau^{*}\left(\bigoplus_{j=3}^{k+1} \operatorname{Sym}^{j}\left(W^{*}\right) \otimes \xi\right)=$
$\tau^{*}\left(\bigoplus_{j=3}^{k+1} \operatorname{Sym}^{j}\left(\mathbf{1}^{n}\right) \otimes p_{1}^{*} \mathcal{O}(j-3) \otimes p_{2}^{*} \mathcal{O}(1)\right)$.
Let Σ be a Legendre singularity class. Thom polynomial of Σ, evaluated at the Chern classes of $A=W^{*} \otimes \xi-R$ and $c_{1}(\xi)=v_{2}-3 v_{1}$, is a nonnegative Z-linear combination:

Theorem. ($M M+P P+A W$ 2010) Let Σ be a Legendre singularity class. Then $[\Sigma(W, \xi)]$ has nonnegative coefficients in the basis $\left\{e_{I, a, b}\right\}$.
The bundle \mathcal{J} here is gg (hence desired intersections in \mathcal{J} are nonnegative):
$\tau^{*}\left(\bigoplus_{j=3}^{k+1} \operatorname{Sym}^{j}\left(W^{*}\right) \otimes \xi\right)=$
$\tau^{*}\left(\bigoplus_{j=3}^{k+1} \operatorname{Sym}^{j}\left(\mathbf{1}^{n}\right) \otimes p_{1}^{*} \mathcal{O}(j-3) \otimes p_{2}^{*} \mathcal{O}(1)\right)$.
Let Σ be a Legendre singularity class. Thom polynomial of Σ, evaluated at the Chern classes of $A=W^{*} \otimes \xi-R$ and $c_{1}(\xi)=v_{2}-3 v_{1}$, is a nonnegative Z-linear combination:

$$
\mathcal{T}^{\Sigma}=\sum_{I, a, b} \gamma_{I, a, b} e_{I, a, b}=\sum_{I, a, b} \gamma_{I, a, b}\left[\overline{\Omega_{I}\left(F_{\bullet}^{+}, \xi\right)}\right] v_{1}^{a} v_{2}^{b}
$$

Want: an additive basis of the ring of Legendrian characteristic classes with the property that any Legendrian Thom polynomial is a nonnegative combination of basis elements.

Want: an additive basis of the ring of Legendrian characteristic classes with the property that any Legendrian Thom polynomial is a nonnegative combination of basis elements.
Take a pair of integers p, q.

Want: an additive basis of the ring of Legendrian characteristic classes with the property that any Legendrian Thom polynomial is a nonnegative combination of basis elements.
Take a pair of integers p, q.

$$
\begin{gathered}
\xi^{(p, q)}=\xi_{2}^{\otimes p} \otimes \xi_{3}^{\otimes q} \\
\alpha=\alpha^{(p, q)}=\alpha_{2}^{\otimes p} \otimes \alpha_{3}^{\otimes q}=\alpha_{3}^{\otimes q}
\end{gathered}
$$

Want: an additive basis of the ring of Legendrian characteristic classes with the property that any Legendrian Thom polynomial is a nonnegative combination of basis elements.
Take a pair of integers p, q.

$$
\begin{gathered}
\xi^{(p, q)}=\xi_{2}^{\otimes p} \otimes \xi_{3}^{\otimes q} \\
\alpha=\alpha^{(p, q)}=\alpha_{2}^{\otimes p} \otimes \alpha_{3}^{\otimes q}=\alpha_{3}^{\otimes q}
\end{gathered}
$$

Divide $H^{*}(L G(V, \omega), \mathbf{Q})$ by the relation: $q \cdot v_{1}=p \cdot v_{2}$

Want: an additive basis of the ring of Legendrian characteristic classes with the property that any Legendrian Thom polynomial is a nonnegative combination of basis elements.
Take a pair of integers p, q.

$$
\begin{gathered}
\xi^{(p, q)}=\xi_{2}^{\otimes p} \otimes \xi_{3}^{\otimes q} \\
\alpha=\alpha^{(p, q)}=\alpha_{2}^{\otimes p} \otimes \alpha_{3}^{\otimes q}=\alpha_{3}^{\otimes q}
\end{gathered}
$$

Divide $H^{*}(L G(V, \omega), \mathbf{Q})$ by the relation: $q \cdot v_{1}=p \cdot v_{2}$ that is specializing the parameters to $v_{1}=p \cdot t, v_{2}=q \cdot t$, we obtain the ring $H^{*}\left(L G\left(V^{(p, q)}, \omega^{(p, q)}\right), \mathbf{Q}\right)$ isomorphic to the ring of Legendrian characteristic classes in degrees up to n (provided that $c_{1}(\xi)=v_{2}-3 v_{1}$ is not specialized to 0 .)

Theorem. If p and q are nonnegative, $q-3 p \neq 0$, then the Thom polynomial is a nonnegative combination of the $\left[\overline{\Omega_{I}\left(F_{\bullet}^{+}, \xi\right)}\right] t^{i}$'s.

Theorem. If p and q are nonnegative, $q-3 p \neq 0$, then the Thom polynomial is a nonnegative combination of the $\left[\overline{\Omega_{I}\left(F_{\bullet}^{+}, \xi\right)}\right] t^{i}{ }^{\prime} s$.
The family $\left[\overline{\Omega_{I}\left(F_{\bullet}^{+}, \xi\right)}\right] t^{i}$ is a one-parameter family of bases depending on the parameter p / q.

