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Abstract
Using divided differences associated with the orthogonal groups, we investigate the structure of the

polynomial rings over the rings of invariants of the corresponding Weyl groups. We study in more

detail the action of orthogonal divided differences on some distinguished symmetric polynomials (P̃ -

polynomials) and relate it to vertex operators. Relevant families of orthogonal Schubert polynomials,

generalizing P̃ -polynomials, and well-suited to intersection theory computations, are also studied.
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Introduction

Divided differences were introduced by Newton in his famous interpolation for-
mula (cf. [N, pp.481–483], and [L] for some historical comments).

Their importance in geometry was shown by Bernstein-Gel’fand-Gel’fand [BGG]
and Demazure [D1,D2] in the context of Schubert calculus for generalized flag vari-
eties associated with semisimple algebraic groups in the early 1970’s. More recently,
simple divided differences, interpreted as correspondences in flag bundles, were ex-
tensively used in the sequence of papers [F1,F2,F3] by Fulton in the context of
degeneracy loci associated with classical groups. Still another interpretation of di-
vided differences, as Gysin morphisms in the cohomology of flag bundles associated
with semisimple algebraic groups, was discussed in [P2, Sect.4] and [PR, Sect.5].
We refer to the lecture notes [FP] for an introduction.

The case of SL(n) has been developed by the first author and Schützenberger
(see e.g. [LS1,LS2,LS3] and [M2]).

For other classical groups, parallel studies were done by Billey-Haiman [BH],
Fomin-Kirillov [FK], Ratajski and the second author [PR], and by the authors [LP1].
The present paper is a continuation of [LP1]. Here we study divided differences
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2 ORTHOGONAL DIVIDED DIFFERENCES AND VERTEX OPERATORS

associated with the orthogonal groups SO(2n) and SO(2n + 1) (i.e. for types D
and B). The results for type B are an immediate adaptation of the results for type
C given in [LP1]. We summarize them in the appendix. We add, however, a certain
new result (Theorem 9) for type B, whose C-analogue was not needed in our former
paper [LP1].

Our results for type D require some new computations with vertex operators,
that are furnished in Section 3 of the present paper and summarized in our main
Theorem 11. In order to simplify the computations with divided differences, we
display them as planar arrays, which allows us to perform some kind of “ jeu de
taquin”. This offers a certain technical novelty w.r.t. our former paper [LP1]. In
type Cn (or Bn), the key rôle was/is played by the divided differences of the form

(∂0∂1 · · · ∂n−1) · · · (∂0∂1 · · · ∂n−k) , (∗)

where k ≤ n. It appears that in type Dn a similar rôle is played by the divided
differences of the form

(∂♥∂2 · · · ∂n−1∂1∂2 · · · ∂n−2) · · · (∂♥∂2 · · · ∂n−2k+1∂1∂2 · · · ∂n−2k) , (∗∗)

where k ≤ n/2. Here ∂i, for i > 0, are Newton’s (simple) divided differences:

f ∂i :=
f − f(. . . , xi+1, xi, . . . )

xi − xi+1
,

and moreover we set

f ∂0 :=
f − f(−x1, x2, . . . )

−x1
,

f ∂♥ :=
f − f(−x2,−x1, x3, . . . )

−x1 − x2
.

We compose the simple orthogonal divided differences in (*) and (**) from left to
right. As the the Weyl group of type D is naturally embedded in the Weyl group
of type B, the divided difference (**) can be expressed in terms of (*). Such basic
relations are given in Proposition 6 and Corollary 8.

The symmetric functions which are most adapted to orthogonal divided differ-

ences are P̃ -polynomials [PR], which are a variant of Schur P -polynomials.
Our paper is of an algebro-combinatorial nature but its motivation comes from

geometry. The algebro-combinatorial properties studied here should be useful in
Schubert calculus associated with orthogonal groups and the related degeneracy
loci.

The computations of this paper are closely related to the ones in [LLT1]; we plan
to develop this link in some future publication.

The algebro-combinatorial techniques, used in the present paper, are chosen to be
as elementary as possible. This should help the reader, with more geometric and
less algebro-combinatorial background, to read the paper. We mention however,
that several results, used in the proof of Theorem 9, in the appendix, are particular
instances of more general properties of Hall–Littlewood polynomials (see [LLT2]
and [LP2]).

Let us remark that there is also an interesting algebra and combinatorics of
“isobaric divided differences”, with associated Grothendieck polynomials (cf. [FL]).
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This work has extensively used ACE ([V]) for explicit computations.

It is our pleasure and honor to dedicate the present article to the mathematician
whose recent work has illuminated important connections between geometry and
combinatorics.

NOTATION AND CONVENTIONS :

A vector (of length m) is a sequence [v1, . . . , vm] ∈ Zm.
We will compare vectors of the same lengths, writing

[v1, . . . , vm] ⊆ [u1, . . . , um]

if vi ≤ ui for all i = 1, . . . ,m.
Given a vector α = [α1, . . . , αm], we will write |α| for the sum of its components.
A partition is an equivalence class of sequences [i1 ≥ · · · ≥ im] ∈ Nm, where we

identify the sequences [i1, . . . , im] with [i1, . . . , im, 0]. We denote the corresponding
partition by I = (i1, . . . , im), by taking any representative sequence.

A part of a partition I, is a nonzero component of any sequence that represents
I.

The length of a partition I is the number of its nonzero parts, denoted `(I).
We call a partition strict if all its parts are different.
We write I ⊆ J for two partitions I and J (of possibly different lengths) if the

same relation holds for any pair of the same length representing them.
All operators act, in this paper, on their left.
Polynomials are usually treated as operators acting by multiplication.

1. Divided differences

Let n be a fixed (throughout the paper) positive integer.
The symmetric group (i.e. the Weyl group of type A) Sn is the group with

generators s1, . . . , sn−1 subject to the relations

s2
i = 1, si−1 si si−1 = sisi−1 si , sisj = sjsi ∀i, j : |i− j| > 1 . (1.1)

We shall call s1, . . . , sn−1 simple transpositions of Sn.
The hyperoctahedral group (i.e. the Weyl group of type B) Bn is an extension

of Sn by an element s0 such that

s2
0 = 1, s0 s1 s0 s1 = s1 s0 s1 s0, s0 si = si s0 for i ≥ 2. (1.2)

The Weyl group Dn of type D is the extension of Sn by an element s♥ such that

s2
♥ = 1, s1s♥ = s♥ s1, s♥ s2 s♥ = s2s♥ s2, s♥ si = si s♥ for i > 2. (1.3)

The group Dn can be thought as a subgroup of Bn by sending s♥ to s0 s1 s0.

The above three groups act on vectors of length n by

[v1, . . . , vn] si := [v1, . . . , vi−1, vi+1, vi, vi+2, . . . , vn]
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[v1, . . . , vn] s0 := [−v1, v2, . . . , vn]

[v1, . . . , vn] s♥ := [−v2,−v1, v3, . . . , vn]

The orbit of the vector v = [1, . . . , n] under W = Sn, Bn or Dn, is in bijection
with the elements of W , and we shall code each w ∈W by the vector [1, . . . , n]w,
writing ı instead of −i.

