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Abstract

We express the diagonals of projective, Grassmann and, more gen-
erally, flag bundles of type (A) using the zero schemes of some vector
bundle sections, and do the same for their single point subschemes. We
discuss diagonal and point properties of these flag bundles. We study
when the complex manifolds G/B for other groups have the point and
diagonal properties. We discuss explicit formulas for the classes of
diagonals of the varieties G/B.

1 Introduction

For a map of varieties π : F → X, it is useful to study the diagonal in the
fibre square F×XF . The classes of such diagonals for fibre bundles in topol-
ogy and smooth proper morphisms in algebraic geometry were investigated
by Graham [13], Fulton and the second author [24], [12, Appendix G]. As
explained in [24, Section 5], knowing such a class, one can compute the class
of a subscheme of F . For an overview of applications, see [12, Chapter 7].

In the present paper, we shall rather study the diagonals in the Cartesian
squares F×F of the total spaces of flag bundles π : F → X. Suitable resolu-
tions of the structure sheaves of the diagonals over the structure sheaves of
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the Cartesian squares of some homogeneous spaces were used by Kapranov
in [18] to give descriptions of their derived categories. Many schemes can be
realized as degeneracy loci of vector bundle homomorphisms. It turns out
that to understand degeneracy loci, it is useful to study diagonals of flag
bundles (cf. [24], [5], [11], [26], [12]).

In [27], Pati, Srinivas and the second author investigated which varieties
X have the following “diagonal property” (D): there exists a vector bundle
of rank dim(X) on X×X with a section whose zero scheme is the diagonal.
If X has (D), then it is nonsingular.

Also, the following “weak point property” (P ) was investigated: for some
point x ∈ X, there exists a vector bundle of rank dim(X) on X with a
section whose zero scheme is x. If a variety X has (D), then it has (P ) for
any x ∈ X. Any nonsingular curve has (D). The product of varieties having
(D), has (D). In [27, Section 3], we gave several detailed results on surfaces
with (D). In particular, it was shown (loc.cit., Proposition 4) that a ruled
surface (cf., e.g., [15, Chap. V, Sect. 2]) has (D), i.e., the projectivization
of any rank 2 vector bundle on a nonsingular curve has (D). This result was
one of the starting points of the present paper.

It was shown by Fulton [9] and the second author [25] that the flag vari-
eties of the form SLn/P over any field have (D). Samuelsson and Seppänen
[28] gave recently an application of the diagonal property of flag varieties to
global complex analysis. The interest to (D) for flag varieties was related to
the theory of Schubert polynomials of Lascoux-Schützenberger [22]. These
authors defined on the polynomial ring in several variables a scalar prod-
uct [21, Chapter 10], for which the (single) Schubert polynomials and their
“duals” form adjoint bases (loc.cit., Corollary 10.2.4). The reproducing ker-
nel for this scalar product is equal to the top (double) Schubert polynomial
(loc.cit., Section 10.2), which, in turn, is equal to the top Chern class of
the vector bundle, realizing (D) for the variety SLn/B of complete flags –
a result of Fulton [9].

A natural question emerged then: do the flag varieties for other groups
have the diagonal property? (see [27, p. 1235], [25, Conjecture 8.2] and
[27, Proposition 12]). In the present paper, we answer this question almost
completely for the manifolds G/B, where G is a simple, simply connected,
complex algebraic group (see Section 6). We show that forG of type (Bi)(i ≥
3), (Di)(i ≥ 4), (G2), (F4) and (Ei)(i = 6, 7, 8), the flag manifold G/B has
not the diagonal property (see Theorem 17). The main tools are the Atiyah-
Hirzebruch homomorphism and the Borel characteristic homomorphism. In
Section 7, we recall several explicit formulas for the classes of diagonals of
G/B; we do not use, however, these formulas in the proof of Theorem 17.

Apart from the question about generalized flag manifolds, the present
paper arose from our attempts to understand relations between the diagonals
of the base spaces and those of the total spaces of flag bundles.
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We shall also study the following variant of (D). Given a section s of
a vector bundle, we write Z(s) for its zero scheme. We say that X has
property (D′), if there exist two vector bundles A and B on X × X such
that rank(A) + rank(B) = dim(X), a section s of A and a section t on Z(s)
of the restriction BZ(s) of B to Z(s) such that Z(t) is the diagonal of X.
Thus for A = (0), we recover (D). Note that (D′) is a slight weakening of
(D) as the key property that the rank of the bundle is dim(X) holds also
for (D′). A variety X with (D′) is nonsingular because its cotangent sheaf
is locally free: it is isomorphic to the restriction of A∨⊕B∨ to the diagonal
of X.

