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Abstract

We construct a family of functors assigning an R-module to a flag of R-modules,
where R is a commutative ring. As particular instances, we get flagged Schur func-
tors and Schubert functors, the latter family being indexed by permutations. We
identify Schubert functors for vexillary permutations with some flagged Schur func-
tors, thus establishing a functorial analogue of a theorem from [6] and [15]. Over an
infinite field, we study the trace of a Schubert module, which is a cyclic module over
a Borel subgroup B, restricted to the maximal torus. The main result of the paper
says that this trace is equal to the corresponding Schubert polynomial of Lascoux
and Schützenberger [6]. We also investigate filtrations of B-modules associated with
the Monk formula [10] and transition formula from [8].

Introduction

In the present paper, we study a certain extension of the notion of polynomial
functors defined on the category of R-modules, where R is a commutative ring.
If R ⊃ Q, the field of rationals, such polynomial functors are classified by the
so-called Schur functors and have been extensively studied ([5], [14], [9], [11],
and [1]). Restricted to the vector spaces over a field of characteristic 0, Schur
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functors provide the set of all irreducible polynomial representations of the
general linear group, and in this context were investigated already by Schur
(cf. [13]). We refer to [12] for a survey concerning Schur functors and some of
their applications.

The main notion introduced in the present paper is the notion of a Schubert

functor. Schubert functors assign to a given flag of R-modules a new R-module,
where R is a commutative ring 1 . As Schur functors are indexed by partitions,
Schubert functors are indexed by permutations; this reflects their relationship
with the Schubert calculus on the flag manifold. The last subject, being a
part of classical algebraic geometry, goes back to Ehresmann and Bruhat. In
the beginning of the seventies, the cohomology ring of the flag variety was
extensively studied by Bernstein-Gelfand-Gelfand [2] and Demazure [3] with
the help of some differential-like operators defined on it. In [6], Lascoux and
Schützenberger have invented a more combinatorial approach; the main notion
of this approach is the notion of a Schubert polynomial (see Section 2 for a
precise definition). Schubert polynomials are indexed by permutations and
generalize Schur polynomials. In his Oberwolfach talk (June 1983), Lascoux
suggested the existence of a family of functors generalizing Schur functors and
having similar properties as Schubert polynomials. The present paper may be
treated as a realization of this program.

The main aim of this paper is to relate Schubert functors and Schubert polyno-
mials. The fundamental relationship between Schur functors and Schur poly-
nomials says that the trace of the restricted action of the group of diagonal
matrices on a Schur module is equal to the corresponding Schur polynomial
(see [13], or [9] for a modern treatment). The main result of the present paper
says that the trace of the restricted action of the group of diagonal matrices on
a Schubert module is equal to the corresponding Schubert polynomial. This
fact is proved in Section 4. The main idea is based on an analogue of the
“transition formula”, invented and applied by Lascoux and Schützenberger in
[8], and worked out here in the setting of Schubert modules.

Schubert functors are defined and discussed in Section 1. In Section 2, we re-
call a definition and properties of Schubert polynomials in the setting needed
for the purposes of this paper. In particular, we describe a combinatorics
standing behind the transition formula. Section 3 is devoted to study of the
so-called flagged Schur functors which are some interesting generalizations of
Schur functors, and some special cases of Schubert functors. We prove here
an analogue of a theorem of Lascoux-Schützenberger [6] and Wachs [15] relat-
ing Schubert polynomials for vexillary permutations and flagged Schur poly-
nomials. In Section 5, a filtration associated with the Monk formula [10] is

1 Following the classical route ([13], [5], and [9]), we work here over commutative
Q-algebras R. We discuss generalizations of our results to arbitrary commutative
rings or, in some cases, infinite fields in Remark 5.3.

2



discussed.

The main results of the present paper were announced in [4], but the full text
has not been published untill now. The present article, modulo some minor
modifications, follows the authors’ preprint distributed in 1986. We add, at
the end, a section on further developments related to the main themes of this
paper.

We dedicate this paper to the mathematician who

• introduced in 1977 Schur functors to commutative algebra and combina-
torics in the course of his work on the syzygies of determinantal ideals [5],

• invented in 1982 (together with M.-P. Schützenberger) Schubert polynomi-
als ([6], [7]),

• and emphasized, with the same coauthor, the role of vexillary permutations
in the study of the symmetric groups ([6], [8]).

1 Definition of Schubert functors

Let R be a commutative Q-algebra and let

E. : E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · ·

be a flag of R-modules. Assume that I = [ik,l], k, l = 1, 2, . . ., is a matrix
consisting of zeros and units and satisfying the following conditions:

1.1 ik,l = 0 for k ≥ l.

1.2
∑
l ik,l is finite for every k.

1.3 I has a finite number of nonzero rows.

A matrix I with properties 1.1–1.3 will be called a shape. We will represent
a shape graphically by replacing each unit by “×” and by omitting zeros on
the diagonal and under the diagonal. Moreover, we will omit all the columns
which are right to the last nonzero column.

