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Why should we expect a city to cure us of our spiritual pains? Perhaps

because we cannot help, loving our city like a family. But we still have

to decide which part of the city we love and invent the reasons why.

Orhan Pamuk, Istanbul: memories and the city.

Abstract
We discuss computations of the Thom polynomials of singularity classes

of maps in the basis of Schur functions. We survey the known results
about the bound on the length and a rectangle containment for parti-
tions appearing in such Schur function expansions. We describe several
recursions for the coefficients. For some singularities, we give old and new
computations of their Thom polynomials.

1 Introduction

A prototype of the formulas considered in the present paper, is the following
classical result. Let f : M → N be a holomorphic, surjective map of compact
Riemann surfaces. For x ∈M , we set

ex := number of branches of f at x.
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Then the ramification divisor of f is equal to∑
(ex − 1)x .

The Riemann-Hurwitz formula asserts that∑
x∈M

(ex − 1) = 2g(M)− 2− deg(f)
(
2g(N)− 2

)
. (1)

(See, e.g., [14].) The right-hand side of Eq.(1) can be rewritten as

f∗c1(N)− c1(M) ,

and gives us the Thom polynomial of the singularity A1 of maps between curves.

In general, according to the monograph [1], the global behavior of singular-
ities of maps f : M → N of complex analytic manifolds, is governed by their
Thom polynomials. Knowing the Thom polynomial of a singularity class Σ, one
can compute the cohomology class represented by the Σ-points of a map f . We
shall recall the definition of a Thom polynomial in Section 3.

The term “Thom polynomial” has nowadays rather wide meaning. In the
present paper, however, it will mean a classical Thom polynomial of the singu-
larity classes of maps (cf. [40]). We shall work here with complex manifolds1.

An explicit2 computation of a Thom polynomial is usually a difficult task.
At first, the computations of Thom polynomials were performed in the basis
of monomials in the Chern classes. But around 2004, two papers: [5] and
[31] appeared independently, with computations of some Thom polynomials in
the basis of Schur functions. (The two papers concerned different singularity
classes.) One should stress that even with a powerful theory of symmetric
functions from [20] and [17], a passage from the monomial basis to the Schur
basis is rather difficult: it is possible “in theory” but it is rather difficult in
practice (of course, we speak here about “large” expressions).

It is, by no means, reasonable to ask why to work with Schur function
expansions? One of the aims of the present paper is (to try) to answer this
question. Of course, an important role of Schur functions in geometry was known
earlier, e.g., by the Schubert Calculus (see also [16], [28], [10] – to mention just
a few references). The latter reference gives a wide geometric motivation of the
importance and ubiquity of Schur functions in algebraic geometry.

A basic property of Schur function expansions of Thom polynomials is the
nonnegativity of the coefficients proved by Andrzej Weber and the second named
author in [35] (see also [36]). These positive coefficients often have a pleasant
algebraic structure, e.g., satisfy some recursions. This allow one to organize the
computations of them in a pretty systematic way. Among these coefficients,
we find numbers appearing in different contexts in enumerative geometry, e.g.,
complete quadrics (see [32]). More, as it follows from a recent paper [22], the
positivity of the coefficients of Schur function expansions of classical Thom
polynomials leads to upper bounds for the coefficients of Legendrian Thom
polynomials expanded in an appriopriate basis.

1A manifold here is always smooth.
2Even the word “explicit” has different meanings for different authors working on Thom

polynomials.
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Another feature comes from the fact that Thom polynomials are closely
related with degeneracy loci of the cotangent map

f∗ : T ∗NM → T ∗M

(by T ∗NM we denote the cotangent bundle of N pull backed by f to M). Poly-
nomials supported on such degeneracy loci were described using Schur functions
in [28]; this helps to study the Schur function expansions of Thom polynomials
of other singularity classes.

In the present article, we survey basically only those papers, where the Schur
function expansions of Thom polynomials play a significant role in the process
of their computations or/and help in understanding their structure.

In [5], the authors computed the Thom polynomial of the second order
Thom-Boardman singularity classes

Σi,j : Mm → Nm−i+1

via its Schur function expansion, and conjectured the positivity of Schur function
expansion for all Thom-Boardman singularity classes.

In [31], the second author stated some formulas for Thom polynomials of
singularities I2,2, A3 : Mm → Nm+k (any k) and some partial result for Ai :
Mm → Nm+k (any i, k). These expressions had the form of Schur function
expansions. The details were given in [32], [19] and [33]. In Sections 7 and 8,
we discuss some essential computations from these papers.

In [23], [24], the first author computed Schur function expansions for A4 :
Mm → Nm+k (k = 2, 3) and III2,3 : Mm → Nm+k (any k).

This paper is organized as follows.
In Section 2, we recall the definition and properties of Schur functions, in-

cluding: cancellation–, vanishing–, basis– , and factorization property.
In Section 3, we recall the notion of a singularity class, and, following Thom

[40], attach to a singularity class its Thom polynomial.
In Section 4, we discuss the P-ideals of singularity classes. From the struc-

ture of the P-ideal of Σi, we deduce some result on a rectangle containment for
partitions appearing in the Schur function expansion of a Thom polynomial of
Σ ⊂ Σi (Theorem 13).

In Section 5, We discuss a way of computing of Thom polynomials of the
closures of single R-L orbits in a space of jets of maps: (C•, 0) → (C•+k, 0),
called there “singularities” after [37]. This is a “method of restriction equations”
that we learned from [37].

In Section 6, we collect formulas for the Chern and Euler classes of singu-
larities, and show by an example, how one can compute them.

In Section 7, we state some general properties of the Schur function expan-
sions of Thom polynomials of singularities. Theorem 13 is reinterpreted for
singularities. We discuss the Thom polynomial of III2,3 for any k. For any i, k,
we give the 1-part of the Thom polynomial of Ai. We discuss also recent results
of Féher and Rimányi [7] giving a bound on the lengths of partitions appearing
in Schur function expansions, and certain basic recursion (on k).

In Section 8, we recall Pascal staircases, and survey Schur function expan-
sions of Thom polynomials of I2,2 and A3 from [32] and [19]. Their coefficients
obey some (other) recursions on k. We provide details of two computations with
extensive use of the algebra of Schur functions and multi-Schur functions.
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In Section 9, we discuss the Schur function expansions of the Thom polyno-
mials of III3,3.

In Section 10, we discuss some properties of the Thom polynomials of I2,3.
In the appendices (Section 11 and 12), we give the Schur function expansions

of the Thom polynomials of III3,3 and I2,3 for several k.

This is basically a survey paper. Some new material is gathered in the last
four sections. We lectured on this material at IMPANGA seminars in Warsaw
and Cracow.

Acknowledgments We gratefully thank Alain Lascoux. He taught the second
named author the Schur functions in 1979, and discussed with him the Schur
function expansions of Thom polynomials in 2004. This was the starting point
of the project surveyed in the present paper. He also taught, in 2008, the
first named author how to write clever algorithms for computations with Schur
functions.

We thank Maxim Kazarian for mailing us [12]. We are also grateful to
Alexander Klyachko and Andrzej Weber for helpful discussions. Finally, we
thank the referee whose comments led to the improvement of the exposition.

A part of the present article was written during the stay of the second
named author at RIMS in Kyoto, in March 2011. He thanks this institute, and
especially Shigeru Mukai, for the warm welcome there.

2 Schur functions

The main reference for this section, for the conventions and notation, is [17].
This book studies (among others) multi-Schur functions which are a useful gen-
eralization of Schur functions. We shall need them in this paper. But we start
our discussion with Schur functions.

For m ∈ N, by an alphabet A of cardinality m we shall mean a finite set
of indeterminates A = {a1, . . . , am}. Sometimes, to point out the cardinality of
an alphabet {a1, . . . , am} we shall denote it by Am.

We shall often identify an alphabet {a1, . . . , am} with the sum a1 + · · ·+am.

Definition 1 Given two alphabets A, B, the complete functions Si(A−B) are
defined by the generating series (with z an extra variable):∑

Si(A−B)zi :=
∏
b∈B

(1− bz)/
∏
a∈A

(1− az) . (2)

We see that Si(A−B) interpolates between Si(A) - the complete symmetric
function of degree i in A and Si(−B) - the elementary symmetric function of
degree i in B times (−1)i. For example, S3(A− B) is equal to

S3(A− B) = S3(A)− S2(A)Λ1(B) + S1(A)Λ2(B)− Λ3(B) ,

where Λi(B) denotes the i-th elementary symmetric function in B.

A weakly increasing sequence (i1, i2, . . . , is) of nonnegative integers is called
a partition. The number it divides into parts, |I| = i1 + i2 + · · ·+ is, is called the
weight of I. The nonzero ip are called the parts of I. The number of nonzero
parts is called the length of I.
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Given two partitions I = (i1, i2, . . . , is) and J = (j1, j2, . . . , jt), we shall say
that I is contained in J , and write I ⊂ J , if for any p = 0, 1, 2, . . ., we have
is−p ≤ jt−p.

Following [17], we give

Definition 2 Given a partition I = (i1, i2, . . . , is) ∈ Ns, and alphabets A and
B, the Schur function SI(A− B) is

SI(A− B) :=
∣∣Siq+q−p(A−B)

∣∣
1≤p,q≤s . (3)

In other words, we put on the diagonal from to bottom: Si1 , Si2 , . . . , Sis , and
then, in each column, the indices of the successive Sj ’s should increase by one
from bottom to top. For example, if I = (1, 3, 3, 4, 5), then

SI(A−B) =

∣∣∣∣∣∣∣∣∣∣
S1(A−B) S4(A−B) S5(A−B) S7(A−B) S9(A−B)

1 S3(A−B) S4(A−B) S6(A−B) S8(A−B)
0 S2(A−B) S3(A−B) S5(A−B) S7(A−B)
0 S1(A−B) S2(A−B) S4(A−B) S6(A−B)
0 1 S1(A−B) S3(A−B) S5(A−B)

∣∣∣∣∣∣∣∣∣∣
.

