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1. Introduction

Divided differences are discrete analogues of derivations. They were introduced
by Newton in his famous interpolation formula in “Principia Mathematica” (1686).
Their importance in geometry was shown in the early 1970’s by Bernstein-Gelfand-
Gelfand [BGG] and Demazure [De] in the context of Schubert calculus for gen-
eralized flag varieties associated with semisimple algebraic groups. More recently,
simple divided differences, interpreted as correspondences in flag bundles, were used
by Fulton in his study of the classes of degeneracy loci. Divided differences admit
still another interpretation as Gysin maps in the cohomology of flag bundles as-
sociated with semisimple algebraic groups (cf., e.g., [P2]). We refer to the lecture
notes [FP] for a systematic discussion of these issues. The case of SL(n) has been
recently developed extensively by Lascoux and Schützenberger (cf., e.g., [LSc]), and
serves nowadays as an important and useful tool for multivariate polynomials (cf.
[L2]).

The Grassmannian of complex structures parametrizes orthogonal automorphisms
of the Euclidean space R2n whose square is the minus identity. Equivalently, it
parametrizes minimal geodesics from the identity to the minus identity in the or-
thogonal group SO(2n,R) [Mi]. This space is usually denoted by CSn. It played a
significant role in several important achievements in topology: in the investigation
of orthonormal vector fields on spheres by Hurewicz and Adams, in the study of the
existence of complex structures on even dimensional spheres by Borel and Serre,
and in the Bott’s discovery of the eight-periodicity of homotopy groups of the stable
real orthogonal groups.

Also, CSn serves as the classifying space of all complex bundles whose real
reduction is trivial, by a result of the first author [Du1].
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The goal of the present paper is to develop in a systematic way a Schubert
calculus for CSn. We hope that it will be useful also for topologists.

The space CSn has two connected components, each isomorphic to the homoge-
neous space

SO(2n,C)/U(n) or SO(2n,C)/P ,

where P is the maximal parabolic corresponding to omitting the “right end root”.
This space is a connected component of the Grassmannian of all isotropic subspaces
of C2n w.r.t. to the orthogonal form induced by the scalar product, and as such,
it is also known as the orthogonal Grassmannian.

With the help of the group-theoretic description, we can use the characteristic
map of Borel [Bo], and – via the theory of Bernstein-Gelfand-Gelfand [BGG] and
Demazure [De] – divided differences of type D to study the intersection theory
on the space in question. In order to make the work with the characteristic map
efficient, one needs a proper family of “invariant” polynomials that are well suited
to divided differences, and also to geometry/topology at the same time.

A result of the second author [P1] identified Schubert classes in the homoge-
neous space SO(2n,C)/U(n) with suitable Schur P -polynomials. In [P1] this iden-
tification used a geometric argument, namely an isomorphism SO(2n,C)/U(n) '
SO(2n − 1,C)/U(n − 1), and an identification of the Schubert classes for the lat-
ter Grassmannian with Schur P -functions. (This last identification was based on
comparison of the Pieri-type formulas from [HB] and [Mo].)

In the present paper we revisit the identification for the Schubert classes for
SO(2n,C)/U(n) with Schur P -functions via a direct group-theoretic argument
based on the calculus of divided differences of type D. More precisely, we give
a group-theoretic proof of a Pieri-type formula that is based on some vanishing re-
sults for operators composed of divided differences of type D and simple reflections
from the Weyl group of type D. These last results form the most technical part of
the present work. Our proof of the Pieri-type formula follows a strategy for deriving
similar formulas for various homogeneous spaces worked out by Ratajski and the
second autor in a series of papers summarized in [P2]. This particular proof was
promised in [PR2] – a paper that is now under revision. The proof uses esentially
an iteration of the Leibniz-type formula for a simple divided difference applied to
the product of two functions.

Combining the Pieri formula with a combinatorial lemma of Schur [S] for the
projective characters of the symmetric groups, we get a formula for the degree of
Schubert varieties in SO(2n,C)/U(n). (Occasionally, we discuss some alternative
derivations of the lemma of Schur with the help of a specialization result from [DP].)

We remark that there exists now a refinement of Schur P -functions that seems
to be even better adapted for some aspects of geometry. These are the so called

P̃ -functions of [PR1], which are modeled on Schur P -functions. In [LP], Lascoux
and the second author worked out a connection of orthogonal divided differences to

P̃ -functions using vertex operators. This has led to orthogonal Schubert polynomials
that are useful in various cohomological computations (cf. a recent work of Kresch
and Tamvakis [KT],[T2], and Buch [BKT]).

After presenting the Schubert varieties in a group-theoretic way, we also describe
them via Schubert-type conditions relative to some flag of linear subspaces, and
finally we study them in terms of complex structures. To this end, we are guided
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by the Mahowald-Vassiljev-type formula ([DV],[V]):

Hi(CSn) = ⊕nk=0Hi−k(k−1)(Gk(Cn)) ,

where Gk(Cn) is the Grassmannian of all complex k-planes through zero in Cn.
We end the paper by illustrating how the Schubert calculus developed here can

be used to solve problems about enumeration of complex structures which satisfy
some natural conditions of “partial overlapping” with a certain number of complex
structures in general position in R2n. One of the applications leads to an interesting
algebraic conjecture about homomorphisms between the cohomology ring of CS+

n

and that of the Grassmannian Gk(Cn).
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2. Preliminaries, notation, and conventions

We start with some algebraic preliminaries on even orthogonal groups. We fix
a positive integer n. Suppose that H = SO(2n,C) is the orthogonal group (of
type Dn) over the field of complex numbers. Our standard reference for the group-
theoretic terminology, is [FH]. We shall use the following notation: B – a fixed
Borel subgroup of H, T ⊂ B – a fixed maximal torus, R – the root system of H
associated with T , Σ – a set of simple roots of R associated with B, and finally W
– the Weyl group of (H,T ). In a standard realization of [Bu], we have:

R = {±εi ± εj : 1 ≤ i < j ≤ n} ⊂ Rn = ⊕ni=1Rεi,

Σ = {ε1 − ε2, . . . , εn−1 − εn, εn−1 + εn},
W = Sn n Zn−1

2 .

A typical element of W can be written as a pair (τ, ε), where τ ∈ Sn and
ε = (ε1, . . . , εn) is a sequence of elements of Z2 = {−1, 1} such that #{i : εi = −1}
is even. Multiplication in W is given by

(τ, ε) · (τ ′, ε′) = (τ ◦ τ ′, δ),
where “◦” denotes the composition of permutations and δi = ετ ′(i) ·ε′i. The following
lemma can be easily verified (and is pretty well-known). For w ∈W , let l(w) denote
the length of w taken w.r.t. to the above Σ.

Lemma 2.1. For any w ∈W , l(w) is equal to:
n∑
i=1

#{j : j > i & w(j) < w(i)}+ 2
∑
εp=−1

#{q : q > p & w(q) > w(p)} .

We will use the “barred-permutation” notation, indicating by a bar a place in
the permutation w = [w(1), . . . , w(n)] where εi = −1.

The following lemma, that is easy to prove from Lemma 2.1, gives us the lengths
of some barred permutations basic to this paper.
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Lemma 2.2. Let y1 < · · · < yn−k and zk > · · · > z1 be sequences of integers that
are complementary in {1, . . . , n}. Assume that k is even. Then in W we have

l([y1, y2, . . . , yn−k, zk, zk−1, . . . , z1]) =

k∑
j=1

(n− zj) .

The barred permutations of this type form the poset, denoted by W ∗, of the
minimal length left coset representatives of Sn in W .

Our terminology and all unexplained notation concerning partitions will follow
[Ma].

