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Abstract

We develop algebro-combinatorial tools for computing the Thom poly-
nomials for the Morin singularities Ai(−) (i ≥ 0). The main tool is the

function F
(i)
r defined as a combination of Schur functions with certain

numerical specializations of Schur polynomials as their coefficients. We
show that the Thom polynomial T Ai for the singularity Ai (any i) asso-
ciated with maps (C•, 0) → (C•+k, 0), with any parameter k ≥ 0, under

the assumption that Σj = ∅ for all j ≥ 2, is given by F
(i)
k+1. Equivalently,

this says that “the 1-part” of T Ai equals F
(i)
k+1. We investigate 2 exam-

ples when T Ai apart from its 1-part consists also of the 2-part being a
single Schur function with some multiplicity. Our computations combine
the characterization of Thom polynomials via the “method of restriction
equations” of Rimányi et al. with the techniques of Schur functions.

1 Introduction

The global behavior of singularities is governed by their Thom polynomials (cf.
[40], [19], [1], [14], [36], [16]). Knowing the Thom polynomial of a singularity η,
denoted T η, one can compute the cohomology class represented by the η-points
of a map.

In the present paper, following a series of papers by Rimányi et al. [37], [35],
[36], [8], [2], we study the Thom polynomials for the singularities Ai associated
with maps (C•, 0)→ (C•+k, 0) with parameter k ≥ 0.

The way of obtaining the thought Thom polynomial is through the solution
of a system of linear equations, which is fine when we want to find one concrete
Thom polynomial, say, for a fixed k. However, if we want to find the Thom poly-
nomials for a series of singularities, associated with maps (C•, 0) → (C•+k, 0)
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with k as a parameter, we have to solve simultaneously a countable family of
systems of linear equations. We do it here for the restriction equations for the
above mentioned singularities. Instead of using Chern monomial expansions
(as the authors of previous papers constantly did), we use Schur function ex-
pansions. This puts a more transparent structure on computations of Thom
polynomials (cf. also [7], [29]).

Another feature of using the Schur function expansions for Thom polynomi-
als is that all the coefficients are nonnegative. This has been recently proved by
A. Weber and the author in [33] (see also [34]).

To be more precise, we use here (the specializations of) supersymmetric
Schur functions also called “Schur functions in difference of alphabets” together
with their three basic properties: vanishing, cancellation and factorization, (cf.
[39], [4], [23], [28], [32], [24], [10], and [21]). These functions contain resultants
among themselves. Their geometric role was illuminated, e.g., in the study of
P-ideals of singularities Σi (cf. [30, end of Sect. 2 and Theorem 11]) which
is based on the enumerative geometry of degeneracy loci of [27]. In fact, in
the present paper (and in [31]), we use the point of view of this last paper to
some extent. We know by the Thom-Damon theorem that T Ai is a Z-linear
combination of Schur functions in TX∗−f∗(TY ∗). Given a positive integer h,
we shall say that a Z-linear combination∑

I

αISI

is an h-combination if for any partition I appearing nontrivially the following
condition (∗)h holds1: I contains the rectangle partition

(k + h, . . . , k + h)

(h times), but it does not contain the larger Young diagram

(k + h+ 1, . . . , k + h+ 1)

(h+1 times). For example, a 1-combination consists of Schur functions contain-
ing a single row (k+1) but not containing (k+2, k+2); a 2-combination consists
of Schur functions containing (k+2, k+2) but not containing (k+3, k+3, k+3)
etc. (An h-combination, with the argument “TX∗−f∗(TY ∗)”, is a typical uni-
versal polynomial supported on the (•−h)th degeneracy locus of the derivative
morphism of the tangent vector bundles.) Since the singularity Ai is of Thom-
Boardman type Σ1, we have by [28, Theorem 10] (based on the structure of
the P-ideal of the singularity Σ1) that all partitions in the Schur expansion of
T Ai contain a single row (k + 1). For a fixed h, let us consider the sum of all
Schur functions appearing nontrivially in T Ai (multiplied by their coefficients)
corresponding to partitions satisfying (∗)h. This h-combination will be called
the h-part of T Ai . Of course, T Ai is a sum of its h-parts.