Example 1.4 The matrix

0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 1 0 1 0 0 . . .
0 0 0 0 1 0 1 0 . . .
0 0 0 0 0 1 0 0 . . .
0 0 0 0 0 0 0 0 . . .

. . . . . .

will be represented as

0 0 0 0 0 0
0 0 0 0 0

× 0 × 0
× 0 ×

× 0
0
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Let ik :=
∑∞
l=1 ik,l , k = 1, 2, . . ., ĩl :=

∑∞
k=1 ik,l , l = 1, 2, . . .. We define the

module SI(E.) as the image of the map

ΦI(E.) :
⊗

k

Sik(Ek)
∆S−→

⊗

k

⊗

l

Sik,l(Ek)
m∧−→

⊗

l

∧ĩl
El

where ∆S is a product of symmetrizations and m∧ is a product of multipli-
cations in the corresponding exterior algebras. Observe that ΦI(E.) is well
defined because of properties 1.1–1.3. It is clear that SI(−) defines, in fact, a
functor : if E. and F. are two flags of R-modules and f :

⋃
n
En →

⋃
n
Fn is an

R-homomorphism such that f(En) ⊂ Fn, then f induces in a natural way a
homomorphism SI(E.) → SI(F.).

For a sequence I : i1 ≥ i2 ≥ · · · ≥ ir of nonnegative integers, we define the
flagged Schur module SI(E.) as SI(E.) where the shape I = [ik,l] is defined
as follows. Let c := max{s+ is : s = 1, 2, . . . , r}, then

ik,l :=
{
1 for k = 1, 2, . . . , r, c− ik + 1 ≤ l ≤ c
0 otherwise.

Let now µ = µ(1), µ(2), µ(3), . . . be a permutation, i.e. bijection of the set of
natural numbers which is the identity on the complement of some finite set 2 .
For every positive integer k, we define

Ik(µ) := {l : l > k, µ(k) > µ(l)}

which will be called the kth inversion set of µ. The sequence of numbers
ik = |Ik(µ)| (the cardinality of Ik(µ)), k = 1, 2, . . ., is called the code of µ. A
code determines the corresponding permutation in a unique way. Note that∑
ik is the length of µ. The index of the permutation µ is defined to be the

number
∑
(k − 1)ik. The shape of µ is defined to be the matrix

Iµ = [ik,l] := [χk(l)] , k, l = 1, 2, . . .

where χk is the characteristic function of the set Ik(µ).

Example 1.5 For µ = 5, 2, 1, 6, 4, 3, 7, 8, . . . , the code of µ is (4, 1, 0, 2, 1, 0, . . .),
and the shape Iµ is

× × 0 × ×
× 0 0 0

0 0 0
× ×

×

2 We display a permutation by the sequence of its values; the composition of per-
mutations will be denoted by “◦”.
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We define Sµ(E.)—the Schubert module associated with a permutation µ and
a flag E., as the module SIµ(E.); this gives rise to the corresponding Schubert

functor Sµ(−).

Remark 1.6 Let E. : E1 ⊂ E2 ⊂ · · · be a flag of vector spaces over a field K
of characteristic 0, dimEi = i. Let B be the group of linear transformations
f of E :=

⋃
Ei which preserve E., i.e. f(Ei) = Ei. Observe that the vector

spaces used in the definition of SI(E.) are B-modules (modules over the group
ring K[B] will be called B-modules for brevity) and the maps ∆S,m∧,ΦI

are morphisms of B-modules. Moreover,
⊗

k Sik(Ek) is a cyclic B-module.
Therefore SI(E.) is also a cyclic B-module. Let {ei : i = 1, 2, . . .} be a basis of

E such that e1, e2, . . . , ek span Ek. Then SI(E) as a B-submodule in
⊗

l

∧̃il El
is generated by the element

CI :=
⊗

l

ek1,l ∧ ek2,l ∧ · · · ∧ ekil,l

where k1,l < k2,l < · · · < kil,l are precisely those indices for which ikr,l,l = 1.
In particular, if in the lth column of I the lowest “×” appears in the sth row,

then we can replace
∧̃il El by

∧̃il Es in the definition of SI(E.). For a given
permutation µ, we will write Cµ instead of CIµ .

Example 1.7 C5,2,1,6,4,3,7,... = e1 ⊗ e1 ∧ e2 ⊗ e1 ∧ e4 ⊗ e1 ∧ e4 ∧ e5 (an element
of E1 ⊗

∧2E2 ⊗
∧2E4 ⊗

∧3E5).

Let us record the following immediate consequence of the definition of SI(E.).

Lemma 1.8 Assume that for a shape I = [ik,l], k, l = 1, 2, . . ., there exists

p such that ik,l = 0 for k ≤ p and l > p. Let I ′ be a shape [i′k,l] such that

i′k,l = ik,l for k ≤ p and i′k,l = 0 for k > p. Let I ′′ be a shape [i′′k,l] such that

i′′k,l = 0 for k ≤ p and i′′k,l = ik,l for k > p. Pictorially

.