We set ρ(k) := (k, k − 1, . . . , 1), a “triangular partition” of length k.
Given a strict partition α = (α1 > · · · > αl > 0) ⊂ ρ(n− 1), we set

α+ := (α1 + 1, α2 + 1, . . . , αl + 1)

if l is even, and

α+ := (α1 + 1, α2 + 1, . . . , αl + 1, 1)

if l is odd. Note that α+ is of even length.
Given a strict partition µ = (µ1 > µ2 > · · · > µk > 0) ⊂ ρ(n) of even length k,

we associate with it the following element wµ of W ∗. We set

wµ := [y1, y2, . . . , yn−k, n+ 1− µk, n+ 1− µk−1, . . . , n+ 1− µ1] .

Note that l(wµ) = |µ| − k by Lemma 2.2. (Recall that the symbol |µ| denotes the
sum of the parts of µ.)

Setting for a strict partition α ⊂ ρ(n− 1), λ := α+, we have l(wλ) = |α|.
Finally, we adopt a convention that all homology or cohomology groups in the

present paper are taken with integer coefficients.

3. Combinatorics of divided differences of type Dn

We define simple divided differences of type Dn which are operators ∂i : Z[X]→
Z[X], i = 1, . . . , n, of degree −1 acting on the ring of polynomials Z[X] where X
is a fixed set of indeterminates X = {x1, x2, . . . , xn}. To this end, we denote by si,
1 ≤ i ≤ n− 1, the transposition

[1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] ∈ Sn ⊂W ,

acting on X by interchanging xi and xi+1. Moreover, let

sn = [1, . . . , n− 2, n, n− 1]

be the reflection which transposes xn−1 with xn and changes the signs of both
the variables. The remaining variables are invariant under the action of these
transpositions. This action is extended multiplicatively to the ring Z[X]. Note
that sn commutes with si, i 6= n− 2, and

sn−2 · sn · sn−2 = sn · sn−2 · sn .

Simple divided differences of type Dn are defined as follows:

∂i(f) = (f − sif)/(xi − xi+1), i = 1, . . . , n− 1;

∂n(f) = (f − snf)/(xn−1 + xn).
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For every f, g ∈ Z[X] and any i, we have

(1) ∂i(f · g) = f · (∂ig) + (∂if) · (sig)

(a Leibniz-type formula).
For a given a = (an, an−1, . . . , a2, a1) ∈ {−1, 0, 1}n, we define the generating

function:

(2) Ea =

n∏
i=1

(1 + aixi).

In particular, for a = (1, . . . , 1), the resulting generating function, denoted by
E, is the generating function for the elementary symmetric polynomials ei(X) =
ei(x1, . . . , xn), i = 1, . . . , n.

Lemma 3.1. a) We have si(Ea) = Ea′ , where

a′ =

{
(an, . . . , ai+2, ai, ai+1, ai−1, . . . , a1) i < n ,

(−an−1,−an, an−2, . . . , a1) i = n .

b) For i = 1, 2, . . . , n− 1,

∂i(Ea) = d · Ea′ if ai = ai+1 + d (d = −2,−1, 0, 1, 2),

where a′ = (an, . . . , 0, 0, . . . , a1) is the sequence a with ai+1, ai replaced by zeros.
c) ∂n(Ea) = (an + an−1) · E(0,0,an−2,...,a1).

In particular if ∆ is a composition of some s- and ∂-operations, then for every a,
∆(Ea) = (scalar) · Ea′ , where a′ is uniquely determined if this scalar is not zero.

Proof. We prove e.g. c). We have, with a′ = (0, 0, an−2, . . . , a1),

∂n(Ea) =
(1 + an−1xn−1)(1 + anxn)− (1− an−1xn)(1− anxn−1)

xn−1 + xn
· Ea′

=
(an−1 + an)(xn−1 + xn)

xn−1 + xn
· Ea′ = (an + an−1) · Ea′ ,

as desired. 2
We now recall the following fact from [BGG] and [De]. For any w ∈ W and

any reduced decomposition w = si1 · · · sil one can define ∂w = ∂i1 ◦ · · · ◦ ∂il – an
operator on Z[X] of degree −l(w). In fact, since divided differences satisfy the
braid relations, ∂w does not depend on the chosen reduced decomposition of w.

Suppose a strict partition µ ⊂ ρ(n) with even length is given. Let us use the
following coordinates for boxes in the Ferrers diagram Dµ of µ:

n

.

.

.

1

n n− 1 . . . 2 1

We associate with µ a certain distinguished reduced decomposition of wµ ∈ W .
To this end, let us modify the diagram Dµ in the following way. Remove one box
from each row of Dµ : from rows with even numbers remove the box in the n-th
column, and from rows with odd numbers remove the box in the (n−1)-st column.



6 HAIBAO DUAN AND PIOTR PRAGACZ

We display the removed boxes in the picture using the symbol × and denote the

so obtained set of boxes by
◦

Dµ. For example,
◦

D(8,7,4,2) is:

×
×
×
×

Assume now, that a subset D ⊂
◦

Dµ is given. A box belonging to D will be called

a D-box and a box from the difference
◦

Dµ \ D will be called a ∼D-box. D-boxes
will be depicted using “•” and ∼D-boxes will be depicted either as white boxes or
using “◦”.

Definition 3.2. Read
◦

Dµ row by row from left to right and from top to bottom.
Every D-box (resp. ∼ D-box) in the i-th column gives us si (resp. ∂i). Then ∂Dµ is
the composition of the resulting si’s and ∂i’s (the composition written from right
to left).

Definition 3.3. Read
◦

Dµ. Every D-box in the i-th column gives us si. ∼D-boxes
give no contribution. Then, rD is the word obtained by writing the resulting si’s
from right to left. ( In other words, one obtains rD by erasing all the ∂i’s from
∂Dµ .)

For example, for n = 9 and µ = (8, 7, 4, 2),

×
×
×
×•• • • •
• • •
•

9 8 7 6 5 4 3 2 1

∂Dµ = ∂8 ◦ s6 ◦ ∂7 ◦ ∂9 ◦ ∂3 ◦ ∂4 ◦ s5 ◦ ∂6 ◦ s7 ◦ s8 ◦ ∂2 ◦ ∂3 ◦ s4 ◦ ∂5 ◦ s6 ◦ s7 ◦ s9

rD = s6 · s5 · s7 · s8 · s4 · s6 · s7 · s9 .

One can easily prove that for D =
◦

Dµ, we have rD ∈ R(wµ) – the set of reduced
decompositions of wµ. This is our distinguished reduced decomposition of wµ. For
example, for n = 9 and µ = (8, 7, 4, 2),

×
×
×
×• • • • • • •
• • • • • •

• • •
•

9 8 7 6 5 4 3 2 1

wµ = s8 · s6 · s7 · s9 · s3 · s4 · s5 · s6 · s7 · s8 · s2 · s3 · s4 · s5 · s6 · s7 · s9 .

Let now µ ⊂ ρ(n) be a strict partition with even length. We will examine subsets

D ⊂
◦

Dµ for which ∂Dµ (E) = 0 (we say: “D causes vanishing”).

In many computations in this section, we will apply compositions of the operators
of boxes of Dµ to the generating functions Ea. With the following example we
illustrate how such operators act.
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Example 3.4. Let n = 9. We apply the operators of boxes from left to right to
Ea, where a = (a9, a8, a7, a6, a5, a4, a3, a2, a1) , and obtain Ea′ . We give 2 examples
of the action of the operators associated with a row in Dµ:

×• • • • • • •
9 8 7 6 5 4 3 2 1

– we get: a′ = (−a8, a7, a6, a5, a4, a3, a2, 0, 0)

× • • • • • •
9 8 7 6 5 4 3 2 1

– we get: a′ = (a8, a7, a6, 0, a4, a3, 0, a1, 0)

Lemma 3.5. The following configurations of three ∼D-boxes in Dµ give vanishing:

◦ ? · · · ? ◦
?
·
·
·

?
◦

× ? · · · ? ◦
?
·
·
·

?
◦

◦ ×

? × ? · · · ? ◦
?
·
·
·

?
◦

× ◦
◦ ×

?
·
·
·

?
◦

× ◦

(Above, “?” can be ◦, •, or ×; and the skew directions are all parallel to the antidi-
agonal.)

