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The goal of the present paper is to state and prove a new identity for Schur
Q-functions.

We recall Schur’s original definition of these functions, which appeared in [S].
Let x = (x1,x2,...) be an infinite sequence of independent indeterminates. The
following identity between formal power series in ¢

[ = Qe

i>1

defines symmetric functions Q, = Q4(x) in x1,x,... for all nonnegative integers
a (with Qo = 1). Directly from the definition it follows that

(1) Z (—1)Qq-Qp=0
a+b=c

for all ¢ > 1.

For integers a1, ay > 0, we define

a2
(2) Qa1a2 - Qal * Qaz + 2 Z(_l)zQal-l-’L . QCLQ—i
i=1
By (1) we have Qg 4, = —Quasa,; i particular Q4,4, = 0 when a; = ay. Notice

that Q,0 = Q4 = —Qo4- Also, in general, it is sufficient to index Schur -functions
by strict partitions, though for formal reasons it is convenient to extend the range of
indices to the sequences of positive integers, or even to the sequences of nonnegative
integers having at most one zero placed at the end.
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Let (a1,...,am) € (N*)m. We define, recurrently on m, the Schur @Q-function
Qay...am = Qay,... a,,) as follows. If m is odd, then

(3) Qal...am - Qal : Qaz...am - Qaz : Qalag...am + ...+ Qam . Qal...am,l .

If m is even, then

(4) Qal...am - Qa1a2 ) Qa3...am - Qa1a3 ) Qa2a4...am + ...+ Qalam ) Qaz...am,l .

Of course, this definition can be restated, more compactly, using appropriate Pfaf-
fians. Namely, we have

Qal...am = Pf(Qaiaj)1§i,j§m
for m even, and
Qal...am = Pf(Qbibj)]_Si,jSm+17

for m odd, where (by, ... ,bp, bmt1) = (a1,... ,am,0). We then record the following
property. For a permutation o € S,, , we have

(5) Qag(l)...aa(m) = Sgn(U)Qal...am .

Notice that Equation (3) also holds for m even, and Equation (4) also holds
for m odd. This can be restated as follows. Letting, for (ay,...,amn) € (N*)",
Qay...a,,0 = Qa,..a,, , Equations (3) and (4) hold true if we formally set a,, = 0.

The above algebraic properties will be sufficient for the purposes of the present
paper. For more about Schur @-functions and their algebraic applications, the
reader is referred to [H-H] and especially to Schur’s original paper [S]|. For recent
geometric applications of these functions to enumerative geometry of degeneracy
loci and cohomology rings of isotropic Grassmannians, see [P1] and [P2].

We define I' to be the polynomial algebra in {Q, : @ > 1} over Z and call it the
ring of Schur @-functions. We consider I' as a graded ring where deg Q, = a. We
denote by A the ring of symmetric functions; recall that A = Zleq, es, . ..] where ¢;
is the ¢-th elementary symmetric function.

Let n : A — I be the ring homomorphism from the ring of symmetric functions
to the ring of Schur Q-functions, defined by 7(e;) = @;. The goal of the present
paper is to give an explicit expression for the image under n of an arbitrary S-
function, n(sy), as a quadratic polynomial in Schur Q-functions. This will be a
consequence of a more general identity given in Theorem 4 which is the principal
result of the present paper. The main results are illustrated by examples and
accompanied by a geometric application (Proposition 8) which was, in fact, the
main author’s motivation of the present research.

To state our results we need some notation. For a sequence A = (ay, ... ,a,) and
a subsequence B of A, i.e., B = (a;,,...,a; ) with 1 <i; < ... < i < n, we denote
by A\ B the subsequence of A obtained by removing {a;,,...,a;, } from A and

leaving the remaining a’s in the original ordering. Given additionally a sequence
B = (by,...,by), we denote by A#B the sequence (a1, by, as2,ba,... an,b,). We
will identify a subsequence (a;,, ... ,a;, ) of A with the subsequence of A# B, which
occupies the places numbered by 2i; — 1,...,2i, — 1. Similarly, we will identify a
subsequence (b;,,...,b;, ) of B with the subsequence of A# B, which occupies the
places numbered by 24, ..., 2i.



o
Theorem 1. Suppose that A\ = (a1,...,an | B1,...,0n) s a partition written

in Frobenius notation. Then, for A = (a1,...,a,) := (@1 +1,...,a,+1) and

B := (/817"' 7/870)7

Det (Qaiﬁj + Qai ’ Qﬁ1)1§'b,j§n = Z Q(ail,... @iy, ) QA#B\(ail,... sy, )

where the sum is over all sequences 1 <11 < ... <ixz <nandk=0,1,... ,n.