.

I
′

I
′′

0

p

Then SI(E.) ≃ SI′(E.)⊗ SI′′(E.).
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2 Review of Schubert polynomials

In this section, we collect some facts on Schubert polynomials, as defined
in [6] and [7], useful in other parts of this paper. Let A := Z[x1, x2, . . .] be a
polynomial ring in a countable set of variables. For every i, we consider an
operator ∂i : A→ A defined for f ∈ A by

∂i(f) :=
f(x1, . . . , xi, xi+1, . . .)− f(x1, . . . , xi+1, xi, . . .)

xi − xi+1

.

For the ith simple reflection τi = 1, . . . , i−1, i+1, i, i+2, . . . , we set ∂τi := ∂i.

Proposition 2.1 Let µ = σk ◦ · · · ◦ σ1 = πk ◦ · · · ◦ π1 be two reduced decom-

positions of a permutation µ into simple reflections. Then

∂σk ◦ · · · ◦ ∂σ1(f) = ∂πk ◦ · · · ◦ ∂π1(f)

for every f ∈ A.

Therefore, for a given permutation µ, we can define ∂µ as ∂σk ◦ · · · ◦ ∂σ1 inde-
pendently of a reduced decomposition of µ chosen. For a given µ, let n be a
positive integer such that µ(k) = k for k > n. The Schubert polynomial Xµ is
defined by

Xµ := ∂µ−1◦ωn
(xn−1

1 xn−2
2 · · · x1n−1x

0
n)

where ωn is the permutation n, n − 1, . . . , 2, 1, n + 1, n + 2, . . .. Observe that
the above definition does not depend on a choice of n, because

∂n ◦ · · · ◦ ∂2 ◦ ∂1(x
n
1x

n−1
2 · · · xn) = xn−1

1 xn−2
2 · · · xn−1 .

Schubert polynomials satisfy the following properties:

2.2 The Schubert polynomial Xµ is symmetric with respect to xk and xk+1 iff

µ(k) < µ(k + 1) (or equivalently ik ≤ ik+1).

2.3 If µ(1) < µ(2) < · · · < µ(k) > µ(k+1) < µ(k+2) < · · · (or equivalently
i1 ≤ i2 ≤ · · · ≤ ik, 0 = ik+1 = ik+2 = · · ·), then Xµ equals the Schur polynomial

sik,...,i2,i1(x1, . . . , xk) (cf. [9] for this last notion).

Pictorially, the shape of µ can be displayed as

0

0

0

.

.
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2.4 If i1 ≥ i2 ≥ · · · , then Xµ = xi11 x
i2
2 · · · is a monomial.

If the sets Ik(µ) ordered by inclusion form a chain, we call µ a vexillary per-
mutation (see [6] and [8] for more information on vexillary permutations).

Example 2.5 3, 6, 5, 1, 4, 2, 7, . . . is a vexillary permutation contrary to
6, 3, 5, 1, 2, 4, 7, . . ..

I365142... =

0 0 × 0 ×
× × × ×

× × ×
0 0

×

I635124... =

× × × × ×
× 0 × 0

0 × 0
× ×

0

Recall the notion of a flagged Schur function si1,...,ik(b1, . . . , bk) where i1 ≥
· · · ≥ ik and 0 < b1 ≤ · · · ≤ bk are two sequences of nonnegative integers. One
sets

si1,...,ik(b1, . . . , bk) := det
(
sip−p+q(x1, . . . , xbp)

)

1≤p,q≤k

where sl is the complete homogeneous symmetric function of degree l (for
an alternative definition in terms of standard tableaux, see [15]). For a given
sequence of nonnegative integers I = (i1, . . . , in), we define I≤ (resp. I≥) as
the increasing (resp. decreasing) reordering of I. The following result stems
from [6] and [15]:

Theorem 2.6 Let µ be a vexillary permutation with the code (i1, i2, . . .) and
assume in 6= 0, ir = 0 for r > n. Then

Xµ = s(i1,...,in)≥ (min I1(µ)− 1, . . . ,min In(µ)− 1)≤ .

We finish this section with some facts on multiplication of Schubert polyno-
mials.

2.7 The Monk formula for multiplication by Xτk ([10], [7]):

Xµ · (x1 + · · ·+ xk) =
∑

Xµ◦τp,q ,

where τp,q, p < q, denotes the permutation

1, . . . , p− 1, q, p+ 1, . . . , q − 1, p, q + 1, . . .

and the summation ranges over all p, q such that p ≤ k, q > k and l(µ◦τp,q) =
l(µ) + 1.

This last requirement can be restated as follows: for each i ∈]p, q[, µ(i) /∈
[µ(p), µ(q)]. Graphically, the shapes of permutations µ ◦ τp,q can be obtained
from the shape of µ in the following way. Let us restrict our attention to the
places occupied by the 0’s in the marked rectangle with k rows
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.