The main body of this paper is devoted to study the 1-part of the Thom
polynomial for the singularities Ai associated with maps (C•, 0) → (C•+k, 0)
with parameter k ≥ 0. We introduce, via its Schur function expansion, the basic
functions F (A,−) and F (i). Using the properties of these functions (Proposition

1We say that one partition is contained in another if this holds for their Young diagrams
(cf. [21]).
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10 and Corollary 11), we show (Theorem 12) that it gives the Thom polynomial
for Ai when Σj = ∅ for all j ≥ 2. Equivalently, it says that the 1-part of the

Thom polynomial for a generic singularity Ai is equal to F
(i)
k+1. For k = 0, this

polynomial was given in [26] in the Chern monomial basis.
With the help of F (1) and F (2), we reprove the formulas of Thom [40] and

Ronga [38] for A1, A2 and for any parameter k ≥ 0.
We give also computations of two Thom polynomials having apart from

their 1-parts also the nontrivial 2-parts (consisting of single Schur functions
with certain multiplicities). We first reprove the result of Gaffney [11] for A4

and k = 0. This was also done by Rimányi [35]; our approach uses Schur
functions. Then we do the computations for A3 and k = 1; this, in turn, can be
considered as an introduction to the general case A3 (any k) in [31].

In our calculations, we use extensively the functorial λ-ring approach to
symmetric functions developed mainly in Lascoux’s book [21].

Main results of the present paper were announced in [29].
Inspired by the present article, [29], [30], and [31], Özer Öztürk [25] computed

the Thom polynomials for A4 and k = 2, 3.

2 Recollections on Thom polynomials

Our main reference for this section is [36]. We start with recalling what we
shall mean by a “singularity”. Let k ≥ 0 be a fixed integer. By a singularity
we shall mean an equivalence class of stable germs (C•, 0) → (C•+k, 0), where
• ∈ N, under the equivalence generated by right-left equivalence (i.e. analytic
reparametrizations of the source and target) and suspension.

We recall2 that the Thom polynomial T η of a singularity η is a polynomial
in the formal variables c1, c2, . . . that after the substitution

ci = ci(f
∗TY − TX) = [c(f∗TY )/c(TX)]i , (1)

for a general map f : X → Y between complex analytic manifolds, evaluates
the Poincaré dual of [V η(f)], where V η(f) is the cycle carried by the closure of
the set

{x ∈ X : the singularity of f at x is η} . (2)

By codimension of a singularity η, codim(η), we shall mean codimX(V η(f)) for
such an f . The concept of the polynomial T η comes from Thom’s fundamental
paper [40]. For a detailed discussion of the existence of Thom polynomials,
see, e.g., [1]. Thom polynomials associated with group actions were studied by
Kazarian in [14], [15], [16].

According to Mather’s classification, singularities are in one-to-one corre-
spondence with finite dimensional C-algebras. We shall use the following nota-
tion:

– Ai (of Thom-Boardman type Σ1i) will stand for the stable germs with
local algebra C[[x]]/(xi+1), i ≥ 0;

– I2,2 (of Thom-Boardman type Σ2) for stable germs with local algebra
C[[x, y]]/(xy, x2 + y2) ;

2This statement is usually called the Thom-Damon theorem [40], [5].
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– III2,2 (of Thom-Boardman type Σ2) for stable germs with local algebra
C[[x, y]]/(xy, x2, y2) (here k ≥ 1).

In the present article, the computations of Thom polynomials shall use the
method which stems from a sequence of papers by Rimányi et al. [37], [35],
[36], [8], [2]. We sketch briefly this approach, refering the interested reader for
more details to these papers, the main references being the last three mentioned
items.

Let k ≥ 0 be a fixed integer, and let η : (C•, 0) → (C•+k, 0) be a stable
singularity with a prototype κ : (Cn, 0) → (Cn+k, 0). The maximal compact
subgroup of the right-left symmetry group

