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Abstract. We give a survey on Q̃-functions and state some problems about them.

1. Introduction

The content of this note is a slightly rewritten version of a manuscript prepared
for Brian Wybourne in October 2003. I wanted to discuss with him the so-called
Q̃-functions (and Q̃-polynomials) which I invented with Jan Ratajski some time
ago to study Lagrangian degeneracy loci. I believed that these functions could be
of some interest to Brian, and, possibly, also to other physicists.

These polynomials though invented (in Algebraic Geometry) in our study of
Lagrangian Schubert classes [14], [15], and Lagrangian degeneracy loci [16], provide
an interesting family of symmetric functions. For example, they form an additive
basis of the ring of symmetric functions. Do they also have some meaning in
Physics ? We collect in the present note their basic properties as proved primarily
in [16], [10], and [11].

We also discuss briefly some polynomials that are related to Q̃-polynomials
via divided differences as well as some formulas for them, coming from [16], [10],
[11], [5], [6]. Some of these polynomials and identities are important for quantum
cohomology of Grassmannians [5], [6], [17].

I thank Ron King for his comments on the preliminary draft of this note.

2. Definition of Q̃-functions

Let X be an alphabet1. By X2 we shall denote the alphabet consisting of
squares of elements of X, and by Xn the alphabet consisting of the first n elements
of X. Given an alphabet of variables X by Sym(X) we shall denote the ring of
symmetric functions in X.

∗Supported by KBN grant 2P03A 024 23.
1By an alphabet we understand an ordered multiset of elements (possibly countable) in a

commutative ring. In most cases these elements are variables over Z.
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The folowing definition of Q̃-functions stems from [16] (this definition was
inspired by Schur’s Q-functions, cf., e.g., [13]). We set Q̃i = Λi = Λi(X), the i-th
elementary symmetric function in X . Given two nonnegative integers i ≥ j, we
put

Q̃i,j = Q̃iQ̃j + 2

j∑
p=1

(−1)pQ̃i+pQ̃j−p . (1)

For example, Q̃i,i(X) = Λi(X2). Given any partition I = (i1 ≥ · · · ≥ ik ≥ 0),
where we can assume k to be even, we set

Q̃I = Pfaffian(M) , (2)

where M = (mp,q) is the k × k skew-symmetric matrix with mp,q = Q̃ip,iq for

1 ≤ p < q ≤ k. Equivalently, Q̃I is defined recursively on ` = `(I) by putting for
odd ` ,

Q̃I =
∑̀
j=1

(−1)j−1Q̃ij · Q̃(i1,...,ij−1,ij+1,...,i`) (3)

and for even ` ,

Q̃I =
∑̀
j=2

(−1)jQ̃i1,ij · Q̃(i2,...,ij−1,ij+1,...,i`) . (4)

Invoking the raising operators Rij [13], [4], the above definition is rewritten

Q̃I =
∏
i<j

1−Rij
1 +Rij

ΛI , (5)

where ΛI is the product of the elementary symmetric polynomials in X associated
with the parts of I.

Let, after [9], Q′I(q) denote the Hall–Littlewood polynomial QI(Y; q), where
the alphabet Y is equal to X/(1 − q) (in the sense of λ-rings). Using the raising
operators Rij , we have (cf., e.g., [4])

Q′I(q) =
∏
i<j

(1− qRij)−1SI . (6)

where SI denotes the classical Schur function associated with the partition I, cf.
[13], [8]. Specialize now q = −1 and invoke the Jacobi-Trudi formula

SI =
∏
i<j

(1−Rij)SI , (7)
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where SI is the product of complete homogeneous symmetric polynomials in X
associated with the parts of I. We have

Q′I(−1) =
∏
i<j

1−Rij
1 +Rij

SI . (8)

Therefore, denoting by ω the ring authomorphism defined by ω(Λi) = Si for
i = 1, 2, . . ., we get

Q̃I = ω
(
Q′I(−1)

)
. (9)

3. First properties

In this section unless otherwise stated, the results stem from [16]. We start
with a useful linearity-type formula for Q̃-polynomials. Recall that a partition I
is called strict if all its parts are distinct.

