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Abstract. We give a new formula for the Chern-Schwartz-MacPherson class of a hypersurface

with arbitrary singularities, generalizing the main result of [P-P], which was a formula for the

Euler characteristic. Two different approaches are presented. The first is based on the theory of

characteristic cycle of a D-module (or a holonomic system) and the work of Sabbah [S], Briançon-

Maisonobe-Merle [B-M-M], and Lê-Mebkhout [L-M]. In particular, this approach leads to a simple

proof of a formula of Aluffi [A] for the above mentioned class. The second approach uses Verdier’s

[V] specialization property of the Chern-Schwartz-MacPherson classes. Some related new formulas

for complexes of nearby cycles and vanishing cycles are also given.

Introduction and statement of the main result

Let X be a nonsingular compact complex analytic variety of pure dimension n
and let L be a holomorphic line bundle on X. Take f ∈ H0(X,L) a holomorphic
section of L such that the variety Z of zeros of f is a (nowhere dense) hypersurface
in X. Denoting by TX the tangent bundle of X, we will call

(1) cFJ(Z) := c(TX|Z − L|Z) ∩ [Z] ,

the Fulton-Johnson class of Z. This terminology is justified by the fact that both
canonical classes defined in [F-J] by c(TX|Z) ∩ s(NZX), and in [F, Ex.4.2.6] by
c(TX|Z) ∩ s(Z,X), are equal in the present situation to the right-hand side of (1).
Here, NZX is the conormal sheaf to Z in X and s(Z,X) is the Segre class of Z
in X (cf. [F]). For more on this, consult [Su]; see also [B-L-S-S] and [Y3]. By
c∗(Z) we denote the Chern-Schwartz-MacPherson class of Z, see [McP]. We recall
its definition later in Section 1.

Note that if Z is nonsingular then

cFJ(Z) = c∗(Z) = c(TZ) ∩ [Z].
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2 CHARACTERISTIC CLASSES OF HYPERSURFACES

After [Y1,2,3] (see also [B-L-S-S]), we shall call

(2) M(Z) := (−1)n−1
(
cFJ(Z)− c∗(Z)

)
the Milnor class of Z. This class is supported on the singular locus of Z; it is
convenient, however, to treat it as an element of H∗(Z).

Example 0.1. Suppose that the singular set of Z is finite and equals x1, . . . , xk.
Let µxi denote the Milnor number of Z at xi (see [M]). Then

M(Z) =

k∑
i=1

µxi [xi] ∈ H0(Z).

See, for instance, Suwa [Su] where this result is generalized to complete intersections.

Consider the function χ : Z → Z defined for x ∈ Z by χ(x) := χ(Fx), where Fx

denotes the Milnor fibre at x (see [M]) and χ(Fx) its Euler characteristic. Define
also the function µ : Z → Z by µ := (−1)n−1(χ− 11Z).

Fix now any stratification S = {S} of Z such that µ is constant on the strata of
S. For instance, any Whitney stratification of Z satisfies this property, see [B-M-M]
and [Pa]. Actually, it is not difficult to see that the topological type of the Milnor
fibres is constant along the strata of a Whitney stratification of Z. Let us denote
the value of µ on the stratum S by µS . Let

(3) α(S) := µS −
∑

S′ 6=S,S⊂S′
α(S′)

be the numbers defined inductively on descending dimension of S. (These numbers
appear as the coefficients in the development of µ as a combination of the 11S ’s –
see Lemma 4.1.)

The main result of the present paper is

Theorem 0.2. In the above notation,

(4) M(Z) =
∑
S∈S

α(S)c(L|Z)−1 ∩ (iS,Z)∗c∗(S),

where iS,Z : S → Z denotes the inclusion.

When X is projective, (4) was conjectured by Yokura in [Y2]. Under this last
assumption, the equality

(5)

∫
Z

M(Z) =
∑
S∈S

α(S)

∫
S

c(L|S)−1 ∩ c∗(S)
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was proved in [P-P]; hence the theorem gives, in particular, a generalization of the
main result (5) of [P-P] to compact varieties. Perhaps, it is in order to note at this
point that when Z is a curve on a complex surface X, (5) is nothing but a classical
“adjunction formula” [Ko, (2.2)].