Proof. Direct calculation using Lemma 3.1. 2

Let us fix an element w = [y1, y2, . . . , yn−k, zk, zk−1, . . . , z1] ∈ W ∗. Recall that
k is even. We treat a given reduced decomposition w = si1 · · · sil as a sequence of
simple transposition operations, which produces the element in question from the
identity permutation:

[y1, y2, . . . , yn−k, zk, zk−1, . . . , z1] = (· · · ([1, 2, . . . , n] · si1) · · · ) · sil .
In the following, the simple transpositions involved will be called the “sih -operations”
(h = 1, . . . , l).

Proposition 3.6. We have the following two possibilities for the action of sih-
operations on the z’s:

1) If ih = n then this operation is:

[. . . , z, z′] → [. . . , z′, z] ,

where z = zp−1 and z′ = zp for some even p.

2) If ih < n, then this operation is:

[. . . , z, x, . . .]→ [. . . , x, z, . . .]
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where x 6= zj for j = 1, . . . , k.

Proof. We must transpose each pair (zj , yi), for zj < yi, at least once, because
the y’s preced the (barred) z’s in w. Also, we must transpose each pair (zi, zj), for
i < j, at least once, because the (barred) z’s appear in w in an descending order.
In sum, we need at least∑

#{(zj , yi) : zj < yi}+
∑

#{(zi, zj) : i < j}

sih -operations to reach the sequence w. But by Lemma 2.1 this last number is equal
to l(w). This means that the mentioned transpositions exchaust the family of all
sih -operations under consideration. As a consequence, no sih -operation, for ih < n,
interchanges two (bar-free) z’s (on their way towards the end of the permutation).
Moreover, we see that exactly k/2 sih-operations with ih = n appear. This implies
immediately both assertions of the proposition. 2

Now we assume that λ is another strict partition, that D ⊂
◦

Dµ, and that
rD ∈ R(wλ). Suppose that a D-box appears in the i-th column where i < n. We
define the mark of this box to be p, if the corresponding sih-operation acts on the
i-th and (i+ 1)-st places as follows:

[. . . , zp, x, . . .]→ [. . . , x, zp, . . .] ,

where x 6= zj , j = 1, . . . , k. A D − box in the n-th column has mark p − 1 if the
corresponding (sih = sn)-operation acts via

[. . . , zp−1, zp]→ [. . . , zp, zp−1] .

In particular, boxes in the n-th column have only odd marks. In the following
lemma, we collect some simple properties of marks.

Lemma 3.7. (i) (Connectedness) The D-boxes with a fixed mark in one row form
a connected set; by this we understand that the numbers of their columns form an
interval in {n, n− 2, n− 1, . . . , 1} (resp. in {n− 1, n− 2, . . . , 1}) for a row with odd
(resp. even) number.
(ii) (Separation) In a fixed row, the two sets of D-boxes equipped with different
marks are separated (i.e. there is at least one ∼D-box between them).
(iii) The sequence of boxes with odd mark p is of the form:

(tn, n), (tn−2, n− 2), . . . , (tzp , zp) ,

where p ≤ tn ≤ tn−2 ≤ · · · ≤ tzp .
(iv) The sequence of boxes with even mark p is of the form:

(tn−1, n− 1), (tn−2, n− 2), . . . , (tzp , zp) ,

where p ≤ tn−1 ≤ tn−2 ≤ · · · ≤ tzp .
(v) The marks of boxes in a fixed column (strictly) increase from top to bottom.
(vi) The marks of boxes in a fixed row (weakly) decrease from left to right.

Definition 3.8. The set of D-boxes with mark p is called the ribbon with mark p.

We have two basic operations of deforming ribbons.

• (“Push down”) Let i be odd and suppose that the boxes

(i, n), (i, n− 2), . . . , (i, j)
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form an entire ribbon. The operation transforms them to

(i+ 2, n), (i+ 2, n− 2), . . . , (i+ 2, j) .

Let i be even and suppose that the boxes

(i, n− 1), (i, n− 2), . . . , (i, j)

form an entire ribbon. The operation transforms them to

(i+ 2, n− 1), (i+ 2, n− 2), . . . , (i+ 2, j) .

(We assume that the (i+1)-st and (i+2)-nd row contain no D-boxes before
this operation.)

For example, the ribbons

×
×

×

×

×
×

• • • • • • • • • • • • ••

can be pushed down to

×
×

×

×

×
×

• • • • • • • • • • • • ••
? ?

• (“Breaking a ribbon”) Let j ≤ n − 2. The operation transforms a final
segment

(i, j), (i, j − 1), . . . , (i, h)

of a ribbon to the ∼D-boxes:

(i+ 1, j), (i+ 1, j − 1), . . . , (i+ 1, h) ,

provided (i+ 1, j+ 1) is a ∼D-box, or it is × and (i+ 1, j+ 2) is a ∼D-box.
The box (i, j) (before the operation) is called the breaking box.

For example, for a breaking box a, b a ∼D-box, or b = × and c a
∼D-box:

? ? ? a

?

• • • • • • •
c b

can be broken at a and transformed to

? ? ?

? • • • • • • •c b a

Suppose rD ∈ R(wλ). Using the braid relations in W one easily shows that after
breaking a ribbon in D, we get D′ such that rD′ ∈ R(wλ). In the case of the
push down operation, it is clear that we get D′ with rD = rD′ . Note that any

configuration of boxes D ⊂ Dµ such that rD ∈ R(wλ) can be obtained from
◦

Dλ

by a sequence of operations of the above described two types. Consequently, by
considering the inverse operations, we infer that if Dλ is not contained in Dµ then

there is no D ⊂
◦

Dµ such that rD ∈ R(wλ).

Definition 3.9. (“Maximal deformation” of
◦

Dλ ⊂
◦

Dµ)
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• Pick the lowest ribbon. Push it down as many times as possible. Then
choose the leftmost breaking box on this ribbon (if it exists) and break the
ribbon.

• Pick a ribbon and suppose that lower ribbons in
◦

Dλ have been already
deformed. Push down this ribbon as many times as possible. Let a be the
leftmost breaking box on the ribbon. Break the ribbon at a as many times
as possible. Then choose the next leftmost breaking box b and break the
ribbon at b as many times as possible etc.

For some examples of maximal deformations of diagrams, see Example 4.7.

Proposition 3.10. Let D ⊂
◦

Dµ be such that rD ∈ R(wλ). If ∂Dµ (E) 6= 0 then D

is the maximal deformation of
◦

Dλ ⊂
◦

Dµ .

Proof. The proof is by descending induction on the mark of a ribbon. Pick the
ribbon with mark p. Assume that the ribbons with marks p+ 1, . . . , l(λ) have been
already maximally deformed. Suppose that we have either a possibility of pushing
down of a ribbon or breaking a ribbon. In the case of the former operation we will
refer to boxes of the three involved rows; in the case of the latter operation, we will
refer to the two involved rows. We note that

• any box directly to the right or directly below of the rightmost box of a
row of the (deformed) ribbon is a ∼D-box;
• any box directly to the left or directly above of the leftmost box of a row

of the (deformed) ribbon is a ∼D-box;
• ∼D-boxes in the n-th or (n − 1)-st column cannot be supplied by marks

smaller than p.