The main results of the paper are Theorems 4, 9, 11 and 17.
The paper is organized as follows. In Section 2, we discuss properties of

flag bundles and construct a certain vector bundle on the Cartesian square
of a flag bundle. Using this vector bundle, we prove in Theorem 4 that if
the base space of a flag bundle has (D), then its total space has (D′). In
Section 5, we discuss the analogs of this result for topological properties
(Dr) and (Dc) from [27, Section 6]. The topological situation is easier than
that in algebraic geometry: if X has (Dr) or (Dc) then the corresponding
flag bundles also have these properties (see Theorem 14).

In Section 4 we show that if a quasiprojective base of a flag bundle
has (P ), then its total space has (P ) (see Theorem 9). For more general
schemes, we prove in Theorem 11 that if the base space of a flag bundle has
(P ), then its total space has (P ′), a property analogous to (D′). In Section
5, we discuss the analogs for topological properties (Pr) and (Pc) from [27,
Section 6].

In Section 6, we investigate which complex manifolds G/B for other
groups G have (Pc), see Theorem 17 and Corollary 23. An absence of (Pc)
implies for many of them the absence of (Dc).

In Appendix, we discuss explicit formulas for the classes of diagonals of
the varieties G/B due to Fulton, the second author and Ratajski, Graham,
and De Concini, adding one for the type (G2) (see Lemma 27). We also
disprove an integrality conjecture from [13] (see Remark 26).

2 Flag bundles of type (An−1)

Let E be a vector bundle of rank n on a variety X over a field. Fix an
increasing sequence of integers

d• : 0 < d1 < d2 < . . . < dk−1 < dk = n .

By a d•-flag, we mean an increasing sequence of subbundles of E

E1 ⊂ E2 ⊂ · · · ⊂ Ek−1 ⊂ Ek = E
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such that rank(Ei) = di for i = 1, . . . , k. Let

π : Fld•(E)→ X

be the flag bundle parametrizing all d•-flags. For example, the sequence

d1 = d < d2 = n

gives rise to the Grassmann bundle Gd(E), parametrizing subbundles of
rank d of E (see [8, B.5.7]). For d = 1, we get the projectivization of E:
P (E) = G1(E) (see [15, Section 7] and [8, B.5.5]).

It is well-known that

dim(Gd(E)) = dim(X) + d(n− d) . (1)

On Fld•(E), there exists the following tautological sequence of vector
bundles:

S1 ↪→ S2 ↪→ · · · ↪→ Sk−1 ↪→ Sk = π∗(E)
q1
� Q1

q2
� Q2

q3
� · · ·

qk
� Qk = 0 , (2)

where rank(Si) = di for i = 1, . . . , k, and Qi is the quotient of π∗E by Si , so
that rank(Qi) = n− di. On Gd(E), the tautological sequence (with S = S1,
Q = Q1)

0→ S → π∗E → Q→ 0 , (3)

where rank(S) = d, is a short exact sequence.

Regarding Fld•(E)→ X as a tower of Grassmann bundles

Fld•(E) = Gn−dk−1
(Qk−1)→ · · · → Gd3−d2(Q2)→ Gd2−d1(Q1)→ Gd1(E)→ X ,

(4)
and using (1), we see that with d0 = 0, we have

dim(Fld•(E)) = dim(X) +
k−1∑
i=1

(di − di−1)(n− di) . (5)

Write F = Fld•(E). Let F1 = F2 = F , and denote by

pi : F1 × F2 → Fi

the two projections. We shall now construct a certain vector bundle of rank
dim(F )− dim(X) on F1 × F2. If k = 2, using the notation of (3), we define
the following vector bundle

H = Hom(p∗1S, p
∗
2Q) = (p∗1S)∨ ⊗ p∗2Q . (6)

Suppose now that k ≥ 3. Using the notation of (2), consider the following
homomorphism of vector bundles on F1 × F2:

ϕ :
k−1⊕
i=1

Hom(p∗1Si, p
∗
2Qi)→

k−2⊕
i=1

Hom(p∗1Si, p
∗
2Qi+1) ,
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defined by

ϕ(
k−1∑
i=1

hi) =
k−2∑
i=1

(
hi+1|p∗1Si − p∗2(qi+1) ◦ hi

)
, (7)

where hi ∈ Hom(p∗1Si, p
∗
2Qi).

