
Article Submitted to Journal of Symbolic Computation

Double Sylvester sums for subresultants and
multi-Schur functions

Alain Lascoux1 and Piotr Pragacz2

1C.N.R.S., Institut Gaspard Monge, Université de Marne-la-Vallée,
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Abstract

J. J. Sylvester has announced formulas expressing the subresultants (or
the successive polynomial remainders for the Euclidean division) of two
polynomials, in terms of some double sums over the roots of the two poly-
nomials. We prove Sylvester formulas using the techniques of multivariate
polynomials involving multi-Schur functions and divided differences.

Introduction and statement of the main result

The subresultants played a fundamental role in the theory of polynomial equa-
tions in the 19-th century, cf. e.g. (Sylvester, 1839, 1840, 1853), (Borchardt,
1860), and (Salmon, 1885). Recently they also have found important applica-
tions in computer algebra, for example, in devising efficient methods for comput-
ing greatest common divisors of two polynomials (Collins, 1967, 1973), (Brown,
1971), and (Brown, Traub, 1971), for carrying out quantifier elimination over
complex of real numbers cf. e.g. (Collins, 1975), and also for coding theory
(Shen, 1992). They have been also extended to some noncommutative poly-
nomials (Chardin, 1991), (Li, 1998), and (Hong, 2001).

Suppose that two polynomials in one variable

P (x) = xm + α1x
m−1 + · · ·+ αm and Q(x) = xn + β1x

n−1 + · · ·+ βn

with, say, complex coefficients are given. Then the subresultant of degree d asso-
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ciated with P and Q, denoted by R(d), is defined by the following determinant:

R(d) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 α1 α2 α3 . . . αm+n−2d−2 xn−d−1P

0 1 α1 α2 . . . αm+n−2d−3 xn−d−2P
...

...
...

...
...

...

· · · · αm−d−1 P

1 β1 β2 β3 . . . βm+n−2d−2 xm−d−1Q

0 1 β1 β2 . . . βm+n−2d−3 xm−d−2Q
...

...
...

...
...

...

· · · · βn−d−1 Q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Here we understand that αi = 0 for i > m and βj = 0 for j > n. Of course, the
subresultant R(0) of degree zero equals the resultant. We refer to (Brown, Traub,
1971), (Collins, 1967, 1973), (Gonzales et al., 1990), (Hong, 1997), (Jouanolou,
1991, 1996), (Lascoux, 1990a), (Lombardi et al., 2000), and (Loos, 1982) for a
more detailed discussion of this notion and the properties of subresultants.

We are interested in the problem of expressingR(d) as polynomials in the roots
of P and Q, generalizing the expression of the resultant R(0) as the product of
the differences of the roots of P and Q.

Recall the following well-known interpretation of the subresultants. Suppose
(for the rest of this paper) that

m = deg(P ) > n = deg(Q) .

Let us look at the iterated division of P and Q:

P = ∗ Q+ c1R1 , Q = ∗ R1 + c2R2 , R1 = ∗ R2 + c3R3 , . . . .

The successive coefficients “ ∗ ” are the unique polynomials such that

n > degR1 > degR2 > degR3 > · · · .

Instead of the usual Euclidean division, where c1 = c2 = c3 = · · · = 1, we choose
the constants ci in such a way that the successive remainders Ri are equal to
R(n−i), i = 0, 1, . . . , n − 1. In particular, instead of being rational functions in
the roots of P and Q (as in the Euclidean division case), they are polynomials
in the roots, cf. Remark 1.12.

An interesting solution to the above problem was proposed by Sylvester about
160 years ago (Sylvester, 1839, 1840, 1853), who found “the successive residues,
divested of their allotrious factors . . . ” that is, who also normalized the remain-
ders in such a way as to obtain polynomials in the roots, the last “residue” being
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the resultant. To state Sylvester’s result, we need the following notation. For two
finite sets A and B of elements in a commutative ring, we set

R(A,B) :=
∏

a∈A,b∈B

(a− b) .

Let now A = {a1, . . . , am}, B = {b1, . . . , bn} be two sequences of (commuting)
variables. Let 0 6 p 6 m, 0 6 q 6 n be two integers. Define, after (Sylvester,
1840, 1853), the following double sum:

Sylvp,q(A,B;x) :=
∑
A′⊂A

∑
B′⊂B

R(x,A′)R(x,B′)
R(A′,B′)R(Ar A′,B r B′)
R(A′,Ar A′)R(B′,B r B′)

,

the sum being over all subsets A′ of cardinality p and B′ of cardinality q.
Sometimes, we will also use the notation Sylvp,q(x) or Sylvp,q for this sum.
The Sylvester sum Sylvp,q(A,B;x) is a polynomial in A, B, and x; moreover
degx Sylvp,q = p + q . Observe that Sylv0,0 = R(A,B) and if p = 0 or q = 0
then the Sylvester sum reduces to a single sum. More interesting Sylvester sums
are given in Example 2.10 and 2.12, and Remark 2.13. Summations of this type
and their generalizations (cf. (Lascoux, Schützenberger, 1987)) play nowadays
an important role e.g. in representation theory, and in the description of Gysin
maps (called also “integrations over a fibre”) for fibrations with homogeneous
spaces as fibres (cf. (Akyildiz, Carrell, 1987), (Brion, 1996), (Lascoux, 1975),
and (Pragacz, 1991, 1996)).

The main result connecting the subresultants and Sylvester sums is the fol-
lowing theorem.

Theorem 0.1: If p + q < n, then specializing A and B in the roots of the
polynomials P and Q respectively, one has

Sylvp,q = (−1)p(m−p−q)
(
p+ q

p

)
R(p+q) .

This result was stated without complete proof in (Sylvester, 1840, 1853) and
we did not find any in the literature. All other expressions of subresultants that
we have found in the literature can be derived from either the above determi-
nant or the determinant (2.3), and this is why we wanted to comment about
Sylvester’s formulas, from an algebraic point of view only. We shall not get in-
volved into elimination theory, but refer for that to the papers on subresultants
quoted in the references. The case of a single Sylvester sum p = 0 or q = 0 was
already announced in an earlier paper (Sylvester, 1839), as a generalization of
Lagrange interpolation, and proved in (Borchardt, 1860) (we discuss the result
of Borchardt in Remark 2.13.). Let us stress that the case of a single sum does
not imply the assertion of the theorem for the double Sylvester sums.