Corollary 2. In the notation of Theorem 1,

1
77(3)\) = 2_n Z Q(ail,... @iy, ) QA#B\(ail,... sy, )
the sum as in the theorem.

Indeed, using Giambelli’s hook-formula for sy (see [G]), the equality

(Q(a+1,ﬁ) + Qon1 Qﬂ)

N | —

1 (s(p) =

(see, e.g., [J-P]), and Theorem 1, we get

n(sx) = Det(%(Qaiﬁj + Qa, - Qﬁj))lgi,jgn
= zin D Quiy i) - QAB (s, e sary) >
the sum as asserted.
Note that for A = B, Theorem 1 says
Det (ngﬂj +Qp, - Qﬁj)lgi,jgn - Q%l---,@n

and was proved originally by Macdonald, answering a conjecture of De Concini (see
[J-P, Remark 2]), and by You [Y].

Example 3. a) With A =(2,1) and B = (3,1), we have

n(52221) = 2—12(Q21 Q31— Q1- Q321)-

( Here, n =2, A#B = (2,3,1,1).)

b) Note that n(sy) is not always a positive combination of Q-functions. For
instance, with A = (5,4,3), B = (6,2,1) and A#B = (5,6,4,2,3,1), the decompo-
sition of 237](85553111) is equal to

Q564231 + @5 - Qea2311+Q4 - Q56231 + Q3+ 56421
+ Q54 - Qs231 + Q53 - Qpa21 + Qa3 - Q621 + Q543 - Q621



= Q654321 — @5 - Q4321+ Q4 - Qo5321 — Q3 - Q65421
— Q54 - Qo321 + @53 - Qeaz1 — Qa3 - Qo521 + U543 - Q21

and its decomposition into ()-functions contains the following negative combination
of Q-functions:

_8Q9543 - 106\295421 - 1086285431 - 60@75432-

To show Theorem 1, we prove the following more general result. Let us fix
a commutative ring with unity. Suppose that for every sequence (ai,...,a,,) €
(N")™, where m € N, there is an associated element [a; ... a,;,] = [(a1,... ,an)] of
the ring. The empty bracket [ | is the unity of the ring. Moreover, assume that the
family {[a1...am]} satisfies the following three conditions:

For a permutation o € 5, ,

(6) [a5(1) - - - o(my] = sgn(o)[ar...am].

If m is odd, then

() [a1...am] = [ai][as...an] — [a2][aras .. .am] + ...+ [an][a1 - - Gm_1] -

If m is even, then

(8) [a1...an] = |araz][as...an] — [a1as][azas ... aw] + ... + [a101][a2 . . . ap—1].

For instance, [a;1...am] = Qa,. a4, satisfy (6)—(8) in the ring I' of Schur Q-
functions.

Theorem 4. For A= (ay,...,a,), B = (by,...,by) € (N)" one has

Det([aibj] + [a;] [bj])lgi,jgn = Z[ail g, ] [A#B N (G- ,aik)] ,

where the sum is over all sequences 1 <11 <...<ix <nandk=0,1,...,n.

In the proof of the theorem, we will need some additional notation. Given a
subset C' of the set of the elements of a certain fixed sequence, we denote by (C')
the subsequence of this sequence formed by the elements of C'.

Moreover, in the proof of the theorem we will use the following



Lemma 5. For any pair of different numbers ¢,7 = 1,...,n and a sequence
1 <4y <...<ig <n where all i, are different from j, the element

(=D [(AN aj)#(B N b))~ (aiy,- - ai,)]
15 equal to
(—1)°[A#B ~ ({aj,bi,ai,, .. ,a:,})],
where c=14+card{ p : i<i,<j} fori<jandc=card{p : j<i, <i} for
P> 7.
Proof. Assume first k = 0.
If i < j, we pass from A#B \ (b;, a;), i.e.