Lemma 1 The homomorphism ϕ is surjective.

Proof. Let us fix i = 1, . . . , k−2. Let h ∈ Hom(p∗1Si, p
∗
2Qi+1). By subtract-

ing from h a suitable homomorphism from Hom(p∗1Si+1, p
∗
2Qi+1) restricted

to the subbundle p∗1Si of p∗1Si+1, we get a homomorphism from p∗1Si to
p∗2Qi+1, which factorizes through p∗2Qi. But such a homorphism belongs to
ϕ(Hom(p∗1Si, p

∗
2Qi)). The assertion follows. 2

Define the following vector bundle on F1 × F2:

H = Ker(ϕ) . (8)

Using Lemma 1, we obtain (with d0 = 0)

rank(H) =
k−1∑
i=1

di(n− di)−
k−2∑
i=1

di(n− di+1) =
k−1∑
i=1

(di − di−1)(n− di) . (9)

Note 2 The present section is an expanded version of [25, pp. 107-8]. The
bundle H, defined in (8), is modeled on the bundle K from [9, (7.6)].

Remark 3 Let X be a point. It is shown in [9, Section 7] that for

d• = 0 < 1 < 2 < . . . < n− 1 < n ,

the top Chern class of H is the top double Schubert polynomial taken on
first Chern classes of the tautological quotient bundles on the two copies of
complete flag varieties. It will follow from Section 3 that it is actually the
class of the diagonal of a complete flag variety.

3 Diagonal properties

We adopt the set-up from the previous section, and state the following result.

Theorem 4 If X has (D), then for any vector bundle E and any d•,
Fld•(E) has (D′).

Proof. Let G be a vector bundle of rank dim(X) on X ×X with a section
whose zero scheme Z(s) is the diagonal ∆X of X. Fix d•, and follow the
notation from Section 2. Let

G′ = (π1 × π2)∗(G)
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be a bundle on F1×F2 together with a section s′ = (π1× π2)∗(s). Consider

Z := Z(s′) = (π1 × π2)−1(∆X) ⊂ F1 × F2 .

Let r1, r2 : X × X → X be the two projections. The following two vector
bundles on ∆X are equal:

(r∗1E)∆X
= (r∗2E)∆X

. (10)

Since
(π1 × π2)∗r∗iE = p∗i (EFi)

for i = 1, 2, we obtain from (10) that the following two vector bundles on Z
are equal: (

p∗1EF1

)
Z

=
(
p∗2EF2

)
Z
. (11)

Thanks to (11), we get, for any i = 1, . . . , k−1, the following homomorphism:

hi :
(
p∗1Si

)
Z
→
(
p∗1EF1

)
Z

=
(
p∗2EF2

)
Z
→
(
p∗2Qi

)
Z

(12)

of vector bundles on Z. Here, the subbundle Si ↪→ EF and the quotient
bundle EF � Qi are from (2). The family of homorphisms {hi} gives rise
to the section

h =
∑

hi ∈ Γ
(
Z,⊕k−1

i=1 Hom(p∗1Si, p
∗
2Qi)Z

)
.

Suppose k ≥ 3. It follows from (12) that we have on Z

hi+1|p∗1Si = p∗2(qi+1) ◦ hi

for i = 1, . . . , k − 2. Indeed, since hi and hi+1 factorize through the bundle
(11), the two homomorphisms

hi+1|p∗1Si , p∗2(qi+1) ◦ hi :
(
p∗1Si

)
Z
→
(
p∗2Qi+1

)
Z

are equal. Invoking (7), we see that

ϕ ◦ h = 0 ,

so h induces a section t of the bundle HZ , where H is the vector bundle on
F1 × F2 from (8) and (6). By (5) and (9), we have

rank(G′) + rank(H) = dim(F ) .

We claim that the section t of the bundle HZ vanishes precisely (scheme
theoretically) on the diagonal ∆F ⊂ F1 × F2. It vanishes on ∆F since
the tautological sequence of vector bundles on Gdi(E) is a complex for any
i = 1, . . . , k − 1 (cf. (3)).
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Having defined the sections s′, t globally, it is sufficient to check the
converse assertion Z(t) ⊂ ∆F locally, where F1 × F2 is the product of the
Cartesian square of the base space times the Cartesian square of the flag
variety Fld•(Ex) =: Fx, where x ∈ X. In other words, this boils down to
check the assertion over the point x, i.e. on Fx×Fx. For the case of complete
flags, see [9, p. 402]. For any d•, let f ∈ Z with π1(x) = π2(x) = x, so we
may regard f as a point