Autκ = {(ϕ,ψ) ∈ Diff(Cn, 0)×Diff(Cn+k, 0) : ψ ◦ κ ◦ ϕ−1 = κ} (3)

of κ will be denoted by Gη. Even if Autκ is much too large to be a finite
dimensional Lie group, the concept of its maximal compact subgroup (up to
conjugacy) can be defined in a sensible way (cf. [12] and [41]). In fact, Gη
can be chosen so that the images of its projections to the factors Diff(Cn, 0)
and Diff(Cn+k, 0) are linear. Its representations via the projections on the
source Cn and the target Cn+k will be denoted by λ1(η) and λ2(η). The vector
bundles associated with the universal principal Gη-bundle EGη → BGη using
the representations λ1(η) and λ2(η) will be called E′η and Eη. The total Chern
class of the singularity η is defined in H∗(BGη,Z) by

c(η) :=
c(Eη)

c(E′η)
. (4)

The Euler class of η is defined in H2 codim(η)(BGη,Z) by

e(η) := e(E′η) . (5)

Sometimes, it will be convenient not to work with the whole maximal com-
pact subgroup Gη but with its suitable subgroup; this subgroup should be,
however, as “close” to Gη as possible (cf. [36], p. 502). We shall denote this
subgroup by the same symbol Gη.

In the following theorem, we collect information from [36], Theorem 2.4 and
[8], Theorem 3.5, needed for the calculations in the present paper.

Theorem 1 Suppose, for a singularity η, that the Euler classes of all singu-
larities of smaller codimension than codim(η), are not zero-divisors 3. Then we
have
(i) if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;
(ii) T η(c(η)) = e(η).
This system of equations (taken for all such ξ’s) determines the Thom polyno-
mial T η in a unique way. 4

To use this method of determining the Thom polynomials for singularities,
one needs their classification, see, e.g., [6].

3This is the so-called “Euler condition” (loc.cit.).
4To make it precise, we need one more condition that the number of singularities(=contact

orbits) of smaller codimension is finite: we may assume that η is a simple singularity type,
i.e., there is no moduli adjacent to η.
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To effectively use Theorem 1, we need to study the maximal compact sub-
groups of singularities. We recall the following recipe from [36] pp. 505–507.
Let η be a singularity whose prototype is κ : (Cn, 0) → (Cn+k, 0). The germ
κ is the miniversal unfolding of another germ β : (Cm, 0) → (Cm+k, 0) with
dβ = 0. The group Gη is a subgroup of the maximal compact subgroup of the
algebraic automorphism group of the local algebra Qη of η times the unitary
group U(k−d), where d is the difference between the minimal number of relations
and the number of generators of Qη. With β well chosen, Gη acts as right-left
symmetry group on β with representations µ1 and µ2. The representations λ1
and λ2 are

λ1 = µ1 ⊕ µV and λ2 = µ2 ⊕ µV , (6)

where µV is the representation of Gη on the unfolding space V = Cn−m given,
for α ∈ V and (ϕ,ψ) ∈ Gη, by

(ϕ,ψ) α = ψ ◦ α ◦ ϕ−1 . (7)

For example, for the singularity of type Ai: (C•, 0) → (C•+k, 0), we have
GAi

= U(1)× U(k) with

µ1 = ρ1, µ2 = ρi+1
1 ⊕ ρk, µV = ⊕ij=2 ρ

j
1 ⊕⊕ij=1(ρk ⊗ ρ−j1 ) , (8)

where ρj denotes the standard representation of the unitary group U(j). Hence,
we obtain assertion (i) of the following

Proposition 2 (i) Let η = Ai; for any k, writing x and y1,. . . , yk for the
Chern roots of the universal bundles on BU(1) and BU(k),

c(Ai) =
1 + (i+ 1)x

1 + x

k∏
j=1

(1 + yj) , (9)

e(Ai) = i! xi
k∏
j=1

(yj − ix) · · · (yj − 2x)(yj − x) . (10)

(ii) Let η = I2,2. Denote by H the extension of U(1) × U(1) by Z/2Z (“the
group generated by multiplication on the coordinates and their exchange”). For
k = 0, we have Gη = H. Hence, for the purpose of our computations we can use
Gη = U(1)× U(1). Writing x1, x2 for the Chern roots of the universal bundles
on two copies of BU(1),

c(I2,2) =
(1 + 2x1)(1 + 2x2)

(1 + x1)(1 + x2)
. (11)

(iii) Let η = III2,2; for k = 1, Gη = U(2), and writing x1, x2 for the Chern
roots of the universal bundles on BU(2), we have

c(III2,2) =
(1+2x1)(1+2x2)(1+x1+x2)

(1+x1)(1+x2)
. (12)

(Assertions (ii) and (iii) are obtained, in a standard way, following the instruc-
tions of [36], Sect. 4. Assertion (ii) is proved in [36, pp. 506–507], whereas
assertion (iii) stems from [2, p. 65].)
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3 Recollections on Schur functions

In this section, we collect needed notions related to symmetric functions. We
adopt a functorial point of view of [21]. Namely, given a commutative ring,
we treat symmetric functions as operators acting on the ring. We shall give
here only a very brief summary of the corresponding material from our previous
paper [30].