The objective of the present paper is to give a proof of Theorem 0.1 with the
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help of techniques of multivariate polynomials, involving multi-Schur functions
and divided differences. The assumption p + q < n is essential. In fact, for the
needs of the proof, we also compute Sylvp,q(A,B;x) when p + q = n. A “closed
form” formula for Sylvester sum in the case p+q > n, remains an open problem.
The strategy of the present paper is to express all functions as multi-Schur
functions. This was already used in Lascoux (1990a).

The paper is organized as follows.

In the first section we recall some information on multi-Schur functions.
In the second section which is the core of the paper, we provide a proof of

Theorem 0.1. This proof goes by induction on deg(Q) and makes use of a formula
which expresses the first remainder R1 with the help of divided differences. An
important ingredient of the proof is an expression of a subresultant in the form
of a multi-Schur function given in Proposition 2.2. This last expression is proved
via specialization. We also discuss there the result of (Borchardt, 1860) on single
Sylvester sums.

In the third section we show, using some symmetrizing operators, another way
to obtain the key identity (2.11) that relates the double Sylvester sums with the
multi-Schur functions.

These algebro-combinatorial computations can be interpreted in terms of
Gysin maps for the fibre product of two Grassmann bundles; we discuss this
in the fourth section.

1. Review of symmetric polynomials and multi-Schur
functions

Given a formal series in z,
∑∞

i=0 z
iSi , with S0 = 1 and with coefficients from an

arbitrary commutative ring, one associates with the series an infinite matrix of
their coefficients:

S = [Sk−h]h,k>1 (1.1)

(one has Si = 0 if i < 0). For any natural number l and any I = (i1, . . . , il) ∈ Zl
one associates with the series the Schur function SI indexed by I: by definition
SI is the minor of S taken over the l first rows and over the columns i1+1, i2+2,
. . . , il + l (SI is zero if one of these integers is negative).

More explicitly,
SI = |Sik+k−h|16h,k6l . (1.2)

We note that SI = ±SJ or 0, where J = (0 6 j1 6 · · · 6 jl) is a partition. For
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example,

S5,7,2,0,3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S5 S8 S4 S3 S7

S4 S7 S3 S2 S6

S3 S6 S2 S1 S5

S2 S5 S1 1 S4

S1 S4 1 0 S3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S3 S4 S5 S7 S8

S2 S3 S4 S6 S7

S1 S2 S3 S5 S6

1 S1 S2 S4 S5

0 1 S1 S3 S4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= S3,3,3,4,4 .

Given a (finite) alphabet A, i.e. a multi-set of elements in a commutative ring
(often indeterminates), we denote by SI(A) the Schur functions associated with
the series ∏

a∈A

(1− za)−1 .

This notion is extended to virtual alphabets∗ as follows. Given two alphabets
A,B, we denote by SI(A− B) the Schur functions associated with the series∏

b∈B

(1− zb)/
∏
a∈A

(1− za) .

So Si(A−B) interpolates between Si(A) – the complete homogeneous symmetric
polynomial of degree i in A and Si(−B) – the i-th elementary polynomial in B
times (−1)i.

The notation A− B is compatible with the multiplication of series:∑
ziSi(A− B) ·

∑
zjSj(A′ − B′) =

∑
ziSi

(
(A + A′)− (B + B′)

)
, (1.3)

the sum A + A′ denoting the union of two alphabets A and A′.

Convention: We will often identify an alphabet A = {a1, . . . , am} with the
sum a1 + · · ·+ am and perform usual algebraic operations on such elements. We
will give priority to the algebraic notation over the set-theoretic one.

We have (A+C)− (B+C) = A−B, and this corresponds to simplification of
the common factor for the rational series:∑

ziSi((A + C)− (B + C)) =
∑

ziSi(A− B) .

The cardinality of B being n, we can write the polynomial
∏

b∈B(x− b) in the
compact form Sn(x− B); after the previous definition for A = {x} one has

Sn(x− B) = xn + xn−1S1(−B) + · · ·+ x0Sn(−B) . (1.4)

∗By a virtual alphabet, we understand a formal finite Z-linear combination of alphabets.
The precise sense of the operations “+” and “−” for alphabets, is explained in this section. Of
course, using these operations, any virtual alphabet has the form A−B, for some alphabets A
and B. All these notions are clarified by the use of λ-rings, which are the appropriate structure
for manipulations of symmetric functions.
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Moreover, one has for i > 0,

Sn+i(−B) = 0 and Sn+i(x− B) = xiSn(x− B) . (1.5)

The inverse of the rational series
∑
ziSi(A − B) is the series

∑
ziSi(B − A);

the inversion of series corresponds to the inversion of the matrices S, and for
their minors which are Schur functions, to the transposition of the partitions
indexing them. In particular, for a partition I = (i1, . . . , il), one has SI(−A) =
(−1)i1+···+ilSJ(A) where J is the transpose of I.

Given l virtual alphabets A(1), . . . ,A(l), and a sequence I ∈ Zl, one associates
with them the multi-Schur function

SI
(
A(1), . . . ,A(l)

)
= |Sik+k−h(A(k))|16h,k6l . (1.6)

Numerous applications of multi-Schur functions are discussed in (Lascoux, Schüt-
zenberger, 1985).

Notation: We will group the elements of I which correspond to the same
argument. So, if ir = · · · = it(= i) is the maximal subsequence of equal parts of
I corresponding to the fixed argument A(k), then we will write the multi-Schur
function (1.6) as

S...;it−r+1;...(. . . ;A(k); . . .) .

For example, the multi-Schur function S1,1,1,1,2,2,4,4,4,4,5 associated with a sequence
of virtual alphabets

A(1),A(2),A(2),A(3),A(3),A(3),A(4),A(4),A(4),A(5),A(5)

is written as

S1;12;1;22;43;4;5(A(1);A(2);A(3);A(3);A(4);A(5);A(5)) .

By using the relation

Sp(A− x) = Sp(A)− xSp−1(A) ,

where A is a virtual alphabet and x is a single variable, and performing elemen-
tary operations on the rows (or columns) of a determinant of the form (1.6), we
arrive at the following transformation lemma:

Lemma 1.7: Let t 6 l be a positive integer and X an alphabet of cardinality
r 6 t.

