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Abstract

We give the Jacobian of any family of complete symmetric func-
tions, or of power sums, in a finite number of variables.

Changes of bases of the ring of symmetric functions are usually performed
using a canonical scalar product on this ring ([2], Ch.I). On the other hand,
Cayley [1], Sylvester [6] and Mac Mahon [3] were rather led to characterize
invariants like, e.g., the discriminant, by using differential calculus on sym-
metric polynomials. The aim of the present note is to write explicitly the
Jacobians of different families of symmetric polynomials in n indeterminates
X = {x1, . . . , xn}, with respect to the indeterminates, or to the elementary
symmetric functions.

Define

λz(X) :=
n∏
i=1

(1 + zxi) =
n∑
j=0

zj ej(X) , σz(X) := 1/λ−z(X) =
∞∑
j=0

zjhj(X) ,

and
∞∑
j=1

zj pj(X)/j := log(σz(X)) ,

the ej = ej(X) being the elementary symmetric functions, the hj = hj(X)
being the complete functions, the pj = pj(X) being the power sums.

More generally, for any k ∈ C, let

σz(kX) =
(
σz(X)

)k
=
∞∑
j=0

zjhj(kX) = exp
( ∞∑
j=1

zj pj(kX)/j
)
.

For any n-tuple f1, . . . , fn in the ring of symmetric polynomials in X, one
has two Jacobians , expressed by (n× n)-determinants :

J(f1, . . . , fn) :=
∣∣∣ ∂∂xi (fj)

∣∣∣
1≤i,j≤n

and Je(f1, . . . , fn) :=
∣∣∣ ∂∂ei (fj)

∣∣∣
1≤i,j≤n

.
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Since

∂
∂xi

(ej) =

j−1∑
r=0

(−1)rxri ej−1−r ,

by subtracting suitable combinations of columns in J(e1, . . . , en), we get

J(e1, . . . , en) =
∣∣∣ j−1∑
r=0

(−1)rxri ej−1−r

∣∣∣
1≤i,j≤n

=
∣∣∣(−1)j−1xj−1i

∣∣∣
1≤i,j≤n

=
∏

1≤i<j≤n

(xi − xj) =: ∆(X) = ∆ ,

the Vandermonde determinant. Hence, for any n-tuple of symmetric polyno-
mials, we have the factorization

J(f1, . . . , fn) = Je(f1, . . . , fn) ·∆ . (1)

The following proposition gives the expressions of some Je in terms of
Schur functions sν(kX) which are defined as the determinants∣∣∣hνi−i+j(kX)

∣∣∣
1≤i,j≤n

(cf. ([2], I.3.4). This definition remains valid when ν = (ν1, . . . , νn) is not a
partition. If k = 1 and νi ≥ −(n− i) for i = 1, . . . , n, then the expression∣∣∣xνj+n−ji

∣∣∣
1≤i,j≤n

/∆

(cf. ([2], I.3.1)) in terms of the powers of the xi’s, gives sν(X).

Proposition 1 For µ = (µ1, . . . , µn) ∈ (N∗)n, we have

Je
(
pµ1(kX), . . . , pµn(kX)

)
= knµ1 · · ·µn s(µ1−n,..., µn−1)(X) (2)

and for µ ∈ Nn ,

Je
(
hµ1(kX), . . . , hµn(kX)

)
= kns(µ1−n,..., µn−1)

(
(k+1)X

)
. (3)

(If µ1 > · · · > µn ≥ 1, then µ1 − n ≥ · · · ≥ µn − 1 is a partition.)

Firstly, since pj(kX) = kpj(X), we have

∂
∂xi

(
pj(kX)

)
= k ∂

∂xi

(
pj(X)

)
= kj xj−1i ,
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and
J
(
pµ1(kX), . . . , pµn(kX)

)
= knµ1 · · ·µn ·

∣∣∣xµj−1i

∣∣∣
1≤i,j≤n

.

Using the expression of a Schur function in terms of the powers of the xi’s,
one gets equation (2).

Secondly, using the Leibniz rule for differentiation of the product, we have

∂
∂ei

(
σz(kX)

)
= ∂

∂ei

(
1/λ−z(X)k

)
= −k(−z)i/

(
λ−z(X)

)k+1
= −k(−z)iσz

(
(k+1)X

)
.

(4)
Thus the expression of a Schur function in terms of complete functions entails
equation (3). The proposition has been proved.

For example, we have

J(p1, p2, . . . , pn) = J(h1, h2, . . . , hn) = (−1)n(n−1)/2∆ ,

and for n = 3,
Je(h5(X), h3(X), h2(X)) = s2,1,1(2X) .

Remark 1 In analogy to (4), we record

∂
∂ei

(
λz(kX)

)
= kziλz

(
(k−1)X

)
. (5)

Remark 2 For any three partitions µ, ν, η of the same weight d, let (µ, ν, η)
be the multiplicity of the trivial representation of the symmetric group Sd in
the tensor product of the three irreducible representations of Sd labeled by the
partitions µ, ν, η ([2], I.7). Then, for any k ∈ C, any partition µ of d, one
has the expansion

sµ(kX) =
∑
ν,η

(µ, ν, η)sη(k)sν(X) ,

sum over all pair of partitions of weight d, sη(k) meaning the specialization
of the Schur function sη under hj →

(
k+j−1
j

)
, j ≥ 0.

For example, for n = 3, d = 4, one has the following expression for
s2,1,1(2X):(
s4(2)+s3,1(2)+s2,2(2)

)
s2,1,1(X)+

(
s3,1(2)

)
s2,2(X)+

(
s3,1(2)+s2,2(2)

)
s3,1(X)

= 9s2,1,1(X) + 3s2,2(X) + 4s3,1(X)

(in that case, all coefficients ((2, 1, 1), ν, η) are 0 or 1).
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Remark 3 Scott [5], followed by Muir [4], p.148, wrongly asserted that the
Jacobians of pµ1(X), . . . , pµn(X) and hµ1(X), . . . , hµn(X) differ by a scalar
factor. The error was to deduce ∂

∂pj
(hj) = 1/j from the Newton relation:

jhj =

j−1∑
r=0

pj−r hr ,

the power sums appearing in this formula not being algebraically independent
when j > n. One “raison d’être” of the present note was to correct this error.
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