These functions are often called supersymmetric Schur functions or Schur
functions in difference of alphabets. See [39], [3], [29], [34], [20] and [17] for their
study.

We have the following cancellation property: for alphabets A, B, C,

SI((A + C)− (B + C)) = SI(A− B) . (4)

We shall use the simplified notation i1i2 · · · is or i1, i2, . . . , is for a partition
(i1, i2, . . . , is) (the latter one if is ≥ 10). Also, we shall write (is) for the partition
(i, . . . , i) (s times).

A partition I has a graphical representation due to Ferrers, called its dia-
gram: it is a diagram of left packed square boxes with i1, i2, . . . , is the number
of boxes in the successive rows. For example, the diagram of the partition
(2, 5, 6, 8) is:

Given two partitions I and J , if we put their diagrams in such a position
that they share the lowest row and the leftmost column, then “ I ⊂ J ” iff the
set of boxes of the diagram of I is contained in the set of boxes of the diagram
of J .

We record the following property:

SI(A− B) = (−1)|I|SJ(B− A) = SJ(B∗ − A∗) , (5)

where J is the conjugate partition of I (i.e. the consecutive rows of the diagram
of J are the transposed columns of the diagram of I), and A∗ denotes the
alphabet {−a1,−a2, . . . }.
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Fix two positive integers m and n. Let I be a partition. Suppose that the
diagram of I and the following (m,n)-hook :

-�

6

?

n

m

share the lowest row and the leftmost column. If the diagram of I is contained
in this hook, then we say that the partition I is contained in the (m,n)-hook.

We record the following vanishing property. Given alphabets A and B of
cardinalities m and n, if the diagram of a partition I is not contained in the
(m,n)-hook, then

SI(A− B) = 0 . (6)

For instance, I = (2, 5, 6, 8) is not contained in the (2, 4)-hook

-�

6

?

4

2

*

Therefore S2568(A2 − B4) = 0. This vanishing property is an immediate conse-
quence of the factorization property (see Eq.(9)).

Moreover, we have the following result.

Theorem 3 If A and B are alphabets of cardinalities m and n, then the Schur
polynomials SI(A − B), where I runs over partitions contained in the (m,n)-
hook, are Z-linearly independent. (I.e., they form a basis of the abelian group
of supersymmetric Schur functions in A and B.)

For a proof, see, e.g., [34, Proposition 2.3].

Note 4 We shall often identify partitions with their diagrams, as is customary.

It is handy to adopt the following

Convention 5 Instead of introducing in the argument of a symmetric function,
formal variables which will be specialized, we write r for a variable which will
be specialized to r (r can be 2x1, x1 + x2,. . . ). For example,

S2(x1 +x2) = x2
1 +x1x2 +x2

2 but S2

(
x1+x2

)
= (x1 +x2)2 = x2

1 +2x1x2 +x2
2 .

This convention stems from [18] where the reader can find instructive examples
of its use.
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Definition 6 Given two alphabets A,B, we set

R(A,B) :=
∏

a∈A, b∈B
(a− b) , (7)

the resultant of A,B.

Thus R(A,B) is the resultant of the polynomials R(x,A) = R({x},A) and
R(x,B).

We now record some properties of Schur functions that are used in our
computations with Thom polynomials.

The first one is the following linearity formula. We have (see [17])

Sj(−E− Bn) = Sj(−E− Bn−1)− bnSj−1(−E− Bn−1) . (8)

This equality is used quite often to estimate the sizes of partitions indexing
Schur function expansions of Thom polynomials (see, e.g., [32], [19], [23], [24],
[25]). It serves also to establish an extremely useful Transformation Lemma (see
Lemma 7).

The second one is the following factorization property [3]. For partitions
I = (i1, . . . , im) and J = (j1, . . . , js), we have

S(j1,...,js,i1+n,...,im+n)(Am − Bn) = SI(Am) R(Am,Bn) SJ(−Bn) . (9)

For example, with m = 4, n = 2, I = (2, 3), J = (1, 3), we have

= −B4

R A2

S1367(A2 − B4) = S23(A2)R(A2,B4)S13(−B4) .

This factorization property is useful to simplify the h-parts (cf. the end of
Section 4) of Thom polynomials (see Section 8, and [32], [19], [23], [24]). Cf.
also [26].

We shall also need multi-Schur functions. Given s, two sets of alphabets
{A1,A2, . . . ,As}, {B1,B2, . . . ,Bs}, and partition I = (i1, . . . , is), we define fol-
lowing [17] the multi-Schur function

SI(A1 − B1, . . . ,As − Bs) =
∣∣Siq+q−p(Aq−Bq)

∣∣
1≤p,q≤s . (10)

In case where the alphabets are repeated, we indicate by a semicolon the corre-
sponding bloc separation. For example,

Si,i;i(A− C;B− D) = Si,i,i(A− C,A− C,B− D) .

We record the following Transformation Lemma (see [17, Lemma 1.4.1])
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Lemma 7 Let D0,D1, . . . ,Ds−1 be a family of alphabets such that card(Di) ≤ i
for 0 ≤ i ≤ s − 1. Then the multi-Schur function SI(A1 − B1, . . . ,As − Bs) is
equal to the determinant∣∣Siq+q−p(Aq−Bq−Ds−p)

∣∣
1≤p,q≤s .

In other words, one does not change the value of a multi-Schur function by
replacing in row p the difference A − B by A − B − Ds−p. We leave it to the
reader to prove this result.

3 Thom polynomials of singularity classes of maps

Fix m,n, p ∈ N. Consider the space J p(Cm
0 ,C

n
0 ) of p-jets of analytic functions

from Cm to Cn which map 0 to 0. Consider the natural right-left action of the
group Autpm×Autpn on J p(Cm

0 ,C
n
0 ), where Autpn denotes the group of p-jets

of automorphisms of (Cn, 0). By a singularity class we shall mean a closed
algebraic right-left invariant subset of J p(Cm

0 ,C
n
0 ). Given complex analytic

manifolds Mm and Nn, a singularity class Σ ⊂ J p(Cm
0 ,C

n
0 ) defines the subset

Σ(M,N) ⊂ J p(M,N), where J p(M,N) is the space of p-jets of maps from M
to N .

Theorem 8 Let Σ ⊂ J p(Cm
0 ,C

n
0 ) be a singularity class. There exists a univer-

sal polynomial T Σ over Z in m+n variables c1, . . . , cm, c
′
1, . . . , c

′
n which depends

only on Σ, m and n such that for any complex analytic manifolds Mm, Nn and
for almost any map3 f : M → N , the class of

Σ(f) := f−1
p (Σ(M,N))

is equal to
T Σ(c1(M), . . . , cm(M), f∗c1(N), . . . , f∗cn(N)),

where fp : M → J p(M,N) is the p-jet extension of f .

This is a theorem due to Thom, see [40].
If a singularity class Σ is stable (e.g. closed under the contact equivalence,

see, e.g., [7]), then T Σ depends on ci(TM − TNM ).

Let f : M → N be a map of complex analytic manifolds. In the present
paper, we shall work with the cotangent map

f∗ : T ∗NM → T ∗M , (11)

rather than with the tangent one. Given a partition I, we define

SI(T
∗M − T ∗NM )

to be the effect of the following specialization of SI(A−B): the indeterminates
of A are set equal to the Chern roots of T ∗M , and the indeterminates of B to
the Chern roots of T ∗NM .

3The Riemann-Hurwitz formula quoted in Introduction holds for any surjective f . In the
theory of Thom polynomials we restrict ourselves only to almost all maps, i.e., the maps from
some open subset in the space of all maps.
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Given a singularity class Σ, the Poincaré dual of Σ(f), for almost any map
f : M → N , will be written in the form∑

I

αISI(T
∗M − T ∗NM ) (12)

with integer coefficients αI .
Accordingly, we shall write

T Σ =
∑
I

αISI , (13)

where SI is identified with SI(A−B) for the universal Chern roots A and B.

For example, consider the singularity class Σ = Σi. So, m − i ≤ n, and
looking at the (m− i)th degeneracy locus of the cotangent map (11), we have

T Σi

= S(n−m+i)i ,

the Giambelli-Thom-Porteous formula (see [27]).
A basic result on Schur function expansions of Thom polynomials of singu-

larity classes is

Theorem 9 ([35]) Let Σ be a nontrivial stable singularity class. Then for
any partition I, the coefficient αI in the Schur function expansion of the Thom
polynomial

T Σ =
∑

αISI ,

is nonnegative and
∑
I αI > 0.

This result was conjectured in [5]. Thus, it is not obvious. But its proof
is almost obvious. The original proof in [35] used the classification space of
singularities and the Fulton-Lazarsfeld theorem [9]. We now give an outline of
another proof (of nonnegativity only), communicated to the second author by
Klyachko (Ankara, 2006) and, independently, by Kazarian [12].

Sketch of proof of the theorem First, using some Veronese map, we “ma-
terialize” all singularity classes in sufficiently large Grassmannians.