(i) The replacement of Sp(A(k)) by Sp(A(k) − X) in the first t − r rows of a
sequence of t successive rows of the determinant (1.6), does not change the
value of the determinant.
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(ii) Suppose that there exists k such that k+t 6 l, ik+1 = ik+2 = · · · = ik+t, and
A(k+1) = · · · = A(k+t) = A. Then the replacement of Sp(A) by Sp(A−X) in
the (k + t)-th, (k + t− 1)-th, . . . , (k + r+ 1)-th column of the determinant
(1.6), does not change the value of the determinant.

Example 1.8: We illustrate (i). For virtual alphabets A, B, . . . , and an alpha-
bet X of cardinality 2, the following equality holds:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S6(A) S9(B) S5(C) S4(D) S8(E)

S5(A) S8(B) S4(C) S3(D) S7(E)

S4(A) S7(B) S3(C) S2(D) S6(E)

S3(A) S6(B) S2(C) S1(D) S5(E)

S2(A) S5(B) S1(C) 1 S4(E)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S6(A) S9(B) S5(C) S4(D) S8(E)

S5(A− X) S8(B− X) S4(C− X) S3(D− X) S7(E− X)

S4(A− X) S7(B− X) S3(C− X) S2(D− X) S6(E− X)

S3(A) S6(B) S2(C) S1(D) S5(E)

S2(A) S5(B) S1(C) 1 S4(E)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Let now A and B be two alphabets. The element R(A,B) =
∏

a∈A,b∈B(a− b) is
the resultant of the polynomials with roots A and B. Given an indeterminate x,
the polynomial Sm(x−A) can be written unambiguously as R(x,A). In general,
we have the following expression:

R(A,B) = Snm(A− B) . (1.9)

See (Collins, 1967, 1973), (Jouanolou, 1991, 1996), and (Lascoux, 1986a) for
more about resultants.

We will need the following two lemmas.

Lemma 1.10: For positive integers r and t, the following equality holds:

Str(A− B) =
∑

SI(A)SI∗(−B) ,

where the sum is over all partitions I = (i1, . . . , ir) with ir 6 t, and I∗ stands
for the partition (t− ir, . . . , t− i1).

This a particular case of a well-known linearity formula, cf. e.g. (Lascoux, Schüt-
zenberger, 1985), (Lascoux, 1986a), and (Pragacz, 1991).



A. Lascoux and P. Pragacz: Double Sylvester sums for subresultants 8

Lemma 1.11: For positive integers d, r, and t, and virtual alphabets A and B,
the following equality holds:

S1d;tr(A;B) =
d∑
i=0

(−1)iS1d−i(A)Str−1,t+i(B) .

Proof: The Laplace expansion of the determinant S1d;tr(A;B) along the first d
columns gives a sum of products of Schur functions of A and B respectively. One
checks that their indices are as stated. 2

For example, consider the determinant of S1,1;2,2,2(A;B):∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S1(A) S2(A) S4(B) S5(B) S6(B)

1 S1(A) S3(B) S4(B) S5(B)

0 1 S2(B) S3(B) S4(B)

0 0 S1(B) S2(B) S3(B)

0 0 1 S1(B) S2(B)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

A term in the expansion is

−
∣∣∣∣ S1(A) S2(A)

0 1

∣∣∣∣
∣∣∣∣∣∣∣∣
S3(B) S4(B) S5(B)

S1(B) S2(B) S3(B)

1 S1(B) S2(B)

∣∣∣∣∣∣∣∣
in which one recognizes −S1(A)S223(B), up to transpositions along the anti-
diagonals.

Remark 1.12: Let P = Sm(x−A) andQ = Sn(x−B) be two polynomials in one
variable (with m > n, as usual). Algebraic operations on these two polynomials
preserve the symmetry in the roots of each of the two polynomials, and thus
produce symmetric functions in A and B separately. The last nonzero remainder
in the Euclidean division of P by Q is the GCD of P and Q. The GCD of P and Q
is of degree d iff the Schur functions Snm(A−B), . . . , S(n−d+1)m−d+1(A−B) vanish
and S(n−d)m−d(A − B) 6= 0, cf. (Trudi, 1862), (Lascoux, 1986a), and (Pragacz,
1987, 1991).

We want the n-th normalized† remainder to be the resultant, Rn = R(0) =
R(A,B) = Snm(A− B). We normalize the successive remainders by asking that
the (n−d)-th remainder Rn−d has the leading term xdS(n−d)m−d(A−B). Then it

equals the subresultant R(d). For more details see (Collins, 1967, 1973), (Brown,
Traub, 1971), (Loos, 1982), (Lascoux, 1990a), and (Jouanolou, 1996). In partic-
ular, if the GCD of P and Q is of degree d, then it is given - up to a nonzero
scalar - by the explicit determinants (2.1) and (2.3) below.

†By normalization, we mean here multiplication by a nonzero scalar.
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2. Proof of the main theorem

Recall that the subresultant R(d) of degree d, associated with a pair of polyno-
mials Sm(x− A) and Sn(x− B), is defined as the following determinant:

R(d) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S0(−A) . . . Sm+n−2d−2(−A) Sm+n−d−1(x− A)
...

...
...

Sd−n+1(−A) . . . Sm−d−1(−A) Sm(x− A)

S0(−B) . . . Sm+n−2d−2(−B) Sm+n−d−1(x− B)
...

...
...

Sd−m+1(−B) . . . Sn−d−1(−B) Sn(x− B)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.1)

In the following proposition we present the subresultant R(d) as a multi-Schur
function. We give a proof by specialization, using some simple transformations
of determinants. (See (Lascoux, 1990a) for a connection with Wroński’s work
(Hoene-Wroński, 1817); cf. also (Lascoux, 1990b).)

Proposition 2.2: For d = 0, 1, . . . , n− 1, we have

R(d) = (−1)mn−d(m+n)S1d;(m−d)n−d(B− x;B− A) .

Proof: We recall that S1d;(m−d)n−d(B− x;B− A) is the determinant:∣∣∣∣∣∣∣∣
S1(B− x) . . . Sd(B− x) Sm(B− A) . . . Sm+n−d−1(B− A)

...
...

...
...