Form ∈ N, by “an alphabet Am” we shall mean an alphabet A = (a1, . . . , am)
(of cardinality m); ditto for Bn = (b1, . . . , bn), Yk = (y1, . . . , yk), and X2 =
(x1, x2).

Definition 3 Given two alphabets A, B, the complete functions Si(A−B) are
defined by the generating series (with z an extra variable):∑

Si(A−B)zi =
∏
b∈B

(1−bz)/
∏
a∈A

(1−az) . (13)

Convention 4 We shall often identify an alphabet A = {a1, . . . , am} with the
sum a1 + · · ·+am and perform usual algebraic operations on such elements. For
example, Ab will denote the alphabet (a1b, . . . , amb). We will give priority to the
algebraic notation over the set-theoretic one.

Definition 5 Given a partition5 I = (0 ≤ i1 ≤ i2 ≤ . . . ≤ is) ∈ Ns, and
alphabets A and B, the Schur function SI(A−B) is

SI(A−B) :=
∣∣∣Sip+p−q(A−B)

∣∣∣
1≤p,q≤s

. (14)

These functions are often called supersymmetric Schur functions or Schur func-
tions in difference of alphabets. Their properties were studied, among others,
in [4], [23], [28], [32], [24], [10], and [21]. From the last item, we borrow in-
creasing “French” partitions and the determinant of the form (14) evaluating a
Schur function. We shall use the the simplified notation i1i2 · · · is for a partition
(i1, . . . , is).

We have the following cancellation property:

SI((A + C)− (B + C)) = SI(A− B) . (15)

We identify partitions with their Young diagrams, as is customary.
We record the following property (loc.cit.), justifying the notational remark

from the end of Section 2; for a partition I,

SI(A−B) = (−1)|I|SJ(B−A) = SJ(B∗−A∗) , (16)

where J is the conjugate partition of I (i.e. the consecutive rows of the diagram
of J are the transposed columns of the diagram of I), and A∗ denotes the
alphabet {−a1,−a2, . . .}.

Fix two positive integers m and n. We shall say that a partition I = (0 <
i1 ≤ i2 ≤ · · · ≤ is) is contained in the (m,n)-hook if either s ≤ m, or s > m
and is−m ≤ n. Pictorially, this means that the Young diagram of I is contained
in the “tickened” hook:

5We identify partitions with their Young diagrams, as is customary.

6



-�

6

?

n

m

We record the following vanishing property. Given alphabets A and B of
cardinalities m and n, if a partition I is not contained in the (m,n)-hook, then
(loc.cit.):

SI(A− B) = 0 . (17)

In the present paper, by a symmetric function we shall mean a Z-linear
combination of the operators SI(−).

We shall use the following convention from [22].

Convention 6 We may need to specialize a letter to 4, but this must not be
confused with taking four copies of 1. To allow one, nevertheless, specializing a
letter to an (integer, or even complex) number r inside a symmetric function,
without introducing intermediate variables, we write r for this specialization.
Boxes have to be treated as single variables. For example,

Si(2) = i+ 1 but Si( 2 ) = 2i .

A similar remark applies to Z-linear combinations of variables. We have

S2(X2) = x21 + x1x2 + x22 but S2( x1+x2 ) = x21 + 2x1x2 + x22 .

Definition 7 Given two alphabets A,B, we define their resultant:

R(A,B) :=
∏

a∈A, b∈B
(a−b) . (18)

For example, we have the following formal identity:

i!(−x)i
k∏
j=1

(ix−yj) · · · (2x−yj)(x−yj) = R
(
x+ 2x + · · ·+ ix ,Yk+ (i+1)x

)
.