(CLl, bl, coe s gy Qg1 bi+1, Ai+4+2, bi+2, S ,aj_l, bj—17 bj, CLj+1, bj+1, ey Ay, bn)
to

(al, bl, BN 738 bi+1, Ai+41, bi+2, S ,aj_z, bj—17 aj_l, bj, aj+1, bj+1, e 5 Ay, bn)
i.e. (A~ a;)#(B N b;) by transposing a;41 and b;11, a;42 and biyo, ... , aj_; and

bj_1. The number of these transpositions is j —4 — 1, and thus ¢ = 1 in this case.

If i > j, we pass from A#DB \ (a;,b;), i.e.

(al, bl, e 7bj—17 bj, CLj+1, bj+1, CLj+2, e ,bi_g, Ai_1, bi—l; ag, ai+17 e 5 Ay, bn)
to

(al, bl, . ,bj_l, aj41, bj, aj42, bj+17 cee i1, b,’_g, a;, b,’_l, Ajq1y--- 50, bn)
i.e. (AN aj)#(B \b;) by transposing b; and a1, bj+1 and aj42, ... , bi—1 and a;.

The number of these transpositions is ¢ — 7 and thus ¢ = 0 in this case.

If k > 0, we do not perform the transpositions involving a;, (i <1, < j)ifi <7,
and a;, (j <ip <1)if4> j, and the assertion follows. [

Proof of Theorem 4. Define two n X n matrices

X = ([“ibﬂ'])lgi,jgn and Y = ([a;] [bj])lgi,jgn’
so that we want to compute Det(X +Y). We claim that
(9) Det(X +Y) = Det(X) + Tr(A""1(X)-Y).

Indeed, this follows from a familiar identity

AM(X+Y)= Zn: Tr (A" (X)) - AY(Y))



Y
(see, e.g., [J-P]) by observing that the rank of Y is equal to 1.

We now claim that
(10) Det(X) = [ai, .- a5, |[A#B N (aiy, - .- ,a3,)]

where the sum is over all sequences 1 < i; < ... < i, < n with k even (k = 0
is included). To prove this, we use induction on n. For n = 1 the assertion is
obviously true. Using the Laplace expansion along the first row of X and the
induction assumption, Det(X) is equal to

n

) S (1) by (Z[% ai ) [(A N a)#(B ~ b))~ (as,,- .. ,a,»,c)]) :

i=1
where the latter sum is over all sequences 2 <7 < ... <4 <nand k =0,2,4,....

Let us fix an arbitrary even k£ = 0,2,.... By Lemma 5 the element
(1) (AN a)# (BN b)) ~ (ai,,...,a;)]

is equal to
(—1)cardtrin <AL B\ ({a1,ai,, - . - L @i, bi bl

Therefore, using (8), the contribution in (11) of the summands corresponding to k
is equal to
(12)

> ai - -ai, J[A#B N (aiy, . ai,)]

2§1:1<...<’L'k Sn

+ Y Yo tmagllas, .0, )[A#B N ({an, s, ai,,a5})]

2<1 <. <1, <n p#ELlyiy,... ik

where the sign “£” equals “+” (resp. “—") if a;, occupies an odd (resp. even) place
in the sequence A#B \ (ai,,...,a;, ). For example, such a contribution for k =0
equals

[A#B] + ) [a1a;][A#B (a1, ;)]

J22

Let us now fix a positive even k together with a sequence of integers 2 < j; < ... <
Jrk+1 < n, and look at all the summands appearing in the second line of (12), for
which

{j17 s 7jk+1} = {pvilw .. 77'k}

Observe that the summand

:t[alajq][ajl .. .ajqilajﬁl . ajk+1]

appears with sign “+” iff ¢ is odd. Hence using (8):



[alajl .. .ajk+1] =
[alaﬁ][ajz s ajk+1] - [alajz][ajl Ajg - - 'ajk+1] +...t [alajk+1”aj1 s ajk]’

the expression (12) is rewritten in the form

S lag - a J[A#B N (a4, -y aq,)]

+ > laraj, .. .aj,  J[A#B N (a1, a4, ... yaj,.,)].