S2−n(B− x) . . . Sd−n+1(B− x) Sm−n+1(B− A) . . . Sm−d(B− A)

∣∣∣∣∣∣∣∣ . (2.3)

It suffices to show that the n specializations x = b ∈ B of R(d) and of the
determinant (2.3) coincide because these two polynomials have degree < n.

We specialize the determinant (2.3). First, using the transformation Lemma
1.7(i), we subtract B − b in the top row. We perform operations on alphabets
only, and therefore will write only them. So, starting from∣∣∣∣∣∣∣

B− b . . . B− b B− A . . . B− A
...

...
...

...

B− b . . . B− b B− A . . . B− A

∣∣∣∣∣∣∣ ,
(where B−b appears in the first d columns), we see that the previous determinant
is equal to the following one:∣∣∣∣∣∣∣∣∣∣

0 . . . 0 b− A . . . b− A

B− b . . . B− b B− A . . . B− A
...

...
...

...

B− b . . . B− b B− A . . . B− A

∣∣∣∣∣∣∣∣∣∣
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(where the zeros appear in the first d columns). Now, using the transformation
Lemma 1.7(ii), we subtract b in the last n − d − 1 columns; we see that the
previous determinant becomes∣∣∣∣∣∣∣∣∣∣

0 . . . 0 b− A −A . . . −A

B− b . . . B− b B− A B− b− A . . . B− b− A
...

...
...

...
...

B− b . . . B− b B− A B− b− A . . . B− b− A

∣∣∣∣∣∣∣∣∣∣
.

This last determinant clearly factorizes, because in the first row, the elements

Sm+1(−A), . . . , Sm+n−d−1(−A)

are null. It is equal to

(−1)dR(b,A)S(m−d)n−d−1(B− b− A) .

Similarly, we specialize the determinant (2.1)

R(d) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−A . . . −A x− A
...

...
...

−A . . . −A x− A

−B . . . −B x− B
...

...
...

−B . . . −B x− B

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

in x = b ∈ B. We obtain ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−A . . . −A b− A
...

...
...

−A . . . −A b− A

−B . . . −B 0
...

...
...

−B . . . −B 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The bottom part of the last column:

Sm+n−d−1(x− B)
...

Sn(x− B)
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is null, and one can write 0 instead of b− B.
Now, use the transformation Lemma 1.7(i) and subtract b in the first n−d−2

rows; we see that the previous determinant is equal to the following one:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−A− b . . . −A− b −A
...

...
...

−A− b . . . −A− b −A

−A . . . −A b− A

−B . . . −B 0
...

...
...

−B . . . −B 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Taking finally the Laplace expansion of the last determinant along its last col-
umn, we see that this determinant is equal to

(−1)(m−d)(n−d)R(b,A)S(m−d)n−d−1(B− b− A) .

(Here we also use Lemma 1.10 giving the expansion of S(m−d)n−d−1(B− b−A) as
a combination of the products of Schur functions in −B and −A− b.) 2

In particular, R1 = R(n−1) equals (−1)mS1n−1;m−n+1(B− x;B− A).

Let RE
1 denote the first remainder in the Euclidean division of Sm(x− A) by

Sn(x− B) (i.e. we put c1 = 1 in the notation of the Introduction).

Lemma 2.4: One has RE
1 = (−1)n−1S1n−1;m−n+1(B− x;B− A).

Proof: Write x− A = (x− B) + (B− A). Then, using (1.5), we have

Sm(x− A) =
n−1∑
i=0

Si(x− B)Sm−i(B− A) + Sn(x− B)
( m∑
i=n

Sm−i(B− A)xi−n
)

=
( m∑
i=n

Sm−i(B− A)xi−n
)
Sn(x− B) + (−1)n−1S1n−1;m−n+1(B− x;B− A) ,

by the Laplace expansion of the determinant forming the last summand, along
its last column. 2

Let now B = {b1, . . . , bn} be a set of indeterminates. Divided differences, due
to (Newton, 1687), are linear operators

∂i : Z[B]→ Z[B] (of degree − 1)
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defined by

∂i(f) = (f − τif)/(bi − bi+1), i = 1, . . . , n− 1, (2.5)

where τi denotes the i-th simple transposition exchanging i with i+1. More gen-
erally, to every reduced decomposition σ = τi1 · · · τik , one associates the product
∂i1 · · · ∂ik which is independent of the choice of the reduced decomposition of σ
(because the ∂i’s satisfy the braid relations), and thus can be denoted unam-
biguously ∂σ.

Notation: Given an alphabet B = {b1, b2, . . .}, we write Bi := {b1, . . . , bi}.

Lemma 2.6: For every k ∈ Z, and a virtual alphabet A which is independent∗

of B, one has
∂iSk(Bi − A) = Sk−1(Bi+1 − A) .

Proof: Introducing an extra variable z, and writing Bi−A = −bi+1 +(Bi+1−A),
one factorizes

∑∞
k=0 z

kSk(Bi − A) into fg, with

f = 1− zbi+1 and g =
∞∑
k=0

zkSk(Bi+1 − A) .

The second series is symmetrical in bi, bi+1, therefore commutes with ∂i. The
image of 1− zbi+1 under ∂i being z, the assertion follows. 2

The first remainder RE
1 can be conveniently presented through divided differ-

ences (the same operator expresses the remainder in the Lagrange interpolation
of a function in one variable).

Lemma 2.7: The first remainderRE
1 in the Euclidean division of P (x) = Sm(x−

A) by Sn(x− B) equals

RE
1 = ∂n−1 · · · ∂1

(
P (b1)R(x,B− b1)

)
.

Proof: We have

R(x,B− b1) = (x− b2) · · · (x− bn) = Sn−1(x− (B− b1))
= (−1)n−1S1n−1((B− x)− b1) ,

and by the transformation Lemma 1.7(i), the product P (b1)R(x,B− b1) equals

(−1)n−1S1n−1;m(B− x; b1 − A) .

Thus, using Lemma 2.6, we see that the image of P (b1)R(x,B − b1) under
∂n−1 · · · ∂1 is

(−1)n−1S1n−1;m−n+1(B− x;B− A) = R1 ,

which is RE
1 by Lemma 2.4. 2

∗It suffices that τi preserves A.
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See Remark 2.13 for some comments about this lemma and its generalizations.

Convention: In the following, by the “top coefficient” of a polynomial in x,
we shall mean the coefficient of the highest power of x in the polynomial.