This implies that if we not perform the operations in a maximal way, then we
will either obtain a configuration:

◦ ? · · · ? ◦
◦

or, we will get one of the following two possibilities:

×
×
×

a

b c

•

• · · · • ×
×

×
a b

c • · · · ••

where a, b and c are ∼D-boxes. By Lemma 3.5 all these three configurations of
∼D-boxes cause vanishing. The obtained contradiction means that the maximal

deformation of
◦

Dλ ⊂
◦

Dµ is necessary to avoid vanishing. 2

As a corollary of this proposition, we get the following two results bounding the
size of µ w.r.t. λ, if one wants to avoid vanishing. We will need some additional
notation. Given a strict partition µ of even length l, we denote by µ− the strict

partition (µ1 − 1, . . . , µl − 1). Note that (µ−)
+

= µ. We also set
◦

l(µ) := l(µ−) .

Setting for a strict partition α ⊂ ρ(n− 1), λ := α+, we have
◦

l(λ) = l(α) = #Dα =

#
◦

Dλ.

Proposition 3.11. If, for the maximal deformation D of
◦

Dλ ⊂
◦

Dµ, one has

∂Dµ (E) 6= 0, then
◦

l(µ) ≤
◦

l(λ)+1 . (In, particular there is is no push down operation
in this maximal deformation.)
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Proof. Suppose that
◦

l(µ) ≥
◦

l(λ)+2. Pick the highest, say i-th, row which contains
a ∼D-box in the n-th or (n − 1)-st column. This is the highest row from which
some ribbon has been pushed down in the maximal deformation, or, if there was

no pushing down, it is the row with number l(λ) + 1. Since
◦

l(µ) ≥
◦

l(λ) + 2 and by
the construction of maximal deformation, we see that the (i + 1)-st row contains
also a ∼D-box in its (n− 1)-st or n-th row respectively.

After breaking some higher ribbons we get:

×
◦
◦
×

·
·
·
◦ a · · · ◦

or ◦
◦×
×
◦
·
·
·
◦ a · · · ◦

The boxes marked by a exist and they are∼D-boxes (because µ is a strict partition).
We get vanishing by Lemma 3.5 –a contradiction. 2

Proposition 3.12. Assume that
◦

l(µ) ≤
◦

l(λ) + 1. If for the maximal deformation

D of
◦

Dλ ⊂
◦

Dµ one has ∂Dµ (E) 6= 0, then Dµ− \Dλ− is a horizontal strip.

Proof. Suppose that λi < µi+1 for some i. We can assume that for some j < i,

µi = λi−1, µi−1 = λi−2, . . . , µj+2 = λj+1 but λj > µj+1 .

After the maximal deformation, we get in the consecutive rows with numbers i +
1, i, . . . , j + 1 :

◦
·
·
·
◦ · · · ◦ · · · ◦

·
·

·
a or ◦ ×

× • ◦
·
·
·
◦ · · · ◦ · · · ◦

·
·

·
·

a

where a displays a ∼D-box. We get vanishing by Lemma 3.5 – a contradiction. 2
The maximal deformation is obtained by breaking each row such that λi = µi+1,

at one breaking point.

In the following discussion, by a connected component of
◦

Dµ \D we shall mean

a subset of
◦

Dµ \D which, after removing all the ×’s and reshifting the rows of
◦

Dµ

to the ones of Dµ− , gives rise to a connected component of Dµ− \D. (Two boxes in
Dµ− \D are connected if they share a vertex or an edge; this defines the connected
components of Dµ− \D.)

Among the connected components of
◦

Dµ \
◦

Dλ we have those which do not meet
the n-th column: they are ordinary horizontal strips [Ma]. Those which meet the
n-th component are of the form:
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(3)

×
◦ × ◦ · · · ◦

·
·
·
◦ · · · ◦

·
·
·
◦ · · · ◦

Note the following particular case of (3):

(4) ×
◦ × ◦ · · · ◦ |
× • • · · · • •

(By “|” we visualize the end of a row.) After the maximal deformation an ordi-
nary horizontal strip and configuration (3) which is not of the form (4), becomes
respectively:

◦
·
·
·
◦ · · · ◦ |

and

×
◦ ×
× • ◦

·
·
·
◦ · · · ◦ |

Of course, configuration (4) does not change under the maximal deformation.

Proposition 3.13. Suppose that λ ⊂ µ ⊂ ρ(n) are strict partitions such that

Dµ− \ Dλ− is a horizontal strip (in particular,
◦

l(µ) ≤
◦

l(λ) + 1). Let D be the

maximal deformation of
◦

Dµ \
◦

Dλ. Then ∂Dµ (E) = 2m, where m is the number of

connected components of
◦

Dµ \D.

Proof. Different connected components of
◦

Dµ \D lie in separate rows and separate
columns. Let us number these components from top to bottom. Pick a connected

component of
◦

Dµ\D. The part of ∂Dµ associated with the boxes in the rows preced-

ing the rows of the component, transform E into 2m
′
Ea, where m′ is the number of

components preceding the given one. If the first row of its appearance has odd (resp.
even) number, then a = (1, 1, . . . , 1, ∗, . . . , ∗) (resp. a = (−1, 1, . . . , 1, ∗, . . . , ∗) ) and
the cardinality of displayed ±1’s is the length of the first row of µ supporting the
component, the count including the “×”. In turn, the operators of rows supporting
the component transform Ea to 2Ea′ for some a′. The multiplicity 2 comes from
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the highest leftmost box of the component; the operators of all remaining boxes give
the multiplicity 1. If such highest leftmost box lies in the h-th column where h < n,
then one gets the multiplicity 2 by applying ∂h to Eb where b = (. . . ,−1, 1, . . .),
the displayed entries being in (h+ 1)-st and h-th places. If the component is of the
form (4), then we get the multiplicity 2 by applying ∂n to Ec where c = (1, 1, . . .).
This proves the proposition. 2

We summarize the results of this section in the following theorem.

Theorem 3.14. Let λ ⊂ µ ⊂ ρ(n) be strict partitions. Then for D ⊂
◦

Dµ, one has

∂Dµ (E) 6= 0 iff Dµ− \Dλ− is a horizontal strip (in particular,
◦

l(µ) ≤
◦

l(λ) + 1), and

D is obtained by the maximal deformation of
◦

Dλ ⊂
◦

Dµ. In this case, ∂Dµ (E) = 2m,
where m is the number of connected components of Dµ− \Dλ− .

4. A group-theoretic approach to Schubert calculus for CSn

We first introduce some notation. Recall that H = SO(2n,C) and B ⊂ H is
a Borel subgroup of H. We denote by P the maximal parabolic subgroup of H
containing B and corresponding to the subset Σ of simple roots minus the right
end root εn−1 + εn, by F – an “isotropic” orthogonal flag manifold H/B, and by
G – the orthogonal Grassmannian H/P .

Moreover, the Schubert variety Xw, w ∈ W , is defined as the closure of the
Schubert cell B−wB/B in H/B (B− is the opposite Borel subgroup to B). We
record the following well-known result:

Lemma 4.1. Xw is a (closed) subvariety of H/B of (complex) codimension l(w).

Let X = {x1, . . . , xn} be a sequence of variables. For brevity, we denote also
by the symbol Xw the class of the variety Xw in H2l(w)(F ) . Let α ⊂ ρ(n − 1)
be a strict partition and put λ := α+; one has Xwλ ∈ H2|α|(F ). Since wλ ∈ W ∗,
it follows from [BGG] that Xwλ belongs already to H2|α|(G) ⊂ H2|α|(F ). Let us
denote this element in H2|α|(G) (as well as the representing it Schubert variety in
G), by σα.

There exists a surjective ring homomorphism c : Z[1/2][X] → H∗(F ) (called
the Borel characteristic map) such that for a homogeneous f ∈ Z[X] one has

(5) c(f) =
∑

l(w)=deg f

∂w(f) Xw .