f = (L1 ⊂ · · · ⊂ Lk−1 ⊂ Lk = Ex , M1 ⊂ · · · ⊂Mk−1 ⊂Mk = Ex)

in Fx × Fx. Let Fx,1 = Fx,2 = Fx. For any i = 1, . . . , k − 1, the restriction
of hi (see 12) to Fx,1 × Fx,2 is

p∗1Si → p∗1VFx,1 = VFx,1×Fx,2 = p∗2VFx,2 → p∗2Qi , (13)

where we write V for Ex, Si and Qi are the restrictions to Fx of the tauto-
logical bundles on F , and p1, p2 are the two projections from Fx,1 × Fx,2 to
the factors. At the point f = ((Li), (Mi)), (13) becomes the map

Li ↪→ V � V/Mi ,

whose vanishing implies Li = Mi. This holds for any i = 1, . . . , k − 1.
We have proved that set-theoretically Z(t) = ∆F . It is not hard to verify
that this equality holds scheme-theoretically. The assertion of the theorem
follows. 2

We record the following simple fact.

Lemma 5 Let E be a vector bundle on a variety X. Let r1, r2 : X×X → X
be the two projections. Suppose that the following two vector bundles on
X ×X are equal:

r∗1E = r∗2E .

Then E is a trivial bundle.

Proof. Fix a point x ∈ X. By the assumption, we have

(r∗1E)X×{x} = (r∗2E)X×{x} .

Via the identification X × {x} ' X, the LHS is the bundle E → X. The
RHS is the trivial bundle (Ex)X . The assertion follows. 2

Remark 6 Let us speculate a bit about this proof of Theorem 4. To convert
it to that of (D), we must extend the section t to the whole F1 × F2. This
can be done only if p∗1(EF1) = p∗2(EF2); so, by virtue of Lemma 5, only if
the bundle EF is trivial.
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4 Point properties

We first record the following result.

Proposition 7 Suppose that X is a quasiprojective variety with (P ). Then
for any vector bundle E on X and any 1 ≤ d ≤ n−1, the Grassmann bundle
Gd(E) has (P ).

Proof. By the assumption, for a certain point x ∈ X, there exists a vector
bundle G of rank dim(X) and s ∈ Γ(X,G) such that Z(s) = x.

Suppose that rank(E) = n. We realize X as an open subset in a projec-
tive variety X ′. By [4, Proposition 2], there exists a coherent sheaf E′ on
X ′ whose restriction to X is E. Let L be the restriction of OX′(1) to X.

We claim that there exists an integer m such that E⊗L⊗m has n global
sections which are independent at x. Indeed, this follows (by restriction from
X ′ to X) from [29, Théorème 2(a), p. 259] which asserts that there exists an
integer m such that the Ox,X′-module E′(m)x is generated by the elements
of Γ(X ′, E′(m)). Choose any d sections out of these n global sections of
E ⊗ L⊗m. Using a canonical isomorphism

Gd(E ⊗ L⊗m) ' Gd(E) ,

and the assumption on E, we can reduce to the situation when E has d
sections {si} which are independent at x.

Set F = Gd(E), and denote by π : F → X the projection. Let Q be the
tautological quotient rank n − d bundle on F . Consider the following rank
dim(F ) = dim(X) + d(n− d)) vector bundle H on F :

H = π∗G⊕Q⊕d .

We define the following section t ∈ Γ(F,H). On the first summand of H, we
take the pullback via π∗ of the section s : X → G. On the last d summands,
we take the following sections: we compose the sections

π∗(si) : F → π∗E

with the canonical surjection π∗E � Q. We have

Z(t) = Z(π∗(s)) ∩ Z(⊕π∗(si)) . (14)

But
Z(π∗(s)) = π−1(x) = Gd(Ex) ,

so that (14) as a point of Gd(Ex) corresponds to the d-dimensional vector
subspace of Ex spanned by (si)x. We get that Z(t) is a single point in
Gd(E). Hence Gd(E) has (P ). 2
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Remark 8 The projective bundle

P
(
O(a1)⊕ · · · ⊕ O(ar)

)
→ Pn ,

ai ∈ Z, is a toric variety (cf. [23]). Thus the proposition gives some support
to the conjecture (cf. [25, p. 115]) that a nonsingular toric variety has (P )
(and perhaps even (D) – which is known in the surface case [27]).