We fix a singularity class Σ and take the Schur function expansion of T Σ.
We take sufficiently large Grassmannian containing Σ and such that specializing
T Σ in the Chern classes of the tautological (quotient) bundle Q, we do not lose
any Schur summand.

We identify by the Giambelli formula (see [8], p.146 and [10], p.18, p.27), a
Schur polynomial of Q with the corresponding Schubert cycle.

To test a coefficient in the Schur function expansion of T Σ, we intersect [Σ]
with the corresponding dual Schubert cycle (see [8], p.150). Using the Bertini-
Kleiman theorem [13], we put the cycles in a general position, so that we can
reduce to set-theoretic intersection, which is nonnegative. 2

Note 10 If αI 6= 0, then we shall say that I belongs to the indexing set of the
Schur function expansion of T Σ, or that the partition I appears in the Schur
function expansion of T Σ, or just I appears in T Σ.
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It appears that this positivity result can be used to find upper bounds for the
coefficients of expansions of Legendrian Thom polynomials in a suitable basis,
see [22]. For the Lagrangian Thom polynomials, this is the basis of the so called

Q̃-functions, see [21].

We record now a variant valid for not necessary stable singularity classes.

Theorem 11 ([36]) Let Σ be a nontrivial singularity class. Then for any
partitions I, J , the coefficient αI,J in the Schur function expansion of the Thom
polynomial

T Σ =
∑

αI,JSI(T
∗M)SJ(TNM )

is nonnegative, and
∑
I,J αI,J > 0.

(It is important that we use the cotangent bundle to the source M and the
tangent bundle to the target N .) The latter result implies the former, see [36].
This last paper contains also some variations on positivity of generalized Thom
polynomials, and emphasizes the role of cone classes for globally generated and
ample vector bundles, following Fulton and Lazarsfeld.

4 P-ideals of singularity classes

More generally, it is natural to consider the P-ideal of a singularity class Σ,
denoted by PΣ. This is the subset in the polynomial ring Z[c1, . . . , cm, c

′
1 . . . , c

′
n],

consisting of all polynomials P which satisfy the following universality property.
For any complex analytic manifolds Mm, Nn and almost any map f : M → N ,

P (c1(M), . . . , cm(M), f∗c1(N), . . . , f∗cn(N))

is supported on Σ(f). (This means – see [28], [10] – that the class of a cycle on
M in H(M,Z) is in the image of H(Σ(f),Z)→ H(M,Z).)

Note 12 These ideals were first studied (1988) in [28] for the classes Σ = Σi.
They were rediscovered (2004) in [6] in the context of group actions.

For Σ = Σi, PΣ is simply the ideal of polynomials which – after specialization
to the Chern classes of M and N – support cycles in the locus D, where

dim
(
Ker(f∗ : TM → TNM )

)
≥ i .

for almost any map f : M → N . (This means that the class of a cycle on M in
H(M,Z) is in the image of H(D,Z)→ H(M,Z).)

Note that in terms of the cotangent map, D is the locus where

rank
(
f∗ : T ∗NM → T ∗M

)
≤ m− i ,

for almost any map f : M → N .
Of course, the component of minimal degree of PΣ is generated over Z by

T Σ. Usefulness of P-ideals come from the following observation. Suppose that
Σ ⊂ Σ′, where Σ′ is another singularity class. Then T Σ belongs to PΣ′ . Thus if
one knows the algebraic structure of PΣ′ , one can use it to compute T Σ. In this
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way, the degeneracy loci of the cotangent map (11) appear to be useful objects
to study Thom polynomials.

Set Pi := PΣi

. By [28] and [29], one knows the algebraic structure of Pi,
i.e., a certain finite set of its algebraic generators (cf. [28, Proposition 6.1]),
and its Z-basis (cf. [28, Proposition 6.2]). The arguments combine geometry of
Grassmann bundles with algebra of Schur functions.

Before proceeding further, let us state the following result which is rather
useful to compute the Schur function expansions of Thom polynomials. Its
setting is the same as that of Theorem 8.

Theorem 13 ([28], [32]) Suppose that a stable singularity class Σ is contained
in Σi. Then all summands in the Schur function expansion of T Σ are indexed
by partitions containing (n−m+ i)i.

Thus the partitions not containing this rectangle cannot appear in the Schur
function expansion of T Σ.

This result seems to be quite obvious. However, its proof is not obvious. Let
A and B be two alphabets such that∑

ci =
∏
a∈A

(1 + a) and
∑

c′j =
∏
b∈B

(1 + b).

We have

Proposition 14 No nonzero Z[c1, . . . , cm]-linear combination of the Schur func-
tions SI(A− B)’s, where all I’s do not contain (n−m+ i)i, belongs to Pi.

The idea of the proof is to interpret Pi as a “generalized resultant”, and use
some specialization trick. For details, we refer the reader to the proof of “Claim”
on p. 164 in [29].

Thus, in particular, no nonzero Z-linear combination of the SI(A − B)’s,
where all I’s do not contain (n−m+ i)i, belongs to Pi.

Also, we have

Proposition 15 Any SI(A− B), where I contains (n−m+ i)i belongs to Pi.

The idea of the proof is to use a desingularization of D in the product of two
Grassmann bundles, and apply appropriate pushforward formulas. For details,
see [28, Proposition 3.2].

We are now ready to justify the theorem. Since Σ is contained in Σi, the
Thom polynomial T Σ belongs to Pi. By the stability assumption, the Thom
polynomial T Σ is a (unique) Z-linear combination of the SI(A−B)’s. Proposi-
tions 15 and 14 imply that only Schur functions indexed by partitions containing
the rectangle (n−m+ i)i appear in this sum. 2

In the computations of Thom polynomials, it is convenient to “split” them
into pieces supported on the consecutive degeneracy loci of the cotangent map
(11). Let T be the Thom polynomial of a singularity class. Following [33],
by the h-part of T we mean the sum of all Schur functions appearing in T
(multiplied by their coefficients) such that the corresponding partitions satisfy
the following condition: I contains the rectangle partition (n−m+ h)h, but it
does not contain the larger diagram (n−m+ h+ 1)h+1. The polynomial T is
a sum of its h-parts, h = 1, 2, . . ..
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5 Single R-L orbits

In the present paper, we shall mostly study Thom polynomials of singularities.
Let k ≥ 0 be a fixed integer and • ∈ N. Two stable germs κ1, κ2 : (C•, 0)→

(C•+k, 0) are said to be right-left equivalent if there exist germs of biholomor-
phisms ϕ of (C•, 0) and ψ of (C•+k, 0) such that ψ◦κ1◦ϕ−1 = κ2. A suspension
of a germ is its trivial unfolding: (x, v) 7→ (κ(x), v). Consider the equivalence re-
lation (on stable germs (C•, 0)→ (C•+k, 0)) generated by right-left equivalence
and suspension. A singularity η is an equivalence class of this relation.4

According to Mather’s classification ([4] or [1]), singularities are in one-to-
one correspondence with finite dimensional (local) C-algebras. We shall use the
following notation of Mather:

– Ai will stand for the stable germs with local algebra C[[x]]/(xi+1), i ≥ 0;

– Ia,b (of Thom-Boardman type Σ2,0) for stable germs with local algebra
C[[x, y]]/(xy, xa + yb), b ≥ a ≥ 2;

– IIIa,b (of Thom-Boardman type Σ2,0) for stable germs with local algebra
C[[x, y]]/(xy, xa, yb), b ≥ a ≥ 2 (here k ≥ 1).

With a singularity η, there is associated Thom polynomial T η in the formal
variables c1, c2, . . . which after the substitution of ci to

ci(f
∗TN − TM) = [c(f∗TN)/c(TM)]i , (14)

for a general map f : M → N between complex analytic manifolds, evaluates
the Poincaré dual of [η(f)], where η(f) is the cycle carried by the closure of the
set

{x ∈M : the singularity of f at x is η} . (15)

By codim(η), we mean the codimension of η(f) in X.
Codimensions of above singularities are as follows (cf. [4, Chapter 8]):

– Ai associated with maps (C•, 0)→ (C•+k, 0)), where i ≥ 0 and k ≥ 0 has
codimension (k + 1)i.

– Ia,b associated with maps (C•, 0) → (C•+k, 0)), where b ≥ a ≥ 2 and
k ≥ 0 has codimension (k + 1)(a+ b− 1) + 1.

– IIIa,b associated with maps (C•, 0) → (C•+k, 0)), where b ≥ a ≥ 2 and
k ≥ 1 has codimension (k + 1)(a+ b− 2) + 2.

We shall now follow the approach in [37]. Let κ : (Cn, 0) → (Cn+k, 0) be
a prototype of a singularity η. It is possible to choose a maximal compact
subgroup Gη of the right-left symmetry group

Autκ = {(ϕ,ψ) ∈ Autn ×Autn+k : ψ ◦ κ ◦ ϕ−1 = κ} , (16)

such that images of its projections to the factors Autn and Autn+k are linear 5.
That is, projecting on the source Cn and the target Cn+k, we obtain represen-
tations λ1(η) and λ2(η). Let E′η and Eη denote the vector bundles associated
with the universal principal Gη-bundles EGη → BGη that correspond to λ1(η)

4This terminology stems from [37]; a singularity corresponds to a single R-L orbit.
5By Autn we mean here the space of automorphisms of (Cn, 0).
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and λ2(η), respectively. The total Chern class, c(η) ∈ H∗(BGη,Z), and the
Euler class, e(η) ∈ H2 codim(η)(BGη,Z), of η are defined by

c(η) :=
c(Eη)

c(E′η)
and e(η) := e(E′η) . (17)

We end this section by recalling the method of restriction equations due to
Rimányi et al.