The following lemma will be used in the proof several times:

Lemma 2.8:

(i) The specialization Sylvp,q(A,B; a), a ∈ A, is equal to

(−1)pR(a,B) c ,

where c is the top coefficient of Sylvp,q(A− a,B;x).

(ii) The specialization Sylvp,q(A,B; b), b ∈ B, is equal to

(−1)m−p+qR(b,A) c ,

where c is the top coefficient of Sylvp,q(A,B− b;x).

Proof: We consider, for example, (ii). We have

Sylvp,q(b) =
∑

A′⊂A,B′⊂B−b

R(b,A′)R(b,B′)
R(A′,B′)R(A− A′,B− B′)
R(A′,A− A′)R(B′,B− B′)

= (−1)m−p+qR(b,A)
∑

A′⊂A,B′⊂B−b

R(A′,B′)R(A− A′,B− b− B′)
R(A′,A− A′)R(B′,B− b− B′)

,

as claimed. 2

We need also the following proposition concerning the limit case when p+ q =
n.†

Proposition 2.9:

(i) Suppose that p+ q = n < m. Then we have

Sylvp,q(A,B;x) = (−1)(m−n)p
(
n

p

)
R(x,B) .

(ii) Suppose that p+ q = n = m. Then we have

Sylvp,q(A,B;x) =

(
n− 1

q

)
R(x,A) +

(
n− 1

p

)
R(x,B) .

†In fact, in the proof of Theorem 0.1, we will need only part (i) of the proposition. Part (ii)
is added for the need of induction in the proof of the proposition.
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Proof: Both assertions depend on the four-tuple
(
m = card(A), n = card(B), p, q

)
.

We prove (i) and (ii) simultaneously using induction on m+ n.
(i) Let m > n. By Lemma 2.8, the specialization Sylvp,q(A,B; a) is equal to

(−1)pR(a,B) times the top coefficient of Sylvp,q(A− a,B;x).
If m− 1 > n, then by (i) for (m− 1, n, p, q), this specialization is equal to

(−1)(m−1−n)p+p
(
n

p

)
R(a,B) = (−1)(m−n)p

(
n

p

)
R(a,B)

and these m specializations determine the polynomial.
If m − 1 = n, then according to (ii) for (n, n, p, q), the top coefficient of

Sylvp,q(A−a,B;x) is equal to
(
n−1
p

)
+
(
n−1
q

)
=
(
n
p

)
, and therefore Sylvp,q(A,B;x)

coincides with (−1)p
(
n
p

)
R(x,B).

(ii) Let m = n = p + q. By Lemma 2.8, the specialization Sylvp,q(A,B; a) is
equal to (−1)pR(a,B) times the top coefficient of Sylvp,q(A − a,B;x). Observe
that this last coefficient equals the top coefficient of Sylvp,q−1(B,A− a;x). Then
by (i) for (n, n− 1, p, q − 1), the considered specialization is

(
n−1
p

)
R(a,B).

Similarly, the specialization Sylvp,q(A,B; b) is equal to R(b,A) times the top
coefficient of Sylvp,q(A,B − b;x). Observe that this last coefficient is equal to
(−1)q times the top coefficient of Sylvq,p−1(A,B − b;x). Then by (i) for (n, n −
1, q, p− 1), the considered specialization is

(
n−1
q

)
R(b,A).

The polynomial Sylvp,q(A,B;x) is determined by these specializations. 2

Example 2.10:

(i) For m = 3, n = 2, and p = q = 1,

(a1 − b1)(a2 − b2)(a3 − b2)
(a1 − a2)(a1 − a3)(b1 − b2)

(x− a1)(x− b1)

+
(a1 − b2)(a2 − b1)(a3 − b1)
(a1 − a2)(a1 − a3)(b2 − b1)

(x− a1)(x− b2)

+
(a2 − b1)(a1 − b2)(a3 − b2)
(a2 − a1)(a2 − a3)(b1 − b2)

(x− a2)(x− b1)

+
(a2 − b2)(a1 − b1)(a3 − b1)
(a2 − a1)(a2 − a3)(b2 − b1)

(x− a2)(x− b2)

+
(a3 − b1)(a1 − b2)(a2 − b2)
(a3 − a1)(a3 − a2)(b1 − b2)

(x− a3)(x− b1)

+
(a3 − b2)(a1 − b1)(a2 − b1)
(a3 − a1)(a3 − a2)(b2 − b1)

(x− a3)(x− b2)

is equal to −2(x− b1)(x− b2).
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(ii) For m = n = 3, p = 2, and q = 1,

(a1 − b1)(a2 − b1)(a3 − b2)(a3 − b3)
(a1 − a3)(a2 − a3)(b1 − b2)(b1 − b3)

(x− a1)(x− a2)(x− b1)

+
(a1 − b1)(a3 − b1)(a2 − b2)(a2 − b3)
(a1 − a2)(a3 − a2)(b1 − b2)(b1 − b3)

(x− a1)(x− a3)(x− b1)

+
(a2 − b1)(a3 − b1)(a1 − b2)(a1 − b3)
(a2 − a1)(a3 − a1)(b1 − b2)(b1 − b3)

(x− a2)(x− a3)(x− b1)

+
(a1 − b2)(a2 − b2)(a3 − b1)(a3 − b3)
(a1 − a3)(a2 − a3)(b2 − b1)(b2 − b3)

(x− a1)(x− a2)(x− b2)

+
(a1 − b2)(a3 − b2)(a2 − b1)(a2 − b3)
(a1 − a2)(a3 − a2)(b2 − b1)(b2 − b3)

(x− a1)(x− a3)(x− b2)

+
(a2 − b2)(a3 − b2)(a1 − b1)(a1 − b3)
(a2 − a1)(a3 − a1)(b2 − b1)(b2 − b3)

(x− a2)(x− a3)(x− b2)

+
(a1 − b3)(a2 − b3)(a3 − b1)(a3 − b2)
(a1 − a3)(a2 − a3)(b3 − b1)(b3 − b2)

(x− a1)(x− a2)(x− b3)

+
(a1 − b3)(a3 − b3)(a2 − b1)(a2 − b2)
(a1 − a2)(a3 − a2)(b3 − b1)(b3 − b2)

(x− a1)(x− a3)(x− b3)

+
(a2 − b3)(a3 − b3)(a1 − b1)(a1 − b2)
(a2 − a1)(a3 − a1)(b3 − b1)(b3 − b2)

(x− a2)(x− a3)(x− b3)

is equal to 2(x− a1)(x− a2)(x− a3) + (x− b1)(x− b2)(x− b3).