The three groups W = Sn, Bn, Dn also act on the ring of polynomials in n
indeterminates X = {x1, . . . , xn}: the simple transposition si, i ≥ 1, exchanges xi
and xi+1, s0 sends x1 to −x1, s♥ sends x1 to −x2 and x2 to −x1, the action being
trivial in the non-listed cases. We shall denote by fw the image of a polynomial
f ∈ Z[X ] under w ∈ W , and write xα, with α = [α1, . . . , αn] ∈ Nn, for the
monomial xα1

1 · · ·xαn
n .

Let Pol be the ring of polynomials in X with coefficients in Z[ 1
2 ] (we need

only division by 2). For any m ≤ n, let Sym(m|n − m) denote the subring of
Pol consisting of polynomials invariant under all si, 1 ≤ i ≤ n − 1, i 6= m, and
let Sym(n) = Sym(n|0) = Sym(0|n) be the ring of symmetric polynomials. It
contains as subrings SymB(n), the ring of polynomials invariant under Bn, and
SymD(n), the invariants of Dn. It is easy to see that Pol is a free module over
these different rings, generated by xα, α ⊆ [n − 1, . . . , 0] (or α ⊆ [0, . . . , n − 1])
over Sym(n), by xα, α ⊆ [2n−1, 2n−3, . . . , 1] (or α ⊆ [1, . . . , 2n−3, 2n−1]) over
SymB(n), and by xα, α ⊆ [2n− 2, 2n− 4, . . . , 2, 0] (or α ⊆ [0, 2, . . . , 2n− 2]) over
SymD(n).

The respective elements of maximal length in each of the groups are

ω := [n, . . . , 1] for Sn ,

wB0 := [1, . . . , n] for Bn ,

wD0 :=

{
[1, . . . , n] n even
[1, 2, . . . , n] n odd

for Dn. We shall also need the following element of Dn:

υ := ωwD0 =

{
[n, . . . , 1] n even
[n, n− 1, . . . , 1] n odd .

Relations between reduced decompositions in W can be represented planarly. By
definition, a planar display will be identified with its reading from left to right and
top to bottom (row–reading). We shall also use column–reading, that is, reading
successive columns downwards, from left to right.

For example, we will write
2
1 2

≡ 1 2
1

for the following equality for simple transpositions:

s2 s1 s1 = s1 s2 s1 .
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Suppose that a rectangle is filled row-wise from left to right, and column-wise
from bottom to top with consecutive numbers from {1, . . . , n− 1}.

Then one easily checks that its row–reading and column–reading produce two
words which, interpreted as words in the si, are congruent modulo the Coxeter
relations.

Here is an example of such a congruence :

3456
2345

1234
≡

3
2
1
·

4
3
2
·

5
4
3
·

6
5
4

the congruence class being conveniently denoted by the rectangle
3 4 5 6
2 3 4 5
1 2 3 4

.

More generally, the planar arrays that we shall write, will have the property
that their row–reading and column–reading are congruent modulo Coxeter relations
(cf. [LS2,LS3] or [EG] for a “jeu de taquin” on reduced decompositions). In this
notation, one has, for any integers a, b, c, d, k : 1 ≤ a < b, c < d ≤ n, a+ d = b+ c,
k < d− b, the congruence

b+ 1 · · · b+ k
b · · · · · · · · · d
...

...
a · · · · · · · · · c

≡
b · · · · · · · · · d
...

...
a · · · · · · · · · c

c− k · · · c− 1

(1.4)

It is convenient to work in the group algebra of W = Sn, Bn or Dn. The works
of Young and Weyl have stressed the rôle of the alternating sum of elements of
these groups. Let, for W = Sn, Bn or Dn,

ΩW :=
∑
w∈W

(−1)`(w)w . (1.5)

Using that Bn (resp. Dn) is isomorphic to the semi-direct product Sn nZn2 (resp.
Sn n Zn−1

2 ), one obtains the following factorizations in the group algebra:

ΩBn = ΩSn

∏
1≤i≤n

(1− τi) =
∏

1≤i≤n

(1− τi) ΩSn , (1.6)

ΩDn =
1

2
ΩSn

( ∏
1≤i≤n

(1 + τi) +
∏

1≤i≤n

(1− τi)
)

=
1

2

( ∏
1≤i≤n

(1 + τi) +
∏

1≤i≤n

(1− τi)
)

ΩSn , (1.7)

where τ1 := s0, and τi = si−1 τi−1 si−1 for i > 1. The elements ΩW , as operators
on the ring of polynomials Pol, can be obtained from the cases of S2, B1, D2. To
see this, we first need to define simple divided differences :

Pol 3 f 7→ f ∂i := (f − fsi)/(xi − xi+1), i ≥ 1 , (1.8)
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Pol 3 f 7→ f ∂0 := (f − fs0)/(−x1) , (1.9)

Pol 3 f 7→ f ∂♥ := (f − fs♥)/(−x1 − x2) . (1.10)

The ∂i, ∂0, ∂♥ satisfy the Coxeter relations (1.1)–(1.3), together with the rela-
tions

∂2
♥ = 0 = ∂2

i for 0 ≤ i < n . (1.11)

Therefore, to any element w of the group W , there corresponds a divided difference
∂w. Any reduced decomposition si1 si2 · · · si` = w of w gives rise to a factorization
∂i1 ∂i2 · · · ∂i` of ∂w (cf. [BGG] and [D1,D2]).

We shall display divided differences planarly according to the same conventions
as for products of si’s.

For example, the divided difference

∂0∂1∂2∂3∂0∂1∂2∂0∂1

will be displayed as
∂0 ∂1 ∂2 ∂3

∂0 ∂1 ∂2

∂0 ∂1

As said before, the displays that we write have the property that their row–reading is
congruent to their column–reading, and thus the preceding one encodes the equality

∂0∂1∂0∂2∂1∂0∂3∂2∂1 = ∂0∂1∂2∂3∂0∂1∂2∂0∂1 .

We shall especially need the maximal divided differences ∂ω, ∂wB
0

, and ∂wD
0

. To
describe them using alternating sums of group elements, we define

∆ :=
∏

1≤i<j≤n

(xi − xj) = xn−1
1 · · ·x0

n ΩSn , (1.12)

∆B :=
n∏
i=1

xi
∏

n≥i>j≥1

(x2
i − x2

j ) =
1

2n−1
x[1,3,... ,2n−1] ΩBn , (1.13)

and ∆D :=
∏

n≥i>j≥1

(x2
i − x2

j ) =
1

2n−1
x[2,4,... ,2n−2] ΩDn . (1.14)

The Weyl character formula for types A, B, and D can be written as

Lemma 1. For each of the groups W = Sn, Bn or Dn, the alternating sum ΩW ,
as an operator on the ring of polynomials Pol, is related to the maximal divided
difference by

ΩSn
1

∆
= ∂ω , ΩBn

1

∆B
= (−1)(

n
2) ∂wB

0
, and ΩDn

1

∆D
= (−1)(

n
2) ∂wD

0
.