2<n1 <. <Jjk+1<n

Summing all these contributions for & = 0,2,4,... , Equation (10) follows. See
also Example 6.

Next, we claim that
(13) Tr(/\”_l(X) YY) = Z[ail @i J[A#EB N (aqy, - -5 aq,)],

where the sum is over all sequences 1 < i; < ... < i, < n with k odd. The (4, 7)-th
entry of A"71(X) computed with the help of (10) is

(14) "“Za“ i [(AN aj)#(B N b) ~ (aiy,- .-, ai,)],
where the sum is over all sequences 1 < 7; < ... < 4 < n such that each 7, is
different from 7, and £ = 0,2,4,... is even. Then
(15)

Tr(A"H(X) - Y)

= Z (—1)"+7 [a;][b;] <Z[ai1 i [(AN aj)#(B N bi) N (aiy, . .. ,aik)]> ,

7,7=1

where the latter sum is as in (14). Now let us fix j = 1,... ,n and then also fix an
arbitrary even k together with a sequence 1 < ¢; < ... < i < n such that each

ip is different from j. Consider only the summands corresponding to these fixed j
and (iq,...,0):

(16) lajlai, ... ai,] Z 1) (0] [(A N aj)#(B N bi) N (@i, - - - ,aq,)].

Using Lemma 5 and (7), the expression (16) is rewritten as
(17)
(—1)cardthin<i g, )a;, ... a; | [A#B ~ ({aj, aiys - a0, })]

+ 3 Elaylaslai, - - ai, ] [A#B N ({ap, a5, a4, .- yai, })]

where the last sum is over a, € A \ {aj,ai,,...,a;, }. Here, the sign “+” is
(—1)card{hiin<i} (resp, —(—1)cardhiin<i}) if g, occupies an even (resp. odd) place
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in the sequence A# B~ ({aj,ai,,... ,a;, }). Suppose that a; (resp. ap) occupies the
s-th (resp. ¢-th) place in the sequence A#B ~\ ({ap,ai,,...,a;,}) (resp. A#B ~
({aj,ai,,...,ai,})). Then s and t are of different parity if the cardinality of the
tr’s between p and j is even, and s and t are of the same parity if this cardinality
is odd. This altogether implies that the sign “+” in the expressions (17) with fixed
(¢1,...,1), is an antisymmetric function of the pair (a,,a;).

Consequently, for fixed (é1,... i), the sum over j (different from each i,) of
the expressions (17) becomes:

(18) Z(—l)ca‘rd{h:i"Q}[aj][ail Q] [A#B ~ ({aj, a4y, ... ,aik})},
the sum over j different from each i,,.

Now, keeping k fixed, let us make additionally (i1,... %) vary. Fix a sequence
1 <1 <...<Jgy1 £ n, and look at the summands appearing in the expressions
(18), for which

Uit ik} = {J1, -+ et}
Observe that the summand
:l:[ajq][ajl SIS PN S PR 'ajk+1]
appears with sign “+” iff ¢ is odd. Hence, using (7):
[ajl e 'ajk+1] =
[a'jl][ajz .- 'ajk+1] - [a'j2][aj1 Ajg - - - ajk+1] +...t [a'jk+1][aj1 s ajk]7
the sum of expressions (18) with & fixed, is equal to

Z aj, ...aj, J[A#B N (aj,, ... ,aj,,,)]

1< <o <jr41<n

This is the contribution to Tr(A"7*(X)-Y) of the summands in (15), associated
with k.

Summing all these contributions for £k = 0,2,4,... , we get
Z [ail...ail][A#B\(ail,... 7(11',)],

the sum over all sequences 1 <4y < ... <14 <n wherel =1,3,... runs over odd
positive integers, and Equation (13) follows. See also Example 7.

Equations (9), (10) and (13) imply the assertion of Theorem 4. O

Of course, Theorem 4 implies Theorem 1 if 3, # 0. It implies Theorem 1 also
if 4, = 0 because Equations (7) and (8) with [a; ...am]| = Qa,. 4, (i.e. Equations
(3) and (4)) hold true if we formally put a,, = 0. Notice that we only use Equations
(3) and (4) and we do not need Equation (2).