(The original Borel’s definition [Bo] of the characteristic map was different; the
present description comes from [BGG] and [De].)

Note (cf. e.g. [Bo]) that the ring H∗(G) can be identified algebraically as

H∗(G) = Z[X]Sn/(ei(X
2), i = 1, . . . , n− 1;x1x2 · · ·xn) ,

where X2 = (x2
1, . . . , x

2
n).

We have also another identification of H∗(G) stemming from [Du1] and [P1]:

Lemma 4.2. Let S be the tautological rank n subbundle on G. The Chern classes
ci(S) are all divisible by 2, and one has the identification σi = 1

2ci(S
∗) for i =

1, . . . , n− 1. Moreover,

H∗(G) = Z[σ1, . . . , σn−1]/(Ri, 1 ≤ i ≤ n− 1) ,
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where, with the convention σi = 0 for k > n− 1, the relations Ri are given by

Ri = σ2
i − 2σi−1σi+1 + 2σi−2σi+2 − · · ·+ 2(−1)i−1σ1σ2i−1 + (−1)iσ2i .

It turns out that after restriction to Z[X]Sn ⊗ Z[1/2], the map c goes onto
H∗(G), and we have the following fact. Let, from now on, er = er(X) denote the
r-th elementary symmetric function in X = {x1, . . . , xn}.

Lemma 4.3. For every r = 1, . . . , n− 1, one has c(er) = 2σr.

Proof. We have

∂n−r · · · ∂n−2∂n(er) = 2 .

Any other divided difference operator of degree r applied to er gives 0. This implies
the assertion. 2

For a strict partition α ⊂ ρ(n − 1), we choose a homogeneous fα ∈ Z[1/2][X]
such that c(fα) = σα. Then, for w ∈ W ∗ with l(w) = l(α), one has ∂w(fα) 6= 0 iff
w = wλ and ∂wλ(fα) = 1 for λ = α+. We want to find the coefficients dβ in the
expansion

(6) c(fα · er) =
∑

dβσβ .

Proposition 4.4. In the above notation, setting µ := β+, one has

dβ =
∑

∂Dµ (er),

where the sum is over all D ⊂
◦

Dµ such that rD ∈ R(wλ) (here, λ = α+).

Proof. We have dβ = ∂wµ(fα · er), and ∂wµ = ∂∅µ . The integer dβ = ∂∅µ(fα · er) is
computed by a consecutive application of the Leibniz-type formula (1): we apply
only the ∂i’s (and the identity operators) to fα, and both the si’s and ∂i’s to the
factor er. We get

dβ =
∑

∂rD (fα) · ∂Dµ (er) ,

the sum over all D ⊂
◦

Dµ. The summand corresponding to a subset D ⊂
◦

Dµ is not
zero only if #D = deg fα and #(Dµ \D) = r. By the choice of fα, ∂rD (fα) = 0 if
rD /∈ R(wλ), and equals 1 if rD ∈ R(wλ), and thus we get the desired equality. 2

Remark 4.5. This use of an iterated Leibniz-type formula to compute the multi-
plicities dβ stems from a series of papers of Ratajski and the second author (cf.
[P2]). It was also known to Kostant and Kumar – see [KK].

Combining this proposition with Theorem 3.14, and taking into account Lemma
4.3, we get a group-theoretic proof of the following result (that is refered to as a
“Pieri-type formula”):

Theorem 4.6. Let α ⊂ ρ(n− 1) be a strict partition. Then for any 1 ≤ r ≤ n− 1,

σα · σr =
∑
β

2mβ σβ ,

where the sum is over all strict partitions β ⊂ ρ(n − 1) such that Dβ \ Dα is
a horizontal strip of length r and mβ is the number of connected components of
Dβ \Dα minus 1.

(Cf. also [P1, Theorem 6.17’].)



DIVIDED DIFFERENCES OF TYPE Dn AND ORTHOGONAL GRASSMANNIAN 15

Example 4.7. Let n = 8. We examine the product σ5,3 · σ4:

• • •
• • • • • times ◦ ◦ ◦ ◦

On the LHS we depict the β’s; on the RHS we display the unique D ⊂
◦

Dµ

(µ = β+) such that ∂Dµ (E) 6= 0:

• • •
• • • • • ◦ ◦

◦ ◦ × • • • ◦ •
• × • • • ◦ ◦ ◦

• • •
• • • • • ◦ ◦

◦
◦

• × • • • • ◦ ◦
× • • • ◦
◦ ×
×

• • •
• • • • • ◦ ◦

◦ ◦

• × • • • • ◦ ◦
× • • •
◦ × ◦
×

• • •
• • • • • ◦

◦ ◦
◦

• × • • • ◦ ◦
× • • • ◦ •
◦ ×
×

• • •
• • • • • ◦

◦
◦ ◦

• × • • • • ◦
× • • • ◦
◦ × ◦
×

• • •
• • • • •

◦
◦ ◦ ◦

• × • • • •
× • ◦ ◦ ◦
◦ × • •
×Thus we get:

σ5,3 · σ4 = σ7,5 + 4σ7,4,1 + 2σ7,3,2 + 2σ6,5,1 + 4σ6,4,2 + σ5,4,3 .

A fundamental invariant of a projective variety X ⊂ PN
C is its degree, defined

by

degX =

∫
X

ωX
n ,

where n = dimCX and ωX is the restriction of the standard Kähler form on PN to
X. The importance of this invariant is seen from its various interpretations [GH,
p.171]:

(i) The number degX equals to the number of intersection points of X with a
general linear subspace in PN of complementary dimension.

(ii) The number n! degX agrees with the volume of X .
It is well known that σ1 is the generator of Pic(G) and also σ1 is the Kähler class

of G. So by (i),

deg(σα) = σα · σ1
n(n−1)/2−|α| .

We invoke Schur P -functions Pλ = Pλ(X) of [S] whose definition reads:
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1) For a nonnegative integer i, Pi :=
∑
sλ, where the sum is over all hook

partitions λ of i, and sλ denotes the corresponding Schur S-function (cf., e.g.,
[Ma]).

2) For integers i > j > 0,

P(i,j) := PiPj + 2
∑

1≤q≤i−1

(−1)qPj+qPi−q + (−1)i+jPi+j .

3) For a strict partition λ = (λ1, . . . , λk) written with an even k (by putting
λk = 0 if necessary),

P(λ1,...,λk) := Pf[P(λp,λq)]1≤p<q≤k ,

where Pf denotes the Pfaffian. See [S], [Ma], [HH], and [P1] for more on Schur
P -functions. Sometimes it is more handy to work with Schur Q-functions defined
by Qλ = Qλ(X) = 2l(λ)Pλ for a strict partition λ.

Comparing the Pieri-type formula for P -functions [Ma,III.8.15] (extracted in [P1]
from [Mo]) with Theorem 4.6, we get that deg σα is the coefficient of Pρ(n−1) in

Pα · Pn(n−1)/2−|α|
1 ,

or the coefficient of Pᾱ in

P
n(n−1)/2−|α|
1 = P

|ᾱ|
1 .

Here ᾱ is the partition whose part complement the parts of α in {1, . . . , n− 1}.
We define for a partition γ = (γ1, γ2, . . .),

(7) gγ =
|γ|!
γ!

∏
i<j

γi − γj
γi + γj

,

where γ! = γ1!γ2! · · · .

Proposition 4.8. One has deg(σα) = gγ for γ = ᾱ.

Remark 4.9. Certain special cases of this formula were obtained by Hiller [Hi].
Some related computations were performed by Tamvakis [Ta2] in the context of
heights of homogeneous spaces in arithmetic intersection theory.

The proposition follows from the following lemma due essentially to Schur [S].