We now can pass to the

Proof of Theorem 0.1: Write d := p + q. The assertion of the theorem is equiv-
alent to the identity:

Sylvp,q(A,B;x) = (−1)(m−d)(n−q)+d
(
d

p

)
S1d;(m−d)n−d(B− x;B− A) (2.11)

if d < n.
The proof goes by induction on n. For n = 1, p = q = 0, and any m > 1, both

sides of (2.11) are equal to R(A, b1).
To perform the induction step, observe that Sylvp,q, as a polynomial in x, is

of degree d < n. Hence it coincides with its first remainder RE
1 modulo R(x,B),

and one can use Lemma 2.7 to obtain it starting from Sylvp,q(b1):

Sylvp,q(x) = ∂n−1 · · · ∂1
(
Sylvp,q(b1)R(x,B− b1)

)
.

By Lemma 2.8, the specialization of Sylvp,q(A,B;x) in x = b1 is equal to
(−1)m−dR(b1,A) times the top coefficient in Sylvp,q(A,B − b1;x). If d < n − 1
then we can apply the induction assumption, and we see that this coefficient is
equal to

(−1)(m−d)(n−1−q)
(
d

p

)
S�(B− b1 − A) ,
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with � = (m − d)n−d−1. If d = n − 1 then the coefficient is given by the same
formula by Proposition 2.9.

We are left with the computation of the following expression:

∂n−1 · · · ∂1
(
R(x,B− b1)R(b1,A)S�(B− b1 − A)

)
.

We rewrite

R(x,B− b1) = Sn−1(x− (B− b1))

= (−1)n−1S1n−1((B− x)− b1) = (−1)n−1
(n−1∑
i=0

(−1)iS1n−i−1(B− x)bi1

)
.

We have by (1.5)
bi1R(b1,A) = Sm+i(b1 − A) ,

and by the transformation Lemma 1.7(i),

Sm+i(b1 − A)S�(B− b1 − A) = S�;m+i(B− A; b1 − A) .

Finally, we get with ε = (−1)(m−d)(n−q)+n−1,

Sylvp,q(b1)R(x,B− b1) = ε

(
d

p

) n−1∑
i=0

(−1)iS1n−1−i(B− x)S�;m+i(B− A; b1 − A) .

By Lemma 2.6, its image under ∂n−1 · · · ∂1 is equal to

ε

(
d

p

) n−1∑
i=0

(−1)iS1n−1−i(B− x)S�,m+i−(n−1)(B− A) .

In this last sum, the terms for i = 0, . . . , n − d − 2 disappear because they
correspond to determinants having two identical columns. In the remaining sum
for i = n− d− 1, . . . , n− 1:

d∑
j=0

(−1)jS1d−j(B− x)S�,m−d+j(B− A) ,

one recognizes the Laplace expansion of the determinant S1d;(m−d)n−d(B−x;B−A)
along the first d columns (cf. Lemma 1.11). One also checks that all the signs fit
to give the assertion.

This ends the proof of the theorem. 2

We illustrate the theorem by the following example.
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Example 2.12: Let m = 5, n = 4. Then the Sylvester sum Sylv2,1(A,B;x):

(a3 − b2)(a4 − b2)(a5 − b2)(a3 − b3)(a4 − b3)(a5 − b3)(a3 − b4)(a4 − b4)(a5 − b4)

(a1 − a3)(a1 − a4)(a1 − a5)(a2 − a3)(a2 − a4)(a2 − a5)(b1 − b2)(b1 − b3)(b1 − b4)

× (a1 − b1)(a2 − b1)(x− a1)(x− a2)(x− b1)

+
(a3 − b1)(a4 − b1)(a5 − b1)(a3 − b3)(a4 − b3)(a5 − b3)(a3 − b4)(a4 − b4)(a5 − b4)

(a1 − a3)(a1 − a4)(a1 − a5)(a2 − a3)(a2 − a4)(a2 − a5)(b2 − b1)(b2 − b3)(b2 − b4)

× (a1 − b2)(a2 − b2)(x− a1)(x− a2)(x− b2)

+
(a3 − b1)(a4 − b1)(a5 − b1)(a3 − b2)(a4 − b2)(a5 − b2)(a3 − b4)(a4 − b4)(a5 − b4)

(a1 − a3)(a1 − a4)(a1 − a5)(a2 − a3)(a2 − a4)(a2 − a5)(b3 − b1)(b3 − b2)(b3 − b4)

× (a1 − b3)(a2 − b3)(x− a1)(x− a2)(x− b3)

+
(a3 − b1)(a4 − b1)(a5 − b1)(a3 − b2)(a4 − b2)(a5 − b2)(a3 − b4)(a4 − b4)(a5 − b4)

(a1 − a3)(a1 − a4)(a1 − a5)(a2 − a3)(a2 − a4)(a2 − a5)(b4 − b1)(b4 − b2)(b4 − b3)

× (a1 − b4)(a2 − b4)(x− a1)(x− a2)(x− b4)

+ 9× 4 similar terms obtained by replacing (a1, a2) by (ai, aj) for i < j

is equal to 3R(3).

Remark 2.13: If p = 0 or q = 0, then double Sylvester sums reduce to single
ones; these single sums appeared already in (Sylvester, 1839) together with an
announcement of the assertion of Theorem 0.1 in that case. For example,

Sylv0,q(A,B;x) =
∑
B′⊂B

R(x,B′)
R(A,B− B′)
R(B′,B− B′)

, (2.14)

the sum being over all subsets B′ of cardinality q. In this case, the assertion of
Theorem 0.1 was proved in (Borchardt, 1860). Here is a short proof of it, or
equivalently of the identity (2.11), using a result of (Lascoux, 1975). We have,
with B′′ := B− B′,

Sylv0,q(A,B;x) =
∑
B′⊂B

R(x,B′)
R(A,B′′)
R(B′,B′′)

= ∂B′′B′
(
Sq(x− B′)Smn−q(B′′ − A)

)
= ±∂B′′B′

(
S1q(B′−x)Smn−q(B′′−A)

)
= (−1)(m−q)(n−q)+qS1q ;(m−q)n−q(B−x;B−A) .