For the reader’s convenience we provide the following two examples.
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Example 6. We illustrate the proof of (10) by the example of n = 4. Using the
Laplace expansion along the first row and the case n = 3, we have

[a1b1] [a1b2] [a1b3] [a1b4]
lazb ] [azbs] [azbs] [agba]
lasb ] [asbs] lasbs] lasba]
[a4by] [a4b2] [a4b3] [a4ba]

a/lbl] lagbaasbszasba] + [azas][babsasbs] + [aza4)[b2a3bsba] + [a3a4][a2b203b4]

( a2b1a3b3a4b4] + [azag][b1b3a4b4] a2a4] b1a3b3b4] + [a3a4] azb b3b4
( az2brasbaasbs] + [azas][bi1baasby]

+
+
+

] ([azbirasboasbs] + [azas][bibaasbs] +

)
| 1)
[a2a4] [b1a3b2b4] + [CL36L4] agb b2b4 )
| 1)

(12(14] b1a3b2b3] + [(13(14] agb b2b3

The contribution coming from the first column in the brackets, using (8), is

[Glblazbzasbsa4b4] + [alaz][blbzasb3a4b4]+

+ [alas][blazbzb3a4b4] + [a1a4][b1a2b2a3b3b4] .

(This corresponds to the case k = 0 in the proof of (10).) The contribution coming
from the second column in the brackets, using (8), is

(19) lasas] ([a1b1b2b3a4b4] + [a1a4][b1b2b3b4]) .

The contribution coming from the third column in the brackets, using (8), is
(20) lagay] ([a1b1b2a3b3b4] — [alag][b1b2b3b4]) )

The contribution coming from the fourth column in the brackets, using (8), is

(21) [CL3(14] ([a1b2a2b2b3b4] + [alaz][b1b2b3b4]) .

We use (8) once again to present the sum of the second summands in (19), (20)
and (21) as

(22) [a1a2a3a4][b1b2b3b4] .

(The contributions (19), (20), (21) and (22) correspond to the case k = 2 in the
proof of (10).)

This ends the example.



Example 7. We illustrate the proof of (13) by the example of n = 3. Then A?(X)
is the matrix

[ [02520353] —[albza3bs] [01520253] 1
+[azas3][b2bs] —laya3][babs] +[a1as][b2bs]
—[agblagbg] [alblagbg] —[alblazbg]
—[agag][blbg] +[ala3][b1b3] —[alag][blbg]
[(12[)1(13[)2] —[alblagbg] [(11[)1(12[)2]
‘I‘[@Q@g][blbg] —[alag][blbz] +[0/10,2][b1b2]

by (10). Therefore Tr(A?(X)-Y), in this case, is equal to

([azbzasbs] + [azas][bzbs]) [a1][b1]
— ([a2b1a3b3] + [0/203] [blbg]) [0,1] [bz]
([azblagbz] + [0/203] [blbz]) [al][bg]

—([albgagb,?,] + [alag][bgbg]) [ag][bl]
([alblagb,?,] + [alag][blbg]) [ag][bz]
—([a1b1azbs] + [a1as][b1bs]) [az][bs]

([albzazbs] + [alaz][bzbs]) las][b1]
—([alblazbs] + [alaz][blbs]) las][b2]
([alblagbg] -+ [alag][blbg]) [ag][bg] .

Using (7), the contribution of the first column in the three displayed blocks is
[a1][b1azb2a3bs] + [az][a1bibaasbs] + [as][a1biazbabs]

(after the cancellation of three pairs of pairwise opposite elements:
from the first block: [al](—[az])[blbzagbg] , la1] (—[ag]) [bragbabs] ;
from the second block:  [a][a1][bibaasbs], [as](—[as])[a1b1b2bs];
from the third block:  [ag][a1][b1asbabs], [as][az][a1b1b2bs]).
(This corresponds to the case k = 0 in the proof of (13).)

The contribution of the latter column in the first block is

(23) [al][azag][blbgbg] .
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The contribution of the latter column in the second block is

(24) —|az][a1a3][b1babs] .

The contribution of the latter column in the third block is

(25) las][a1asz][b1b2b3] .