Our proof of the theorem is based on a formula due to Sabbah [S], which allows
one to calculate the Chern-Schwartz-MacPherson class of a subvariety in terms of the
associated characteristic cycle. In the case of a hypersurface Z, this characteristic
cycle was calculated in [B-M-M] and [L-M] in terms of the blow-up of the Jacobian
ideal of a local equation of Z in X. So the proof of Theorem 0.2 is obtained
by putting this local description and the global data together, and expressing the
characteristic cycle of Z in terms of the global blow-up of the singular subscheme
of Z. Here by the singular subscheme of Z we mean the one defined locally by the

ideal
(
f, ∂f

∂z1
, . . . , ∂f

∂zn

)
, where (z1, . . . , zn) are local coordinates on X.

The approach used leads to a very simple proof of a formula for the Chern-
Schwartz-MacPherson class of a hypersurface in terms of some divisors associated
with the above blow-up. This formula was originally obtained by Aluffi [A] by
different methods. Some new formulas for the Chern-Schwartz-MacPherson classes
of the constructible functions χ and µ are also given.

In the last section, we show, using Verdier’s specialization property of the Chern-
Schwartz-MacPherson classes (see [V], and also [S] and [K2]), how to prove another
conjecture of Yokura, which, combined with a result from [Y2,3], gives an alternative
proof of Theorem 0.2. (More precisely, this comment concerns a variant of Theorem
0.2, where X is projective and the classes are pushed forward to the homology
of the ambient space X. See the remark after Theorem 5.3.) We find that this
specialization argument somewhat better explains the essence of the main theorem.

Another expression for the Milnor class M(Z) was given by Aluffi in [A].

Finally, we note that one motivation for studying the Milnor classes comes from
Riemann-Roch-type problems. Namely, it is pointed out by Yokura in [Y1] that the
knowledge of the Milnor class is necessary to understand a generalized Verdier-type
Riemann-Roch theorem for the Chern-Schwartz-MacPherson class.

1. Chern-Mather classes and Chern-Schwartz-MacPherson classes

We start by recalling some results of Sabbah [S]. Let for X as in the introduction,
T ∗X denote the cotangent bundle of X. Let V be an (irreducible) subvariety of X.
Denote by cM (V ) the Chern-Mather class of V . Let us recall briefly its definition.
Let ν : NB(V ) → V be the Nash blow-up of V . By definition on NB(V ) there
exists the “Nash tangent bundle” TV which extends ν∗TV 0, where V 0 is the regular
part of V . Define the Chern-Mather class of V as the following element of H∗(V ) :

(6) cM (V ) := ν∗
(
c(TV ) ∩ [NB(V )]

)
.

By T ∗VX ⊂ T ∗X we denote the conormal space to V :

(7) T ∗VX := Closure
{

(x, ξ) ∈ T ∗X | x ∈ V 0, ξ|TxV 0 ≡ 0
}
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and by C(V ) ⊂ PT ∗X its projectivization. Let π : C(V )→ V be the restriction of
the projection PT ∗X → X to C(V ), and let O(−1) be the tautological line bundle
on PT ∗X, restricted to C(V ). Then by [S, (1.2.1)], in the form given in [K1, Lemma
1], we have the following expression for the Chern-Mather class of V :

(8) cM (V ) = (−1)n−1−dim V c (TX|V ) ∩ π∗
(
c (O(1))

−1 ∩ [C(V )]
)
.

Let now ϕ be a constructible function on X,

ϕ =
∑

aj11Yj
,

where Yj are (closed) subvarieties of X and aj ∈ Z. By the characteristic cycle of
ϕ we mean the Lagrangian conical cycle in T ∗X defined by

(9) Ch(ϕ) := Ch

⊕
j

(
iYj ,X

)
∗ C
⊕aj

Yj

 ,

where C
Yj

is the constant sheaf on Yj and iYj ,X : Yj → X denotes the inclusion.

For a general definition of the characteristic cycle of a sheaf, we refer the reader
to [B]. The characteristic cycle of a constructible function admits the following
interpretation. Let F (X) and L(X) denote the groups of constructible functions
on X and conical Lagrangian cycles in T ∗X respectively. It is known that the
assignment

(10) T ∗VX 7→ (−1)dim V EuV ,

where EuV stands for the Euler obstruction (see [McP] and also [S], [K1]), defines a
natural transformation of the functors of Lagrangian conical cycles and constructible
functions, that is an isomorphism. In particular, we have an isomorphism between
L(X) and F (X). The operation of taking the characteristic cycle is the inverse of
this isomorphism; that is, it is given by

(11) Ch(EuV ) = (−1)dim V T ∗VX .