Indeed, all the operators in Lemma 1 commute with multiplication by polyno-
mials which are invariant under W . Moreover, they decrease degree by the length
of the maximal element of the group. Since Pol is a module over SymW (n) with
a basis of monomials of degree strictly less than this length, except for a single
monomial, it remains only to check that the actions of Ω’s and ∂’s agree on this
monomial, which offers no difficulty.
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2. Bases of polynomial rings

The monomials mentioned in the previous section are not an appropriate basis,
when interpreted in terms of cohomology classes for the flag variety. Define, for the
rest of this paper, the vector

ρ := [n− 1, . . . , 1, 0] . (2.1)

Motivated by geometry, one defines recursively Schubert polynomials Yα, for any
sequence α ∈ Nn, with α ⊆ ρ, by

Yα ∂i = Yβ , if αi > αi+1 , (2.2)

where
β = [α1, . . . , αi−1, αi+1, αi − 1, αi+2, . . . , αn] ,

starting from Yρ = xρ (cf. [LS1], [M2]).
In particular, if α ∈ Nn is weakly decreasing, then Yα is equal to the monomial

xα .
If, on the contrary, α1 ≤ · · · ≤ αk and αk+1 = · · · = αn = 0, for some k ≤ n, then

Yα coincides with the Schur polynomial sλ(x1, . . . , xk), where λ = (αk, . . . , α1).

CONVENTION: Let α ∈ Nk. Then we shall write Yα for Yα,0,... ,0.

We also record, for later use, the following equality: for α = [α1, . . . , αk] ∈ Nk,

Yα x1 · · ·xk = Y[α1+1,... ,αk+1]. (2.3)

On Pol there is a scalar product:

( , ) : Pol × Pol→ Sym(n),

defined for f, g ∈ Pol by
(f, g) := fg ∂ω. (2.4)

There exists an involution1 α 7→ α′ such that(
Y ωα , Yβ′

)
= (−1)|α|δαβ . (2.5)

Moreover, when α, β ⊆ ρ are such that |α|+ |β| = |ρ|, then one has(
Yα, Y[n−1−β1,n−2−β2,... ,0−βn]

)
= δαβ . (2.6)

We also will need Q̃-polynomials of [PR]. We set Q̃i := ei = ei(X ), the i-th
elementary symmetric polynomial in X . Given two nonnegative integers i ≥ j, we
adapt Schur’s definition of his Q-functions by putting

Q̃i,j := Q̃iQ̃j + 2

j∑
p=1

(−1)pQ̃i+pQ̃j−p . (2.7)

1This involution is: code(w) = α 7→ α′ = code(wω) (cf. [M2]).
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Given any partition I = (i1, . . . , ik), where we can assume k to be even, we set

Q̃I := Pfaffian(M) , (2.8)

where M = (mp,q) is the k × k skew-symmetric matrix with mp,q = Q̃ip,iq for
1 ≤ p < q ≤ k.

Equivalently, for any partition I = (i1 ≥ i2 ≥ . . . ≥ i` > 0) , the polynomial

Q̃I = Q̃I(X) is defined recurrently on ` by putting for odd ` ,

Q̃I :=
∑̀
j=1

(−1)j−1Q̃ij Q̃(i1,... ,ij−1,ij+1,... ,i`) (2.9)

and for even ` ,

Q̃I :=
∑̀
j=2

(−1)jQ̃i1,ij Q̃(i2,... ,ij−1,ij+1,... ,i`) . (2.10)

For any positive integer k, let ρ(k) denote the partition

ρ(k) := (k, k − 1, . . . , 1) . (2.11)

The ring Sym(n) is a free module over the ring of polynomials symmetric in

x2
1, . . . , x

2
n, with a basis provided by the Q̃I(X ), where I ⊆ ρ(n) ranges over strict

partitions.

As functions of x1, . . . , xm, the Q̃-polynomials can also be defined recursively
by induction on m, involving now all partitions without restriction, as for Hall-
Littlewood polynomials: for any strict partition I, one has

Q̃I(x1, . . . , xm) =

`(I)∑
j=0

xjm
( ∑
|I|−|J|=j

Q̃J(x1, . . . , xm−1)
)
, (2.12)

where the sum is over all (i.e. not necessarily strict) partitions J ⊆ I such that I/J
has at most one box in every row (cf. [PR, Prop. 4.1]). Moreover, given a partition
I ′ = (. . . , i, j, j, k, . . . ) and denoting I = (. . . , i, k, . . . ), one has the factorization
property

Q̃I′ = Q̃j,jQ̃I . (2.13)

We define, for a strict partition I,

P̃I := 2−`(I) Q̃I . (2.14)

The ring Sym(n) is a free module over SymD(n) with a basis provided by the P̃I ,
where I ranges over strict partitions contained in ρ(n− 1).

Now we will need the following divided difference:

∂v = (∂♥∂2 · · · ∂n−1 ∂1 · · · ∂n−2) · · · (∂♥∂2∂3 ∂1∂2) ∂♥ n even (2.15)

and

∂v = (∂♥∂2 · · · ∂n−1 ∂1 · · · ∂n−2) · · · (∂♥∂2∂3∂4 ∂1∂2∂3) (∂♥∂2∂1) n odd (2.16)
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Denote by
〈 , 〉 : Sym(n)× Sym(n)→ SymD(n)

the scalar product defined for f, g ∈ Sym(n) by

〈f, g〉 := fg ∂v. (2.17)

For strict partitions I, J ⊆ ρ(n− 1), one has

〈P̃I , P̃ρ(n−1)rJ〉 = (−1)(
n
2) δIJ , (2.18)

where ρ(n− 1)r I is the strict partition whose parts complement the parts of I in
{n− 1, n− 2, . . . , 1} (cf. [PR]).

Consequently, the polynomial ring Pol = Z[ 1
2 ][x1, . . . , xn] is a free SymD(n)-

module with a basis Yα P̃I , where α ranges over subsequences contained in ρ and
I runs over all strict partitions contained in ρ(n − 1). Note that the element of

maximal degree of this basis is xρP̃ρ(n−1). Let

[ , ] : Pol × Pol→ SymD(n)

be a scalar product, defined for f, g ∈ Pol by

[f, g] := fg ∂wD
0
. (2.19)

One has, for α, β ⊆ ρ and strict partitions I, J ⊂ ρ(n− 1),[
Y ωα P̃I , Yβ′ P̃ρ(n−1)rJ

]
= (−1)|α|+(n

2) δαβ δIJ . (2.20)

(See (2.5).)

Let Y = {y1, . . . , yn} be a second set of indeterminates of cardinality n. The
symbol ≡ will mean: “congruent modulo the ideal generated by the relations
f(x2

1, . . . , x
2
n) = f(y2

1 , . . . , y
2
n), f ∈ Sym(n), together with x1 · · ·xn = y1 · · · yn”.

Following Fulton [F2,F3], define

F (X ,Y) := |P̃n+j−2i(X ) + P̃n+j−2i(Y)|1≤i,j≤n−1

=

∣∣∣∣∣∣∣∣∣∣∣∣

P̃n−1(X ) + P̃n−1(Y) 0 . . .

P̃n−3(X ) + P̃n−3(Y) P̃n−2(X ) + P̃n−2(Y) . . .
...

...
. . .

1 P̃1(X ) + P̃1(Y)

∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.21)
Following [PR], define

P̃ (X ,Y) :=
∑

P̃I(X ) P̃ρ(n−1)rI(Y) , (2.22)

where the summation is over all strict partitions I ⊆ ρ(n − 1). The reasoning in
[LP1, Sect.2] made for case Cn adapts to case Dn and furnishes:
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Proposition 2. We have
(i)

F (X ,Y) ≡ P̃ (X ,Y) . (2.23)

(ii) For every w ∈ Dn rSn,

P̃ (Xw,X ) = 0 , (2.24)

and for every w ∈ Sn,

P̃ (Xw,X ) = P̃ (X ,X ) = sρ(n−1)(X ) . (2.25)

(iii) For every f ∈ Sym(n),

〈f(X ) , F (X ,Y)〉 ≡ (−1)(
n
2) f(Y) . (2.26)

(iv) For every f ∈ Pol,[
f(X ) ,

∏
n≥i>j≥1

(xi − yj)F (X ,Y)
]
≡ f(Y) . (2.27)

In other words, F (X ,Y) is a reproducing kernel for the scalar product 〈 , 〉, and∏
i>j(xi − yj)F (X ,Y) is a reproducing kernel for [ , ]. One can show that the

“vanishing property” (ii) characterizes P̃ (X ,Y) up to ≡. The congruence (i) can
be also derived from geometry by comparing the classes of diagonals in flag bundles
associated with SO(2n) given in [F2,F3] and [PR] (see also [G]).