Theorem 16 ([37]) Let η be a singularity. Suppose that the number of sin-
gularities of codimension less than or equal to codim(η) is finite. Moreover,
assume that the Euler classes of all singularities of codimension smaller than
codim(η) are not zero-divisors. Then we have

1. if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;

2. T η(c(η)) = e(η).

This system of equations (taken for all such ξ’s) determines the Thom polyno-
mial T η in a unique way.

Solving of these equations is rather difficult. This method is well suited for
compter experiments, though the bounds of such computations are quite sharp.

6 Computing the Chern and Euler classes

The Chern and Euler classes recalled in the present section were given in: [37],
[32], [23], [24] and [25].

Let η : (C•, 0)→ (C•+k, 0) be a singularity in the sense of Section 5.
For η = Ai, a suitable maximal compact subgroup can be chosen as GAi =

U(1)× U(k). The Chern class is

c(Ai) =
1 + (i+ 1)x

1 + x

k∏
j=1

(1 + yj) , (18)

where x and y1,. . . , yk are the Chern roots of the universal bundles on BU(1)
and BU(k). The Euler class is

e(Ai) = i! xi
k∏
j=1

(yj − ix) · · · (yj − 2x)(yj − x) . (19)

In case of η = I2,2, we consider the extension of U(1) × U(1) by Z/2Z.
Denoting this group by H, a maximal compact subgroup is Gη = H×U(k) for all
k ≥ 0. But to make computations easier, we use the subgroup U(1)×U(1)×U(k)
as Gη (cf. [37], p.502)). We have

c(I2,2) =
(1 + 2x1)(1 + 2x2)

(1 + x1)(1 + x2)

k∏
j=1

(1 + yj) . (20)
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Here x1, x2 and y1, . . . , yk are the Chern roots of the universal bundles on two
copies of BU(1) and on BU(k). The Euler class is

e(I2,2) = x1x2(2x1 − x2)(2x2 − x1)

k∏
j=1

(yj − x1)(yj − x2)(yj − x1 − x2) . (21)

Next, we consider η = III2,2. This time we use the maximal compact group
Gη = U(2)× U(k−1) for k ≥ 1. We have

c(III2,2) =
(1+2x1)(1+2x2)(1+x1+x2)

(1+x1)(1+x2)

k−1∏
j=1

(1 + yj) , (22)

where x1, x2 and y1, . . . , yk−1 denote the Chern roots of the universal bundles
on BU(2) and BU(k−1). The Euler class is

e(III2,2) = (x1x2)2(x1−2x2)(x2−2x1)

k−1∏
j=1

(x1−yj)

k−1∏
j=1

(x2−yj) . (23)

For the singularity III2,3, we can use the action of the U(1)×U(1)×U(k−1).
We have

c(III2,3) =
(1+2x1)(1+3x2)(1+x1+x2)

(1+x1)(1+x2)

k−1∏
j=1

(1 + yj) . (24)

This time x1, x2 and y1, . . . , yk are the Chern roots of the universal bundles on
two copies of BU(1) and on BU(k − 1). The Euler class is

e(III2,3) =4x2
1x

3
2(x1 − x2)(x1 − 3x2)(x2 − 2x1)

×
k−1∏
j=1

(x1 − yj)(x2 − yj)(2x2 − yj) .
(25)

For the singularity III3,3, the maximal compact group is U(2) × U(k − 1).
The Chern class is

c(III3,3) =
(1 + 3x1)(1 + 3x2)(1 + x1 + x2)

(1 + x1)(1 + x2)

k−1∏
j=1

(1 + yj) , (26)

where x1, x2 and y1, . . . , yk−1 are the Chern roots of the universal bundles BU(2)
and BU(k − 1). The Euler class is

e(III3,3) =4x3
1x

3
2(3x1 − x2)(3x1 − 2x2)(3x2 − x1)(3x2 − 2x1)

×
k−1∏
j=1

(x1 − yj)(2x1 − yj)(x2 − yj)(2x2 − yj) .
(27)

We display now the Chern or/and Euler classes of some other singularities
(we omit to interpret the variables xi and yj). We have

c(Ia,b) =
(1 + a+b

gcd(a,b)x1)(1 + ab
gcd(a,b)x2)

(1 + a
gcd(a,b)x1)(1 + b

gcd(a,b)x2)

k−1∏
j=1

(1 + yj) ; (28)
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e(Ia,b) =
a!b!ab−1ba−1xa+b

gcd(a, b)a+b

k∏
j=1

(
a∏
i=1

(i
gcd(a, b)

b
x− yj)

b−1∏
i=1

(i
gcd(a, b)

a
x− yj)

)
;

(29)

c(IIIa,b) =
(1 + ax1)(1 + bx2)(1 + x1 + x2)

(1 + x1)(1 + x2)

k−1∏
j=1

(1 + yj) ; (30)

e(IIIa,b) = (a− 1)!(b− 1)!

b−1∏
i=1

(ax1 − ix2)

a−1∏
i=1

(bx2 − ix1)

×
k−1∏
j=1

(
a−1∏
i=1

(yj − ix1)

b−1∏
i=1

(yj − ix2)

)
.

(31)

A general strategy for computing the Chern and Euler classes of singularities
was described in [37].

We show now, following [24], how to compute the Euler class of III2,3.
Assume that k = 1 and consider the germ g(x, y) = (x2, y3, xy). A prototype of
III2,3 can be written as the unfolding

g +

8∑
i=1

uihi ,

where hi form a basis of the space

m3
x,y

mx,y · { ∂g∂x ,
∂g
∂y}+ C3 · I(g)

,

and where I(g) is the subspace generated by the component functions of g. We
shall work with the basis consisting of the following germs:

h1(x, y) = (x, 0, 0), h5(x, y) = (0, y, 0),

h2(x, y) = (y, 0, 0), h6(x, y) = (0, y2, 0),

h3(x, y) = (y2, 0, 0), h7(x, y) = (0, 0, x),

h4(x, y) = (0, x, 0), h8(x, y) = (0, 0, y).

Let ρhi
denote the representation of the action of the group U(1)×U(1) on the

space generated by hi. Then, denoting the one-dimensional representations of
the first and the second copies of U(1) by λ and µ, we have

ρh1
= λ, ρh5

= µ2,

ρh2
= λ2 ⊗ µ−1, ρh6

= µ,

ρh3
= λ2 ⊗ µ−2, ρh7

= µ,

ρh4
= λ−1 ⊗ µ3, ρh8

= λ.
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Therefore for k = 1, using the representation
⊕
ρhi

, we can write the Euler
class as

e(III2,3) = 4x2
1x

3
2(x1 − x2)(x1 − 3x2)(x2 − 2x1) , (32)

where x1 and x2 denote the Chern roots of the universal bundles on the two
copies of BU(1).

For k = 2, in addition to hi above, we need to consider the representations
of the action of the group U(k− 1) = U(1) on the spaces generated by (x, y) 7→
(0, 0, 0, x), (x, y) 7→ (0, 0, 0, y) and (x, y) 7→ (0, 0, 0, y2). These can be written as
ν⊗λ−1, ν⊗µ−1 and ν⊗µ−2, where ν denotes the one-dimensional representation
of this copy of U(1). Hence, in this case, the Euler class can be written as

e(III2,3) = 4x2
1x

3
2(x1−x2)(x1−3x2)(x2−2x1)(x1−y1)(x2−y1)(2x2−y1) , (33)

where xi are as above and y1 denotes the Chern root of the universal bundle on
BU(1).

For k ≥ 1, we need to consider U(k − 1) instead of U(1), giving rise to

y1, . . . , yk−1 (and respectively to the product
∏k−1
j=1 (x1− yj)(x2− yj)(2x2− yj))

instead of y1 (and respectively of (x1 − y1)(x2 − y1)(2x2 − y1)).

We shall need the following alphabets:

Definition 17 We set

D = x1 + x2 + x1 + x2 ,

E = 2x1 + 2x2 ,

F = 2x1 + 3x2 + x1 + x2 ,

G = 3x1 + 3x2 + x1 + x2 ,

H = 2x1 + 4x2 + x1 + x2 .

Notation 18 In the rest of the paper we shall use the shifted parameter

r := k + 1 . (34)

When we need to emphasize the dependence on r we shall write η(r) for the
singularity η : (C•, 0)→ (C•+r−1, 0), and denote the Thom polynomial of η(r)
by T ηr , or Tr for short. (In this notation, the result of Thom, T A1

r = Sr, has a
transparent form.)

We now specify, with the help of these alphabets, some equations character-
izing Thom polynomials Tr imposed by different singularities.

Note 19 The variables below will be specialized to the Chern roots of the
cotangent bundles.
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First, we give the vanishing equations coming from the Chern classes of
singularities. Let Bj denote an alphabet of cardinality j. We have the following
equations:

Ai(r) : Tr(x−Br−1 − (i+ 1)x ) = 0 for i = 0, 1, 2, . . . ; (35)

I2,2(r) : Tr (X2 − E− Br−1) = 0 ; (36)

I2,3(r) : Tr
(

2x + 3x − 5x − 6x − Br−1

)
= 0 ; (37)

III2,2(r) : Tr(X2 − D− Br−2) = 0 ; (38)

III2,3(r) : Tr (X2 − F− Br−2) = 0 ; (39)

III2,4(r) : Tr (X2 −H− Br−2) = 0 . (40)

Using the Chern classes displayed above, one can write down other vanishing
equations.