.

0k

Fix one such place. Then consider the hook having its head in the fixed place
and the remaining boxes in the left hand side of the row, and the bottom part
of the column occupied by 0 .

0

.

.

If in the hook the number of the 0’s is equal to the number of the ×’s plus
one, then this place gives a contribution to the right-hand side of the Monk
formula. The shape of this summand is obtained from the shape of µ by
replacing our 0 by × and by exchanging parts of appriopriate columns and
rows as indicated in the following pictures:

.

0

.....................

Iµ =

.

×

.....................

Iµ◦τp,q
=

Example 2.8 X246315879... · (x1+x2) = X346215879...+X264315879...+X256314879....
Note that multiplication by x1 becomes

Xµ · x1 =
∑

Xµ◦τ1,q ,

where q is such that if i ∈]1, q[ then µ(i) /∈ [µ(1), µ(q)]. In the above graphical
description, we consider only the places occupied by the 0’s in the first row of
the shape of µ.
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From the Monk formula, we obtain:

2.9 One has Xµ · xk =
∑
j sign(j − k) ·Xµ◦τj,k where the summation ranges

over all j such that

1◦ sign(j − k) = sign (µ(j)− µ(k)),
2◦ for each i ∈]j, k[, µ(i) /∈ [µ(j), µ(k)].

Example 2.10

X31425... · x1 =X41325...

X31425... · x2 =X34125... +X32415...

X31425... · x3 =−X41325... +X315246...

X31425... · x4 =−X32415... +X314526...

For the purposes of Section 4, the following special case of 2.9 will be of
particular importance.

Transition Formula 2.11 ([8]) Let (j, s) be a pair of positive integers such

that

1◦ j < s and µ(j) > µ(s),
2◦ for every i in ]j, s[, µ(i) is outside of [µ(s), µ(j)],
3◦ for every r > j, if µ(s) < µ(r) then there exists i ∈]j, r[ such that µ(i) ∈

[µ(s), µ(r)],

then

Xµ = Xλ · xj +
∑

Xψt

where λ = µ ◦ τj,s, ψt = µ ◦ τj,s ◦ τkt,j and the sum ranges over the set of

numbers kt satisfying

4◦ kt < j and µ(kt) < µ(s),
5◦ if i ∈]kt, j[ then µ(i) /∈ [µ(kt), µ(s)].

Observe that if (j, s) is the maximal pair (in the lexicographical order) satis-
fying condition 1◦ then conditions 2◦–3◦ are also satisfied. A transition deter-
mined by this pair will be called maximal . In particular, for every nontrivial
permutation there exists at least one transition.

Example 2.12 µ = 5, 2, 1, 8, 6, 3, 4, 7, 9, . . .,

Xµ=X521843679... · x5 +X524813679... +X541823679...

Xµ=X521763489... · x4 +X527163489... +X571263489... +X721563489...

Xµ=X512864379... · x2,

and the first equation gives the maximal transition.
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A graphical interpretation of the transition formula will be given in detail
in the course of the proof of Theorem 4.1. We finish this section with the
following analog of Lemma 1.8 (see also [8]).

Lemma 2.13 Assume that a shape Iµ = [ik,l] = 1, 2, . . . satisfies the following
condition: there exists p such that ik,l = 0 for k ≤ p and l > p. Let I ′ = [i′k,l]
be a shape defined as i′k,l = ik,l for k ≤ p and i′k,l = 0 for k > p. Similarly let

I ′′ = [i′′k,l] be a shape defined as i′′k,l = 0 for k ≤ p and i′′k,l = ik,l for k > p.
Then there exist permutations µ′ and µ′′ such that Iµ′ = I ′ , Iµ′′ = I ′′, and

the following equality holds

Xµ = Xµ′ ·Xµ′′ .

PROOF. Consider a transition for µ′:

Xµ′ = Xλ′ · xj +
∑

Xψ′
t
.

Then

Xµ′ ·Xµ′′ =
(
Xλ′ · xj +

∑
Xψ′

t

)
·Xµ′′ = Xλ′ ·Xµ′′ · xj +

∑
Xψ′

t
·Xµ′′ .

Let λ be the permutation corresponding to the shape
[
iλ

′

k,l + iµ
′′

k,l

]
and let ψt be

the permutation corresponding to the shape
[
iψ

′

k,l + iµ
′′

k,l

]
. Then by induction on

the length of a permutation we get

Xµ′ ·Xµ′′ = Xλ · xj +
∑

Xψt
.

It is easy to check that the right-hand side of this equality is a transition
for Xµ. This proves that Xµ′ ·Xµ′′ = Xµ as needed.

3 Schubert functors for vexillary permutations

In this section, we will deal with vexillary permutations. We will prove an
analog of Theorem 2.6 in the context of Schubert functors and flagged Schur
functors.

