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Thom Polynomials and Schur Functions:
The Singularities A3(−)

To the memory of Stanisław Balcerzyk

by

Alain Lascoux and Piotr Pragacz

Abstract

Combining the “method of restriction equations” of Rimányi et al. with the techniques of
symmetric functions, we establish the Schur function expansions of the Thom polynomials
for the Morin singularities A3 : (C•, 0)→ (C•+k, 0) for any nonnegative integer k.
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§1. Introduction

The global behavior of singularities of maps is governed by their Thom polynomials
(see [31], [13], [1], [11], [12], [28]). Knowing the Thom polynomial of a singularity η,
denoted T η, one can compute the cohomology class represented by the η-points of a
map. In particular, if f : X → Y is a general map of complex analytic manifolds,
where X is compact and dim(X) equals the codimension of the singularity η,
then the degree

∫
X
T η evaluates the number of points of X at which f has the

singularity η.
Recalling that it was Thom [31] who computed the Thom polynomial of the

singularity A1(−), we refer to [24] and the references therein for the history of
computations of the Thom polynomials of the Morin singularities Ai(−).

In the present paper, following the “method of restriction equations” from a
series of papers by Rimányi et al. [29], [28], [7], [2], we study the Thom polynomials
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for the singularities A3 associated with maps (C•, 0)→ (C•+k, 0) with parameter
k ≥ 0. We give the Schur function expansions of these Thom polynomials. This
is the content of our main Theorem 2 and its proof in Section 4.

The way of obtaining the Thom polynomial of a singularity is through the
solution of a system of linear equations (see Theorem 1). This is fine when we
want to find one concrete Thom polynomial, say, for a fixed k. However, if we
want to find the Thom polynomials for a series of singularities, associated with
maps (C•, 0)→ (C•+k, 0) with k as a parameter, we have to solve simultaneously a
countable family of systems of linear equations. This cannot be done by computer,
and must be done conceptually.

Thom polynomials are symmetric functions in the universal Chern roots. In-
stead of giving their expressions in terms of these variables, we use Schur function
expansions.

In fact, the present paper is part of a larger project of expressing the Thom
polynomials in the framework of Schubert Calculus, in terms of Schur polynomials.
The following papers contribute to realization of this program: [22], [23], [24], [26],
[27], [17], [18]. Recall that Schur polynomials provide a natural algebro-geometric
basis for cohomology classes of degeneracy loci and Schubert varieties (see [10]).
This program also deals with Thom polynomials of other types. In particular,
for expressions of the Lagrangian Thom polynomials using Lagrangian Schubert
Calculus, see [16].

Using Schur functions puts a more transparent structure on computations of
Thom polynomials (see [22], and also [6] for some second order Thom–Boardman
singularities). In particular, in the Schur basis one can notice some recurrences
for Thom polynomials.

Another feature of using the Schur function expansions for Thom polynomials
(of arbitrary singularity classes) is that all the coefficients are nonnegative. This
has recently been proved by A. Weber and the second author in [26].

To be more precise, we use here (the specializations of) supersymmetric Schur
functions, also called “Schur functions in the difference of alphabets”, together with
their three basic properties: vanishing, cancellation and factorization (see [30], [4],
[21], [25], [15], and [14]). The resultants of alphabets are special cases of these
functions. In [20], the functions played a fundamental role in the study of P-ideals
of singularity classes Σi.1 Properties of these ideals imply that the partitions
in the Schur function expansion of the Thom polynomial for a singularity with
Thom–Boardman type Σi contain the rectangle ((k + i)i) (see [23, Theorem 11]).

1We remark that in [23, Sect. 2] the P-ideal was associated with an arbitrary singularity class
(abbreviated there to “singularity”).
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In particular, all partitions in the Schur function expansion of T A3 (for any k)
contain the single row partition (k + 1).

In [24], the decomposition of the Thom polynomial of the singularity Ai into
h-parts was defined (see also the end of Section 3). In particular, the 1-part of the
Thom polynomial of the Morin singularity Ai (for any i, k) was computed. In the
present paper, we work out the case of the singularities A3 (for any k), and we
find the 2-part of this Thom polynomial (the h-parts, where h ≥ 3, are equal to
zero for these singularities).