Thus, using (7), the latter columns in the blocks contribute in sum to
(26) [aiasag)[b1babs] .

(The contributions (23),(24),(25) and (26) correspond to the case k = 2 in the proof
of (13). Here we have no further cancellations because of the absence of the a’s in
the latter brackets).

This ends the example.

We can restate Corollary 2 in geometric terms. Let V be a complex vector
space of dimension 2n endowed with a nondegenerate symplectic form. Denote by
G the Grassmannian of n-dimensional subspaces in V' and by G’ the Lagrangian
Grassmannian of n-dimensional subspaces in V', which are isotropic w.r.t. the
symplectic form.

Given a partition A C (n™), we define the Schubert class o) to be the Poincaré
dual to the fundamental class of the cycle on G defined by

{LeG :dim(LNVpti_y,) >4, i=1,...,n},

where 0 = Vo CV; C Vo C ... C Vauq C Vo, =V is a flag with dim(V;) = 4.

Similarly, given a strict partition p C (n,n—1,...,1), we define the Schubert
class o, to be the Poincaré dual to the fundamental class of the cycle on G’ defined
by

{LeG : dim(LNWyy1-p) >, i=1,...,1(n)},

where 0 = Wy C Wy C Wo C ... C W, C V is an isotropic flag with dim(W;) =i.
To state the next proposition, we need the following notation. Given a sequence

of different positive integers C' = (c1, ..., ¢), there is a permutation uc € S; such
that ¢,y > ... > ¢,y > 0. Denote this last-mentioned strict partition by < C' >.

Proposition 8. Leti: G' — G be the inclusion and i* : H*(G,Q) — H*(G',Q)
be the induced homomorphism of the cohomology rings. Then, for any partition X,
using the notation of Theorem 1, one has the equality

. 1
t (O'/\) = 2_n Zazailv"'7aik) ) Sgn(NC(il,...,ik)) ) O./<C(i1,~~~;ik)> ’



where the sum is over all sequences 1 < iy < ... < i <n for which C(iy,... i) :=
A#B ~ (aiy, ... a4, ) is a sequence of different integers.

The assertion of the proposition is a restatement of the formula for n(sy) in
Corollary 2. We invoke that H*(G) is a quotient of A and oy is the image of sy
(by the Giambelli formula of the Schubert Calculus). On the other hand, H*(G")
is a quotient of I and o7, is the image of @, (by a result from [P2, Sect.6]). Using
these identifications ¢* is induced by 7. This follows, e.g., by remarking that o; =
¢;i(SY) and o] = ¢;(i*SV), where S is the tautological vector bundle on G. Hence
i*(0;) = o) and this equality corresponds to the algebraic equality 7(e;) = Q;
defining n : A — T".

Notice (see Example 3) that i*(oy) is not, in general, a positive combination of

the UL’S.

By exchanging a; for b; and vice versa in Theorem 4, we get the following identity.

Corollary 9. In the situation of Theorem 4, one also has:

Det (laibj] + [ail b)), <; s = D Wi+ b JIAFB N (bis - 03],

where the sum is over sequences 1 <11 < ... <tx <nandk=0,1,...,n

Observe that under this exchange, the LHS of (10) goes to (—1)™ Det(X) whereas
its RHS goes to

Z[bil...bi [[B#AN (bi,, ... b))
= (=)™ [y, b J[A#EB N (b, - - 03],

where the sum is over all sequences 1 <1, < --- < i < n with k even.

Under the same exchange, the LHS of (13) goes to (—1)"(»~1) Tr(A""1(X) - Y)
whereas its RHS goes to

D™= oy, b JIA#B N (b, b)),

where the sum is over all sequences 1 <11 < ... < 1 <n with k£ odd.
Since n = n(n — k) (mod?2) for k even, and n(n — 1) = n(n — k) (mod?2) for k
odd, the assertion of the corollary follows.
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Note. 1. This paper is a revised version of Preprint 573 (April 1997) of Institute
of Mathematics of Polish Academy of Sciences.

2. B. Leclerc has informed me recently that he and S. Leidwanger have inde-
pendently obtained a formula essentially equivalent to our Theorem 1 using the
representation theory of affine Lie algebras — see their recent preprint [L-L2].
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