A flag E. of free R-modules will be called a splitting flag provided E1 ≃ R
and the ith inclusion in the flag is given by Ei →֒ Ei ⊕R ≃ Ei+1.

Theorem 3.1 Let E. be a splitting flag of free R-modules with rankEi = i.
Assume that µ is a vexillary permutation and I1, I2, . . . , In are all nonempty

sets among the sets Is(µ), s = 1, 2, . . ., counted with multiplicities. Then

Sµ(E.) is the flagged Schur module associated with the sequence (|Ik|)
≥, k =
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1, 2, . . . , n, and with the (sub)flag of modules of ranks (min(Ik)− 1)≤, k =
1, 2, . . . , n.

PROOF. Each permutation µ = µ(1), µ(2), µ(3), . . . has a unique decompo-
sition into maximal increasing sequences

µ = a1 < a2 < · · · < ak > b1 < b2 < · · · < bl > c1 < · · · .

With a given permutation µ we associate the permutation µ′ as follows.

1◦ From the set {a1, a2, . . . , ak} we subtract all the numbers which are larger
than b1. Assume that their cardinality is equal to s.

2◦ Let σ : {1, 2, . . .} \ {ak−s+1, . . . , ak} → {s + 1, s + 2, . . .} be the unique
bijection preserving the order.

Define µ′ as follows

µ′ := 1, 2, . . . , s, σ(a1), . . . , σ(ak−s), σ(b1), . . . , σ(bl), . . . .

Example 3.2 If µ = 2, 6, 4, 5, 1, 3, 7, . . . , then µ′ = 1, 3, 5, 6, 2, 4, 7, . . ..

Iµ =

0 0 0 × 0
× × × ×

0 × ×
× ×

0

Iµ′ =

0 0 0 0 0
0 0 × 0

0 × ×
× ×

0

Observe that the shape of µ′ is obtained from Iµ by pushing down the first
k − s rows by s rows and introducing the first s rows with the 0’s only. In
particular, l(µ′) < l(µ), and µ′ is vexillary if µ has this property. By definition,
we have the following decomposition of Φµ = Φµ(E.):

⊗

p≤k

Sip(Ep)
∆′

S−→
⊗

q

⊗

p≤k

Sip,q(Ep)
m′

∧−→
⊗

q

∧∑
p≤k

ip,q
(Eq)

⊗

p

Sip(Ep) =
⊗ ⊗ ⊗

❅
❅
❅
❅

❅
❅
❅ →

Φµ

⊗

p>k

Sip(Ep)
∆′′

S−→
⊗

q

⊗

p>k

Sip,q(Ep)
m′′

∧−→
⊗

q

∧∑
p>k

ip,q
(Eq)

ym∧

⊗

q

∧̃iq(Eq)

Observe that the sequence (Is(µ)), s = 1, . . . , k, is nondecreasing because
a1 < · · · < ak. By a standard basis theorem for Schur functors (see [14], [1]),
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we can replace our initial flag by an arbitrary flag between E1 ⊂ · · · ⊂ Ek ⊂
Ek+1 ⊂ · · · and Ek ⊂ · · · ⊂ Ek ⊂ Ek+1 ⊂ · · · without changing the image. Let
us use the flag

Es+1 ⊂ · · · ⊂ Es+(k−s) ⊂ Ek ⊂ · · · ⊂ Ek︸ ︷︷ ︸
s

⊂ Ek+1 ⊂ Ek+2 ⊂ · · ·

The image of Φµ is now equal to the image of the following map Φ′
µ:

k⊗

p=k−s+1

Sip(Ek)
∆′′′

S−→
⊗

p,q

Sip,q(Ek)
m′′′

∧−→
⊗

q

∧(
∑k

p=k−s+1
ip,q)

(Ek)

⊗ ⊗ ⊗



k−s
⊗
p=1

Sip(Es+p)

⊗
⊗
p>k

Sip(Ep)




∆IV
S−→

⊗

p,q

Sip,q(Ep)
mIV

∧−→
⊗

q

∧(
∑k−s

p=1
ip,q+

∑
p>k

ip,q)
(Eq)

ym∧❅
❅
❅❅ →

Φ′
µ

⊗

q

∧̃iq(Eq)

The composition mIV
∧ ◦∆IV

S is nothing but Φµ′(E.). Therefore, by induction on
l(µ), we can replace mIV

∧ ◦∆IV
S by the corresponding map defining the flagged

Schur module associated with the sequence and the (sub)flag of modules de-
scribed by nonempty inversion sets of µ′. After this exchange, we get in the
above diagram the map defining the flagged Schur module associated with the
desired sequence and flag because k + 1 = min Ij(µ) for j = k − s + 1, . . . , k,
and these sets are the only inversion sets of µ that are not inversion sets for µ′.

This completes the proof of the theorem.