In our calculations, we extensively use the functorial λ-ring approach to sym-
metric functions from [14] (e.g. we shall need to handle symmetric functions in
2x1, 2x2, x1 + x2

2 together with symmetric functions in x1, x2).
We finish the Introduction with some comments on computations of the Thom

polynomials for the singularities A3.
Bérczi, Fehér and Rimányi [2] gave without proof an expression for these

Thom polynomials, but in terms of the monomial basis in Chern classes.
The main results of the present paper were announced in [22], where the

consecutive steps of our computations were also sketched.
Since then, the preprints of Bérczi and Szenes [3] and of Fehér and Rimányi

[7] have appeared. It does not seem easy, however, to relate the formulas that we
give with the residue formulas in [3].

§2. Reminder on Thom polynomials

Our main reference for this section is [28]. We start by recalling what we shall mean
by a “singularity”. Let k ≥ 0 be a fixed integer. By a singularity we shall mean
an equivalence class of stable germs (C•, 0)→ (C•+k, 0), where • ∈ N, under the
equivalence generated by right-left equivalence (i.e. analytic reparametrizations of
the source and target) and suspension.

We recall3 that the Thom polynomial T η of a singularity η is a polynomial in
the formal variables c1, c2, . . . which after the substitution of ci to

(1) ci(f∗TY − TX) = [c(f∗TY )/c(TX)]i,

for a general map f : X → Y between complex analytic manifolds, is equal to the
Poincaré dual of [V η(f)], where V η(f) is the cycle carried by the closure of the

2Strictly speaking: symmetric functions in 2x1 , 2x2 , x1 + x2 after simplification, see
Section 3.

3This statement is usually called the Thom–Damon theorem [31], [5].
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set

(2) {x ∈ X : the singularity of f at x is η}.

By the codimension of the singularity η, codim(η), we shall mean codim(V η(f), X)
for such an f . The concept of the polynomial T η comes from Thom’s fundamen-
tal paper [31]. For a detailed discussion of the existence of Thom polynomials,
see, e.g., [1]. Thom polynomials associated with group actions were studied by
Kazarian in [11] and [12].

According to Mather’s classification, singularities are in one-to-one correspon-
dence with finite-dimensional C-algebras. We shall use the following notation:

• Ai (of Thom–Boardman type Σ1i) for stable germs with local algebra
C[[x]]/(xi+1), i ≥ 0;
• III 2,2 (of Thom–Boardman type Σ2,0) for stable germs with local algebra

C[[x, y]]/(xy, x2, y2) (here k ≥ 1).

In the present article, the computations of Thom polynomials use the method
which stems from a sequence of papers by Rimányi et al. [29], [28], [7], [2]. We
briefly sketch this approach, referring the interested reader to those papers for
more details.

Let k ≥ 0 be a fixed integer, and let η : (C•, 0) → (C•+k, 0) be a stable
singularity with a prototype κ : (Cn, 0) → (Cn+k, 0). The maximal compact
subgroup of the right-left symmetry group

(3) Autκ = {(ϕ,ψ) ∈ Diff(Cn, 0)×Diff(Cn+k, 0) : ψ ◦ κ ◦ ϕ−1 = κ}

of κ will be denoted by Gη. Even if Autκ is much too large to be a finite-
dimensional Lie group, the concept of its maximal compact subgroup (up to con-
jugacy) can be defined in a sensible way (see [32]). In fact, Gη can be chosen so
that the images of its projections to the factors Diff(Cn, 0) and Diff(Cn+k, 0) are
linear. Its representations via the projections on the source Cn and the target
Cn+k will be denoted by λ1(η) and λ2(η). The vector bundles associated with
the universal principal Gη-bundle EGη → BGη using the representations λ1(η)
and λ2(η) will be called E′η and Eη. The total Chern class of the singularity η is
defined in H∗(BGη,Z) by

(4) c(η) :=
c(Eη)
c(E′η)

.

The Euler class of η is defined in H2 codim(η)(BGη,Z) by

(5) e(η) := e(E′η).
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In the following theorem, we collect information from [28, Theorem 2.4] and
[7, Theorem 3.5], needed for the calculations in the present paper.

Theorem 1. Let η be a singularity. Suppose that the number of singularities of
codimension less than or equal to codim(η) is finite. Moreover, assume that the
Euler classes of all singularities of codimension smaller than codim(η) are not
zero-divisors.4 Then we have:

1. if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;
2. T η(c(η)) = e(η).

This system of equations (taken for all such ξ’s) determines the Thom polynomial
T η in a unique way.

To use this method of determining the Thom polynomials for singularities,
one needs their classification (see, e.g., [19]).

We record the following lemma (see [28] and [2]).