3. Vertex Operators

In this section we shall mainly make computations using the following two di-
vided differences:

Definition 3. For k ≤ n, we set

∇Bk (n) := (∂0∂1 · · · ∂n−1) · · · (∂0∂1 · · · ∂n−k) . (3.1)

For k ≤ n/2, we put

∇Dk (n) := (∂♥∂2 · · · ∂n−1∂1∂2 · · · ∂n−2) · · · (∂♥∂2 · · · ∂n−2k+1∂1∂2 · · · ∂n−2k). (3.2)

We shall need the following fact from [LP1], quoted in the appendix:

Fact 4. Let k ≤ n and let α = [α1 ≤ · · · ≤ αk] ∈ Nk with αk ≤ n − k. Suppose

that I ⊆ ρ(n) is a strict partition. Then the image of Q̃I Yα under ∇Bk (n) is 0
unless n − 0 − α1, . . . , n − (k − 1) − αk are parts of I. In this case, the image is

(−1)k(n−1)+s2kQ̃J , where J is the strict partition with parts

{i1, . . . , i`(I)}r {n− 0− α1, . . . , n− (k − 1)− αk},
and s is the sum of positions of the parts erased in I.

Example 5. For n = 7 and k = 2 , we have

Q̃(5,4,3,2,1) Y[2,5]∇B2 (7)

= Q̃(5,4,3,2,1) Y[2,5] (∂0∂1∂2∂3∂4∂5∂6)(∂0∂1∂2∂3∂4∂5) = 4Q̃(4,3,2) ,

and for k = 3 , we have

Q̃(7,5,4,3,1) Y[2,3,4]∇B3 (7) = −8Q̃(7,4) .

The following result establishes a basic relation between the ∇D’s and ∇B ’s:
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Proposition 6. Let k be a positive integer. As operators on Sym(2k),

∇Dk (2k) = x1 · · ·x2k∇B2k(2k) + x1 · · ·x2k−1∇B2k−1(2k) . (3.3)

Before proving (3.3), we illustrate it by the following examples:

Example 7. As operators on Sym(2),

∇D1 (2) = ∂♥ = x1x2∂0∂1∂0 + x1∂0∂1.

As operators on Sym(4),

∇D2 (4) = (∂♥∂2∂3∂1∂2)∂♥ =

x1x2x3x4 (∂0∂1∂2∂3)(∂0∂1∂2)(∂0∂1)∂0 + x1x2x3 (∂0∂1∂2∂3)(∂0∂1∂2)(∂0∂1).

The RHS of the last equation is depicted planarly as

x1x2x3x4

∂0 ∂1 ∂2 ∂3

∂0 ∂1 ∂2

∂0 ∂1

∂0

+ x1x2x3

∂0 ∂1 ∂2 ∂3

∂0 ∂1 ∂2

∂0 ∂1

Proof of the proposition. In this proof, let X := {x1, . . . , x2k}. Both sides of (3.3)

are SymB(2k)-linear. The operator ∇Dk (2k) sends all Q̃I(X ), I ⊆ ρ(2k − 1) to 0,

except for Q̃ρ(2k−1) which is sent to (−1)k22k−1 (cf.(2.18)). Thus ∇Dk (2k) annihi-

lates all Q̃I(X ), I ⊆ ρ(2k), except for I = ρ(2k − 1) which is sent to (−1)k22k−1

and I = ρ(2k) which is sent to (−1)k22k−1x1 · · ·x2k.
The action of

x1 · · ·x2k∇B2k(2k)

is given by Fact 4. Only Q̃ρ(2k)(X ) survives and is sent to (−1)k22kx1 · · ·x2k.
We will now calculate the action of

x1 · · ·x2k−1∇B2k−1(2k)

on the Q̃I(X ), where I ⊆ ρ(2k) is a strict partition. We set, temporarily in this
proof,

∇ := ∇B2k−1(2k) and ∇′ := ∇B2k−1(2k − 1) ,

so that
∇ = ∇′∂2k−1 · · · ∂1.

Let X ′ := {x1, . . . , x2k−1}. We decompose Q̃I(X ) as a sum of products of powers

of x2k times some Q̃J(X ′), according to the formula (2.12):

Q̃I(X ) =
∑

Q̃J(X ′)xmJ

2k .

Let J be the strict partition obtained from a partition J by subtracting all the pairs
of equal parts. We have three cases to examine:

1. Let i1 ≤ 2k − 2. Then for each J , |J |+mJ + 2k − 1 < deg∇, and hence

x1 · · ·x2k−1Q̃I(X )∇ = 0.

2. Let i1 = 2k − 1. For degree reasons, Q̃I(X )x1 · · ·x2k−1∇ 6= 0 is possible only if
I = ρ(2k − 1) (I being a strict partition).
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Claim. We have
x1 · · ·x2k−1Q̃J(X ′)∇′ 6= 0 (3.4)

only if J = J = ρ(2k − 2).

Indeed, suppose first that j1 = 2k − 1. Then

x1 · · ·x2k−1Q̃J(X ′) = P · Q̃H(X ′),

where P is a polynomial symmetric in x2
1, . . . , x

2
2k−1, and a strict partition H has

no part equal to 2k− 1. Since this expression is annihilated by ∇′, we cannot have
(3.4). So, for degree reasons, (3.4) holds only if j1 = 2k − 2. Suppose now that
j2 = 2k − 2. We get

x1 · · ·x2k−1Q̃J(X ′) = P · Q̃H(X ′),

where P is a polynomial symmetric in x2
1, . . . , x

2
2k−1, and a strict partition H has

no part equal to 2k− 2. Since this expression is annihilated by ∇′, we cannot have
(3.4). So, for degree reason, (3.4) holds only if j2 = 2k − 3. Continuing this way,
we get the claim.

For J = ρ(2k − 2), we compute

x1 · · ·x2k−1Q̃J(X ′)x2k−1
2k ∇ = Q̃ρ(2k−1)(X ′)∇′x2k−1

2k ∂2k−1 · · · ∂1 = (−1)k−122k−1.

3. Let i1 = 2k. Then (i2, . . . ) ⊆ ρ(2k − 1). We have

x1 · · ·x2k−1Q̃I(X )∇ = x2
1 · · ·x2

2k−1x2kQ̃(i2,... )(X )∇

=Q̃(i2,... )(X )∇′x2
1 · · ·x2

2k−1x2k ∂2k−1 · · · ∂1 .

Now for H ⊆ (i2, . . . ) ⊆ ρ(2k − 1), Q̃H(X ′)∇′ 6= 0 iff H = ρ(2k − 1), so iff
(i2, . . . ) = ρ(2k − 1). We have

Q̃ρ(2k−1)(X )∇′ = Q̃ρ(2k−1)(X ′)∇′ = (−1)k22k−1

and
x2

1 · · ·x2
2k−1x2k ∂2k−1 · · · ∂1 = −x1 · · ·x2k.