Since every constructible function is a combination of the EuV ’s (see [McP]), this
allows, in principle, to compute Ch(ϕ) for a constructible function ϕ. However, even
for ϕ = 11V , this would involve not only the Euler obstruction of V itself but also
of some subvarieties of V .

Now we associate with a constructible function ϕ on X its Chern-Schwartz-
MacPherson class (abbreviation: CSM-class). Let π : SuppPCh(ϕ) → Suppϕ
be the restriction of the projection PT ∗X → X. Set

(12) c∗(ϕ) := (−1)n−1c (TX|Suppϕ) ∩ π∗
(
c (O(1))

−1 ∩ [PChϕ]
)
.
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This is an element of H∗(Suppϕ). We note that, in particular, by (8), (11) and (12)
one has

(13) c∗(EuV ) = cM (V ) .

If V ⊂ X is a (closed) subvariety, we will write c∗(V ) := c∗(11V ) as is customary.
Note that (12) is in agreement with [McP] because for 11V =

∑
i biEuYi

, where
bi ∈ Z and Yi ⊂ X are (closed) subvarieties, we have

c∗(11V ) =
∑
i

bic∗(EuYi
) =

∑
i

bicM (Yi) = c∗(V ) .

Thus, denoting by π : Supp Ch(11V )→ V the restriction of the projection PT ∗X →
X, we have

(14) c∗(V ) = (−1)n−1c (TX|V ) ∩ π∗
(
c (O(1))

−1 ∩ [PCh(11V )]
)
.

2. Characteristic cycle of a hypersurface (local case)

Suppose that U ⊂ C n
is an open subset and Z ⊂ U is a hypersurface of zeros of a

holomorphic function f : U → C . Let Jf denote the Jacobian ideal
(

∂f
∂z1

, . . . , ∂f
∂zn

)
of f , where (z1, . . . , zn) are the standard coordinates of C n

. Consider the blow-up
π : BlJf

U → U of Jf . Recall that we may interpret it as follows

BlJf
U = Closure

{
(x, η) ∈ U × P

∨n−1 |x /∈ SingZ, η =

[
∂f

∂z1
(x) : . . . :

∂f

∂zn
(x)

]}
,

where SingZ denotes the singular subscheme of Z, and P
∨n−1

stands for the dual
projective (n− 1)-space.

Remark 2.1. BlJf
U can be also interpreted as the projectivization of the relative

conormal space T ∗f ⊂ T ∗U (see [B-M-M, § 2], where we put Ω = X = U). Then

by the Lagrangian specialization all fibres of the restriction of f̃ : T ∗U → U
f−→ C

to T ∗f are conical Lagrangian subvarieties of T ∗U . In particular, every irreducible

component of f̃−1(0) ∩ T ∗f is conormal to its projection on U . For details, we refer

to [B-M-M, § 2] and to references therein.

Let Z be the total transform π−1(Z) of Z in BlJf
U and Z =

⋃
i

Di be the

decomposition of Z into irreducible components. Set Ci := π(Di) and denote by
ICi the ideal defining Ci. Then define

ni := multiplicity of ICi along Di

mi := multiplicity of f along Di

pi := multiplicity of Jf along Di

Let us now record the following result.
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Proposition 2.2. One has

mi = ni + pi.

Proof. Observe that by Remark 2.1 we have Di = PT ∗Ci
U . Let x be a generic point

of Ci and choose a system of coordinates (z1, . . . , zn) at x such that Ci = {z1 =
. . . = zk = 0} in a neighborhood of x. Then, over a neighborhood of x,

(15) Di = Ci × P
∨k−1

,

where

P
∨k−1

= {[η1 : . . . : ηn] ∈ P
∨n−1 | ηk+1 = . . . = ηn = 0}.