PROPOSITION 1. For any strict partition I one has

Q̃I(Xn) =

`(I)∑
j=0

xjn

( ∑
|I|−|J |=j

Q̃J(Xn−1)
)
, (10)

where the sum is over all (i.e. not necessary strict) partitions J ⊂ I such that I/J
has at most one box in every row. (Using the terminology of [13], this is equivalent
to saying that I/J is a vertical strip; note that I/J is here also a horizontal strip.)

For some generalization to any partition I, but using compositions J on the RHS,
cf. [5].

LEMMA 2. For partitions I = (i1, . . . , ik), I
′ = (i1, i2, . . . , j, j, . . . , ik−1, ik), the

following equality holds:
Q̃I′ = Q̃j,jQ̃I . (11)

LEMMA 3. Let I = (i1, i2, . . . , ik) be a partition. If i1 > n, then Q̃I(Xn) = 0.

From Proposition 1 and Lemma 2 it follows

PROPOSITION 4. Each Q̃-function is a Z-linear combination of monomials with
nonnegative coefficients.

It is, however not, true that a Q̃-function is such a combination of S-functions.

EXAMPLE 5. Using the computer program SYMMETRICA, we get

Q̃53 = S22211 Q̃542 = S33221 − S32222 Q̃532 = S33211 − S32221 + S22222

Q̃54321 = S54321 − S54222 − S53331 − S44421 + S43332 − 2S33333 .

(For the expansions for all strict partitions whose first part is ≤ 5, cf. [16].)
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PROPOSITION 6. The set
{
Q̃I(Xn)

}
indexed by all partitions such that i1 ≤ n

forms an additive basis of the ring Sym(Xn). For a countable alphabet X, the
Q̃-functions form an additive basis of Sym(X).

PROPOSITION 7. Let I = (i1, ..., ik) be a strict partition of length k. Then

Q̃I · Q̃r =
∑

2m(I,r;J)Q̃J , (12)

where the sum is over all partitions (i.e. not necessary strict) J ⊃ I such that
|J | = |I|+ r and J/I is a horizontal strip. Moreover,

m(I, r; J) = card{1 ≤ p ≤ k : jp+1 < ip < jp} (13)

or, equivalently, it is expressed as the number of connected components of the strip
J/I not meeting the first column.

It is not true that the coefficients in the Q̃-function expansion of the product of
two Q̃-functions are positive. For example, it is pointed out in [5] and [17] that
Q̃4422 appears in Q̃2

321 with the coefficient −4. During the last “Arbeitstagung
2005” at the Max-Planck Institute in Bonn (June 10–16), Arun Ram (private
communication) informed me that he knows now a “Littlewood-Richardson rule”
for Hall-Littlewood polynomials. Because of Eq. (9), this makes it plausible to
derive from this rule a “L-R rule” for Q̃-functions.

4. Divided differences

In this section, unless otherwise stated, the results stem from [10] and [11].
Let n be a fixed positive integer. The symmetric group (i.e. the Weyl group

of type A), Sn, is the group with generators s1, . . . , sn−1 subject to the relations

s2i = 1, si−1 si si−1 = sisi−1 si , sisj = sjsi ∀i, j : |i− j| > 1 . (14)

A presentation for the hyperoctahedral group Cn (i.e. the Weyl group of type C) is
obtained by adding a further generator s0 to those of Sn, where the new generator
satisfies the relations

s20 = 1, s0 s1 s0 s1 = s1 s0 s1 s0 , s0 si = si s0 for i ≥ 2 . (15)

A presentation for the Weyl group Dn of type D is obtained by adding a further
generator s2 to those of Sn, where the new generator satisfies the relations

s22 = 1, s1s2 = s2 s1, s2 s2 s2 = s2s2 s2 , s2 si = si s2 for i > 2. (16)

The groups Sn, Cn, and Dn act on Z[Xn]:

si(xi) = xi+1, s0(x1) = −x1, s2(x1) = −x2. (17)
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We shall also need divided differences associated with these groups. For a
polynomial f = f(x1, x2, . . . , xn), we set

∂i(f) =
(
f − f(. . . , xi+1, xi, . . .)