(19)
We have (cf. [21])

R(Am,Bn) = S(nm)(A−B) =
∑
I

SI(A)S(nm)/I(−B) , (20)

where the sum is over all partitions I ⊂ (nm).
When a partition is contained in the (m,n)-hook and at the same time it

contains the rectangle (nm), then we have the following factorization property
(loc.cit.): for partitions I = (i1, . . . , im) and J = (j1, . . . , js),

S(j1,...,js,i1+n,...,im+n)(Am − Bn) = SI(A) R(A,B) SJ(−B) . (21)
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Rather than the Chern classes

ci(f
∗TY − TX) = [f∗c(TY )/c(TX)]i ,

we shall use Segre classes Si of the virtual bundle TX∗−f∗(TY ∗), i.e. complete
symmetric functions Si(A−B) for the alphabets of the Chern roots A,B of TX∗

and TY ∗.
In the present paper, it will be more handy to use, instead of k, a “shifted”

parameter
r := k + 1 . (22)

Sometimes, we shall write η(r) for the singularity η : (C•, 0) → (C•+r−1, 0),
and denote the Thom polynomial of η(r) by T ηr – to emphasize the dependence
of both items on r.

Note that in our notation, the Thom polynomial for the singularity A1(r) for
r ≥ 1, is: T A1

r = Sr, instead of ck+1 in [36]. In general, a Thom polynomial in
terms of the ci’s (in those papers) will be written here as a linear combination of
Schur functions obtained by changing each ci to Si and expanding in the Schur
function basis. Another example is the Thom polynomial for A2(1): c21 + c2
rewritten in our notation as T A2

1 = S11 + 2S2.

Recall (from the Introduction) that the h-part of T Ai
r is the sum of all Schur

functions appearing nontrivially in T Ai
r (multiplied by their coefficients) such

that the corresponding partitions satisfy the following condition: I contains
the rectangle partition

(
(r+h−1)h

)
, but it does not contain the larger Young

diagram
(
(r+h)h+1

)
. The polynomial T Ai

r is a sum of its h-parts, h = 1, 2, . . ..

4 Functions F (A,−) and F
(i)
r

We now pass to the following function F which will give rise to the 1-part of

T Ai
r , i.e. to the function F

(i)
r that will be studied in this section. Fix positive

integers m and n. For an alphabet A of cardinality m, we define

F (A,−) :=
∑
I

SI(A)Sn−im,...,n−i1,n+|I|(−) , (23)

where the sum is over partitions I = (i1 ≤ i2 ≤ · · · ≤ im ≤ n), i.e. over
I ⊂ (nm).

Lemma 8 For a variable x and an alphabet B of cardinality n,

F (A, x− B) = R(x+ Ax,B) . (24)

Proof. For a fixed partition I = (i1 ≤ i2 ≤ · · · ≤ im ≤ n), it follows from the
factorization property (21) that

Sn−im,...,n−i1,n+|I|(x− B) = S(nm)/I(−B) R(x,B) x|I| .

Hence, using SI(Ax) = SI(A)x|I|, Eq. (20) and Eq. (18), we have

F (A, x− B) =
∑
I

SI(A)S(nm)/I(−B) R(x,B) x|I|

=
∑
I

SI(Ax) S(nm)/I(−B) R(x,B)

= R(Ax,B) R(x,B) = R(x+ Ax,B) .
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The lemma has been proved. 2

The following function F
(i)
r will be basic for computing the Thom polyno-

mials for Ai (i ≥ 1). We set

F (i)
r (−) :=

∑
J

SJ( 2 + 3 + · · ·+ i )Sr−ji−1,...,r−j1,r+|J|(−) , (25)

where the sum is over partitions J ⊂ (ri−1), and for i = 1 we understand

F
(1)
r (−) = Sr(−).