Let ζ : E → U denote the blow-up of the product of Jf and ICi
. So

E = Closure

{(
x, [z1(x) : . . . : zk(x)],

[ ∂f
∂z1

(x) : . . . :
∂f

∂zn
(x)
])
|x /∈ SingZ

}

in U × Pk−1 × P
∨n−1

. Then ζ factors through π :

E −→ BlJf
U

�
ζ �
↘

|
| π
↓
U

and there exists at least one irreducible component, say Bij , of the exceptional
divisor of ζ which projects surjectively onto Di. Let γ(t) =

(
z(t), v(t), η(t)

)
be an

analytic curve in E such that
(
z(0), v(0), η(0)

)
is a generic point of Bij , zk+1(t) ≡

. . . ≡ zn(t) ≡ 0 and f
(
z(t)

)
6= 0 for t 6= 0 . Then we have for t 6= 0,

v(t) = [z1(t) : . . . : zk(t)] ∈ Pk−1 ,

η(t) =

[
∂f

∂z1

(
z(t)

)
: . . . :

∂f

∂zn

(
z(t)

)]
∈ P
∨n−1

and η(0) =
[
η1(0) : . . . : ηk(0) : 0 : . . . : 0

]
by (15).

Since
(
z(0), η(0)

)
is a generic point of Di, the following equality would imply the

proposition :

(16)

ord0(f ◦ ζ)
(
γ(t)

)
= ord0 f

(
z(t)

)
= ord0

(
z1(t), . . . , zk(t)

)
+ ord0

(
∂f

∂z1

(
z(t)

)
, . . . ,

∂f

∂zn

(
z(t)

))
.
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We show (16). First we note that we may suppose that (z1 ◦ ζ, . . . , zk ◦ ζ) is

generated by zi0 ◦ ζ at γ(0) and ζ−1Jf is generated by ∂f
∂zj0

◦ ζ at γ(0), where

j0 ∈ {1, . . . , k} by (15). We have

(17)

d

dt
f
(
z(t)

)
=

k∑
i=1

∂f

∂zi

(
z(t)

) �
zi(t)

=
∂f

∂zj0

(
z(t)

)
· �
zi0(t)

 k∑
i=1

∂f
∂zi

(
z(t)

)
∂f
∂zj0

(
z(t)

) · �
zi(t)
�
zi0(t)

 ,

where
�
zi stands for dzi

dt . Note that the quotients make sense since ∂f/∂zj0 ◦ ζ gener-

ates ζ−1Jf , and
�
zi(t)/

�
zi0(t) are analytic (because zi0 ◦ ζ generates ζ−1(z1, . . . , zk)).

We may suppose that ηj0 = 1 and vi0 = 1, which corresponds to choosing affine

coordinates on Pk−1 × P
∨n−1

. Since

lim
t→0

[
�
z1(t) : . . . :

�
zk(t)] = lim

t→0
[z1(t) : . . . : zk(t)] ,

we get

lim
t→0

 k∑
i=1

∂f
∂zi

(
z(t)

)
∂f
∂zj0

(
z(t)

) · �
zi(t)
�
zi0(t)

 = lim
t→0

(
k∑

i=1

ηi(t)

ηj0(t)
· vi(t)
vi0(t)

)
=

k∑
i=1

ηi(0)vi(0).

This last sum is nonzero by the transversality of relative polar varieties, see, for
instance, [H-M, 8.7, Lemme de transversalité]. Consequently, (17) implies

ord0 f
(
z(t)

)
− 1 = ord0

∂f

∂zj0

(
z(t)

)
+
(
ord0 zi0(t)− 1

)
which gives (16), as required. �

In the following theorem, the equality (i) and the second equality in (ii) were
established in [B-M-M] (see also [L-M]).

Theorem 2.3. (i) Ch(11Z) = (−1)n−1
∑
i

niT
∗
Ci
U ;

(ii) Ch(χ) = Ch(R ΨfC U
) = (−1)n−1

∑
i

miT
∗
Ci
U ;

(iii) Ch(µ) = (−1)n−1 Ch
(
R ΦfC U

)
=
∑
i

piT
∗
Ci
U .

(For a definition of the complexes of nearby cycles R Ψf and vanishing cycles R Φf ,
we refer the reader to [D-K]. The first equalities in (ii) and (iii) are well-known
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and follow from the local index theorem, see for instance [B-D-K] and [S, (1.3) and
(4.4)].)