Note that one can rewrite (2.14) as:

(−1)m(n−q)
∑

16j1<···<jq6n

∏
i 6=j1,...,jq

q∏
k=1

P (bi) (x− bjk)

bjk − bi
, (2.15)

where P (x) = Sm(x− A). So the expression (2.15) equals the subresultant R(q)

associated with P (x) and Sn(x − B). In particular, for q = n − 1, one recovers
Lagrange interpolation:

RE
1 = (−1)m−n+1R1 =

n∑
i=1

P (bi)
∏
j 6=i

x− bj
bi − bj

. (2.16)
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For example, for n = 3,

RE
1 = P (b1)

(x− b2)(x− b3)
(b1 − b2)(b1 − b3)

+P (b2)
(x− b1)(x− b3)
(b2 − b1)(b2 − b3)

+P (b3)
(x− b1)(x− b2)
(b3 − b1)(b3 − b2)

.

In (Jouanolou, 1996), one can find another treatment of such interpolation
formulas of Lagrange, Sylvester, and Borchardt. The expressions of interpolation
for the subresultants given there are different from the double Sylvester sums,
and they are based on the theory of the so-called “Borchardtiens” developed in
loc.cit.

Jacobi, in his thesis in 1825, already considered the problem of generalizing
the Lagrange interpolation. In particular, in the appendix to his thesis (Jacobi,
1825), Propositio generalis III, p.562, Jacobi expresses, for any symmetric poly-
nomial P in p variables, the value of∑

A′⊂A

P (A′)
R(A′,A− A′)

,

where card(A′) = p, as a multi-residue.

3. Another approach via symmetrizing operators

We will now sketch another possible method for getting the identity (2.11), using
only divided differences, and not specializations. It is based upon the following
two lemmas∗:

Lemma 3.1: Let i 6 n − 1 be a nonnegative integer and let C be an alphabet
such that card(C) 6 i. Then for a nonnegative integer j and a virtual alphabet D,

∂n−1 · · · ∂1
(
Si(b1 − C)Sj(b1 + D)

)
= Si+j−n+1(B− C + D) ,

provided C and D are independent of B.

Proof: We have

Si(b1 − C)Sj(b1 + D) =
∑
k,l

bk+l1 Si−k(−C)Sj−l(D) .

This element is sent via ∂n−1 · · · ∂1 to∑
k

Si−k(−C)Sj+k−n+1(B + D)

because k 6 n − 1. Since Sk(−C) = 0 for k > i, this last sum is the expression
of Si+j−n+1(B− C + D) and the assertion of the lemma follows. 2

∗We do not state these results in the greatest possible generality, but in the form needed
here.
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Notation: Given an alphabet B = {b1, b2, . . .}, we write Bi := {bi, bi+1, . . .} .

Lemma 3.2: Let i0 be a nonnegative integer and let C(0) be an alphabet such
that card(C(0)) 6 i0. Then for integers i1, . . . , in−1, and virtual alphabets
C(1), . . . , C(n−1),

∂n−1 · · · ∂1
(
Si0(b1 − C(0))Si1,...,in−1(B2 − C(1), . . . ,B2 − C(n−1))

)
= (−1)n−1Si0,i1−1,...,in−1−1(B− C(0),B− C(1), . . . ,B− C(n−1)) ,

provided C(0), . . . ,C(n−1) are independent of B.

Proof: Using the transformation Lemma 1.7(i), we have the factorization

Si0(b1 − C(0))Si1,...,in−1(B2 − C(1), . . . ,B2 − C(n−1))

= Si1,...,in−1,i0(B− C(1), . . . ,B− C(n−1), b1 − C(0)) .

The image of this element via ∂n−1 · · · ∂1 is

Si1,...,in−1,i0−n+1(B− C(1), . . . ,B− C(n−1),B− C(0))

= (−1)n−1Si0,i1−1,...,in−1−1(B− C(0),B− C(1), . . . ,B− C(n−1)) .

The lemma is proved. 2

Notation: We denote ∂B := ∂ω where ω is the longest permutation reordering
(b1, b2, . . . , bn) to (bn, bn−1, . . . , b1). For two complementary subsequences B′ and
B” of B, we write ∂B”B′ := ∂σ where the permutation σ reorders the sequence
B”B′ to B. For example, ∂n−1 · · · ∂1 is denoted by ∂B2b1 .

In this computation, we fix A′ := Ap, A′′ := Ap+1, B′ := Bq, and B′′ := Bq+1.
(Here, a1, . . . , am are variables.)

Recall (cf. e.g. (Pragacz, 1996, §3) and references there) that the divided differ-
ence operator ∂A′′A′ has the following interpretation as a symmetrizing operator
occurring in Sylvester sums. For a polynomial P (a1, . . . , am),

∂A′′A′(P ) =
1

p!(m− p)!
∑
σ

( P

R(Ap,Ap+1)

)σ
,

the sum being over permutations σ of {1, . . . ,m}. Hence equation (2.11) is equiv-
alent to

∂A′′A′∂B′′B′ [R(x,A′ + B′)R(A′,B′)R(A′′,B′′)]

= (−1)(m−p−q)(n−q)+p+q
(
p+ q

p

)
S1p+q ;(m−p−q)n−p−q(B− x;B− A) . (3.3)
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Notation: For an alphabet A = {a1, . . . , am} we write

∆(A) :=
∏

i<j6m

(ai − aj) ,

and for an auxiliary alphabet B, we set ∆(A + B) := ∆(A)∆(B)R(A,B).†

Since

∂A′∂B′
(
(1/p!)(1/q!)∆(x+ A′)∆(x+ B′)R(A′,B′)R(A′′,B′′)

)
= R(x,A′ + B′)R(A′,B′)R(A′′,B′′) ,

equation (3.3) is equivalent to

∇
(
∆(x+ A′ + B′)R(A′′,B′′)

)
= ε(p+ q)!S1p+q ;(m−p−q)n−p−q(B− x;B− A) , (3.4)

where

∇ := ∂B2b1 · · · ∂Bq−p+1bq−p
∂A2a1∂Bq−p+2bq−p+1

· · · ∂Apap−1∂Bqbq−1∂A′′ap∂B′′bq

(without loss of generality we assume that p 6 q), and ε = (−1)(m−p−q)(n−q)+p+q.