Example 9 We have

F (2)
r =

∑
j≤r

Sj( 2 )Sr−j,r+j =
∑
j≤r

2jSr−j,r+j ;

F (3)
r =

∑
j1≤j2≤r

Sj1,j2( 2 + 3 )Sr−j2,r−j1,r+j1+j2 ;

in particular,

F
(3)
1 = S111 + 5S12 + 6S3

and
F

(3)
2 = S222 + 5S123 + 6S114 + 19S24 + 30S15 + 36S6;

F (4)
r =

∑
j1≤j2≤j3≤r

Sj1,j2,j3( 2 + 3 + 4 )Sr−j3,r−j2,r−j1,r+j1+j2+j3 ;

in particular,

F
(4)
1 = S1111 + 9S112 + 26S13 + 24S4

and

F
(4)
2 =S2222 + 9S1223 + 26S1124 + 24S1115 + 55S224 + 210S125 + 216S116

+ 391S26 + 555S17 + 507S8 ;

F
(i)
1 =

∑
j≤i−1

S1j ( 2 + 3 + · · ·+ i )S1i−j−1,j+1 .

In the following, we shall tacitly assume that x, x1, x2, and Br are variables6

(though many results remain valid without this assumption).

The following result gives the key algebraic property of F
(i)
r .

Proposition 10 We have

F (i)
r (x− Br) = R(x+ 2x + 3x + · · ·+ ix ,Br) . (26)

6Note that these variables will correspond in the following to the Chern roots of the cotan-
gent bundles. On the contrary, in Proposition 2 the Chern roots of the tangent bundles were
used. This causes some differences of signs in several formulas. The same remark applies to
our former paper [30].
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Proof. The assertion follows from Lemma 8 with m = i− 1, n = r, and

A = 2 + 3 + · · ·+ i . 2

Corollary 11 Fix an integer i ≥ 1.
(i) For an integer p ≤ i, we have

F (i)
r (x− Br−1 − px ) = 0 . (27)

(ii) Moreover, we have

F (i)
r (x−Br−1− (i+1)x ) = R(x+ 2x + 3x + · · ·+ ix ,Br−1+ (i+1)x ) . (28)

Proof. Substituting in Eq. (26):

Br = Br−1 + px

for p ≤ i, and, respectively,

Br = Br−1 + (i+1)x ,

we get the assertions. 2

5 Towards Thom polynomials for Ai(r)

In the following theorem, we shall consider maps f : X → Y with degeneracies.

Theorem 12 Suppose that Σj(f) = ∅ for j ≥ 2 7. Then, for any r ≥ 1, we
have

T Ai
r = F (i)

r . (29)

Proof. By the assumption Σj(f) = ∅ for j ≥ 2, the Euler condition (needed in
Theorem 1) is satisfied here for any i ≥ 0 and r ≥ 1. The equations character-
izing T Ai

r in the sense of Theorem 1 are, for p ≤ i,

P (x− Br−1 − px ) = 0 , (30)

and additionally, invoking Eq. (19),

P (x−Br−1− (i+1)x ) = R(x+ 2x + 3x + · · ·+ ix ,Br−1+ (i+1)x ) . (31)

It follows from Corollary 11 that P = F
(i)
r satisfies these equations. The theorem

has been proved. 2

Corollary 13 For any singularity Ai(r), the first part of its Thom polynomial

is equal to F
(i)
r .

In the special case r = 1, Porteous [26] gave an expression for the Thom poly-
nomial from the theorem in terms of the Chern monomial basis (see also [20]).

The functions F
(1)
r , F

(2)
r give the Thom polynomials for A1, A2 (any r) for

a general map f : X → Y .

7This says that the kernel of the derivative map df : TX → f∗TY of f is a line bundle.
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Theorem 14 ([40], [38]) The polynomials Sr and
∑
j≤r 2jSr−j,r+j are

Thom polynomials for the singularities A1(r) and A2(r).

Proof. Since only A0 has smaller codimension than A1, and only A0, A1 are
of smaller codimension than A2, the Euler conditions hold, and the equations
from Theorem 1 characterizing these Thom polynomials are:

P (−Br−1) = 0, P (x− Br−1 − 2x ) = R(x,Br−1+ 2x ) (32)

for A1, and

P (−Br−1) = P (x− Br−1 − 2x ) = 0,

P (x−Br−1 − 3x ) = R(x+ 2x ,Br−1+ 3x )
(33)

for A2. Hence the assertion follows from Corollary 11.8 2

6 Two examples

In the present section, we show two (relatively simple) examples of Schur func-
tion expansions of Thom polynomials for Ai, where two h-parts appear. The
method used will be applied in [31] to more complicated singularities. Recall

that the Thom polynomial T Ai
r is a sum of its h-parts, the 1-part being F

(i)
r .