Lemma 4.10. One has

P k1 =
∑

gγPγ ,

the sum over strict partitions γ of k.

Proof. We give here a proof using a specialization result from [DP] and the fol-
lowing formula (8). Let pi(X) = xi1 + · · · + xin be the power sum. For a parti-
tion µ = (µ1, µ2, . . .) we set pµ(X) =

∏
i pµi(X) and zµ =

∏
i≥1 i

mimi!, where

mi = #{j : µj = i}. Moreover, by an odd partition we understand the one whose
all parts are odd. Let Y = {y1, . . . , yn} be another set of indeterminates. Then we
have [Ma, III.8.13], [HH, Cor.7.15]:

(8)
∑

λ strict

Pλ(X)Qλ(Y ) =
∑
µ odd

2l(µ)z−1
µ pµ(X)pµ(Y ) .
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We use the following specialization. We set p1(Y ) = 1/2 and pi(Y ) = 0 for i ≥ 2.
Using

Qi(Y ) =
∑
ν odd

z−1
ν 2l(ν)pν(Y )

[Ma, p.260], [HH, (7.9)], we see that under this specialization, we have Qi(Y ) =
1/i!. The following equality was proved in [DP]: via this specialization, for a strict
partition λ,

(9) Qλ(Y ) = gλ/|λ|! .
Therefore the specialization under consideration transforms equation (8) into the
assertion of the lemma. 2

Remark 4.11. As a matter of fact the key in the original Schur’s calculation [S] (see
also [Ma, p.267] and in more detail [HH]) is the proof of the following equality: for
a strict partition γ = (γ1 > · · · > γl > 0),

(10) gγ =

l∑
i=1

gγ
(i)

,

where γ(i) is the strict partition obtained from γ by subtracting 1 from the i-th
part γi of γ. The original argument rests on the expansion into partial fractions of
the function

(2t− 1)
∏
i

(t+ γi)(t− γi − 1)

(t+ γi − 1)(t− γi)
.

Here is another way of obtaining (10) for those who prefer the Lagrange in-
terpolation to the expansion into partial fractions. Suppose that γ1, . . . , γl are l
indeterminates. We start with the equation:

(11) (γ1 + · · ·+ γl)
∏
i<j

(γi − γj) =
∑
p

(−1)p−1γp
∏

{i,j 6=p; i<j}

(γi − γj)
∏
i 6=p

(γp + γi) ,

which, as Lascoux points out, is exactly the content of the Lagrange interpolation
for γ1 + · · ·+ γl (cf.[L2]). (Equation (11) is easy to prove, e.g. by showing that its
RHS is skew-symmetric.)

Letting Qλ be a function in the γ’s given by the expression for Qλ(Y ) in (9), we
rewrite (11) as

(12) (γ1 + · · ·+ γl)Qγ =

l∑
i=1

(−1)i−1Qγi−1Qγ1,...,γi−1,γi+1,...,γl
.

We now record the following identity for general Q-functions that follows rather
easily from their definition by induction:

(13)

l∑
i=1

(−1)i−1Qγi−1Qγ1,...,γi−1,γi+1,...,γl =

l∑
j=1

Qγ1,...,γj−1,...,γl .

Comparing (12) and (13), we get

(γ1 + · · ·+ γl)Qγ =

l∑
j=1

Qγ1,...,γj−1,...,γl
,

which gives (10).
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Remark 4.12. Here is still another derivation of the lemma for the reader knowing
Hall-Littlewood functions: combine [Ma, Ex.III.8.1 p.259; formula III.7.1 p.246;
and Ex.III.8.12 p.266].

Up to now, we have considered Schubert varieties as purely group-theoretic ob-
jects. We end this section by recalling their interpretation in terms of Schubert-type
conditions. This description is a recollection from [LSe] and [P1], and we will need
it in the next section.

Let U be a 2n-dimensional vector space endowed with a nondegenerate orthog-
onal form ξ : U × U → C. Consider

Z = {L ⊂ U : L is maximal isotropic subspace in U} .

This subvariety is canonically embedded in the Grassmannian Gn(U). This last
variety has Schubert (sub)varieties which are defined w.r.t. to flag

U1 ⊂ U2 ⊂ · · · ⊂ U2n = U

(where dim(Ui) = i), in the following way: Given a sequence 1 ≤ i1 < · · · < in ≤ 2n,
we set

Ω(i1, . . . , in) = {L ∈ Gn(U) : dim(L ∩ Uip) ≥ p ∀p = 1, . . . , n} .

One has

dim Ω(i1, . . . , in) = i1 + · · ·+ in − n(n+ 1)/2 .

It is known that Z has two connected components which are isomorphic to G =
H/P . Let v1, . . . , vn, w1, . . . , wn be a basis of U such that ξ(vi, vj) = ξ(wi, wj) =
0, ξ(vi, wj) = ξ(wj , vi) = δi,j . Let Vi be the vector space spanned by the first
i vectors of the above basis. Then the Schubert varieties in Gn(U) (determined
by the flag V1 ⊂ · · · ⊂ V2n = V ) which give rise to the Schubert varieties in G
(in the sense of [LSe] and [P1]) are indexed by the sequences (i1, . . . , in) where
ip 6= 2n + 1 − iq for p, q = 1, . . . , n, and if k denotes the largest number such that
ik ≤ n, then n− k is even. Let us denote by Ω[i1, . . . , ik] the Schubert variety in G
determined (via restriction to G) by this Schubert variety in Gn(U), that is:

Ω[i1, . . . , ik] := {L ∈ G : dim(L ∩ Vip) ≥ p ∀ p = 1, . . . , k} .

(Instead refering to the flag V1 ⊂ · · · ⊂ Vn, we will also say that this Schubert
variety is defined w.r.t. the ordered basis {v1, . . . , vn}.) One has

dim Ω[i1, . . . , ik] = i1 + · · ·+ ik + n(n− k)− n(n+ 1)/2 .

The Schubert classes in H∗(G) determined by these Schubert varieties are related
in following way to the Schubert classes σα considered earlier in this section. For a
strict partition α = (α1, . . . , αk) ⊂ ρ(n− 1), one has σα = Ω[n− α1, . . . , n− αk] if
n− k is even, and σα = Ω[n− α1, . . . , n− αk, n] if n− k is odd.

The corresponding Schubert variety σα in G can be defined in the following way
w.r.t. the above flag V1 ⊂ · · · ⊂ Vn; it is:

{L ∈ G : dim(L ∩ Vn−αp) ≥ i ∀ p = 1, . . . , k & codimVn(L ∩ Vn) is even}.
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5. Schubert cycles of complex structures on R2n

We will adopt the following convention. Let R2n be the real Euclidean 2n-space
with the standard orthonormal basis {e1, . . . , e2n}.

The 2n-dimensional complex Euclidean space C2n will be considered as the com-
plexification of R2n; C2n = R2n ⊗R C. Note the following simple facts:

a) The set {e1 ⊗ 1, . . . , e2n ⊗ 1} is an orthonormal basis for C2n.
b) If L,K ⊂ R2n are two linear subspaces satisfying dimR(L ∩ K) ≥ i, then

their complexifications LC,KC ⊂ C2n satisfy dimC(LC ∩KC) ≥ i.
c) Corresponding to an orthogonal decomposition L = L1 ⊕ L2 of a subspace

L ⊂ R2n, one has the orthogonal decomposition LC = LC
1 ⊕ LC

2 of LC ⊂ C2n.
d) An R-linear endomorphism of a subspace L ⊂ R2n induces a C-linear endo-

morphism of the subspace LC ⊂ C2n.
Let V be an oriented even dimensional real Euclidean space and Iso(V ), the

group of orientation preserving isometries of V . Consider

CS(V ) = {A ∈ Iso(V ) : A2 = −IdV } .
It is the space of complex structures on V .