We give now some normalizing equations coming from the Euler classes of
singularities. We have

Ai(r) : Tr(x−Br−1− (i+1)x ) = R(x+ 2x + 3x + · · ·+ ix ,Br−1+ (i+1)x ) ;

(41)

I2,2(r) : Tr(X2−E−Br−1) = x1x2(x1−2x2)(x2−2x1) R(X2+ x1+x2 ,Br−1) ;

(42)

I2,3(r) : Tr
(

2x + 3x − 5x − 6x − Br−1

)
= 2xR( 2x + 3x , 5x + 6x + Br−1)

×
r−1∏
j=1

(4x− bj)(6x− bj) ;

(43)

III2,2(r) : Tr(X2 − D− Br−2) = R(X2,D + Br−2) ; (44)

III2,3(r) : Tr (X2 − F− Br−2) = 2x2(x1 − x2)R(X2,F + Br−2)

r−2∏
j=1

(2x2 − bj) ;

(45)
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III3,3(r) : Tr (X2 −G− Br−2) =x1x2(3x1 − 2x2)(3x2 − 2x1)

×R(X2,G + Br−2)

r−2∏
j=1

(2x1 − bj)(2x2 − bj) .

(46)

Using the Euler classes displayed above, one can write down other normal-
izing equations.

7 Thom polynomials of singularities

In this section, we shall study, for singularities η, Schur function expansions
Thom polynomials T η written in the form (13) (cf. also (12):

T η =
∑
I

αISI .

It is interesting to find bounds on partitions appearing in Schur function expan-
sions of Thom polynomials of singularities. One such follows immediately from
Theorem 13.

Proposition 20 Suppose that a singularity η is of Thom-Boardman type Σi,....
Then all summands in the Schur function expansion of T ηr are indexed by par-
titions containing the rectangle partition (r + i− 1)i.

For example, consider the singularity III2,3(r). As its Thom-Boardman type
is Σ2,0, all partitions in the Schur function expansion of T III2,3(r) contain the
partition (r+1, r+1). This Thom polynomial is characterized by the equations:
(35), i = 0, 1, 2, 3, (38) and (45). Its Schur function expansion is given by the
following expression:

Theorem 21 ([24], [7]) We have

T III2,3r =

r+1∑
i=1

2iSr+1−i,r+1,r+i . (47)

7.1 On Morin singularities Ai(r)

One of the most important problems in global singularity theory is to write
down the explicit Schur function expansion of the Thom polynomials for Morin
singularities Ai(r). We now describe, following [33], the 1-part of T Ai

r for any i
and r.

Let A be an alphabet of cardinality m. Consider the function F (A,−),
defined for any difference of alphabets G−H by

F (A,G−H) :=
∑
I

SI(A)Sn−im,...,n−i1,n+|I|(G−H) , (48)

where the sum is over partitions I = (i1, i2, . . . , im) such that im ≤ n.
A basic link of this function to resultants is given by the following result.
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Lemma 22 For a variable x and an alphabet B of cardinality n, we have

F (A, x− B) = R(x+ Ax,B) . (49)

(loc.cit. Lemma 8).

Next, we define the following function F
(i)
r (−):

F (i)
r (G−H) =

∑
J

SJ( 2 + 3 + · · ·+ i )Sr−ji−1,...,r−j1,r+|J|(G−H) , (50)

where the sum is over partitions J ⊂ (ri−1), and for i = 1 we understand

F
(1)
r (−) = Sr(−).

The following result gives the key algebraic property of F
(i)
r .

Proposition 23 We have

F (i)
r (x− Br) = R(x+ 2x + 3x + · · ·+ ix ,Br) . (51)

Proof. The assertion follows from Lemma 22 with m = i − 1, n = r, and
A = 2 + 3 + · · ·+ i .

With the help of Proposition 23, the following result on Thom polynomials
was established:

Theorem 24 For any i, r, the 1-part of T Ai
r is equal to F

(i)
r .

(loc.cit. pp.173–174).

We shall now use a couple of functions F
(i)
r to rephrase some results from

[40], [38], folklore, [11] and [37], respectively:

F (1)
r = Sr = T A1

r ;

F (2)
r =

∑
j≤r

2jSr−j,r+j = T A2
r ;

F
(3)
1 = S111 + 5S12 + 6S3 = T A3

1 ;

F
(4)
1 + 10S22 = S1111 + 9S112 + 26S13 + 24S4 + 10S22 = T A4

1 ;

F
(3)
2 + 5S33 = S222 + 5S123 + 6S114 + 19S24 + 30S15 + 36S6 + 5S33 = T A3

2

([33], pp.174–176). The reader can find in [33] more examples of the functions

F
(i)
r . In the next section, we shall discuss the Schur function expansions of T A3

r

for all r.

Definition 25 For a positive integer p We denote by Φp the linear endomor-
phism on the Z-module spanned by Schur functions indexed by partitions of
length ≤ p that sends a Schur function Sj1,...,jp to Sj1+1,...,jp+1.

Example 26 For any i, r ≥ 1, we have

F (i)
r = F

(i)
r + Φi(F

(i)
r−1) , (52)

where the first summand gathers the Schur functions indexed by partitions of
length < i.

In [2], the author discusses another approach to Thom polynomials of Morin
singularities.
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7.2 A basic recursion

In the forthcoming section, we shall discuss some recursions for Thom polynomi-
als. The following result was recently obtained in [7, Proposition 7.15, Theorem
7.14]. Let Qη denote the local algebra of the singularity η.

Theorem 27 Let η be a stable singularity. Then the length of any partition,
appearing in the Schur function expansion of T ηr , is ≤ dim(Qη)−1. Moreover,
by erasing one column of length dim(Qη)−1 from all the diagrams of partitions
appearing in T ηr , we get all the diagrams of partitions appearing in T ηr−1 (we
disregard the partitions whose diagrams have no such a column).

In other words, for p = dim(Qη)− 1, the following equation holds:

T ηr = T ηr + Φp(T ηr−1) , (53)

where the first summand gathers the Schur functions indexed by partitions of
length < p.

This result was earlier established for the singularities I2,2(r), A3(r), A4(r),
III2,3(r) and III3,3(r) from the restriction equations which they obey, with
help of Eq.(8) (see [32], [19], [23], [24] and [25]).

This recurrence relation is quite easy to observe, especially by computing
examples with the help of computer. It is, however, not sufficient to compute
Thom polynomials. As the matter of fact, Schur function expansions of Thom
polynomials often contain many terms, where the first column is shorter than
the maximal possible. So these “initial terms”, denoted by T ηr in (53), cannot
be obtained by the operation of adding a maximal possible column.

Another interesting question is to find upper bounds of the coefficients in
Schur function expansions of Thom polynomials. This will be a subject of some
future study.

8 Pascal staircases and two recursions

We invoke first some results from [32] and [19]. We start with useful algebraic
identity associated with Pascal staircases (cf. [19]). Then we discuss the Schur
function computations of the Thom polynomials of I2,2(r) and A3(r).

8.1 Pascal staircases

The material of this subsection stems from [19].
Consider an infinite matrix P = [ps,t] with rows and columns numbered by

s, t = 1, 2, . . ..
We suppose that p1,t = p2,t = 0 for t ≥ 2, p3,t = p4,t = 0 for t ≥ 3,

p5,t = p6,t = 0 for t ≥ 4 etc.
The first column is an arbitrary sequence v = (v1, v2, . . .). In the case when

this sequence is the sequence of coefficients of the Taylor expansion of a function
f(z), we write Pf for the corresponding matrix P .

To define the remaining ps,t’s, we use the recursive formula

ps+1,t = ps,t−1 + ps,t. (54)
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We visualize this definition by

a b
�

⇒ a b
a+ b

We thus get the following Pascal staircase P = [pi,j ]i,j=1,2,...:

v1 0 0 0 0 . . .
v2 0 0 0 0 . . .
v3 v2 0 0 0 . . .
v4 v3+v2 0 0 0 . . .
v5 v4+v3+v2 v3+v2 0 0 . . .
v6 v5+v4+v3+v2 v4+2v3+2v2 0 0 . . .
v7 v6+v5+v4+v3+v2 v5+2v4+3v3+3v2 v4+2v3+2v2 0 . . .
...

...
...

...
...

Given an integer d ≥ 0, and an alphabet A, we define the function W (d) =
W (d,A) by

W (d,A) =
∑
i,j

pd+1−i,j+1 Si(−A)Sj,d−i−j(X2). (55)

The function W (d,A) is linear in the elements of the first column of P . Hence
it is sufficient to restrict to the case v = (1, y, y2, . . .), i.e., to take P = P1/(1−zy)

to determine it.

Lemma 28 If P = P1/(1−zy) and A = x1 + x2 , then W (0) = 1 and for d ≥ 1

W (d, x1 + x2 ) = (y − 1)yd−1Sd(X2). (56)

For the proof, see [19].
Let B be another alphabet. Taking now A = x1 + x2 + B instead of

x1 + x2 , and using

W (d,A) =
∑
i,j,k

pd+1−i−k,j+1 Si
(
− x1 + x2

)
Sj,d−i−j−k(X2)Sk(−B)

=
∑
k

W
(
d− k, x1 + x2

)
Sk(−B)

= (1− y−1)
∑
k

yd−kSd−k(X2)Sk(−B) = yd(1− y−1)Sd(X2 − y−1B) ,

we get the following corollary.

Corollary 29 If P = P1/(1−zy) and B is an arbitrary alphabet, then (apart
from initial values) we have

W (d, x1 + x2 + B) = (y − 1)yd−1Sd(X2 − y−1B) . (57)
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8.2 Recursions for I2,2(r)

The material of this subsection stems from [32].