4 A character formula relating Schubert modules and Schubert
polynomials

In this section, E. : E1 ⊂ E2 ⊂ · · · will denote a flag of vector spaces over a
field K of characteristic zero, dimEi = i. We choose a basis for E =

⋃
Ei as

in Remark 1.6. Then the group B of linear automorphisms of E preserving E.
may be identified with the group of upper triangular matrices. Let T be the
subgroup of diagonal matrices in B




x1
x2 0

x3

0
. . .



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Consider the action of T on Sµ(E.) induced from the canonical action of B
by restriction. The main result of this paper is:

Theorem 4.1 The trace of the action of T on Sµ(E.) is equal to Xµ.

The proof is divided into several steps.

Step 1. Let

Xµ = Xλ · xj +
k∑

t=1

Xψt

be the maximal transition for µ. We claim that there exists a filtration of
B-modules

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ F = Sµ(E.),

together with surjections F/Fk → Sλ(E.)⊗Ej/Ej−1 and Ft/Ft−1 → Sψt
(E.)

for every t = 1, . . . , k.

PROOF. Assume that λ is obtained from µ by exchanging µ(j) and µ(s)
as described in 2.7. Recall that µ(j) > µ(s) and that the sequence µ(j + 1),
µ(j + 2), . . ., µ(s), . . . is increasing. Therefore the sth row of the shape of µ
has the ×’s in columns with numbers j + 1, j + 2, . . . , s. Moreover, the shape
Iλ is obtained from the shape Iµ by omitting the last × in the jth row and
by exchanging the jth and sth columns.

.

×× . . . ×

.................................

Iµ

0

.

0× . . . ×

.................................

0

Iλ

Let ∆∧ :
∧̃is Es →

∧̃is−1Es ⊗ Es be the diagonalization and let p : Es →
Es/Ej−1 be the projection. Denote by ϕ the following composition ofB-module
homomorphisms:

∧ĩ1
E1 ⊗ · · · ⊗

∧ĩj
Ej ⊗ · · · ⊗

∧ĩs
Es ⊗ · · ·

y1⊗···⊗1⊗···⊗∆∧⊗···

∧ĩ1
E1 ⊗ · · · ⊗

∧ĩj
Ej ⊗ · · · ⊗

∧ĩs−1
Es ⊗ Es ⊗ · · ·

y
(∧ĩ1

E1 ⊗ · · · ⊗
∧ĩs−1

Es ⊗ · · · ⊗
∧ĩj

Ej ⊗ · · ·
)
⊗ Es

13



y(1⊗···⊗1⊗···⊗1⊗···)⊗p

(∧ĩ1
E1 ⊗ · · · ⊗

∧ĩs−1
Es ⊗ · · · ⊗

∧ĩj
Ej ⊗ · · ·

)
⊗ Es/Ej−1

Observe that the image of ϕ restricted to Sµ(E.) is equal to Sλ(E.)⊗Ej/Ej−1.
Indeed, we have ϕ(Cµ) = Cλ ⊗ ej. Assume now that ψt is obtained from µ
by the cyclic exchange of µ(kt), µ(j), µ(s) as described in 2.11. Define the
shape It by exchanging the parts of the ktth and jth rows corresponding to
the columns j + 1, j + 2, . . . .

.

0 0

×...× ×

0

kt j s

Iµ

.....................

......................................................................................................... 0 ××...×

0

0

kt j s

It

.....................

.........................................................................................................

.

× 0×...×

0

0

kt j s

Iψt

.....................

.........................................................................................................

The shape of ψt can be obtained from the shape It by the following exchange
of column-segments.

(a) The jth column goes into the place of the sth column.
(b) The upper kt − 1 rows of the jth column of Iψt

are formed by the cor-
responding rows of the ktth column of It; the remaining part of the jth
column of the shape of ψt is composed of the corresponding rows of the
sth column.

(c) The upper kt−1 rows of the ktth column are formed by the corresponding
rows of the sth column.

We define the tth piece of the filtration by

Ft :=
∑

r<t

SIr(E.).

Let p =
∑
l<kt il,s and q =

∑
l>kt il,s. We shall now define maps from Ft to

Sψt
(E.). Consider the following map

∧i
Ekt ⊗

∧p+q
Ejy1⊗∆∧

∧i
Ekt ⊗

∧p
Ej ⊗

∧q
Ejy

14



∧p
Ej ⊗

∧i
Ekt ⊗

∧q
Ejy1⊗m∧

∧p
Ej ⊗

∧i+q
Ej

where ∆∧ is the corresponding diagonalization,m∧ stands for multiplication in
the exterior algebra and i := ĩkt . This map tensored by identities corresponding
to the remaining columns gives a map from the product of exterior powers
associated with It (and also with all the shapes Ir, r < t) to the product
of exterior powers associated with Iψt

(note that we can use exterior powers
of Ej instead of Es because all the rows below the jth one are occupied by
zeros). Denote the restriction of this map to Ft by ϕt. It is easy to see that
ϕt(CIt) = Cψt

and ϕt(CIr) = 0 for r < t. Therefore Ft−1 ⊂ Kerϕt. This proves
that for every t = 1, 2, . . . , k, Ft/Ft−1 surjects onto Sψt

(E.).