Assertion (iii) follows from the equation

Ch(µ) = (−1)n−1
(
Ch(χ)− Ch(11Z)

)
,

combined with Proposition 2.2.

Let Y denotes the exceptional divisor in BlJf
U . Since Di = PT ∗Ci

U , we can
rewrite the assertions of the theorem as the following equalities.

Corollary 2.4. (i) [PCh(11Z)] = (−1)n−1 ([Z]− [Y]) ;

(ii) [PCh(χ)] = (−1)n−1 [Z] ;

(iii) [PCh(µ)] = [Y] .

Observe that these equalities already take place on the level of cycles.

Remark 2.5. Since f belongs to the integral closure of Jf (see [LJ-T]) the nor-

malizations of the blow-ups of Jf and
(
f, ∂f

∂z1
, . . . , ∂f

∂zn

)
are equal. Hence Corollary

2.4 holds true if we replace the blow-up of the former ideal by the blow-up of the
latter one.

3. Characteristic cycle of a hypersurface (global case)

Let X, L, f and Z be as in the introduction. Let B = BlY X → X be the blow-up
of X along the singular subscheme Y of Z. Let Z and Y denote the total transform
of Z and the exceptional divisor in B, respectively. The following description of the
CSM-class of Z was established by Aluffi [A] by different methods.

Theorem 3.1. ([A]) Let π : Z → Z be the restriction of the blow-up to Z. Then

c∗(Z) = c (TX|Z) ∩ π∗
(

[Z]− [Y]

1 + Z − Y

)
,

where on the RHS, Z and Y mean the first Chern classes of the line bundles associ-
ated with Z and Y i.e. those of π∗ (L|Z) and OB(−1), the latter being the canonical
line bundle on B.

Proof. To get a convenient description of B, we use (after [A]) the bundle P1
XL

of principal parts of L over X (see e.g. [At]). Consider the section X → P1
XL

determined by f ∈ H0(X,L). Recall that P1
XL fits in an exact sequence

0→ T ∗X ⊗ L→ P1
XL→ L→ 0

and the section in question is written locally as (df, f) =
(

∂f
∂z1

, . . . , ∂f
∂zn

, f
)

, where

(z1, . . . , zn) are local coordinates on X. It follows that the closure of the image of
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the meromorphic map X > PP1
XL induced by (df, f) is the blow-up B → X.

Thus we may treat B as a subvariety of PP1
XL. Clearly, the total transform Z of

Z equals B ∩ P(T ∗X ⊗ L). The canonical line bundle OB(−1) = O(Y) on B is
the restriction of the tautological line bundle O(−1) on PP1

XL. Observe that the
bundle O(−1) restricted to Z is contained in (T ∗X ⊗ L)|Z (because f ≡ 0 over
Z). Hence OB(−1)|Z is the restriction of the tautological line bundle OP̃(−1) on

P̃ = P(T ∗X ⊗ L). Using the natural identification P(T ∗X ⊗ L) ∼= P(T ∗X) the line
bundle OP̃(−1) corresponds to the line bundle OP(−1) ⊗ L on P = P(T ∗X). Thus

OP(1) on P corresponds to OP̃(1) ⊗ L on P̃. Hence using the characteristic cycle
formula (14), we get

c∗(Z) = (−1)n−1c (TX|Z) ∩ π∗
(
c
(
OB(1)⊗ π∗L|Z

)−1 ∩ [PCh(11Z)
])

= c (TX|Z) ∩ π∗
(

[Z]− [Y]

1 + Z − Y

)
because by (the global analogue of) Corollary 2.4, we have the equality [PCh(11Z)] =
(−1)n−1

(
[Z]− [Y]

)
. �

By Corollary 2.4, we have [PCh(χ)] = (−1)n−1[Z] and [PCh(µ)] = [Y]. There-
fore, using similar arguments, we get the following result.

Theorem 3.2. (i) c∗(χ) = c (TX|Z) ∩ π∗
(

[Z]

1 + Z − Y

)
;

(ii) c∗(µ) = (−1)n−1c (TX|Z) ∩ π∗
(

[Y]

1 + Z − Y

)
.

(The constructible function µ is supported on Y but for later use we consider its
CSM-class in H∗(Z).)