Summarizing,

Q̃I(X )x1 · · ·x2k−1∇ 6= 0

only if I = ρ(2k − 1), when we get (−1)k−122k−1; or I = ρ(2k), when we get
(−1)k−122k−1x1 · · ·x2k.

Finally, comparing the computed values of the Q̃I(X ) under the operators:

∇Dk (2k) , x1 · · ·x2k∇B2k(2k), and x1 · · ·x2k−1∇B2k−1(2k),

that are possibly nonzero only for I = ρ(2k) and ρ(2k − 1), we get the desired
formula (3.3). (Note that we have also used the equality 2p−1 = 2p − 2p−1.) �
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Corollary 8. Let k be a positive integer such that k ≤ n/2. As operators on the
ring Sym(2k |n− 2k),

∇Dk (n) = x1 · · ·x2k∇B2k(n) + x1 · · ·x2k−1∇B2k−1(n) ∂1 · · · ∂n−2k . (3.5)

This property is obtained from Proposition 6 by composing the expression for
the operator ∇Dk (2k) with the divided difference

(∂2k · · · ∂n−1) · · · (∂2 · · · ∂n−2k+1)(∂1 · · · ∂n−2k) =

∂2k · · · ∂n−1

...
...

∂2 · · · ∂n−2k+1

∂1 · · · ∂n−2k

In the proof of Theorem 11, we will need the following supplement to Fact 4:

Theorem 9. Let k ≤ n and let α = [α1 ≤ · · · ≤ αk] ∈ Nk with αk = n − k + 1.

Suppose that I ⊆ ρ(n) is a strict partition. Then the image of Q̃I Yα under ∇Bk (n)
is 0 unless `(I) 6≡ n (mod 2) and n− 0−α1, . . . , n− (k− 2)−αk−1 are parts of I.

In this case, the image is (−1)(k−1)(n−1)+1+s2kQ̃J , where J is the strict partition
with parts

{i1, . . . , i`(I)}r {n− 0− α1, . . . , n− (k − 2)− αk−1} ,

and s is the sum of positions of the parts erased in I.

The proof of this theorem will be given in the appendix.

Example 10.
(i) For n = 5 and k = 1, we have

x5
1Q̃(5,3,2,1)∂0∂1∂2∂3∂4 = −2Q̃(5,3,2,1) and x5

1Q̃(5,2,1)∂0∂1∂2∂3∂4 = 0.

(ii) For n = 7 and k = 2, we have

Q̃(7,6,4,1) Y[1,6]∇B2 (7) = −4Q̃(7,4,1)

and
Q̃(7,6,4,3,1) Y[1,6]∇B2 (7) = 0.

(iii) For n = 7 and k = 4, we have

Q̃(7,6,4,3,2,1) Y[1,2,2,4]∇B4 (7) = 16Q̃(7,2,1)

and
Q̃(7,6,4,3,2,1) Y[1,3,4,4]∇B4 (7) = −16Q̃(7,4,2).

The following theorem is the main result of the present paper:
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Theorem 11. Let k be a positive integer such that k ≤ n/2. Suppose that
I ⊆ ρ(n − 1) is a strict partition. Let α = [α1 ≤ α2 ≤ · · · ≤ α2k] ∈ N2k with

α2k ≤ n − 2k. Then the image of P̃I Yα under ∇Dk (n) is 0 unless all the integers
n− 1− α1, . . . , n− 2k − α2k belong to {i1, . . . , i`(I), 0}. In this case, the image is

(−1)sP̃J , where J is the strict partition with parts

{i1, . . . , i`(I)}r {n− 1− α1, . . . , n− 2k − α2k} .

Moreover, let s′ be the sum of positions of the parts erased in I, and s′′ := `(I) + 1.
Then s = s′ if α2k < n− 2k, and s = s′ + s′′ if α2k = n− 2k.2

Example 12. (i) For n = 7 and k = 1, we have

P̃(5,4,3,2,1,0) Y[1,3]∇D1 (7) = P̃(5,4,3,2,1,0) Y[1,3] ∂♥∂2∂3∂4∂5∂6∂1∂2∂3∂4∂5 = −P̃(4,3,1)

and
P̃(6,4,3,2,1,0) Y[2,5]∇D1 (7) = P̃(6,3,2,1).

(ii) For n = 7 and k = 2, we have

P̃(6,5,4,3,2,1,0) Y[1,1,1,2]∇D2 (7) = −P̃(6,2)

and
P̃(6,5,4,3,2,1,0) Y[1,1,1,3]∇D2 (7) = P̃(6,2,1) .

Proof of the theorem. To compute the action of ∇Dk (n), one uses its decomposition
into a sum of two operators, given in Eq.(3.5).

The image of Q̃I(X )Yα under the first operator

Ω1 := x1 · · ·x2k∇B2k(n)

is given by Fact 4 combined with Eq.(2.3) if α2k < n − 2k , and by Theorem 9
combined with (2.3) in the case α2k = n− 2k.

Since x2k appears in Yα, the same results, however, do not directly furnish the

value of Q̃I(Xn)Yα under the second operator

Ω2 := x1 · · ·x2k−1∇B2k−1(n) ∂1 · · · ∂n−2k .

To end this computation, we proceed as follows. For simplicity of indices, let us
take temporarily n = 7 and k = 2. Suppose that α = [α1 ≤ α2 ≤ α3 ≤ α4] ∈ N4 is
such that α4 ≤ 3. We want to compute

Q̃I Yα x1x2x3

∂0 ∂1 ∂2 ∂3 ∂4 ∂5 ∂6

∂0 ∂1 ∂2 ∂3 ∂4 ∂5

∂0 ∂1 ∂2 ∂3 ∂4

∂1 ∂2 ∂3

2It is convenient to treat here 0 = n− 2k − α2k as an “extra part” of I, and take s to be the
sum of positions of all the parts erased in I, including the extra part.
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Now, thanks to the relations (1.4), one has

∂0 ∂1 ∂2 ∂3 ∂4 ∂5 ∂6

∂0 ∂1 ∂2 ∂3 ∂4 ∂5

∂0 ∂1 ∂2 ∂3 ∂4

∂1 ∂2 ∂3

=

 ∂0 ∂1 ∂2

∂0 ∂1

∂0



∂3 ∂4 ∂5 ∂6

∂2 ∂3 ∂4 ∂5

∂1 ∂2 ∂3 ∂4

∂1 ∂2 ∂3

 =

 ∂0 ∂1 ∂2

∂0 ∂1

∂0



∂4 ∂5 ∂6

∂3 ∂4 ∂5 ∂6

∂2 ∂3 ∂4 ∂5

∂1 ∂2 ∂3 ∂4



=

 ∂0 ∂1 ∂2

∂0 ∂1

∂0

 (∂4∂5∂6)

 ∂3 ∂4 ∂5 ∂6

∂2 ∂3 ∂4 ∂5

∂1 ∂2 ∂3 ∂4


Since ∂4∂5∂6 commutes with the divided differences on its left, the last expression
is rewritten as

∂4∂5∂6

∂0 ∂1 ∂2 ∂3 ∂4 ∂5 ∂6

∂0 ∂1 ∂2 ∂3 ∂4 ∂5

∂0 ∂1 ∂2 ∂3 ∂4

= ∂4∂5∂6∇B3 (7)

Since ∂4∂5∂6 commutes with x1x2x3 and Q̃I = Q̃I(x1, . . . , x7), the polynomial to
be computed is equal to

Yα ∂4∂5∂6 Q̃I x1x2x3∇B3 (7) .