)
/(xi − xi+1) , (18)

∂0(f) =
(
f − f(−x1, x2, . . .)

)
/2x1 , (19)

∂2(f) =
(
f − f(−x2,−x1, x3, . . .)

)
/(x1 + x2) . (20)

The ∂i, ∂0, ∂2 satisfy the Moore-Coxeter relations, together with the relations

∂20 = ∂22 = ∂2i = 0 for 1 ≤ i < n . (21)

Therefore, to any element w of the Weyl groups Sn, Cn, Dn, there corresponds
a divided difference ∂w. Any reduced decomposition si1 si2 · · · si` = w gives rise
to a factorization ∂i1 ∂i2 · · · ∂i` of ∂w . The divided difference ∂w acts naturally on
Z[X] by a composition of simple divided differences.

To describe some properties of Q̃-polynomials, we shall need the Schubert
polynomials of Lascoux-Schützenberger [12], [8].

Let us fix a positive integer n. We shall index some objects by sequences
in Nn, denoted by α = [α1, . . . , αn]. For two sequences α = [α1, . . . , αn] and
β = [β1, . . . , βn] in Nn, we shall write α ⊆ β if αi ≤ βi for i = 1, . . . , n. Define
the sequence ρ = [n− 1, . . . , 1, 0].

One defines recursively Schubert polynomials Yα, for any sequence α ∈ Nn,
with α ⊆ ρ, by

∂i(Yα) = Yβ , if αi > αi+1 , (22)

where
β = [α1, . . . , αi−1, αi+1, αi − 1, αi+2, . . . , αn] , (23)

starting from Yρ = xρ. (For a sequence α = [α1, . . . , αn], by xα we mean the
monomial xα1

1 · · ·xαn
n .) If α ∈ Nn is weakly decreasing, then Yα is equal to the

monomial xα . If α1 ≤ · · · ≤ αk and αk+1 = · · · = αn = 0, for some k ≤ n, then
Yα is the Schur polynomial S(αk,...,α1)(Xk).

The ring Z[Xn] is a free Sym(Xn)–module with a basis given by Schubert
polynomials Yα where α ∈ Nn and α ⊆ ρ. We set

∇ = ∂0(∂1∂0) · · · (∂n−1 · · · ∂1∂0) . (24)

Denote by
〈 , 〉 : Sym(Xn)×Sym(Xn)→ Sym(X2

n)

the scalar product defined for f, g ∈ Sym(Xn) by

〈f, g〉 = ∇(f · g) . (25)

Define a strict partition ρ(k) = (k, k− 1, . . . , 1). We record the following orthogo-
nality property of Q̃-polynomials:
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THEOREM 8. For strict I, J ⊆ ρ(n),

〈Q̃I(Xn), Q̃ρ(n)rJ(Xn)〉 = ±δIJ , (26)

where ρ(n) r J is the strict partition whose parts complement the parts of J in
{n, n− 1, . . . , 1}.

(In this section, for simplicity, we shall often not give precise signs – they are given
in the quoted papers. Also we shall often omit the argument “Xn”.)

For another alphabet Yn, we define

Q̃(Xn,Yn) =
∑

Q̃I(Xn) Q̃ρ(n)rI(Yn) , (27)

where the summation is over all strict partitions I ⊆ ρ(n). The polynomial
Q̃(Xn,Yn) is a reproducing kernel for 〈 , 〉:

〈f(Xn) , Q̃(Xn,Yn)〉 = ±f(Yn) . (28)

PROPOSITION 9. Let α ∈ Nn be a sequence such that α ⊆ ρ.
(i) We have

∇(Yα(x1, . . . , xn) Q̃ρ(n)) = ±Yα(xn, xn−1, . . . , x1) . (29)

(ii) For a strict partition I  ρ(n), we have

∇(Yα Q̃I) = 0 . (30)

We now define two operators that will play a crucial role in the present note.
For k ≤ n, we define