Remark 3.3. One can add to the above formulas also

cM (Z) = c∗(EuZ) = c (TX|Z) ∩ π∗
(

[Z ′]
1 + Z − Y

)
,

where Z ′ is the proper transform of Z. This equality for the Chern-Mather class was
established originally by Aluffi [A] by different methods. Using the technique of char-
acteristic cycles, it is a consequence of the equality

[
P
(
Ch(EuZ)

)]
= (−1)n−1[Z ′]

(see (11)).

4. Proof of Theorem 0.2

We start this section with the following fact about the constructible functions µ
and α defined in the introduction.
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Lemma 4.1. One has
µ =

∑
S∈S

α(S)11S .

Proof. Fix an arbitrary stratum S0 and a point x ∈ S0. We have(∑
S

α(S)11S

)
(x) =

∑
S 6=S0,S⊃S0

α(S) + α(S0)

=
∑

S 6=S0,S⊃S0

α(S) +

µS0 −
∑

S 6=S0,S⊃S0

α(S)

 = µ(x) . �

Now we pass to the proof of Theorem 0.2. Let π : Z → Z be the restriction of the
blow-up B = BlY X → X. We have, rewriting (1) as in [A], by using the projection
formula,

cFJ(Z) = c (TX|Z) ∩ π∗
(

[Z]

1 + Z

)
.

(Alternatively, one can use the expression from [F, Ex.4.2.6] and the birational
invariance of Segre classes [F, Chap.4]:

c(TX|Z) ∩ s(Z,X) = c(TX|Z) ∩ π∗s(Z, B)

= c(TX|Z) ∩ π∗
(

[Z]

1 + Z

)
.)

Invoking (2) and using Theorem 3.1, we get

(18)

M(Z) = (−1)n−1
(
cFJ(Z)− c∗(Z)

)
= (−1)n−1c (TX|Z) ∩ π∗

(
[Z]

1 + Z
− [Z]− [Y]

1 + Z − Y

)
= (−1)n−1c (TX|Z) ∩ π∗

(
[Y]

(1 + Z)(1 + Z − Y)

)
because Y ∩ [Z] = Z ∩ [Y] (see [F, Theorem 2.4). If we pass to the characteristic
cycle approach, the equality (18) is rewritten, by Corollary 2.4, in the form

(19) M(Z) = (−1)n−1c (TX|Z) ∩ π∗
(

[PCh(µ)]

(1 + Z)(1 + Z − Y)

)
.

Since µ =
∑

S∈S α(S)11S by Lemma 4.1, we have

Ch(µ) =
∑
S∈S

α(S) Ch(11S)
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and hence

(20)

[PCh(µ)]

(1 + Z)(1 + Z − Y)
=

=
∑
S∈S

α(S)c(L|Z)−1 ∩ π∗
(
c
(
π∗L|Z ⊗OB(1)

)−1 ∩ [PCh(11S)]
)
.

By (14) and the proof of Theorem 3.1, we get

(21)
(
iS,Z

)
∗c∗(S) = (−1)n−1c

(
TX|Z

)
∩ π∗

(
c
(
π∗L|Z ⊗OB(1)

)−1 ∩ [PCh(11S)]
)

for each stratum S ∈ S. Finally, using (20) and (21), we rewrite (19) in the form

M(Z) =
∑
S∈S

α(S) c
(
L|Z

)−1 ∩ (iS,Z

)
∗ c∗(S)

which is the required expression. �

5. Another approach via specialization

In this section, the setup is as in the Introduction. Additionally, let us assume
that there exists a section g ∈ H0(X,L) such that Z ′ = g−1(0) is smooth and
transverse to the strata of a (fixed) Whitney stratification S = {S} of Z. For t ∈ C,
denote ft = f−tg. In this section, by Z we will denote the following correspondence
in X × C :

Z :=
{

(x, t) ∈ X × C | ft(x) = 0
}
.

Denoting by p : Z → C the restriction to Z of the projection onto the second factor
of X × C, we have p−1(t) = {x ∈ X | ft(x) = 0} =: Zt for t ∈ C.