It is well-known (cf., e.g., [14, p. 142]) that the projective, Grassmann
and flag bundles on quasiprojective varieties are quasiprojective. Realiz-
ing a flag bundle as a tower (4) of Grassmann bundles, and using an easy
induction, we infer from the proposition the following result.

Theorem 9 Suppose that X is a quasiprojective variety with (P ). Then for
any vector bundle E on X and any d•, the flag bundle Fld•(E) has (P ).

Remark 10 Sometimes, one studies the following “strong point property”
of a variety X: for any x ∈ X, there exists a bundle on X of rank dim(X)
with a section whose zero scheme is x. Granting this property for a quasipro-
jective variety X, the above reasoning shows that F = Fld•(E) has (P ) for
any point f ∈ F . Indeed, given f ∈ F , put x = π(f), and argue as above.
Thus F also has the strong point property.

For any scheme, we still have a result explained in the following theorem.
We need a definition. We say that X has property (P ′), if for some x ∈ X,
there exist two vector bundles A and B on X such that rank(A)+rank(B) =
dim(X), a section s of A and a section t of BZ(s) such that Z(t) is x. If X
has (D′), then for any x ∈ X, (P ′) holds by restricting the data giving (D′)
to X × {x}.

Theorem 11 If X has (P ), then Fld•(E) has (P ′) for any d•.

Proof. Fix d•, and write F = Fld•(E). Let π : F → X be the projection.
Suppose that for the fixed point x ∈ X, there exists a vector bundle G of
rank dim(X) on X with a section s whose zero scheme is x. We shall show
that F has (P ′) for any point f ∈ π−1(x). Let G′ = π∗(G) and s′ = π∗(s).
Consider W = Z(s′) ⊂ F . In other words W = π−1(x).

Using the vector bundle H from (8) and (6), we define the following
vector bundle:

H ′ = HF×{f}

on F ' F × {f}. Note that rank(G′) + rank(H ′) = dim(F ). Invoke Z =
(π × π)−1(∆X) ⊂ F × F from the proof of Theorem 4. In this proof,
we constructed the section t of the bundle HZ → Z whose zero scheme
is the diagonal of F . We have W ' W × {f} ⊂ Z. The restriction to
W × {f} of the section t, gives rise to a section, denoted t′, of the bundle
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H ′W×{f} →W ×{f}. We claim that Z(t′) = f . The section t′ vanishes at f

because (f, f) belongs to the diagonal.
It is sufficient to check the converse assertion locally. Let g ∈ Z(t′).

Since π(g) = π(f) = x, we may regard

f = (L1 ⊂ · · · ⊂ Lk−1 ⊂ Lk = Ex) and g = (M1 ⊂ · · · ⊂Mk−1 ⊂Mk = Ex)

as points in Fld•(Ex) = Fx. Write V = Ex. For i = 1, . . . , k−1, we consider
(13) restricted to Fx × {f}:

p∗1Si → p∗1VFx = VFx×{f} = p∗2Vf → p∗2(Qi)f , (15)

where p1 : Fx × {f} → Fx, p2 : Fx × {f} → f are the two projections, and
Si (resp. Qi) are the restrictions of the tautological bundles from F to Fx
(resp. f). Restricted to the point g, (15) becomes the map

Mi ↪→ V � V/Li ,

whose vanishing implies Mi = Li. This holds for every i = 1, . . . , k − 1.
We have proved that g = f , i.e., Z(t′) = f , and hence F has (P ′) for any
f ∈ π−1(x). 2

Remark 12 Granting the strong point property for X, the above reasoning
shows that F has (P ′) for any point f ∈ F . Indeed, given f ∈ F , put
x = π(f), and argue as above.

5 Topological properties

We now pass to topology. We first recall some definitions from [27, Section
6]. Let X be a (smooth) compact connected oriented manifold, and ∆ be the
diagonal submanifold of X ×X. We say that X has property (Dr) if there
exists a smooth real vector bundle of rank dim(X) on X×X with a smooth
section s which is transverse to the zero section of the bundle and whose
zero locus is ∆. If dimRX = 2m and the above vector bundle is a complex
vector bundle of complex rank m, then we say that X has property (Dc).
If X has (Dc), then it is almost complex (loc.cit., p. 1259). For a complex
manifold, we have the following relation between the diagonal properties:
(D)⇒ (Dc)⇒ (Dr).