If V = R2n, one has the identification Iso(R2n) = SO(2n,R), the special or-
thogonal group of order 2n, and

CS(R2n) = {A ∈ SO(2n,R) | A2 = −I2n} .
Note that if A ∈ CS(Rn) then A is a skew-symmetric matrix. Let us abbreviate
CS(R2n) by CSn as is common. The space CSn has two connected components
which are distinguished by the Pfaffian function

Pf : CSn → {±1} .
We write CSn = CS+

n t CS−n with Pf(CS±n ) = ±1.( The symbol t denotes the
disjoint union.) Both manifolds CS±n are isometric to G = SO(2n,C)/U(n).

Define the complex structure Jn in the initial basis {e1, . . . , e2n} by

Jn = J1 ⊕ J1 ⊕ · · · ⊕ J1 n times ,

where

J1 =

(
0 1
−1 0

)
.

Example 5.1. Suppose that J0 = Jn. For a sequence 1 ≤ i1 < · · · < ik ≤ n, we
put

J(i1, . . . , ik) = ε1J1 ⊕ ε2J1 ⊕ · · · ⊕ εnJ1

where εh = −1 if h = ip for 1 ≤ p ≤ k. Then J(i1, . . . , ik) ∈ CS+
n iff k is even.

Our goal in this section is to interpret Schubert varieties in SO(2n,C)/U(n) in
terms of complex structures. We will give an interpretation, in terms of Schubert
varieties, of the following Mahowald-Vassiljev-type formula

Hp(CSn) = ⊕nk=0Hp−k(k−1)(Gk(Cn)) ,

where Gk(Cn) is the Grassmannian of all complex k-planes through zero in Cn (see
[DV] and also [V]).

We will now define Schubert varieties of complex structures. Let us fix a com-
plex structure J0 ∈ CSn. By convention, we will denote by CS+

n the connected
component of CSn that contains J0. We will work here with the component CS+

n ,
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leaving to the reader details concerning the other component CS−n . The results
about the component CS−n will be summarized in Proposition 5.5.

Let

R2n = L1 ⊕ L2 ⊕ · · · ⊕ Ln ,
where dimR Li = 2, be an invariant subspace decomposition of the orthogonal
operator J0 : R2n → R2n. This yields a flag in R2n

(14) F1 ⊂ F2 ⊂ · · · ⊂ Fn = R2n ,

where Fi = L1 ⊕ L2 ⊕ · · · ⊕ Li. Furnishing R2n with the complex structure J0, we
get an n-dimensional complex space Cn = (R2n, J0). Since each Fi is an invariant
subspace w.r.t. J0, the flag (14) gives rise to a complex flag

(15) W1 ⊂W2 ⊂ · · · ⊂Wn = Cn ,

where dimCWi = i.
Consider the Grassmannian Gl(C

n) of all complex l-planes through zero in Cn.
For a sequence 1 ≤ j1 < · · · < jl ≤ n, one defines a Schubert variety

Ω(j1, . . . , jl) = {L ∈ Gl(Cn) : dim(L ∩Wip) ≥ p ∀p = 1, . . . , l} .

One has

dimC Ω(j1, . . . , jl) = j1 + · · ·+ jl − l(l + 1)/2 .

Following Dynnikov-Veselov [DV], for even l, we set

CS+
n (j1, . . . , jl) = {A ∈ CS+

n : ∃L ∈ Ω(j1, . . . , jl) s.t. A(LR) = LR &A|M = J0|M} ,

where M = L⊥R is the orthogonal complement of the real reduction LR of L. This
is a closed subvariety in CS+

n . One has

dimC CS
+
n (j1, . . . , jl) = j1 + · · ·+ jl − l .

One verifies easily that the class of the variety CS+
n (j1, . . . , jl) is independent of

the choice of J0. Indeed, a path in CS+
n joining J0 to another J ∈ CS+

n yields
a one-parameter family of varieties from CS+

n (j1, . . . , jl) attached to J0, to that
attached to J .

We now want to identify the variety CS+
n (j1, . . . , jl) with a suitable Schubert

variety Ω[i1, . . . , ik] in G. To this end, we first describe an imbedding ι : CSn →
Gn(C2n). Every A ∈ CSn has two eigenvalues ±i (here i is the pure imaginary
complex number) with equal multiplicities n. Thus, as an endomorphism of C2n,
(cf. d)), A has the eigensubspace decomposition

C2n = L(A,+)⊕ L(A,−) where dimL(A,+) = dimL(A,−) = n ,

with

A(v) = iv for all v ∈ L(A,+) and A(v) = −iv for all v ∈ L(A,−) .

The embedding ι : CSn → Gn(C2n) defined by A → L(A,+) has as its image the
Grassmannian of all isotropic subspaces of C2n w.r.t. the orthogonal form induced
by the scalar product.

Let us fix the complex structure J0 to be Jn. By using a simple linear algebra,
one shows that w.r.t. the flag (15), associated with this complex structure, the
following identification takes place.
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Proposition 5.2. Let l be even. Then the embedding ι restricts to an isomorphism
of varieties:

CS+
n (j1, . . . , jl) and Ω[n+ 1− tn−l, . . . , n+ 1− t1] ,

where t1 < · · · < tn−l is the complement of j1 < · · · < jl in {1, . . . , n}.

Remark 5.3. The isomorphism in this proposition gives the cellular decomposition
of CS+

n announced by Dynnikov and Veselov in [DV].

As a consequence of Propositions 4.8 and 5.2 we get:

Corollary 5.4. The degree of CS+
n (j1, . . . , jl) is equal to the number gγ , where

γ = (jl − 1, . . . , j1 − 1).

Since, for even l, Ω[n+ 1− tn−l, . . . , n+ 1− t1] is equal to

{A : ∃K ∈ Ω(j1, . . . , jl) s.t. A(KR) = KR & A|K⊥R = J0|K⊥R} ,

then, rewriting it for even n− k, Ω[i1, . . . , ik] is equal to

{A : ∃K ∈ Ω(n+ 1− rn−k, . . . , n+ 1− r1) s.t. A(KR) = KR & A|K⊥R = J0|K⊥R} ,

where r1 < · · · < rn−k is the complement of i1 < · · · < ik in {1, . . . , n}. By taking
L = K⊥, we can present this Ω[i1, . . . , ik] as

(16) {A : ∃L ∈ Ω(i1, . . . , ik) s.t. A(LR) = LR & A|LR = J0|LR} .

This last identification (16) seems to be the most handy for applications.

In the following proposition, keeping the notation from this section, we collect
properties of Schubert varieties in CS−n . For an odd l, we define CS−n (j1, . . . , jl) as

{A ∈ CS−n : ∃L ∈ Ω(j1, . . . , jl) s.t. A(LR) = LR & A|L⊥R = J0|L⊥R} ,

where L⊥R is the orthogonal complement of the real reduction LR of L.

Proposition 5.5. (i) CS−n (j1, . . . , jl) is a closed subvariety in CS−n of dimension
j1 + · · ·+ jl − l .
(ii) CS−n (j1, . . . , jl) can be identified with the restriction to CS−n , properly embedded
in Gn(C2n), of the Schubert variety

Ω(n+ 1− tn−l, . . . , n+ 1− t1, n+ j1, . . . , n+ jl)

in this last Grassmannian.
(iii) CS−n (j1, . . . , jl) is also identified with

{A ∈ CS−n : ∃L ∈ Ω(i1, . . . , ik) s.t. A(LR) = LR & A|LR = J0|LR} .

(iv) The degree of CS−n (j1, . . . , jl) is equal to gγ , where γ = (jl − 1, . . . , j1 − 1).