Let F (Z) (resp. F (Z) ) denote the group of constructible functions on Z (resp.
on Z). Denote by

σF : F (Z)→ F (Z0 = Z)

the specialization map of constructible functions (see [V], [S] and [K2], where a
different notation is used). Recall briefly its definition. If Y ⊂ Z is a (closed)
subvariety, one sets for the generator 11Y ,(

σF 11Y
)
(x) := lim

t→0
χ
(
B(x, ε) ∩ Yt

)
for any sufficiently small ε > 0, where B(x, ε) is the closed ball of radius ε about x
and Yt = Y ∩Zt. In our situation, we are aiming to compute σF 11Z . More explicitly,
for x ∈ Z we want to calculate

(σF 11Z)(x) = lim
t→0

χ
(
B(x, ε) ∩ Zt

)
.

This is the content of the following
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Proposition 5.1. One has

(
σF 11Z

)
(x) =

{
χ(x) = 1 + (−1)n−1µ(x) for x 6∈ Z ∩ Z ′

1 for x ∈ Z ∩ Z ′ .

Proof. If x 6∈ Z ∩ Z ′ i.e. g(x) 6= 0, then

Zt =
{
z | f(z)− tg(z) = 0

}
=
{
z | f(z)/g(z) = t

}
after restriction to a small ball is the Milnor fibre of f/g at x, and f/g also defines
Z in a neighborhood of x. The assertion follows.

Let now x ∈ Z ∩ Z ′. We will use similar arguments to those used in Step 1 of
the proof of Proposition 7 in [P-P]. Proceeding locally we can assume that x is the

origin in C n
, that in our local coordinates g(z) ≡ zn and that {zn = 0} is transverse

to a fixed Whitney stratification S = {S} of Z = {f = 0}. Our goal is to show that
for sufficiently small ε > 0 and 0 < δ << ε, if t ∈ C satisfies 0 < |t| < δ, then

Zt ∩Bε =
{

(z1, . . . , zn) ∈ C n
∣∣∣ |z| < ε, f − tzn = 0

}
is contractible, where Bε = B(0, ε). Set V = {f = zn = 0}. If ε is sufficiently small
then V ∩ Bε is contractible. So it suffices to retract Zt ∩ Bε onto V ∩ Bε. In what
follows we shall proceed on Zt r V for t sufficiently small. First note that since
the stratification is Whitney and hence satisfies the af condition, we have by the
assumption on transversality∣∣∣∣( ∂f∂z1 , . . . , ∂f

∂zn−1

)∣∣∣∣ ≥ c ∣∣∣∣ ∂f∂zn
∣∣∣∣

for some universal c > 0. Therefore the linear forms df(p) and dzn(p) are linearly
independent for p 6∈ {f = 0}. So are clearly the forms d(f − tzn) and dzn. Con-
sequently the orthogonal projection of grad |zn| onto Zt = {f − tzn = 0} r V is
nonzero, and we may normalize it so that the normalized vector field ~v satisfies

(i)
∂|zn|
∂~v

= 1 ;

(ii)
∂(f − tzn)

∂~v
= 0.

We want, as well, the trajectories of this vector field do not leave Bε. For this

we modify ~v near Sε =
{
z
∣∣∣ |z| = ε}. Let p ∈ V ∩Sε and let S be the stratum which

contains p. Let p(s) be an analytic curve such that p(s) → p as s → 0 and such

that f
(
p(s)

)
6= 0 for s 6= 0. Then the limit η of df

(
p(s)

)
in P
∨n−1

as s → 0, exists.
The forms η and dzn are linearly independent by the assumption on transversality,
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and both vanish on the tangent space to S ∩ {zn = 0}. Therefore, by the Whitney
condition (b) for the closure of S ∩ {zn = 0}, we get the linear independence of η,
dzn and

∑n
i=1 zidzi at p. Consequently, the orthogonal projection of grad |zn| onto

Sε ∩ (Zt r V ) is nonzero in a neighborhood of p. Since Sε ∩ V is compact, there
exist a neighborhood U of Sε ∩ V and a vector field ~w on U r

(
{zn = 0} ∪ {f = 0}

)
such that for t small enough,

(i)
∂|zn|
∂ ~w

= 1 ;

(ii)
∂(f − tzn)

∂ ~w
= 0 ;

(iii)
∂ρ

∂ ~w
= 0 , where ρ(z) =‖ z ‖2 .