Remark 13 In [27, Section 6], the diagonal property (Do) is also studied
(one requires that the bundle involved in the definition of (Dr) is orientable).
It is proved there that a real projective space of odd dimension does not have
(Do).
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Let E be a smooth real vector bundle on X. For any d• like in Section
2, there is an associated flag bundle π : FlRd•(E)→ X parametrizing d•-flags
of real subbundles of E. It is endowed with the tautological sequence (2) of
real bundles. Similarly, if E is a smooth complex vector bundle on X, then
there is an associated flag bundle π : FlCd•(E) → X parametrizing d•-flags
of complex subbundles of E, endowed with the tautological sequence (2) of
complex bundles.

Theorem 14 (i) If X has (Dr) and E → X is a smooth real bundle, then
FlRd•(E) has (Dr).

(ii) If X has (Dc) and E → X is a smooth complex bundle, then FlCd•(E)
has (Dc).

Proof. Both cases of the theorem can be proved by the construction using
the tautological bundles from the proof of Theorem 4. Using the proof of
this theorem and its notation, we have

∆F ⊂ Z ⊂ F1 × F2 ,

and we have the section s′ of G′ and the section t of HZ . By a partition of
unity argument (cf. [1, Lemma 1.4.1]), t can be extended to a global section
of H. Then, s′ ⊕ t is a global section of G′ ⊕H which vanishes exactly on
∆F (compare with Remark 6). 2

We say, following [27, Section 6], that X as above has property (Pr) if
there exists a smooth real vector bundle of rank dim(X) on X with a smooth
section s which is transverse to the zero section of the bundle and whose
zero locus is a point. If dimRX = 2m and the above vector bundle is a
complex vector bundle of complex rank m, then we say that X has property
(Pc).

Remark 15 It was shown in [27, Remark 6] that if a bundle E of rank
dim(X) on a (connected) manifold X has e(E) = ±1 (resp. cm(E) = ±1),
then we can use this bundle to realize (Pr) (resp. (Pc)).

Remark 16 By the argument from Theorem 11, we see that if X has (Pr)
(resp. (Pc)), then FlRd•(E) (resp. FlCd•(E)) has (Pr) (resp. (Pc)). The same
holds for the corresponding strong point properties.

6 Manifolds G/B for other groups

A general reference for group-theoretic notions used in this section is [16].
Let G be a simple, simply connected algebraic group over C, B its Borel
subgroup, and T a maximal torus contained in B. Denote by G/B the
generalized flag manifold.
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In this section, we work in topological category and all vector bundles are
complex. Suppose that the complex dimension of G/B is m. We shall study
when G/B has (Pc), i.e. when there exists a vector bundle E of complex
rank m on G/B such that cm(E) is the class of a point in H2m(G/B;Z) (cf.
Remark 15).

Our main result in this section is

Theorem 17 For G of type (Bi)(i ≥ 3), (Di)(i ≥ 4), (G2), (F4) and (Ei)(i =
6, 7, 8), the flag manifold G/B has not (Pc), and consequently it has not the
diagonal property (Dc).

To prove the theorem, we need several results. Let X (T ) be the group
of characters of T and let K(G/B) be the Grothendieck group of G/B (cf.
[1, Section 2.1]). Consider the Atiyah-Hirzebruch homomorphism (see [19,
Definition 3.17(a)]):

β1 : S(X (T ))→ K(G/B)

such that for λ ∈ X (T ), eλ 7→ class of Lλ = G×BCλ, a line bundle on G/B.
Here, we regard the T -representation Cλ as a B-representation by letting the
nilradical of B act trivially. Then, we extend this definition multiplicatively
to the entire symmetric algebra S(X (T )).

We record (see [19, Theorem 4.6] and the references therein):

Theorem 18 The homomorphism β1 is surjective.

Since in S(X (T )) any element is a Z-linear combination of monomials eλ1 · · · eλk ,
where λi ∈ X (T ), and

β1(eλ1 · · · eλk) = β1(eλ1) · · ·β1(eλk)

=[Lλ1 ] · · · [Lλk ] = [Lλ1 ⊗ · · · ⊗ Lλk ] = [Lλ1+···+λk ] ,

(16)

the theorem implies the following

Corollary 19 In K(G/B), the class of any vector bundle is a Z-linear com-
bination of the classes of line bundles Lµ for some µ ∈ X (T ).

Remark 20 It is shown by Kumar in [20, Corollary 2.12] that for G/B the
present K-group is the same as the algebraic geometric K-group discussed
in [8, Section 15.1].