However, using (2.2), the image of Y[α1,α2,α3,α4] under ∂4∂5∂6 is

Y[α1,α2,α3,0,0,0,α4−3] = Y[α1,α2,α3]

if α4 = 3, and 0 otherwise. Hence, by (2.3), the polynomial to be computed is equal
to

Y[α1+1,α2+1,α3+1]Q̃I∇B3 (7) .

In general, arguing along these lines, we evaluate

Q̃I Yα x1 · · ·x2k−1∇B2k−1(n) ∂1∂2 · · · ∂n−2k ,

where α = [α1 ≤ α2 ≤ · · · ≤ α2k] ∈ N2k is such that α2k ≤ n− 2k. By the relations
(1.4), this amounts to evaluating

Q̃I Yα x1 · · ·x2k−1 ∂2k∂2k+1 · · · ∂n−1∇B2k−1(n) .

Since ∂2k∂2k+1 · · · ∂n−1 commutes with x1 · · ·x2k−1 and Q̃I = Q̃I(x1, . . . , xn), the
polynomial to be computed is equal to

Yα ∂2k∂2k+1 · · · ∂n−1Q̃Ix1 · · ·x2k−1∇B2k−1(n) .
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However, using (2.2), the image of Yα under ∂2k∂2k+1 · · · ∂n−1 is

Y[α1,... ,α2k−1,0n−2k,α2k−(n−2k)] . (3.6)

The expression (3.6) equals 0 unless α2k = n−2k, when it is equal to Y[α1,... ,α2k−1] .
Hence, by (2.3), the polynomial to be computed is equal to

Q̃IY[α1+1,... ,α2k−1+1]∇B2k−1(n) .

Since α2k−1 + 1 ≤ n − (2k − 1), Fact 4 provides the end of the computation with
the operator Ω2 .

Note that in the case when we have a contribution from both operators Ω1 and
Ω2, we also use the equality 2p−1 = 2p − 2p−1 . �

Example 13. (i) For n = 5, k = 1, we have

P̃(3,2) Y[1,3]∇D1 (5) = P̃2

and this comes from the contribution of both operators Ω1, Ω2:

Q̃(3,2) Y[1,3] x1x2∇B2 (5) = Q̃(3,2) Y[2,4]∇B2 (5) = 4Q̃2

by Theorem 9, and

Q̃(3,2) Y[1,3] x1∇B1 (5) ∂1∂2∂3 = Q̃(3,2) Y[2]∇B1 (5) = −2Q̃2 .

by Fact 4.

(ii) For n = 7, k = 2, we have

P̃(6,5,4,3,2,1,0) Y[0,1,2,2]∇D2 (7) = −P̃(5,3)

and only the operator Ω1 gives the contribution:

Q̃(6,5,4,3,2,1) Y[0,1,2,2] x1x2x3x4∇B4 (7) = Q̃(6,5,4,3,2,1) Y[1,2,3,3]∇B4 (7) = −16Q̃(5,3)

by Fact 4.

(iii) For n = 7, k = 2, we have

P̃(6,5,4,3,2,1,0) Y[1,1,2,3]∇D2 (7) = −P̃(6,3,1)

and the contribution comes from both operators Ω1, Ω2:

Q̃(6,5,4,3,2,1) Y[1,1,2,3] x1x2x3x4∇B4 (7) = Q̃(6,5,4,3,2,1) Y[2,2,3,4]∇B4 (7) = −16Q̃(6,3,1)

by Theorem 9, and

Q̃(6,5,4,3,2,1) Y[1,1,2,3] x1x2x3∇B3 (7) ∂1∂2∂3

= Q̃(6,5,4,3,2,1) Y[2,2,3]∇B3 (7) = 8Q̃(6,3,1) .

by Fact 4.
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4. Applications to P̃ -polynomials and orthogonal Schubert polynomials

The following presentation of a P̃ -polynomial in the form

P̃I = xα(I) P̃ρ(n−1) Ω(I) ,

where α(I) ⊆ ρ and Ω(I) is a divided difference operator, appears to be quite useful:

Lemma 14. Let I = (i1, . . . , i` > 0) ⊆ ρ(n − 1) be a strict partition. If n and
` are of the same parity, we set h := n − `, and {j1 < · · · < jh} := {1, . . . , n} r
{i1 + 1, . . . , i` + 1}. If n and ` are of different parity, we set h := n − ` − 1, and
{j1 < · · · < jh} := {1, . . . , n}r {i1 + 1, . . . , i` + 1, 1}.

Then for α(I) := [n− j1, . . . , n− jh, 0, . . . , 0] and k := h/2,

xα(I) P̃ρ(n−1) ∂[2k,... ,1]∇Dk (n) = (−1)s P̃I , (4.1)

where s is the number of positions of the parts erased in ρ(n − 1) in order to get
the partition I.

The assertion of the lemma is a direct consequence of Theorem 11 and the
definition of a Schur S-polynomial via the Jacobi symmetrizer.

Now, with every strict partition I = (i1, . . . , i` > 0) , we associate the following
element v(I) ∈ Dn . If n− ` is even, we set

v(I) := [i1 + 1, i2 + 1, . . . , i` + 1, j1, . . . , jh] , (4.2)

and if n− ` is odd,

v(I) := [i1 + 1, i2 + 1, . . . , i` + 1, 1, j1, . . . , jh] . (4.3)

(The notation is the same as in Lemma 14.)

Theorem 15. For a strict partition I ⊆ ρ(n− 1),

xρP̃ρ(n−1) ∂v(I) = (−1)|I|+(n
2)P̃I . (4.4)

The proof of this result is analogous to the proof of [LP1, Thm. A.6]. Using the
notation of Lemma 14, we have

∂v(I) = ∂σ ∂[k,k−1,... ,1]∇Dk (n) , (4.5)

where

σ =

{
[j1, . . . , jh, i1 + 1, . . . , i` + 1], n and ` of the same parity

[j1, . . . , jh, i1 + 1, . . . , i` + 1, 1], n and ` of different parity .

Note that xρ ∂σ = xα(I), and hence the assertion follows by Lemma 14.

This result leads to the following characterization of P̃ -polynomials via orthog-
onal divided differences:



18 ORTHOGONAL DIVIDED DIFFERENCES AND VERTEX OPERATORS

Corollary 16. For a strict partition I ⊆ ρ(n − 1), we set w(I) := v(I)−1wD0 .
More explicitly, for even `, w(I) = [i1 + 1, . . . , i` + 1, j1, . . . , jh]−1, and for odd `,
w(I) = [i1 + 1, . . . , i` + 1, 1, j1, . . . , jh]−1. Then w = w(I) is the unique element of

Dn such that `(w) = |I| and P̃I ∂w 6= 0. In fact, P̃I ∂w(I) = (−1)|I|.

This can be also seen by geometric considerations (see [P1] and [LP1]), with the
help of the characteristic map ([B], [D1,D2]).