To get the correct Thom polynomial, one must add to F
(i)
r the h-parts of T Ai

r

for h = 2, 3, . . ..
Let us discuss first A4 for r = 1 (its codimension is 4). Then the singularities

6= A4, whose codimension is ≤ codim(A4) are: A0, A1, A2, A3, I2,2. The Thom
polynomial9 is

T A4
1 = S1111 + 9S112 + 26S13 + 24S4 + 10S22 . (34)

We have
F

(4)
1 = S1111 + 9S112 + 26S13 + 24S4 . (35)

By Corollary 11, this function satisfies the following equations imposed by A0,
A1, A2, A3, A4:

F
(4)
1 (0) = F

(4)
1 (x− 2x ) = F

(4)
1 (x− 3x ) = F

(4)
1 (x− 4x ) = 0 , (36)

F
(4)
1 (x− 5x ) = R(x+ 2x + 3x + 4x , 5x ) . (37)

However, F
(4)
1 does not satisfy the vanishing imposed by I2,2. Namely, we have

F
(4)
1 (X2 − 2x1 − 2x2 ) = (−10)x1x2(x1 − 2x2)(x2 − 2x1) . (38)

To see this, invoke Proposition 10:

F
(4)
1 (x− B1) = R(x+ 2x + 3x + 4x ,B1) . (39)

8Or, as the referee points out, it is simpler to say that this follows from Theorem 12 since
codim Σ2 is greater than codimAi (i = 1, 2).

9This Thom polynomial was originally computed by Gaffney in [11] via the desingulariza-
tion method. Its alternative derivation via solving equations imposed by the above singularities
was done by Rimányi in [35]). Both authors used Chern monomial expansions.
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Substituting to the LHS of Eq. (38) x1 = 0, we get by this proposition

F
(4)
1 (x2 − 2x2 ) = R(x2 + 2x2 + 3x2 + 4x2 , 2x2 ) = 0 ,

and substituting x1 = 2x2,

F
(4)
1 (x2 − 2x1 ) = R(x2 + 2x2 + 3x2 + 4x2 , 2x1 )

= R(x2 + 2x2 + 3x2 + 4x2 , 4x2 ) = 0 .

Therefore
x1x2(x1 − 2x2)(x2 − 2x1)

divides this LHS.
To compute the resulting factor we use the specialization x1 = x2 = 1. We

then have
x1x2(x1 − 2x2)(x2 − 2x1) = 1 ,

and S1111 = 28, S112 = −4, S13 = −1, S4 = 1. Hence the factor is

F
(4)
1 = 1 · 28 + 9 · 4 + 26 · (−1) + 24 · 1 = −10 , (40)

and Eq. (38) is now proved.
On the other hand, the Schur function S22 satisfies Eqs. (36):

S22(0) = S22(x− 2x ) = S22(x− 3x ) = S22(x− 4x )

because the partition 22 is not contained in the (1, 1)-hook. By the same reason,
S22 satisfies Eq. (37) with its RHS replaced by zero:

S22(x− 5x ) = 0 .

Moreover, we have

S22(X2− 2x1 − 2x2 ) = R(X2, 2x1 + 2x2 ) = x1x2(x1−2x2)(x2−2x1) . (41)

Combining Eq. (38) with Eq. (41), the desired expression (34) follows.

We now pass to the second example: A3 and r = 2. The Thom polynomial
in this case was computed originally by Rimányi [36]. We shall now give its
Schur function expansion. (It is easy to see that the Thom polynomial for A3

and r = 1 is just equal to F
(3)
1 .)

Since the singularities 6= A3, whose codimension is ≤ codim(A3) are: A0, A1,
A2 and III2,2 (cf. [6]), Theorem 1 yields the following equations characterizing

T A3
2 , where b is a variable:

P (−b) = P (x− b− 2x ) = P (x− b− 3x ) = 0 , (42)

P (x− b− 4x ) = R(x+ 2x + 3x , b+ 4x ) (43)

P (X2 − D) = 0 . (44)

Here,
D = 2x1 + 2x2 + x1 + x2 .

12



By Corollary 11, the first four equations are satisfied by the function F
(3)
2 .