The codimension of I2,2(r), r ≥ 1, is 3r+ 1. Set Tr := T I2,2r and T r = T I2,2r .
We have T1 = T 1 = S22.

A partition appearing in the Schur function expansion of Tr contains the
partition (r+1, r+1) and has at most three parts. In particular, if Si1,i2 appears
in the Schur function expansion of Tr, then i1 = r+1+p and i2 = 2r−p, where
0 ≤ 2p ≤ r − 1.

Invoke the map Φ3 from Definition 25. We have, for r ≥ 2, the following
recursive equation:

Tr = T r + Φ3(T r−1) + Φ2
3(T r−2) + · · ·+ Φr−1

3 (T 1) . (58)

So we are left with computation of T r.
Consider the matrix whose (i, j)th entry is the partition (i + j, 1 + 2i − j)

with the convention that (i+ j, 1 + 2i− j) is the empty partition for 2j > i+ 1:

22 ∅ ∅ ∅ ∅ . . .
34 ∅ ∅ ∅ ∅ . . .
46 55 ∅ ∅ ∅ . . .
58 67 ∅ ∅ ∅ . . .

6, 10 79 88 ∅ ∅ . . .
7, 12 8, 11 9, 10 ∅ ∅ . . .
8, 14 9, 13 10, 12 11, 11 ∅ . . .

...
...

...
...

...


Note that the rth row of the above matrix consists of partitions appearing

in T r. It turns out that the coefficients of their Schur functions are given by the
corresponding entries of the Pascal staircase P = [Pi,j ]i=1,...;j=1,..., associated
with the sequence {2i − 1}i=1,2,...:

P =



1 0 0 0 0 0 . . .
3 0 0 0 0 0 . . .
7 3 0 0 0 0 . . .
15 10 0 0 0 0 . . .
31 25 10 0 0 0 . . .
63 56 35 0 0 0 . . .
127 119 91 35 0 0 . . .

...
...

...
...

...
...


(59)

Namely, we have

T r =
∑

2j≤r+1

Pr,jSr+j,2r+1−j .

22



Example 30 We have the following values of T 1, . . . , T 7:

T 1 = S22

T 2 = 3S34

T 3 = 7S46 + 3S55

T 4 = 15S58 + 10S67

T 5 = 31S6,10 + 25S79 + 10S88

T 6 = 63S7,12 + 56S8,11 + 35S9,10

T 7 = 127S8,14 + 119S9,13 + 91S10,12 + 35S11,11 .

In this case, the algebra of Schur functions combined with one of the equa-
tions characterizing the Thom polynomial, yields quickly an expression for T r.
Of course, T r is uniquely determined by its value on X2. The following result
gives this value.

Proposition 31 For any r ≥ 1, we have

T r(X2) = (x1x2)r+1 Sr−1(D) . (60)

We show the induction step. Suppose that the assertion is true for T i, where
i < r. Let I = (j, r + 1 + p, r + 1 + q) be a partition appearing in the Schur
function expansion of Tr. By the factorization property (9), we get

SI(X2 − D− Br−2) = R · Sj(−D− Br−2) · Sp,q(X2) ,

where R = R(X2,D + Br−2). Therefore, using Eq. (58), we obtain

Tr(X2 − D− Br−2) = R ·
(r−1∑
j=0

Sj(−D− Br−2)
T r−j(X2)

(x1x2)r−j+1

)
. (61)

By the induction assumption, for positive j ≤ r − 1, we have

T r−j(X2) = (x1x2)r−j+1 Sr−1−j(D) .

We use now the fact that among the equations characterizing Tr is (38) (because
the codimension of III2,2(r) is smaller than codim(I2,2(r))). Substituting this
to (61), we obtain

r−1∑
j=1

Sj(−D− Br−2)Sr−1−j(D) +
T r(X2)

(x1x2)r+1
= 0 . (62)

But we also have, by a formula for addition of alphabets,

r−1∑
j=1

Sj(−D− Br−2)Sr−1−j(D) + Sr−1(D) = Sr−1(−Br−2) = 0 . (63)

Combining (62) and (63), gives

T r(X2) = (x1x2)r+1 Sr−1(D) ,
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that is, the induction assertion. 2

The Schur function expansion of Si(D) was described in [28], [15] and Ap-
pendix A3 in [30], in the context of the Segre classes of the second symmetric
power of a rank 2 vector bundle. Indeed, D is the alphabet of the Chern roots
of the second symmetric power of a rank 2 bundle with the Chern roots x1, x2.
The recursions encoded by the Pascal diagram (59) express the recursions for
the coefficients of the Segre classes of the second symmetric power of a rank 2
vector bundle (loc.cit.).

8.3 Recursions for A3(r)

The material of this subsection stems from [19].
We set

Fr :=
∑

j1≤j2≤r

Sj1,j2( 2 + 3 )Sr−j2,r−j1,r+j1+j2 . (64)

This function is the 1-part of T A3
r (see Section 7).

In [37], the author gave Thom polynomials for A3(1) and A3(2). Their Schur
function expansions are

T A3
1 = S111 + 5S12 + 6S3 = F1 . (65)

and

T A3
2 = S222 + 5S123 + 6S114 + 19S24 + 30S15 + 36S6 + 5S33 = F2 + 5S33 . (66)

Note that the 2-part of T A3
2 is 5S33.

We now pass to the case of general r. Since A3(r) has codimension 3r, a
partition appearing in the 2-part of T A3

r has weight 3r and its diagram contains
the partition (r + 1, r + 1). Moreover, it can have at most three rows.

Consider the matrix whose (i, j)th entry is the partition (1+ i+ j, 2+2i− j)
with the convention that (1+i+j, 2+2i−j) is the empty partition for 2j > i+1:

33 ∅ ∅ ∅ ∅ . . .
45 ∅ ∅ ∅ ∅ . . .
57 66 ∅ ∅ ∅ . . .
69 78 ∅ ∅ ∅ . . .

7, 11 8, 10 99 ∅ ∅ . . .
8, 13 9, 12 10, 11 ∅ ∅ . . .
9, 15 10, 14 11, 13 12, 12 ∅ . . .

...
...

...
...

...


We now want to define a symmetric function Hr whose Schur summands are
indexed by partitions from the (r − 1)th row of the above matrix. Their coeffi-
cients will be given by the corresponding entries of the following Pascal staircase.
Consider the following Taylor expansion:

f(z) =
5− 6z

(1− z)(1− 2z)(1− 3z)

= 5 + 24z+89z2 + 300z3 + 965z4 + 3024z5 + 9329z6 + . . . .
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The Pascal staircase associated with f is the following infinite matrix:

P =



5 0 0 0 0 . . .
24 0 0 0 0 . . .
89 24 0 0 0 . . .
300 113 0 0 0 . . .
965 413 113 0 0 . . .
3024 1378 526 0 0 . . .
9329 4402 1904 526 0 . . .

...
...

...
...

...


For r ≥ 2, we set

Hr :=
∑
2j≤r

Pr−1,jSr+j,2r−j . (67)

Example 32 We have the following values of Hr, r = 2, . . . , 7 :

H2 = 5S33

H3 = 24S45

H4 = 24S66+89S57

H5 = 113S78+300S69

H6 = 113S99+413S8,10+965S7,11

H7 = 526S10,11+1378S9,12+3024S8,13 .

We define by induction on r

Hr = Hr + Φ3(Hr−1) + Φ2
3(Hr−2) + · · ·+ Φr−2

3 (H2) .

With this definition of Hr, we state the following result.

Theorem 33 ([19]) We have

T A3
r = Fr +Hr .

In other words, the function Hr is the 2-part of T A3
r , and its h-parts are zero

for h ≥ 3. Note also that we recover the recurrence (52):

Fr = F r + Φ3(Fr−1) .

We show now, following [19], the essential computations in the proof of
Theorem 33. As explained in [19], it is crucial to show the vanishing (38) of
T A3
r at the Chern class c(III2,2(r)). I.e., it suffices to show the equality

(Fr +Hr)(x1 + x2 − D− Br−2) = 0 . (68)

Due to the factorization property (9), each Schur function occuring in the
expansion of Hr is such that

Sc,r+1+a,r+1+b(X2−D−Br−2) = R(X2,D+Br−2) · Sc(−D−Br−2) · Sa,b(X2) .

25



We set

Vr(X2;Br−2) :=
Hr(X2 − D− Br−2)

R(X2,D + Br−2)
, (69)

so that

Vr(X2;Br−2) =

r−2∑
i=0

∑
{j≥0: i+2j≤r−2}

er−i,j Si(−D− Br−2) Sj,r−i−j−2(X2) . (70)

We have the following recursive relation which follows from the observation that
the coefficient of br−2 in Vr(X2;Br−2) is equal to −Vr−1(X2;Br−3).

Lemma 34 For r ≥ 2, we have

Vr(X2;Br−2) =

r−2∑
i=0

Vr−i(X2; 0) Si(−Br−2) . (71)

Thus it is sufficient to compute Vr(X2; 0).

Proposition 35 For r ≥ 2, we have

Vr(X2; 0) = 3r−2
(

3Sr−2(X2)− 2S1,r−3(X2)
)
. (72)

(In particular, V2(X2; 0) = 5 and V3(X2; 0) = 9S1(X2) .)