∇Ck (n) = (∂n−k · · · ∂1∂0) · · · (∂n−1 · · · ∂1∂0) , (31)

and for k ≤ n/2 we set

∇Dk (n) = (∂n−2k · · · ∂2∂1∂n−2k+1 · · · ∂2∂2) · · · (∂n−2 · · · ∂2∂1∂n−1 · · · ∂2∂2) . (32)

Given partitions I, (p), J , we denote by IpJ their juxtaposition sequence (in the
indicated order). Suppose k = 1 and n ≥ p > 0. Let IpJ ⊆ ρ(n) be a strict
partition. Then we have

∂n−1 · · · ∂1∂0(xn−p1 Q̃IpJ) = ±Q̃IJ . (33)

If H ⊆ ρ(n) a strict partition not containing p, then

∂n−1 · · · ∂1∂0(xn−p1 Q̃H) = 0 . (34)

More generally, we have
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THEOREM 10. Let k ≤ n and let α = [α1 ≤ · · · ≤ αk] ∈ Nk with αk ≤ n − k.
Suppose that I ⊆ ρ(n) is a strict partition. Then the image of Q̃I Yα under ∇Ck (n)
is 0 unless n− 0− α1, . . . , n− (k − 1)− αk are parts of I. In this case, the image
is ±Q̃J , where J is the strict partition with parts

{i1, . . . , i`(I)}r {n− 0− α1, . . . , n− (k − 1)− αk} .

EXAMPLE 11. For n = 7 and k = 3 ,

∇C3 (7)(Q̃75431 Y[2,3,4]) = ±Q̃74 .

There is a complement to the theorem on erasing the “zero part” :

EXAMPLE 12. For n = 5 and k = 1,

∂4∂3∂2∂1∂0(x
5
1Q̃5321) = ±Q̃5321 and ∂4∂3∂2∂1∂0(x

5
1Q̃521) = 0.

A result, for any k, is the content of [11], Theorem 9.
Using the standard “barred permutation” notation2, we associate now with

every strict partition I = (i1, . . . , i` > 0) the following element of Cn:

v(I) = (i1, . . . , i`, j1, . . . , jh)−1 , (35)

where j1 < · · · < jh are complementary numbers to i1, . . . , i` in {1, . . . , n} .

PROPOSITION 13. For every strict partition I ⊆ ρ(n),

∂v(I)(x
ρQ̃ρ(n)) = ±Q̃I . (36)

This leads to the following characterization of Q̃-polynomials via divided differ-
ences.

COROLLARY 14. For any strict partition I, let w(I) = (i1, . . . , i`, j1, . . . , jh) .
Then w = w(I) is the unique element of Cn such that `(w) = |I| and ∂w(Q̃I) 6= 0.
In fact, ∂w(I)(Q̃I) = ±1.

PROPOSITION 15. For a strict partition I = (i1, i2, . . .),

∂i1−1 · · · ∂1∂0(Q̃I) = ±Q̃(i2,...) . (37)

Formulas for type B are the same, cf. [11].
We now come to type D. Given a partition I, we set P̃I = 2−`(I)Q̃I .

2See, e.g., [16] p.41.
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THEOREM 16. Let k ≤ n/2. Suppose that I ⊆ ρ(n− 1) is a strict partition. Let
α = [α1 ≤ α2 ≤ · · · ≤ α2k] ∈ N2k with α2k ≤ n − 2k. Then the image of P̃I Yα
under ∇Dk (n) is 0 unless all the integers: n − 1 − α1, . . . , n − 2k − α2k belong

to {i1, . . . , i`(I), 0}. In this case, the image is ±P̃J , where J is the strict partition
with parts

{i1, . . . , i`(I)}r {n− 1− α1, . . . , n− 2k − α2k} .

EXAMPLE 17. For n = 7 we have

∇D1 (7)(P̃64321,0 Y[2,5]) = ±P̃6321 and ∇D2 (7)(P̃654321,0 Y[1,1,1,3]) = ±P̃621 .