Using partition of unity we “glue” ~w and ~v in order to get a vector field ~u defined
on Zt r V such that

(i)
∂|zn|
∂~u

= 1 ;

(ii)
∂(f − tzn)

∂~u
= 0 ;

(iii)
∂ρ

∂~u
= 0 on Sε.

The flow of ~u allows us to retract Zt ∩ Bε onto Zt,c = Zt ∩ Bε ∩ {|zn| ≤ c} for
c as small as we want. On the other hand, for c small enough, Zt,c retracts onto
V ∩Bε = Zt ∩Bε ∩ {zn = 0}, as required. �

Now we want to pass to the specialization map of homology classes

σH : H∗(Zt)→ H∗(Z0 = Z)

(see [V], [S] and [K2], where a different notation is used). Recall briefly its definition.
Let D ⊂ C be a disk of a sufficiently small radius such that the inclusion Z = Z0 ⊂
p−1(D) is a homotopy equivalence. Thus for a small nonzero t ∈ D one defines the
above σH as the composition

H∗(Zt)
i∗−−−→ H∗(p

−1D) ∼= H∗(Z0 = Z) ,

where i : Zt → p−1D is the inclusion. Recall now that Verdier’s specialization
property of CSM-classes asserts the following. For ϕ ∈ F (Z) and t sufficiently
small, one has

(22) σHc∗
(
ϕ|Zt

)
= c∗(σFϕ)

(see [V] and also [S] and [K2]).
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Let us evaluate the both sides of (22) for ϕ = 11Z . The LHS reads simply
σHc∗(Zt). As for the RHS, we have by Proposition 5.1

(23)
σF 11Z = 11Z + (−1)n−1

(
µ · 11ZrZ∩Z′

)
= 11Z + (−1)n−1

(
µ · 11Z − µ · 11Z∩Z′

)
.

Invoking the equality µ =
∑

S α(S)11S (see Lemma 4.1), Equation (23) is rewrit-
ten as

(24) σF 11Z = 11Z + (−1)n−1

(∑
S

α(S)11S −
∑
S

α(S)11S∩Z′

)
,

and applying c∗ to (24) we get that the RHS of (22) is evaluated as

c∗
(
σF 11Z

)
=

= c∗(Z) + (−1)n−1

{∑
S

α(S)
[
(iS,Z)∗c∗(S)− (iS∩Z′,Z)∗c∗(S ∩ Z ′)

]}
,

where iS∩Z′,Z denotes the inclusion S ∩ Z ′ → Z .

Summing up, by virtue of the specialization property (22), we have proved

Proposition 5.2. For the specialization map σH : H∗(Zt) → H∗(Z), where t 6= 0
is small enough, one has

σHc∗(Zt) =

= c∗(Z) + (−1)n−1

{∑
S∈S

α(S)
[
(iS,Z)∗c∗(S)− (iS∩Z′,Z)∗c∗(S ∩ Z ′)

]}
.

We now state the following result which appeared as a conjecture in [Y2].

Theorem 5.3. In the above notation, one has

M(Z) =
∑
S∈S

α(S)
[
(iS,Z)∗c∗(S)− (iS∩Z′,Z)∗c∗(S ∩ Z ′)

]
.

Proof. Observe that for t like in Proposition 5.2, we have c∗(Zt) = cFJ(Zt) because
Zt is smooth. Moreover, since the Fulton-Johnson class is expressed in terms of the
Chern classes of vector bundles, one has σH

(
cFJ(Zt)

)
= cFJ(Z). We thus have

M(Z) = (−1)n−1
(
cFJ(Z)− c∗(Z)

)
= (−1)n−1

(
σHc

FJ(Zt)− c∗(Z)
)

= (−1)n−1
(
σHc∗(Zt)− c∗(Z)

)
=
∑
S

α(S)
[
(iS,Z)∗c∗(S)− (iS∩Z′,Z)∗c∗(S ∩ Z ′)

]
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by Proposition 5.2. �

Finally, arguing as in [Y2,3 § 2] one shows that Theorem 5.3 implies, for X
projective,

(iZ,X)∗M(Z) =
∑
S∈S

α(S)c(L)−1 ∩ (iS,X)∗c∗(S),

where iZ,X : Z → X and iS,X : S → X denote the inclusions.
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