Recall now the following Borel characteristic homomorphism:

c : S(X (T ))→ H∗(G/B;Z)

such that for λ ∈ X (T ), eλ 7→ c1(Lλ). Then, we extend this definition
multiplicatively to all S(X (T )) (see [2] and [7] for more details).

It follows from Corollary 19 that

12



Corollary 21 The Chern classes of any vector bundle on G/B are in the
image of c.

The smallest positive integer tG such that

tG · (class of a point)

is in the image of c is called the torsion index of G. We record (see [3,
Proposition 4.2], [7, Proposition 7] and also [30]):

Theorem 22 We have tG = 1 if and only if G is of type (Ai) or (Ci).

Combining Corollary 21 and Theorem 22, the assertion of Theorem 17
follows. 2

Let G be a complex reductive group. Recall that by replacing G with its
universal covering group, the flag variety G/B can be regarded as a product
of flag varieties associated to simple, simply-connected groups of type (Ai),
(Bi) (i ≥ 3), (Ci) (i ≥ 2), (Di) (i ≥ 4), (G2), (F4) and (Ei) (i = 6, 7, 8).

Corollary 23 Let G be a complex reductive group containing either type
(Bi)(i ≥ 3), (Di) (i ≥ 4), (G2), (F4) or (Ei) (i = 6, 7, 8) as a factor. Then,
its flag variety G/B has not (Pc), and consequently it has not (Dc).

Proof. The class of a point in G1/B1×G2/B2 is the product of the classes
of points in G1/B1 and G2/B2, and

K(G1/B1 ×G2/B2) ' K(G1/B1)⊗K(G2/B2)

by the Künneth theorem. Therefore, our argument for the proof of Theorem
18 applies straightforwardly. 2

We pass now to type (Cn). We have an identification of F = Sp(2n,C)/B
with the space of complete isotropic flags

V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ C2n .

Let
(0) = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ C2n

F

be the tautological flag on F . We set for i = 1, . . . , n, Li = Si/Si−1. Let
xi = c1(Li). Then, we have

H∗(F ;Z) =
Z[x1, x2, . . . , xn]

(e′i(x))
,

where e′i(x) is the i-th elementary symmetric polynomial in x2
1, x

2
2, . . . , x

2
n.

Now, the class of a point is x1x
3
2 · · ·x2n−1

n , which is the top Chern class of
the bundle

L1 ⊕ L2
⊕3 ⊕ · · · ⊕ Ln⊕2n−1 .

This shows that the following result holds.
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Proposition 24 The flag manifold Sp(2n,C)/B has (Pc).

Remark 25 In the paper [17], we shall investigate the diagonal and point
properties of the spaces G/P .

7 Appendix: Explicit formulas for the classes of
diagonals

Several authors worked out algebraic expressions for the classes of diago-
nals of the spaces G/B in the cohomology rings H∗(G/B × G/B;Z) (or
equivalently in the Chow rings A∗(G/B × G/B)). Let us mention them
and relevant references: Fulton [9, 10], the second author and Ratajski [26],
Graham [13], De Concini [6] (see also [12]).

Let BG and BB denote the classifying spaces of G and B. Consider the
sequence

G/B ×G/B → BB ×BG BB → BB ×BB ,

which yields the following sequence of homomorphisms of their cohomology
rings:

S(X (T ))⊗ S(X (T ))→ H∗(BB ×BG BB;Z)→ H∗(G/B ×G/B;Z) .

The first map is the Borel characteristic homomorphism and it is surjective
after tensoring with Q. Thus we shall realize the representatives of the
classes of diagonals of G/B in

S(X (T ))Q ⊗Q S(X (T ))Q = Q[x1, . . . , xn; y1, . . . , yn] , (17)

where xi ∈ X (T ) and yi ∈ X (T ) are coordinates on T × T 1.
In [13, Theorem 1.1], the author established a criterion for an element in

(17) to represent the class of the diagonal ∆ of G/B. Among other methods,
we mention Gysin maps ([24, 26, 13, 12]) and equivariant cohomology ([6],
cf. also the end of the introduction to [13]).

For type (An−1), [∆] is represented by∏
1≤i<j≤n

(xi − yj) ,

the top (double) Schubert polynomial of Lascoux-Schützenberger (see [9]).
(Note that our convention for numbering the variables is different from that
in [9].)