However F
(3)
2 does not satisfy the last vanishing, imposed by III2,2. We shall

“modify” F
(3)
2 in order to obtain the Thom polynomial for A3(2).

We claim that this Thom polynomial is equal to

S222 + 5S123 + 6S114 + 19S24 + 30S15 + 36S6 + 5S33 , (45)

and it differs from its 1-part F
(3)
2 by 5S33 which is its 2-part. Indeed, arguing

similarly as in the previous example, we have

F
(3)
2 (X2 − D) = (−5)(x1x2)2(x1 − 2x2)(x2 − 2x1) .

On the other hand, the Schur function S33 satisfies Eqs. (42):

S33(0) = S33(x− b− 2x ) = S33(x− b− 3x ) = 0

because the partition 33 is not contained in the (1, 2)-hook. By the same reason,
S33 satisfies Eq. (43) with its RHS replaced by zero:

S33(x− b− 4x ) = 0 .

Moreover, we have

S33(X2 − D) = R(X2,D) = (x1x2)2(x1 − 2x2)(x2 − 2x1) . (46)

Summing up, we get that the Thom polynomial for A3(2) has Schur function
expansion (45) indeed.

In [31], we shall give a parametric Schur function expansion of the Thom
polynomials for the singularities A3(r) with parameter r ≥ 1.

Remark 15 Let rank(T Ai
r ) be the largest h such that there exists a nontrivial

h-part in T Ai
r . By the results of the present paper, we have

• rank(T Ai
r ) = 1 for i = 1, 2 and any r;

• rank(T A3
1 ) = 1, rank(T A3

2 ) = 2, and rank(T A4
1 ) = 2.

Moreover, we have

• rank(T A3
r ) = 2 for r ≥ 2 ([30]);

• rank(T A4
2 ) = 2 ([36], [33]);

• rank(T A4
r ) = 2 for r = 3, 4 ([25]).

Since codim(Ai(r)) = ir, for i ≥ 2 and r ≥ 1, we clearly have

rank(T Ai
r ) ≤ i− 1.

This invariant (also for other singularities) will be discussed in a subsequent
paper.
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Notes 1. After the appearance of the first version [29] of the present paper,
we received a letter from Kazarian [17] informing us that he has found another
formula for T Ai

r under the assumptions of Theorem 12, but modulo a certain
ideal (cf. [18]).
2. As the referee points out, the Thom polynomials for Morin singularities
have been recently also studied – using quite different methods – by Fehér and
Rimányi in [9], and by Bérczi and Szenes in [3].
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[9] L. Fehér, R. Rimányi, On the structure of Thom polynomials of singularities, to
appear in Bull. London Math. Soc.

[10] W. Fulton, P. Pragacz, Schubert varieties and degeneracy loci, Springer LNM
1689 (1998).

[11] T. Gaffney, The Thom polynomial of Σ1111, in: “Singularities”, Proc. Symposia
in Pure Math. 40(1), 399–408, AMS, 1983.

[12] K. Jänich, Symmetry properties of singularities of C∞-functions, Math. Ann. 238
(1979), 147–156.

14
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Université Paris 7, 1985.

[24] I. G. Macdonald, Symmetric functions and Hall-Littlewood polynomials, Oxford
Math. Monographs, Second Edition, 1995.
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(M-P. Malliavin ed.), Springer LNM 1478 (1991), 130–191.

[29] P. Pragacz, Thom polynomials and Schur functions I, Preprint (August 2005),
math.AG/0509234.

[30] P. Pragacz, Thom polynomials and Schur functions: the singularities I2,2(−),
Ann. Inst. Fourier. 57 (2007), 1487–1508.

[31] P. Pragacz, Thom polynomials and Schur functions: the singularities A3(−), in
preparation.

[32] P. Pragacz, A. Thorup, On a Jacobi-Trudi identity for supersymmetric polyno-
mials, Adv. in Math. 95 (1992), 8–17.

15



[33] P. Pragacz, A. Weber, Positivity of Schur function expansions of Thom polyno-
mials, Fund. Math. 195 (2007), 85–95.

[34] P. Pragacz, A. Weber, Thom polynomials of invariant cones, Schur functions,
and positivity, to appear in: ”Algebraic cycles, sheaves, shtukas, and moduli”,
Trends in Mathematics, Birkhäuser.
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