Step 2. Define dµ := dimK Sµ(E.) and zµ as the value of Xµ for the special-
ization xi = 1, i = 1, 2, . . .. We claim that dµ ≥ zµ.

PROOF. Consider the maximal transition for µ:

Xµ = Xλ · xj +
∑

Xψt
,

It follows from the description in 2.11 that

1) l(λ) = l(µ)− 1,
2) for every t the index of ψt is strictly smaller than the index of µ.

Our claim now follows from the properties of the filtration of Sµ(E.) proved
in Step 1 by (double) induction on the length and on the index of µ.

Step 3. We claim that Kerϕt = Ft−1.

PROOF. We will say that a permutation µ (or alternatively its code) is
suitable if dµ = zµ. We will prove by induction on the length of a permutation
that every permutation is suitable. Then the claim will follow by comparing
the dimensions of the both sides of the above equality. It suffices to show that
if a code (i1, . . . , ip, 0, 0, . . .) is suitable then the code (i1, . . . , ip + 1, 0, 0, . . .)
is suitable, and the code

(i1, . . . , ip, 0, . . . , 0︸ ︷︷ ︸
l

, 1, 0, . . .)

15



is suitable for every l ≥ 0. First observe that the code of this type is suitable
for l ≫ 0. Indeed, let n be the smallest number such that µ(n) = n, µ(n+1) =
n+ 1, . . . . Then the permutation

µr = µ(1), µ(2), . . . , µ(n− 1), n, . . . , n+ r − 1, n+ r + 1, n+ r, . . .

(where r ≥ 0) has the shape

.

.

0

Iµ

×

This shape satisfies the assumptions of Lemmas 1.8 and 2.13. These lemmas
and the fact that µ is suitable imply that µr is suitable. To decrease l we
will use 2.11. Observe that if µ is suitable then λ and ψt’s appearing in the
right-hand side of 2.11 are also suitable. Indeed, we have

zλ +
∑

zψt
= zµ = dµ ≥ dλ +

∑
dψt

,

and thus
(dλ − zλ) +

∑
(dψt

− zψt
) ≤ 0.

But by Step 2, we know that all the summands are nonnegative so they must
be zero. Let us start with the permutation

µ0 = µ(1), µ(2), . . . , µ(n− 1), n+ 1, n, n+ 2, . . . .

The maximal transition for µ0 contains in the right-hand side

µ−1 = µ(1), µ(2), . . . , µ(n− 2), n, µ(n− 1), n+ 1, . . . .

The transition for µ−1 contains

µ−2 = µ(1), µ(2), . . . , µ(n− 1), µ(n− 2), . . . .

By repeating this consideration we finally get

µ(1), µ(2), . . . , µ(p), µ(p+ 2), µ(p+ 1), µ(p+ 3), . . . .

In this way, we get permutations with the codes of the form

(i1, . . . , ip, 0, . . . , 0︸ ︷︷ ︸
l

, 1, 0, . . .), l ≥ 0.
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Moreover, if r is the smallest number bigger than p such that µ(p) > µ(r),
then the transition for the permutation

µ(1), . . . , µ(p), . . . , µ(r + 1), µ(r), . . .

contains the permutation

µ(1), . . . , µ(p− 1), µ(r), µ(p+ 1), . . . , µ(r − 1), µ(p), µ(r + 1), . . .

with the code (i1, . . . , ip + 1, 0, . . .). This proves our claim.

Step 4. From the above considerations, we get a filtration of B-modules

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ F = Sµ(E.)

such that

F/Fk ≃ Sλ(E.)⊗ Ej/Ej−1, Ft/Ft−1 ≃ Sψt
(E.)

for every t = 1, . . . , k. In particular, we obtain an isomorphism of T -modules

Sµ(E.) ≃ Sλ(E.)⊗ Ej/Ej−1 ⊕
k⊕

t=1

Sψt
(E.).

By comparing this with the transition formula for Schubert polynomials
(see 2.7), the assertion of Theorem 4.1 now follows by double induction on
the length and the index of µ, as in Step 2.

The proof of Theorem 4.1 is finished.

5 A filtration associated with the Monk formula

Recall (see 2.7) that

Xµ · x1 =
∑

q

Xµ◦τ1,q

where q is such that for i ∈]1, q[, µ(i) is outside of [µ(1), µ(q)]. Denote the set
of all such q’s by {q1 < · · · < qk}.