1Our convention is that xi and yi represent the same coordinate on T ; moreover, on
T × T , xi corresponds to the first factor and yi to the second.
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For type (Cn), [∆] is represented by∏
i<j

(xi − yj) ·W (x, y) ,

where denoting by ei(x) the ith elementary symmetric polynomial in x,

W (x, y) = |en+1+j−2i(x) + en+1+j−2i(y)|1≤i,j≤n

(see [10]), or (see [26]):

W (x, y) =
∑

I⊂(n,...,1)

Q̃I(x) · Q̃(n,...,1)rI(y) ,

where the sum is over strict partitions I, and Q̃I(x) is defined in [26, Section
4]. In [6], the following expression representing [∆] was given:∏

i<j

(x2
i − y2

j )
∏
i

(xi + yi) . (18)

For type (Bn) we have analogous expressions (differing by powers of 2)
(cf. [10, 11, 6, 26]). This is also the case of the formulas for type (Dn) from
[10, 26]. The author of [6] stated that [∆] is represented by

n−1∏
i=1

Wi(x, y) ,

where

Wi(x, y) =
1

2

(
(1+

yi
xi

)
∏
j>i

(x2
i −y2

j )+(−1)n−i(xi · · ·xn−yi · · · yn)
yi+1 · · · yn

xi

)
.

We can regard this expression in the following way. First, we multiply
Wi(x, y) by xi. Then the first summand is the one for type (Bn), which is
almost good but of degree by one greater. So we add a zero class so that
it makes the sum divisible by xi. This gives rise to the second summand.
Notice that the only term in the first summand which is not divisible by
xi is yiy

2
i+1 · · · y2

n. Hence we have to add another term involving the yi’s to
cancel out the term in cohomology. This gives the above expression.

For type (G2), in [13], the following expression was given for a represen-
tative of [∆]:

−27

2
(x1 − y2)(x1 − y3)(x2 − y3)(x1x2x3 + y1y2y3).

Note that here S(X (T )) = Z[x1, x2, x3]/(x1 + x2 + x3).
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Remark 26 In [13, p. 483], the author conjectured that

1

2
(x1x2x3 + y1y2y3)

is integral. A Schubert calculus computation gives that this class is a Q-
linear combination of Schubert classes

−2

9
σs2s1s2 + lower terms2 (19)

The expression (19) disproves the conjecture.

We add another expression for the type (G2). We now identify

S(X (T ))Q ⊗Q S(X (T ))Q = Q[a1, a2; b1, b2] ,

where a1 and b1 (resp. a2 and b2) the two copies of the simple short root
(resp. long root).

Proposition 27 The expression

1

2
(a1+b1)(a1−(2b1+b2))(a1+(2b1+b2))(a1−(b1+b2))(a1+(b1+b2))(a2−(3b1+b2))

(20)
represents [∆].

Proof. We use Graham’s criterion [13, Theorem 1.1]. The Weyl group of
G2 is the dihedral group of order 12. The orbit of a1 under W is

{±a1,±(2a1 + a2),±(a1 + a2)} .

This accounts for the first five factors. The stabilizers of a1 are the identity
and s3a1+2a2 , and the latter takes a2 to 3a1 + a2. This accounts for the last
factor. If we evaluate the polynomial (20) at a1 = b1, a2 = b2, we obtain
the product of all the positive roots. By Grahams’s criterion, the expression
(20) represents [∆]. 2

A similar expression was stated in [6]. This representative

1

2
(a1 + b1)(a2

1 − (2b1 + b2)2)(a2
1 − (b1 + b2)2)(a2 − (3b1 + b2))

has property that the global coefficient equals the inverse of the torsion
index, which is the best possible.
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[14] A. Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France 86
(1958), 137–154.

[15] R. Hartshorne, Algebraic geometry, GTM 52, Springer, Berlin 1977.

[16] J. E. Humphreys, Linear algebraic groups, GTM 21, Springer, Berlin 1975.

[17] S. Kaji, P. Pragacz, Diagonal and point properies of the spaces G/P , in prepa-
ration.

[18] M. Kapranov, On the derived categories of coherent sheaves on some homoge-
neous spaces, Invent. Math. 92 (1988), 479–508.

[19] B. Kostant and S. Kumar, T -equivariant K-theory of generalized flag varieties,
J. Differential Geom. 32 (1990), no. 2, 549–603.

17



[20] S. Kumar, Equivariant K-theory of flag varieties, (notes by V. Tsanov), Talks
given at Jacobs University, Bremen (Germany), August 2012 (available at
www.unc.edu/math/Faculty/kumar )

[21] A. Lascoux, Symmetric functions and combinatorial operators on polynomials,
CBMS/AMS Lectures Notes 99, Providence 2003.

[22] A. Lascoux, M-P. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci.
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