With a strict partition I ⊆ ρ(n − 1) with ` = `(I), we associate the following
element v(I) ∈ Dn . If n− ` is even (resp. odd), we set

v(I) = (i1 + 1, . . . , i` + 1, j1, . . . , jh)−1 , v(I) = (i1 + 1, . . . , i` + 1, 1, j1, . . . , jh)−1 .
(38)

PROPOSITION 18. For a strict partition I ⊆ ρ(n− 1),

∂v(I)(x
ρP̃ρ(n−1)) = ±P̃I . (39)

COROLLARY 19. For a strict partition I ⊆ ρ(n − 1), we set for even ` = `(I)
(resp. odd `)

w(I) = (i1 + 1, . . . , i` + 1, j1, . . . , jh) , w(I) = (i1 + 1, . . . , i` + 1, 1, j1, . . . , jh) .
(40)

Then w = w(I) is the unique element of Dn such that `(w) = |I| and ∂w(P̃I) 6= 0;
in fact ∂w(I)(P̃I) = ±1 .

PROPOSITION 20. For a strict partition I = (i1, i2, i3, i4, . . .) ⊆ ρ(n− 1),

∂i2 · · · ∂2∂1∂i1 · · · ∂2∂2(P̃I) = ±P̃(i3,i4,...). (41)

Most results in this section were proved using vertex operators – a useful tool given
to mathematicians by physicists, cf. [10], [11] and [1], [2], [3].

5. Related polynomials

Using Q̃-polynomials (or P̃ -polynomials) and divided differences, one can pro-
duce some new interesting polynomials (which have applications, e.g., to Algebraic
Geometry). Consider for any w ∈ Cn, a symplectic Schubert polynomial Xw(Xn) =
∂w−1w0

(xρQ̃ρ(n)(Xn)) , where w0 stands for the longest element in the group Cn

(cf. [16], [10]). So, Xw0 = xρQ̃ρ(n)(Xn) . These Schubert polynomials have the
stability property: we have for w ∈ Cn ⊂ Cn+1, Xw(Xn+1)|xn+1=0 = Xw(Xn). Also,
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Proposition 13 tells us: X(i1,...,i`,j1,...,jh)
= ±Q̃I , a property that has some geo-

metric meaning. Similarly one can define orthogonal Schubert polynomials; they
enjoy analogous properties with respect to the orthogonal divided differences, cf.
[11].

For a strict partition I, consider the symplectic Schubert polynomial CI =
∂0(Q̃I(Xn)). In [5], Andrew Kresch and Harry Tamvakis gave the following identity
for these polynomials: for any strict partition I of length ` ≥ 3, we have, with
r = [(`+ 1)/2],

r−1∑
i=1

(−1)j−1Cij ,jrCI\{ij ,ir} = 0 . (42)

This identity was useful in describing the quantum cohomology ring of the La-
grangian Grassmannian (loc.cit.). Quantum cohomology is another concept com-
ing to Mathematics from Physics. A similar identity for the polynomials ∂2(P̃I(Xn))
was useful, in turn, in describing the quantum cohomology of “maximal” orthog-
onal Grassmannians [6].

There exist also “double” Schubert polynomials, built using divided differences
and the kernel Q̃(Xn,Yn) (cf. (27)), as well as the analogous kernels involving P̃ -
polynomials. They describe the fundamental classes of symplectic and orthogonal
degeneracy loci, see [10], [11], and [7] for details.

6. Problems

1. Give a transparent non-inductive proof of the orthogonality property of Q̃-
polynomials from Theorem 8. The original proof in [16] used Proposition 7 and
double induction.

2. Give a combinatorial description of a Q̃-polynomial as a sum of monomials, cf.
Proposition 4.

3. Work out more relations like Eq. (42).

4. Establish a “Littlewood-Richardson rule” for Q̃-functions (see the discussion at
the end of Section 1). Establish such a rule for symplectic and orthogonal Schubert
polynomials.

5. Does there exist some “general structure” governing the divided difference and
vertex operator computations in [10] and [11] (this question is not precise, but
seems to be challenging).

6. Find applications of Q̃-functions to Physics, if any.
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