More generally, consider, for any w ∈ Dn, the orthogonal Schubert polynomial

XD
w = XD

w (n) = xρP̃ρ(n−1)∂wD
0 w

(4.6)

of degree `(w). Arguing in the same way as in [LP1, pp.33–36], one shows that
these Schubert polynomials have the stability property in the sense that for w ∈
Dn ⊂ Dn+1,

XD
w (n+ 1)|xn+1=0 = XD

w (n). (4.7)

Together with the “maximal Grassmannian property” from Theorem 15, asserting
that, for even `,

XD
[i1+1,... ,i`+1,j1,... ,jh]

= (−1)|I|+(n
2)P̃I , (4.8)

and for odd `,

XD
[i1+1,... ,i`+1,1,j1,... ,jh]

= (−1)|I|+(n
2)P̃I , (4.9)

this shows that they provide a natural tool for the cohomological study of Schubert
varieties for the orthogonal group SO(2n) and the related degeneracy loci.

We also record

Proposition 17. For a strict partition I = (i1, i2, i3, i4, . . . ) ⊆ ρ(n− 1),

P̃I ∂♥∂2 · · · ∂i1∂1∂2 · · · ∂i2 = (−1)i1+i2 P̃(i3,i4,... ). (4.10)

To see this, we argue in a manner similar to the proof of [LP1, Prop. 5.12]. For
J = (i3, i4, . . . ), we choose the presentation from Lemma 14:

±P̃I = xα(I) P̃ρ(n−1)∂u , ±P̃J = xα(J) P̃ρ(n−1)∂v

for appropriate u, v ∈ Dn. Let σ ∈ Sn be the permutation such that

v = σ u s♥s2 · · · si1s1s2 · · · si2 .

The assertion now follows from xα(I)∂σ = xα(J).

Appendix: results in type B

In this appendix we give a summary of the results for type Bn. They are obtained
directly from the results for type Cn in [LP1], by changing ∂0 in loc.cit. to −2∂0,
and read as follows: writing ∇ := ∇Bn (n), we have
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Theorem 18. (i) For α ∈ Nn, α ⊆ ρ,

Yα P̃ρ(n)∇ = (−1)|α|+(n+1
2 )Y ωα . (5.1)

(ii) For strict I  ρ(n), and α ⊆ ρ,

Yα P̃I ∇ = 0 . (5.2)

Denote by
〈 , 〉 : Sym(n)× Sym(n)→ SymD(n)

the scalar product defined for f, g ∈ Sym(n) by

〈f, g〉 := fg∇ . (5.3)

For strict partitions I, J ⊆ ρ(n), one has

〈P̃I , P̃ρ(n)rJ〉 = (−1)(
n+1
2 ) δIJ , (5.4)

where ρ(n) r J is the strict partition whose parts complement the parts of J in
{n, n− 1, . . . , 1} (cf. [PR]).

Consequently, the polynomial ring Pol = Z[ 1
2 ][x1, . . . , xn] is a free SymB(n)-

module with basis Yα P̃I , where α ranges over subsequences contained in ρ and
I runs over all strict partitions contained in ρ(n). Note that the element of the

maximal degree of this basis is xρP̃ρ(n). Let

[ , ] : Pol × Pol→ SymB(n)

be a scalar product, defined for f, g ∈ Pol by

[f, g] := fg ∂wB
0
. (5.5)

One has, for α, β ⊆ ρ and strict partitions I, J ⊂ ρ(n),[
Y ωα P̃I , Yβ′ P̃ρ(n)rJ

]
= (−1)|α|+(n+1

2 ) δαβ δIJ . (5.6)

(See (2.5).)

Let Y = {y1, . . . , yn} be a second set of indeterminates of cardinality n. The
symbol ≡ will mean: “congruent modulo the ideal generated by the relations
f(x2

1, . . . , x
2
n) = f(y2

1 , . . . , y
2
n), where f ∈ Sym(n).”

Following Fulton [F2,F3], define

F (X ,Y) := |P̃n+1+j−2i(X ) + P̃n+1+j−2i(Y)|1≤i,j≤n

=

∣∣∣∣∣∣∣∣∣∣∣∣

P̃n(X ) + P̃n(Y) 0 . . .

P̃n−2(X ) + P̃n−2(Y) P̃n−1(X ) + P̃n−1(Y) . . .
...

...
. . .

1 P̃1(X ) + P̃1(Y)

∣∣∣∣∣∣∣∣∣∣∣∣
.

(5.7)
Following [PR], define

P̃ (X ,Y) :=
∑

P̃I(X ) P̃ρ(n)rI(Y) , (5.8)

where the summation is over all strict partitions I ⊆ ρ(n). The reasoning in [LP1,
Sect.2] made for case Cn adapts to case Bn and furnishes:
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Proposition 19. We have
(i)

F (X ,Y) ≡ P̃ (X ,Y). (5.9)

(ii) For every w ∈ Bn rSn,

P̃ (Xw,X ) = 0 , (5.10)

and for every w ∈ Sn,

P̃ (Xw,X ) = P̃ (X ,X ) = sρ(n)(X ) . (5.11)

(iii) For every f ∈ Sym(n),

〈f(X ) , F (X ,Y)〉 ≡ (−1)(
n+1
2 ) f(Y) . (5.12)

(iv) For every f ∈ Pol,

[
f(X ) ,

∏
n≥i>j≥1

(xi − yj)F (X ,Y)
]
≡ f(Y) . (5.13)

In other words, F (X ,Y) is a reproducing kernel for the scalar product 〈 , 〉, and∏
i>j(xi − yj)F (X ,Y) is a reproducing kernel for [ , ]. One can show that the

“vanishing property” (ii) characterizes P̃ (X ,Y) up to ≡. The congruence (i) can
be also derived from geometry by comparing the classes of diagonals in flag bundles
associated with SO(2n+ 1) given in [F2,F3] and [PR] (see also [G]).

Proposition 20. Suppose n ≥ p > 0. Let IpJ ⊆ ρ(n) be a strict partition and
H ⊆ ρ(n) a strict partition not containing p. Then

xn−p1 P̃IpJ ∂0∂1 · · · ∂n−1 = (−1)`(I)+nP̃IJ (5.14)

and

xn−p1 P̃H ∂0∂1 · · · ∂n−1 = 0 . (5.15)

More generally,

Theorem 21. Let 0 < k ≤ n and let α = [α1 ≤ · · · ≤ αk] ∈ Nk be such that

αk ≤ n − k. Suppose that I ⊆ ρ(n) is a strict partition. Then the image of P̃I Yα
under ∇Bk (n) is 0 unless n − α1 − 0, . . . , n − αk − (k − 1) are parts of I. In this

case, the image is (−1)k(n−1)+sP̃J , where J is the strict partition with parts

{i1, . . . , i`(I)}r {n− α1 − 0, . . . , n− αk − (k − 1)},

and s is the sum of positions of the parts erased in I.

(This is a restatement of [LP1, Prop. 5.9].)
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Proposition 22. For a strict partition I = (i1, i2, . . . ),

P̃I ∂0∂1 · · · ∂i1−1 = (−1)i1 P̃(i2,... ) . (5.16)

Now, let us associate with every strict partition I = (i1, . . . , i` > 0) the following
element of Bn:

v(I) := [i1, . . . , i`, j1, . . . , jh] , (5.17)

where j1 < · · · < jh .