Example 5.6. We describe the Schubert varieties in CS+
n which are divisors. We

have different description according to the parity of n. If n is odd, then the divisor
σ1 = Ω[n− 1] is

{A : ∃L ⊂Wn−1 s.t. dimC L = 1, A(LR) = LR & A|LR = J0|LR} .

If n is even, then the divisor σ1 = Ω[n− 1, n] is

{A : ∃L ⊂Wn s.t. dimC L = 2, A(LR) = LR & A|LR = J0|LR} .
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We end this paper with some applications. The identification made in (16) allows
us to solve enumerative problems about the number of general complex structures
satisfying some natural conditions of “partial overlapping” with a certain number
of complex structures in general position in R2n. To this end, we need the following
definition.

Definition 5.7. Let A and B be two orthogonal operators on R2n. A linear
subspace L ⊂ R2n is said to be a common k-space of A and B iff

A(L) = B(L) = L , A|L = B|L & dimR L = k .

We will work in CS+
n . Let n and 2 ≤ k ≤ n be even integers. Let 1 ≤ i1 < · · · <

ik ≤ n be a sequence of integers. Set d = dim Ω[i1, . . . , ik]. Suppose that a list
{Bi}, 0 ≤ i ≤ d, of general complex structures on R2n is given. Then the number
of complex structures A ∈ CS+

n s.t. A has a common 2k-space from Ω(i1, . . . , ik)
with B0, and A has a common 4-space with any other Bi from the list, is equal to
deg Ω[i1, . . . , ik].

As a particular case, we have:

Proposition 5.8. Let n and 2 ≤ k ≤ n be even integers. Suppose that a list {Bi}
of general complex structures on R2n is given, where

0 ≤ i ≤ 1 + (n− k)(n− k − 1)/2 .

Then the number of complex structures A ∈ CS+
n having a common fixed 2k-space

(Wk)R with B0 and a common 4-space with any other Bi is given by

g(n−k−1,n−k−2,...,2,1) = [(n− k)(n− k − 1)/2]!

n−k−1∏
i=1

(i− 1)!

(2i− 1)!
.

Indeed, this is a restatement of the formula about the degree of

Ω[1, 2, . . . , k − 1, k] = CS+
n (1, 2, . . . , n− k) ,

which is simplified in this case of a triangular partition, cf. [DP].

Example 5.9. For n = 8 and k = 4, a list of 7 complex structures {B0, B1, B2, B3,
B4, B5, B6} is given. There exist exactly 2 complex structures A ∈ CS+

n s.t. A has a
common fixed 8-space with B0 and at least a common 4-space with every Bi, where
1 ≤ i ≤ 6. If n = 10 and k = 4, a list of 16 structures {B0, B1, . . . , B15} is given.
There exist exactly 286 complex structures A ∈ CS+

n s.t. A has a common fixed
8-space with B0 and at least a common 4-space with every Bi, where 1 ≤ i ≤ 15.

Let now n and 2 < k ≤ n be odd integers. Let 1 ≤ i1 < · · · < ik ≤ n
be a sequence of integers. Put d = dim Ω[i1, . . . , ik]. Suppose that a list {Bi},
0 ≤ i ≤ d, of general complex structures on R2n is given. Then the number of
complex structures A ∈ CS+

n s.t. A has a common 2k-space from Ω(i1, . . . , ik) with
B0, and A has a common 2-space from (Wn−1)R with any other Bi from the list,
is equal to deg Ω[i1, . . . , ik].

We leave it to the reader to deduce from it a result analogous to the one in the
last proposition.

We will give now another example of enumerating complex structures satisfying
some constraints and state some conjecture.
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For a complex structure B0 ∈ CSn, we have an n-dimensional complex space
Cn = (R2n, B0). Note that for all L ∈ Gk(Cn), both LR and L⊥R are invariant
subspaces of B0. We have then an embedding α : Gk(Cn)→ CSn defined by

α(L) = (B0|LR)⊕ (−B0|L⊥R) .

Without loss of generality, we can assume that the image of α lies in CS+
n .

Let R be the canonical complex k-bundle over Gk(Cn) and R⊥ its orthogonal
complement in the trivial complex n-bundle. Let S be the canonical complex n-
bundle over CS+

n . From the definition of α we have

α∗S = R⊕R⊥ ,

where R⊥ denotes the complex conjugation of R⊥. We infer that the pullback of
the total Chern class of S, α∗(1 + c1(S) + · · ·+ cn(S)), is equal to

(1 + c1(R) + · · ·+ ck(R))(1− c1(R) + c2(R)− · · ·+ (−1)kck(R))−1 .

From this we get that the induced homomorphism

α∗ : H∗(CSn)→ H∗(Gk(Cn))

satisfies α∗( 1
2c1(S)) = −α∗(σ1) = c1(R). That is, the embedding α preserves the

classes of hyperplane sections, or, the Kähler classes of both varieties.
As a consequence, we get results summarized in the following proposition.

Proposition 5.10. (i) Let n be an even integer. Suppose that 2 ≤ k ≤ n is another
integer. Let {Bi}, 0 ≤ i ≤ k(n− k), be a list of general complex structures on R2n.
Then the number of complex structures A ∈ CS+

n s.t. A and B0 have a common
2k-space, A and (−B0) have a common 2(n− k)-space, and A and each Bi, i ≥ 1
have at least a common 4-space, is equal to the degree of Gk(Cn).
(ii) Let now n be an odd integer. Suppose that 2 ≤ k ≤ n is another integer. Let
{Bi}, 0 ≤ i ≤ k(n − k), be a list of general complex structures on R2n. Then the
number of complex structures A ∈ CS+

n s.t. A and B0 have a common 2k-space, A
and (−B0) have a common 2(n− k)-space, and A and each Bi, i ≥ 1 have at least
a common 2-space in (Wn−1)R, is equal to the degree of Gk(Cn).

(Recall that

degGk(Cn) =
1!2! · · · (k − 1)![k(n− k)]!

(n− k)!(n− k + 1)! · · · (n− 1)!
,

a result which goes back to Schubert (1886).)

It is well known that the GrassmannianGk(Cn) is an approximation space for the
classifying space BU(k) of all complex k-bundles. On the other hand, the space CSn
serves as the classifying space for all complex n-bundles with a trivial real reduction
[Du1]. Thus a homotopy classification of continuous maps Gk(Cn) → CSn may
suggest possible interesting operators between these two vector bundle theories.

Let β : Gk(Cn)→ CSn be a continuous map. Since σ1 = − 1
2c1(S) ∈ H∗(CS±n ) =

Z and c1(R) ∈ H∗(Gk(Cn)) = Z are the only generators in dimension 2, then the
induced map β∗ : H∗(CS±n )→ H∗(Gk(Cn)) satisfies

β∗(
1

2
c1(S)) = −β∗(σ1) = m · c1(R)

for some m ∈ Z.
We finish this paper by stating the following conjecture.
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Conjecture 5.11. If m 6= 0, then the map β∗ : H∗(CS±n )→ H∗(Gk(Cn)) is given
by

β∗(x) = mpα∗(x) ,

for x ∈ H2p(CS±n ).

We refer the reader to [Du2] and [Ho] for some background related to this con-
jecture.
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Discrete Math. 99 (1992), 165–179.

[Ma] I.G. Macdonald, Symmetric functions and Hall polynomials, (Second edition), Clarendon

Press, Oxford, 1995.
[Mi] J. Milnor, Morse Theory, Annals of Mathematics Studies 51, Princeton, 1963.



DIVIDED DIFFERENCES OF TYPE Dn AND ORTHOGONAL GRASSMANNIAN 25

[Mo] A. Morris, A note on the multiplication of Hall functions, J. London Math. Soc. 39 (1964),
481–488.

[P1] P. Pragacz, Algebro-geometric applications of Schur S- and Q-polynomials, Séminaire
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