Proposition 5.1 For a given flag E. of vector spaces over a field K of char-

acteristic zero, dimEi = i, there exists a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = Sµ(E.)⊗ E1

of B-modules such that Ft/Ft−1 ≃ Sµ◦τ1,qt (E.) for t = 1, . . . , k.
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PROOF. Fix t = 1, . . . , k. Set µt := µ◦τ1,qt and let I = [ip,q] (resp. I
t = [itp,q])

be the shape of µ (resp. µt). We define an element Ct in
⊗

l

∧̃il El as follows.
Let {ei : i = 1, 2, . . .} be a basis of E =

⋃
Ei such that e1, . . . , ek span the

vector space Ek. Set Ct :=
⊗

l ek1∧ek2∧· · ·∧ekil , where for l 6= qt (resp. l = qt)
kr’s are precisely those indices (taken in ascending order) for which itkr,l = 1
(resp. those increasing indices different from 1 for which itkr,l = 1); note that
it1,qt = 1. Let Ft be the B-module generated by C1⊗ e1, . . ., Ct⊗ e1; of course,
Fk = Sµ(E.)⊗ E1. We have a map

ϕt :
⊗

l

∧ĩl
El ⊗ E1 →

⊗

l

∧ĩt
l El

determined by the exterior multiplication

∧ĩqt Eqt ⊗ E1 →
∧ĩtqt Eqt .

This map induces a surjection because ϕt(Ct⊗ e1) = Cµt . Moreover, it is easy
to see that Ft−1 ⊂ Kerϕt. By Theorem 4.1, we know that dµ = zµ for every
permutation. Thus

dµ ≥
k∑

t=1

dµt =
k∑

t=1

zµt = zµ

(the inequality follows from the above filtration). Therefore dµ =
∑
dµt , and

this shows that Ft/Ft−1 ≃ Sµt(E.) for t = 1, . . . , k. The proof is complete.

Remark 5.2 (i) A similar filtration can be associated with the Monk for-
mula for multiplication by

∑n
k=1 xk when µ(r) = r for r > n. We omit

the details. Does there exist an analogous filtration associated with the
Monk formula for every µ ?

(ii) Observe that the first part of the proof of Proposition 5.1 gives us another
justification of the inequality dµ ≥ zµ. It suffices to use descending induc-
tion on the length of a permutation and the Monk formula for Schubert
polynomials.

Remark 5.3 Suppose, as we did in [4], that R is any commutative ring. Re-
place the symmetric powers (resp. symmetrizations) by divided powers (resp.
diagonalizations in the algebra of divided powers) in the definition of a mod-
ule SI(E.) associated with flag E. and shape I. The proofs of Theorem 3.1,
Theorem 4.1, and Proposition 5.1 suitably adapted to this modified definition,
show that the so obtained flagged Schur functors and Schubert functors have
the following properties:

• For any vexillary permutation and any splitting flag (in the sense of Section
3), Theorem 3.1 remains true; consequently these flagged Schur functors are
universally free, following the terminology of [1].

• If K is an infinite field (of arbitrary characteristic), then Theorem 4.1 re-
mains valid.
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• If K is an infinite field, then Proposition 5.1 also holds true.

6 Further developments

The ideas and results of the present paper (in particular, Theorem 4.1) were
developed mainly by V. Reiner & M. Shimozono, and P. Magyar.

A detailed study of different aspects of flagged Schur modules was made by
the former authors in the following papers: Key polynomials and a flagged

Littlewood-Richardson rule [J. Combin. Theory Ser. A 70 (1995), 107–143],
Percentage-avoiding, northwest shapes and peelable tableaux [J. Combin. The-
ory Ser. A 82 (1998), 1–73], Flagged Weyl modules for two column shapes

[J. Pure Appl. Algebra 141 (1999), 59–100]. On another hand, in the paper
Specht modules for column-convex diagrams [J. Algebra 174 (1995), 489–522],
the present article was linked with the study of Specht modules associated
with column-convex diagrams and some related diagrams. In the paper Bal-
anced labellings and Schubert polynomials [European J. Combin. 18 (1997),
373–389], Fomin-Greene-Reiner-Shimozono constructed an explicit basis of
Schubert modules.

Magyar developed a more geometric approach to Theorem 4.1 in the papers:
Four new formulas for Schubert polynomials [preprint, 1995], Borel-Weil the-

orem for configuration varieties and Schur modules [Adv. Math. 134 (1998),
328–366], Schubert polynomials and Bott-Samelson varieties [Comment. Math.
Helv. 73 (1998), 603–636]. This last paper contains another, geometric proof
of Theorem 4.1 obtained in collaboration with Reiner and Shimozono. In the
paper Standard monomial theory for Bott-Samelson varieties of GL(n) [Publ.
Res. Inst. Math. Sci. 34 (1998), 229–248], Lakshmibai-Magyar mention a link
of Theorem 4.1 with Standard monomial theory.

In a recent paper by Buch-Kresch-Tamvakis-Yong Schubert polynomials and

quiver formulas [to appear in Duke Math. J.], the authors discuss a rela-
tionship between a representation-theoretic interpretation of their work and
Theorem 4.1.

See also a paper by Lascoux-Schützenberger: Fonctorialité des polynômes de

Schubert [Contemp. Math. 88 (1989), 585–598].
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