We now apply Corollary 29 from Subsection (8.1) with B = 2x1 + 2x2 .
Expanding

Sd

(
X2 − y−1( 2x1 + 2x2 )

)
= Sd(X2)− 2x1 + 2x2

y
Sd−1(X2) + 4

x1x2

y2
Sd−2(X2) ,

we get, for d ≥ 3,

W (d,D) = yd−2(y − 1)(y − 2)Sd(X2))− 2yd−3(y − 1)(y − 2)S1,d−1(X2) (73)

and initial conditions

W (0) = 1, W (1) = (y − 3)S1(X2),

W (2) = (y − 1)(y − 2)S2(X2)− 2(y − 3)S11(X2) .

We come back to Proposition 35, and we take the Pascal staircase (59).
Then for d = r − 2, the function W (d,D) is the function Vr(X2; 0). We thus
have to specialize y into 1, 2, 3 successively. Apart from initial values, only y = 3
contributes, and we get, for d ≥ 3,

W (d,D) = 3d+1Sn(X2)− 2 · 3dS1,d−1(X2) .

This proves Proposition 35, checking the cases r = 2, 3, 4 directly.

We now pass to the specialization Fr(X2 − D− Br−2). It is rather straight-
forward to prove the following lemma (cf. [19]).
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Lemma 36 The resultant R(X2,D + Br−2) divides Fr(X2 − D− Br−2).

We set

Ur(X2;Br−2) :=
Fr(X2−D−Br−2)

R(X2,D + Br−2)
. (74)

Note that each variable b ∈ Br−2 appears at most with degree 3 in
Fr(X2−D−Br−2), and hence at most with degree 1 in Ur(X2;Br−2). We have
the following precise recursive relation which follows from the observation that
the coefficient of b3r−2 in Fr(X2−D−Br−2) is equal to Fr−1(X2−D−Br−3).

Lemma 37 For r ≥ 2, we have

Ur(X2;Br−2) =

r−2∑
i=0

Ur−i(X2; 0) Si(−Br−2) . (75)

Let π be the endomorphism of the C-vector space of functions of x1, x2,
defined by

π
(
f(x1, x2)

)
=
x1f(x1, x2)− x2f(x2, x1)

x1 − x2
.

For any i, j ∈ N, we have

π(xj1x
i
2) = Si,j(X2) . (76)

The proof of the following proposition will make use of multi-Schur functions
(see the end of Section 2).

Proposition 38 For r ≥ 2, we have

Fr(X2 − D) = −3r−2R(X2,D)(x1x2)r−2
(
3Sr−2(X2)− 2S1,r−3(X2)

)
. (77)

Proof. The identity is true for r = 2. To prove the assertion for r ≥ 3, we
compute in two different ways the action of π on the multi-Schur function

Sr,r;r(X2 + 2x1 + 3x1 − D;x1 − D) . (78)

Firstly, expanding (78), we have

π
(
Sr,r;r(X2 + 2x1 + 3x1 − D;x1 − D)

)
= π

( ∑
j1≤j2≤r

Sj1,j2( 2x1 + 3x1 ) Sr−j2,r−j1;r(X2 − D;x1 − D)
)

= π
( ∑
j1≤j2≤r

Sj1,j2( 2 + 3 ) Sr−j2,r−j1;r+j1+j2(X2 − D;x1 − D)
)

=
∑

j1≤j2≤r

Sj1,j2( 2 + 3 ) Sr−j2,r−j1,r+j1+j2(X2 − D)

= Fr(X2 − D) .

Secondly, using Lemma 7, we subtract x1 from the arguments in the first two
rows of the determinant (78) without changing its value. We get the determinant
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∣∣∣∣∣∣∣
Sr(x2 + 2x1 + 3x1 − D) Sr+1(x2 + 2x1 + 3x1 − D) Sr+2(−D)

Sr−1(x2 + 2x1 + 3x1 − D) Sr(x2 + 2x1 + 3x1 − D) Sr+1(−D)

Sr−2(X2 + 2x1 + 3x1 − D) Sr−1(X2 + 2x1 + 3x1 − D) Sr(x1 − D)

∣∣∣∣∣∣∣ .
Since the elements in the first two rows of the third column are zero, this
determinant is equal to

Sr,r(x2 + 2x1 + 3x1 − D) · Sr(x1 − D) .

Since
x2 + 2x1 + 3x1 − D = x2 + 3x1 − 2x2 − x1 + x2

and the following two factorizations hold:

Sr,r(x2 + 3x1 − 2x2 − x1 + x2 ) = −3r−2(x2 − 2x1)(x1x2)r−1(3x1 − 2x2)

and
Sr(x1 − D) = xr−2

1 x2(x1 − 2x2) ,

we infer that

Sr,r;r(X2 + 2x1 + 3x1 − D;x1 − D)

= −3r−2R(X2,D)(x1x2)r−2xr−3
1 (3x1 − 2x2) . (79)

By (76), the result of applying π to (79) is

−3r−2R(X2,D)(x1x2)r−2
(
3Sr−2(X2)− 2S1,r−3(X2)

)
.

Comparison of both computations of π applied to (78) yields the proposi-
tion.

In terms of Ur, we rewrite Proposition 38 into

Corollary 39 For r ≥ 2, we have

Ur(X2; 0) = −3r−2
(
3Sr−2(X2)− 2S1,r−3(X2)

)
. (80)

These are the essential computations with Schur functions leading to the
proof of Theorem 33.

9 Towards the Thom polynomial of III3,3(r)

The singularity III3,3(r) has codimension 4r+2. So, the partitions that we need
to consider have weight 4r + 2. Moreover, all diagrams contain the partition
(r + 1, r + 1), have at most 4 rows and the length of the second row is at
most r. Let Dr denote the set of all such diagrams. By Dr,2,Dr,3andDr,4 we
shall denote the subsets of Dr, that consist of diagrams with 2,3 and 4 rows,
respectively.

Set Tr := T III3,3r . Then, the part of Tr corresponding to the partitions in
Dr,4 is given by Φ4(Tr−1).
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The Thom polynomial Tr must satisfy the following system of equations:
(35) for i = 0, 1, 2, 3, 4 , (36), (37), (38), (39), (40) together with the normalizing
equation (46).

For a partition I ∈ Dr, we have

SI(−Br−1) =SI(x− Br−1 − 2x )

=SI(x−Br−1 − 3x )

=SI(x−Br−1 − 4x ) = 0 .

Hence Eqs. (35) for i = 0, 1, 2, 3, 4 are satisfied automatically by any linear
combination of Schur functions indexed by partitions in Dr. Moreover, Eq.(36)
implies Eq.(38) by the substitution br−1 = x1 + x2 . Hence we can replace the

former set of equations by a smaller set of equations consisting of Eqs. : (36),
(37), (39), (40) and (46). Note that in these equations, the alphabets we need
to consider, are suitable for the factorization property (9) associated with a pair
of alphabets of cardinalities r + 1 and 2.

In [26], we give an algorithm based on ACE (cf. [41]) which solves the
latter system of equations. Using this algorithm, we get the (unique) Tr for
r = 2, . . . , 8, expanded in the Schur function basis. In the next example, we
give Tr for r = 2, 3, and in Section 11, we give T4, . . . , T8.

Example 40 We have

T2 = 4S37 + 16S46 + 28S55

+20S145 + 6S136 + 7S235 + 3S244

+2S1135 + 3S1234 + 6S1144 + S2233 ;

T3 = 8S4,10 + 40S59 + 88S68 + 120S77

+ 12S149 + 52S158 + 100S167

+ 14S248 + 50S257 + 20S266

+ 15S347 + 10S356 + Φ4(T2) .

In [25], the author proposes a conjecture about the recursion for the coef-
ficients in the Schur function expansion of Tr. This recursion is checked for
2 ≤ r ≤ 8, with the help of an algorithm in [26].

10 On the Thom polynomial of I2,3(r)

Set Tr := T I2,3r . The singularity I2,3(r) has codimension 4r+1. So, the partitions
that we need to consider have weight 4r + 1. Moreover, all diagrams contain
the partition (r + 1, r + 1) and have at most 4 rows. Then, the part of Tr
corresponding to the partitions with 4 rows is given by Φ4(Tr−1).

The Thom polynomial Tr must satisfy the following system of equations:
(35) for i = 0, 1, 2, 3 , (36), (38), (39) together with the normalizing equation
(43).

An algorithm analogous to the one in [26], allows us to get the (unique)
solutions Tr of this system of equations for r = 1, . . . , 7, expanded in Schur
function basis. In the next example, we give Tr for r = 1, 2, 3, and in Section
12, we give T4, . . . , T7.
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Example 41 We have
T1 = 2S122 + 4S23;

T2 = 32S36 + 24S45 + 24S135 + 12S144 + 12S234 + 3S333 + Φ4(T1) ;

T3 = 208S49 + 208S58 + 112S67

+ 168S148 + 152S157 + 56S166

+ 100S247 + 76S256

+ 50S346 + 24S355

+ 18S445 + Φ4(T2) .