We will now show (3.4) for m = card(A) = 11, n = card(B) = 9, p = 2, and
q = 3. We want to show

∂B2b1∂A2a1∂B3b2∂A3a2∂B4b3 [∆(x+ A2 + B3)R(A3,B4)] = −5!S15;64(B− x;B− A) .

We shall disregard the signs, for simplicity. We have

∆(B3 +A2 + x)R(B4,A3) = ∆(B2 +A2 + x)S5(b3− (B2 +A2 + x))S96(B4−A3)

= ∆(B2 + A2 + x)S96;5(B3 − A3; b3 − (B2 + A2 + x))

(the last equality follows from the transformation Lemma 1.7(i)). By Lemma 3.2,
this element goes via ∂B4b3 to

±∆(B2 + A2 + x)S5;86(B3 − (B2 + A2 + x);B3 − A3) .

We explain the effect of applying ∂A3a2 to this last element. By the transformation
Lemma 1.7(ii), we have

S5;86(B3− (B2 +A2 +x);B3−A3) = S5;8;85(B3− (B2 +A2 +x);B3−A3;B3−A2) ,

and by a well-known linearity formula this last element is

S5;8;85(B3 − (B2 + A1 + x)− a2;B3 − A3;B3 − A2) = S5;8;85 − a2S4;8;85 ,

†Note that ∆(A + B) = (−1)mn∆(B + A), where n = card(B).
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the Schur functions in (B3 − (B2 + A1 + x);B3 − A3;B3 − A2). Factorizing the
last ∆ and using (1.5), to compute is the image under ∂A3a2 of

∆(B2 + A1 + x)[S4(a2 − (B2 + A1 + x))S5;8;85 − S5(a2 − (B2 + A1 + x))S4;8;85 ] ,

the Schur functions in (B3 − (B2 + A1 + x);B3 − A2 + a2;B3 − A2) . By using
Lemma 3.1, the first summand in the bracket [ ] is sent to

S5,3;85(B3 − (B2 + A1 + x);B3 − A2) = −S42;85(B3 − (B2 + A1 + x);B3 − A2) .

The second summand in the bracket [ ] is sent to −S42;85(B3 − (B2 + A1 +
x);B3 − A2). In sum, the initial element goes via ∂A3a2∂B4b3 to

±1 · 2 ·∆(B2 + A1 + x)S42;85(B3 − (B2 + A1 + x);B3 − A2) .

Similarly, we have

∂B3b2 [∆(B2 + A1 + x)S42;85(B3 − (B2 + A1 + x);B3 − A2)]

= ±3∆(B1 + A1 + x)S33;75(B2 − (B1 + A1 + x);B2 − A2) ,

∂A2a1 [∆(B1 + A1 + x)S33;75(B2 − (B1 + A1 + x);B2 − A2)]

= ±4∆(B1 + x)S24;75(B2 − (B1 + x);B2 − A1) ,

and

∂B2b1 [∆(B1 + x)S24;75(B2 − (B1 + x);B2 − A1)] = ±5S14;54(B1 − x;B1 − A1) .

In sum, we get

∂B2b1∂A2a1∂B3b2∂A3a2∂B4b3 [∆(x+ A2 + B3)R(A3,B4)] = −5!S15;64(B− x;B− A) ,

as wanted in (3.4).

4. A glimpse of Gysin maps

This section is just a by-product of the previous ones. We translate here the
above algebraic computations to a formula for Gysin maps.

Let X be a smooth variety, and suppose that E(1), . . . , E(l) are l virtual bundles
on X. Given a sequence I = (i1, . . . , il) ∈ Zl, we set

SI
(
E(1), . . . , E(l)

)
:= SI

(
A(1), . . . ,A(l)

)
,

where A(1), . . . ,A(l) are the virtual alphabets of Chern roots associated with
E(1), . . . , E(l).

Let now E and F be vector bundles on X of respective ranks m > n. For
integers 0 6 p 6 m and 0 6 q 6 n, let

πE : Grp(E)→ X and πF : Grq(F )→ X
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be two Grassmann bundles on X parametrizing rank p quotients of E and rank q
quotients of F . These Grassmannians are equipped with the two tautological
exact sequences:

0→ RE → E → QE → 0 and 0→ RF → F → QF → 0 ,

where rank(QE) = p and rank(QF ) = q. (We use the same notation for vector
bundles and their pullbacks.) We form a product over X:

π := πE ×X πF : Grp(E)×X Grq(F )→ X .

Recall (cf. (Brion, 1996), (Pragacz, 1996, §3)) that the operator ∂A′′A′ ap-
pearing in (3.3) induces the Gysin map (πE)∗. More precisely, for a polynomial
P (a1, . . . , am) symmetric in the first p variables and in the last m− p variables
separately, one has

(πE)∗(P (x1, . . . , xm) = ∂A′′A′
(
P (a1, . . . , am)

)
|a1=x1,...,am=xm , (4.1)

where x1, . . . , xp are the Chern roots of QE, and xp+1, . . . , xm are the ones of RE.
By using (4.1), equation (3.3) is translated into the following formula about the
top Chern classes and the Gysin map

π∗ : H(Grp(E)×X Grq(F ))→ H(X) .

Proposition 4.2: Let L be a line bundle on X. Then for d = p+ q < n,

π∗

(
ctop(Q∨E⊗L) ctop(Q∨F⊗L) ctop(Q∨F⊗QE) ctop(R∨F⊗RE)

)
= ε

(
d

p

)
S1d;(m−d)n−d ,

where ε = (−1)(m−d)(n−q)+d and the Schur function is in (F − L;F − E).

Note that by comparing the coefficients of the maximal power c1(L)d, we get

π∗
(
ctop(Q∨F ⊗QE) ctop(R∨F ⊗RE)

)
= ±

(
d

p

)
S(m−d)n−d(F − E) . (4.3)

We point out that neither the proposition nor equation (4.3) follow instantly
from a standard formula (Lascoux, 1975), (Józefiak et al., 1982) for the Gysin
map of a Grassmann bundle applied to Grp(E) and Grq(F ).

In a similar way one can translate formulas given in Proposition 2.9.
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