Theorem 23. For every strict partition I ⊆ ρ(n),

xρP̃ρ(n) ∂v(I) = (−1)|I|+(n+1
2 )P̃I . (5.18)

This leads to the following characterization of P̃ -polynomials via divided differ-
ences:

Corollary 24. For any strict partition I, let w(I) := v(I)−1wB0 , that is w(I) =
[i1, . . . , i`, j1, . . . , jh]−1 . Then w = w(I) is the unique element of Bn such that

`(w) = |I| and P̃I ∂w 6= 0. In fact, P̃I ∂w(I) = (−1)|I|.

This can be also seen by geometric considerations (see [P1] and [LP1]), with the
help of the characteristic map ([B], [D1,D2]).

More generally, consider, for any w ∈ Bn, the orthogonal Schubert polynomial

XB
w = XB

w (n) = xρP̃ρ(n)∂wB
0 w

(5.19)

of degree `(w). Arguing in the same way as in [LP1, pp.33–36], one shows that
these Schubert polynomials have the stability property in the sense that for w ∈
Bn ⊂ Bn+1,

XB
w (n+ 1)|xn+1=0 = XB

w (n). (5.20)

Together with the “maximal Grassmannian property” from Theorem 23, asserting
that

XB
[i1,... ,i`,j1,... ,jh]

= (−1)|I|+(n+1
2 )P̃I , (5.21)

this shows that they provide a natural tool for the cohomological study of Schubert
varieties for the orthogonal group SO(2n+ 1) and the related degeneracy loci.

We now give

Proof of Theorem 9

Given a symmetric function f , let Df be the Foulkes derivative i.e. the adjoint
operator to the multiplication by f w.r.t. the standard scalar product on the ring
Sym of symmetric functions in a countable number of variables (cf. [M1]). We use
the following vertex operators on Sym:

Us := 1−DP1
s1 +DP2

s2 − · · · , (5.22)

Ue := 1−DP1e1 +DP2e2 − · · · , (5.23)

and
V e := 1−De1P1 +De2P2 − · · · . (5.24)

We refer to [LP1, p.24] for the definitions of Schur P -functions PI [S]. In loc. cit.
the reader can also find a definition of Q′-functions Q′I [LLT2], used in the following
proposition:
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Proposition 25. Let I be a strict partition. We have the following identities of
symmetric functions in Sym:

Q̃I U
s =

{
Q̃I , `(I) even
0, `(I) odd ;

(5.25)

Q′I U
e =

{
Q′I , `(I) even
0, `(I) odd ;

(5.26)

and

PI V
e =

{
PI , `(I) even
0, `(I) odd .

(5.27)

Proof. First of all, arguing as in [LP1, pp.24–27], with the help of the operators
V e, Us, and Ue instead of V ek , Usk , and Uek in loc. cit., we note that the equalities
(5.25), (5.26), and (5.27) are equivalent.

We show (5.27). It suffices to prove the statement when the set of indeterminates
{x1, . . . , xn} is of finite cardinal n > |I| .

Besides the well-known equality: for k > 0,

xk1
∏

2≤i≤n

(x1 + xi) ∂1∂2 · · · ∂n−1 = Pk(x1, . . . , xn) , (5.28)

we also need the following formula from [P2]:

Fact 26. For a strict partition I,

PI(x2, . . . , xn)
∏

2≤i≤n

(x1 + xi) ∂1∂2 · · · ∂n−1

=

{
(−1)n−1PI(x1, . . . , xn), n− `(I) odd

0, n− `(I) even.

(5.29)

(More precisely, Eq.(5.29) is a special case of the following formula given in [P2,
Prop.1.3(ii)]: Let q, r, k, and h be integers such that 0 < q < n, n = q + r, 0 ≤
k ≤ q, and 0 ≤ h ≤ r. Suppose I = (i1, . . . , ik) ∈ N∗k and J = (j1, . . . , jh) ∈ N∗h.
Then

PI(x1, . . . , xq)PJ(xq+1, . . . , xn)
∏

1≤i≤q<j≤n

(xi + xj)

∂q · · · ∂n−1

...
...

∂2 · · · ∂r+1

∂1 · · · ∂r

= d · P(i1,... ,ik,j1,... ,jh)(x1, . . . , xn) , (5.30)

where d is zero if (q − k)(r − h) is odd and

d = (−1)q−k)r

(
b(n− k − h)/2c
b(q − k)/2c

)
(5.31)

otherwise.
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We get Eq.(5.29) as Eq.(5.30) specialized to q = 1 and k = 0.)

To end the proof of (5.27), we first write

PI(x2, . . . , xn) = PI − PIDe1 · x1 + PIDe2 · x2
1 − PIDe3 · x3

1 + · · · , (5.32)

where the RHS is evaluated in the first n variables. Then we multiply both sides
of (5.32) by

(x1 + x2)(x1 + x3) · · · (x1 + xn)

and apply the operator ∂1∂2 · · · ∂n−1. We get the following equalities of symmetric
polynomials in the first n variables. If n is odd, the RHS of the so-obtained equality
becomes

PI − PIDe1 · P1 + PIDe2 · P2 − PIDe3 · P3 + · · ·

by (5.28) and (5.29), and its LHS is equal to{
PI , `(I) even
0, `(I) odd

by (5.29). This shows (5.27) for odd n. If n is even, the RHS of the obtained
equality becomes

0− PIDe1 · P1 + PIDe2 · P2 − PIDe3 · P3 + · · ·

by (5.28) and (5.29), and its LHS is equal to{
0, `(I) even
−PI , `(I) odd

by (5.29). This shows (5.27) for even n.

Thus the proposition has been proved. �

Let now ∂C0 be the divided difference defined by

Pol 3 f 7→ f ∂C0 := (f − fs0)/(2x1) . (5.33)

Arguing similarly as in [LP1, pp.27–28], using

∂C0 = DP1 −DP2 x1 +DP3 x
2
1 − · · · , (5.34)

and the formula
xp1 ∂1 · · · ∂n−1 = sp−n+1(x1, . . . , xn) , (5.35)

one shows

Lemma 27. As operators on Sym, evaluated in symmetric polynomials in the
first n variables,

1− Us = ∂C0 xn1 ∂1 · · · ∂n−1 . (5.36)

Equations (5.25) and (5.36), together with the equalities

x2m
1 ∂C0 = ∂C0 x2m

1 and x2m+1
1 ∂C0 = −∂C0 x2m+1

1 + x2m
1 , (5.37)

applied for even n = 2m or odd n = 2m+ 1 accordingly, imply
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Proposition 28. Let I ⊆ ρ(n) be a strict partition. We have

Q̃I x
n
1 ∂0∂1 · · · ∂n−1 =

{
−2Q̃I , n+ `(I) odd

0, n+ `(I) even .
(5.38)

Eq.(5.38) is the content of Theorem 9 for k = 1. For higher k, one gets the desired
assertion by [LP1, Thm 5.1], Proposition 28, and [LP1, Lemma 5.10]. (Note that
this last fact holds true for any nonnegative integer α1, in the notation of loc. cit.,
as is clear from its proof.)

This ends the proof of Theorem 9.

Finally, we take this opportunity to correct some misprints in [LP1]: – should
read:

p.1111 “... a partition ...”

p.132 “ 〈 , 〉 : SP(X)× SP(X)→ SP(X2) ”

p.362 “... ∂′uCw = Cv ...”

p.374 “... is ∇k ◦ ∂′ω(k) ...”

p.3710 “... ∂′wI
(Q̃I(X)) = 1 ... ”

Moreover, in Example 5.11, the sequence of successive signs is: +, +, –, – .
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