11 Appendix 1: T III3,3r , r = 4, . . . , 8

Let Tr = T III3,3
r . We have

T4 = 16S5,13 + 96S6,12 + 256S7,11 + 416S8,10 + 496S9,9

+ 24S1,5,12 + 128S1,6,11 + 304S1,7,10 + 448S189

+ 28S2,5,11 + 128S2,6,10 + 264S279 + 100S288

+ 30S3,5,10 + 112S369 + 70S378

+ 31S459 + 25S468 + 10S477 + Φ4(T3) ;

T5 = 32S6,16 + 224S7,15 + 704S8,14 + 1344S9,13 + 1824S10,12 + 2016S11,11

+ 48S1,6,15 + 304S1,7,14 + 864S1,8,13 + 1504S1,9,12 + 1904S1,10,11

+ 56S2,6,14 + 312S2,7,13 + 784S2,8,12 + 1232S2,9,11 + 448S2,10,10

+ 60S3,6,13 + 284S3,7,12 + 616S3,8,11 + 364S3,9,10

+ 62S4,6,12 + 238S4,7,11 + 182S4,8,10 + 70S499

+ 63S5,6,11 + 56S5,7,10 + 35S589 + Φ4(T4) ;

T6 = 64S7,19 + 512S8,18 + 1856S9,17 + 4096S10,16 + 6336S11,15 + 7680S12,14 + 8128S13,13

+ 96S1,7,18 + 704S1,8,17 + 2336S1,9,16 + 4736S1,10,15 + 6816S1,11,14 + 7872S1,12,13

+ 112S2,7,17 + 736S2,8,16 + 2192S2,9,15 + 4032S2,10,14 + 5392S2,11,12 + 1904S2,12,12

+ 120S3,7,16 + 688S3,8,15 + 1800S3,9,14 + 2976S3,10,13 + 1680S3,11,12

+ 124S4,7,15 + 600S4,8,14 + 1348S4,9,13 + 980S4,10,12 + 364S4,11,11

+ 126S5,7,14 + 492S5,8,13 + 420S5,9,12 + 252S5,10,11

+ 127S6,7,13 + 119S6,8,12 + 91S6,9,11 + 35S6,10,10 + Φ4(T5) ;
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T7 = 128S8,22 + 1152S9,21 + 4736S10,20 + 11904S11,19 + 20864S12,18

+ 28032S13,17 + 31616S14,16 + 32640S15,15

+ 192S1,8,21 + 1600S1,9,20 + 6080S1,10,19 + 14144S1,11,18 + 23104S1,12,17

+ 29376S1,13,16 + 32064S1,14,15

+ 224S2,8,20 + 1696S2,9,19 + 5856S2,10,18 + 12448S2,11,17 + 18848S2,12,16

+ 22752S2,13,15 + 7872S2,14,14

+ 240S3,8,19 + 1616S3,9,18 + 4976S3,10,17 + 9552S3,11,16 + 13392S3,12,15 + 7296S3,13,14

+ 248S4,8,18 + 1448S4,9,17 + 3896S4,10,16 + 6696S4,11,15 + 4656S4,12,14 + 1680S4,13,13

+ 252S5,8,17 + 1236S5,9,16 + 2844S5,10,15 + 2328S5,11,14 + 1344S5,12,13

+ 254S6,8,16 + 1002S6,9,15 + 912S6,10,14 + 672S6,11,13 + 252S6,12,12

+ 255S7,8,15 + 246S7,9,14 + 210S7,10,13 + 126S7,11,12 + Φ4(T6) ;

T8 = 256S9,25 + 2560S10,24 + 11776S11,23 + 33280S12,22 + 65536S13,21 + 97792S14,20

+ 119296S15,19 + 128512S16,18 + 130816S17,17

+ 384S1,9,24 + 3584S1,10,23 + 15360S1,11,22 + 40448S1,12,21 + 74496S1,13,20

+ 104960S1,14,19 + 122880S1,15,18 + 129536S1,16,17

+ 448S2,9,23 + 3840S2,10,22 + 15104S2,11,21 + 36608S2,12,20 + 62592S2,13,19

+ 83200S2,14,18 + 93952S2,15,17 + 32064S2,16,16

+ 480S3,9,22 + 3712S3,10,21 + 13184S3,11,20 + 29056S3,12,19

+ 45888S3,13,18 + 57728S3,14,17 + 30624S3,15,16

+ 496S4,9,20 + 3392S4,10,20 + 10688S4,11,19 + 21184S4,12,18

+ 30880S4,13,17 + 20688S4,14,16 + 7296S4,15,15

+ 504S5,9,20 + 2976S5,10,19 + 8160S5,11,18 + 14432S5,12,17 + 11352S5,13,16 + 6336S5,14,15

+ 508S6,9,19 + 2512S6,10,18 + 5872S6,11,17 + 5172S6,12,16 + 3672S6,13,15 + 1344S6,14,14

+ 510S7,9,18 + 2024S7,10,17 + 1914S7,11,16 + 1584S7,12,15 + 924S7,13,14

+ 511S8,9,17 + 501S8,10,16 + 456S8,11,15 + 336S8,12,14 + 126S8,13,13 + Φ4(T7) .

12 Appendix 2: T I2,3r , r = 4, . . . , 7

Let Tr = T I2,3
r . We have

T4 = 1280S5,12 + 1024S7,10 + 1408S6,11 + 480S89

+ 1056S1,5,11 + 1120S1,6,10 + 736S179 + 240S188

+ 656S2,5,10 + 656S269 + 368S278

+ 360S359 + 328S368 + 124S377

+ 180S458 + 134S467

+ 75S557 + 36S566 + Φ4(T3) ;
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T5 = 7744S6,15 + 8832S7,14 + 7168S8,13 + 4544S9,12 + 1984S10,11

+ 6432S1,6,14 + 7232S1,7,13 + 5632S1,8,12 + 3232S1,9,11 + 992S1,10,10

+ 4048S2,6,13 + 4448S2,7,12 + 3264S2,8,11 + 1616S2,9,10

+ 2280S3,6,12 + 2416S3,7,11 + 1632S3,8,10 + 560S3,9,9

+ 1204S4,6,11 + 1208S4,7,10 + 692S489

+ 602S5,6,10 + 542S579 + 206S588

+ 270S669 + 201S678 + Φ4(T4) ;

T6 = 46592S7,18 + 53888S8,17 + 45824S9,16 + 32640S10,15 + 19200S11,14 + 8064S12,13

+ 38784S1,7,17 + 44608S1,8,16 + 37248S1,9,15 + 25408S1,10,14 + 13568S1,11,13 + 4032S1,12,12

+ 24512S2,7,16 + 27936S2,8,15 + 22720S2,9,14 + 14624S2,10,13 + 6784S2,11,12

+ 13920S3,7,15 + 15632S3,8,14 + 12256S3,9,13 + 7312S3,10,12 + 2384S3,11,11

+ 7472S4,7,14 + 8200S4,8,13 + 6128S4,9,12 + 3152S4,10,11

+ 3864S5,7,13 + 4100S5,8,12 + 2812S5,9,11 + 980S5,10,10

+ 1932S6,7,12 + 1924S6,8,11 + 1108S6,9,10

+ 903S7,7,11 + 813S7,8,10 + 309S7,9,9 + Φ4(T5) ;

T7 = 279808S8,21 + 325376S9,20 + 282368S10,19 + 212224S11,18

+ 140544S12,17 + 79104S13,16 + 32512S14,15

+ 233088S1,8,20 + 270464S1,9,19 + 232832S1,10,18 + 171392S1,11,17

+ 108672S1,12,16 + 55680S1,13,15 + 16256S1,14,14

+ 147520S2,8,19 + 170560S2,9,18 + 145088S2,10,17

+ 103872S2,11,16 + 62272S2,12,15 + 27840S2,13,14

+ 84000S3,8,18 + 96544S3,9,17 + 80736S3,10,16

+ 55776S3,11,15 + 31136S3,12,14 + 9856S3,13,13

+ 45328S4,8,17 + 51600S4,9,16 + 42160S4,10,15 + 27888S4,11,14 + 13536S4,12,13

+ 23688S5,8,16 + 26568S5,9,15 + 21080S5,10,14 + 12928S5,11,13 + 4304S5,12,12

+ 12100S6,8,15 + 13284S6,9,14 + 10032S6,10,13 + 5232S6,11,12

+ 6050S7,8,14 + 6388S7,9,13 + 4400S7,10,12 + 1540S7,11,11

+ 2898S8,8,13 + 2886S8,9,12 + 1662S8,10,11 + Φ4(T6) .
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[23] Ö. Öztürk, Thom polynomials and Schur functions: the singularities A4(−),
Serdica Math. J. 33 (2007), 301–320.
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[25] Ö. Öztürk, Ph.D. Thesis, IMPAN, Warsaw, 2010.
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M-P. Malliavin (ed.), Springer LNM 1478, 1991, 130–191.

[30] P. Pragacz, Symmetric polynomials and divided differences in formulas of intersec-
tion theory, in: “Parameter spaces”, P. Pragacz (ed.), Banach Center Publications
36, 1996, 125–177.

[31] P. Pragacz, Thom polynomials and Schur functions I, arXiv: math.AG/0509234.

[32] P. Pragacz, Thom polynomials and Schur functions: the singularities I2,2(−),
Ann. Inst. Fourier 57 (2007), 1487–1508.

[33] P. Pragacz, Thom polynomials and Schur functions: towards the singularities
Ai(−), in “Real and complex singularities (Sao Carlos 2006)”, M. J. Saja and J.
Seade (eds.), Contemporary Mathematics 459, 2008, 165–178.

[34] P. Pragacz, A. Thorup, On a Jacobi-Trudi identity for supersymmetric polynomi-
als, Adv. in Math. 95 (1992), 8–17.

[35] P. Pragacz, A. Weber, Positivity of Schur function expansions of Thom polyno-
mials, Fund. Math. 195 (2007), 85–95.

[36] P. Pragacz, A. Weber, Thom polynomials of invariant cones, Schur functions and
positivity, in: “Algebraic cycles, sheaves, shtukas, and moduli”, P. Pragacz (ed.),
Trends in Mathematics, Birkhäuser, 2008, 117–129.
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