Theorem. If p and q are nonnegative, $q-3 p \neq 0$, then the Thom polynomial is a nonnegative combination of the $\left[\overline{\Omega_{I}\left(F_{\bullet}^{+}, \xi\right)}\right] t^{i}{ }^{\prime} s$.
The family $\left[\overline{\Omega_{I}\left(F_{\bullet}^{+}, \xi\right)}\right] t^{i}$ is a one-parameter family of bases depending on the parameter p / q.
Case 1. $\xi_{1}=\mathcal{O}(-2), \alpha_{1}=\mathcal{O}(-1)$. This corresponds to fixing the parameter to be $1 ; p=1$ and $q=1 ; v_{1}=v_{2}=t$. Geometrically, this means that we study the restriction of the bundles W and ξ to the diagonal of $\mathbf{P}^{n} \times \mathbf{P}^{n}$.

Theorem. If p and q are nonnegative, $q-3 p \neq 0$, then the Thom polynomial is a nonnegative combination of the $\left[\overline{\Omega_{I}\left(F_{\bullet}^{+}, \xi\right)}\right] t^{i}$'s.
The family $\left[\overline{\Omega_{I}\left(F_{\bullet}^{+}, \xi\right)}\right] t^{i}$ is a one-parameter family of bases depending on the parameter p / q.
Case 1. $\xi_{1}=\mathcal{O}(-2), \alpha_{1}=\mathcal{O}(-1)$. This corresponds to fixing the parameter to be $1 ; p=1$ and $q=1 ; v_{1}=v_{2}=t$.
Geometrically, this means that we study the restriction of the bundles W and ξ to the diagonal of $\mathbf{P}^{n} \times \mathbf{P}^{n}$.
Theorem. The Thom polynomial of a Legendre singularity class Σ is a combination:

$$
\mathcal{T}^{\Sigma}=\sum_{j \geq 0} \sum_{I} \alpha_{I, j} \widetilde{Q}_{I}\left(A \otimes \xi^{-\frac{1}{2}}\right) \cdot t^{j}
$$

Here $t=\frac{1}{2} c_{1}\left(\xi^{*}\right), I \subset \rho$, and $\alpha_{I, j}$ are nonnegative integers.

Legendrian vs. classical

$$
t=v_{1}=v_{2}
$$

Legendrian vs. classical

$t=v_{1}=v_{2}$
Proposition. For a nonempty stable Legendre singularity class Σ, the Lagrangian Thom polynomial (i.e. \mathcal{T}^{Σ} evaluated at $t=0$) is nonzero. (So, also \mathcal{T}^{Σ} is nonzero.)

Legendrian vs. classical

$t=v_{1}=v_{2}$
Proposition. For a nonempty stable Legendre singularity class Σ, the Lagrangian Thom polynomial (i.e. \mathcal{T}^{Σ} evaluated at $t=0$) is nonzero. (So, also \mathcal{T}^{Σ} is nonzero.) Kazarian: The classification of Legendre singularities is parallel to the classification of critical point singularities w.r.t. stable right equivalence. For a Legendre singularity class Σ consider the associated singularity class of maps $f: M \rightarrow C$ from n-dimensional manifolds to curves. We denote the related Thom polynomial by $T p^{\Sigma}$.

Legendrian vs. classical

$t=v_{1}=v_{2}$
Proposition. For a nonempty stable Legendre singularity class Σ, the Lagrangian Thom polynomial (i.e. \mathcal{T}^{Σ} evaluated at $t=0$) is nonzero. (So, also \mathcal{T}^{Σ} is nonzero.) Kazarian: The classification of Legendre singularities is parallel to the classification of critical point singularities w.r.t. stable right equivalence. For a Legendre singularity class Σ consider the associated singularity class of maps $f: M \rightarrow C$ from n-dimensional manifolds to curves. We denote the related Thom polynomial by $T p^{\Sigma}$.
We have

$$
T p^{\Sigma}=\mathcal{T}^{\Sigma} \cdot c_{n}\left(T^{*} M \otimes f^{*} T C\right)
$$

Legendrian vs. classical

$t=v_{1}=v_{2}$
Proposition. For a nonempty stable Legendre singularity class Σ, the Lagrangian Thom polynomial (i.e. \mathcal{T}^{Σ} evaluated at $t=0$) is nonzero. (So, also \mathcal{T}^{Σ} is nonzero.) Kazarian: The classification of Legendre singularities is parallel to the classification of critical point singularities w.r.t. stable right equivalence. For a Legendre singularity class Σ consider the associated singularity class of maps $f: M \rightarrow C$ from n-dimensional manifolds to curves. We denote the related Thom polynomial by $T p^{\Sigma}$.
We have

$$
T p^{\Sigma}=\mathcal{T}^{\Sigma} \cdot c_{n}\left(T^{*} M \otimes f^{*} T C\right)
$$

We know that $T p^{\Sigma}$ is nonzero. One shows that $T p^{\Sigma}$, specialized with $f^{*} T C=\mathbf{1}$ i.e. $t=0$, is also nonzero. The assertion follows from the equation.

Explicit computations that led us to conjecture that the above positivity results might be true were done using mainly the "method of restriction equations"

Explicit computations that led us to conjecture that the above positivity results might be true were done using mainly the "method of restriction equations" of Rimányi, Fehér, Komuves, Bérczi.

Explicit computations that led us to conjecture that the above positivity results might be true were done using mainly the "method of restriction equations"
of Rimányi, Fehér, Komuves, Bérczi.
Several computations were shared with us by Kazarian.

Explicit computations that led us to conjecture that the above positivity results might be true were done using mainly the "method of restriction equations"
of Rimányi, Fehér, Komuves, Bérczi.
Several computations were shared with us by Kazarian.

THE END