Lemma 1. (i) For the singularity of type Ai: (C•, 0) → (C•+k, 0), we have
GAi

= U(1) × U(k). Moreover, denoting by x and y1, . . . , yk the Chern roots
of the tautological vector bundles on BU(1) and BU(k), we have

(6) c(Ai) =
1 + (i+ 1)x

1 + x

k∏
j=1

(1 + yj)

and

(7) e(A3) = 6x3
k∏
j=1

(yj − 3x)(yj − 2x)(yj − x).

(ii) For the singularity III 2,2 : (C•, 0) → (C•+k, 0), where k > 0, we have Gη =
U(2)×U(k− 1). Moreover, denoting by x1, x2 (resp. y1, . . . , yk−1) the Chern
roots of the tautological vector bundle on BU(2) (resp. BU(k − 1)), we have

(8) c(III 2,2) =
(1 + 2x1)(1 + 2x2)(1 + x1 + x2)

(1 + x1)(1 + x2)

k−1∏
j=1

(1 + yj).

§3. Reminder on Schur functions

In this section, we collect needed notions related to symmetric functions. We adopt
a functorial λ-ring point of view of [14].

4This is the so-called “Euler condition” ([7]). It holds for A3.
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For m ∈ N, by an alphabet A of cardinality m we shall mean a finite set of
indeterminates A = {a1, . . . , am}.

We shall often identify the alphabet A = {a1, . . . , am} with the sum a1 +
· · ·+ am.

Definition 1. Given two alphabets A, B, the complete functions Si(A − B) are
defined by the generating series (with z an extra variable):

(9)
∑

Si(A− B)zi :=
∏
b∈B

(1− bz)/
∏
a∈A

(1− az).

Definition 2. Given a partition I = (0 ≤ i1 ≤ i2 ≤ · · · ≤ is) ∈ Ns, and alphabets
A and B, the Schur function SI(A− B) is

(10) SI(A− B) := |Sip+p−q(A− B)|1≤p,q≤s.

These functions are often called supersymmetric Schur functions or Schur
functions in the difference of alphabets. Their properties were studied e.g. in [4],
[21], [25], [15], and [14].

We have the following cancellation property : for alphabets A,B,C,

(11) SI((A + C)− (B + C)) = SI(A− B).

We shall use the simplified notation i1 · · · ih or i1, . . . , ih for a partition
(i1, . . . , ih) (the latter one if ih ≥ 10). We identify partitions with their Young
diagrams, as is customary.

We record the following property (loc. cit.):

(12) SI(A− B) = (−1)|I|SJ(B− A) = SJ(B∗ − A∗),

where J is the conjugate partition of I (i.e. the consecutive rows of the diagram
of J are the transposed columns of the diagram of I), and A∗ denotes the alphabet
{−a1,−a2, . . . }.

In the present paper, by a symmetric function we shall mean a Z-linear com-
bination of the operators SI .

Instead of introducing, in the argument of a symmetric function, formal vari-
ables which will be specialized, we write r for a variable which will be specialized
to r (r can be 2x1, x1 + x2, . . . ). For example,

S2(x1 +x2) = x2
1 +x1x2 +x2

2 but S2( x1 + x2 ) = (x1 +x2)2 = x2
1 +2x1x2 +x2

2.

Definition 3. Given two alphabets A,B, we set

(13) R(A,B) :=
∏

a∈A, b∈B
(a− b),

the resultant of A,B.
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For example, we have the following identity:

(14) −6x3
k∏
j=1

(3x− yj)(2x− yj)(x− yj) = R(x+ 2x + 3x ,Y + 4x ),

where Y = {y1, . . . , yk}.
We record the following factorization property ([14, Proposition 1.4.3]). Sup-

pose that the cardinality of B is n. Then for partitions I = (i1, . . . , im) and
J = (j1, . . . , js), we have

(15) S(j1,...,js,i1+n,...,im+n)(A− B) = SI(A)R(A,B)SJ(−B).

In the present paper, it will be more handy to use, instead of k, the shifted
parameter

(16) r := k + 1.

Sometimes, we shall write η(r) for the singularity η : (C•, 0) → (C•+r−1, 0), and
denote the Thom polynomial of η(r) by T ηr —to emphasize the dependence of both
items on r.

Let f : X → Y be a map of complex analytic manifolds, where dim(X) = m

and dim(Y ) = n. Given a partition I, we define

SI(T ∗X − f∗(T ∗Y ))

to be the effect of the following specialization of SI(A − B): the indeterminates
of A are set equal to the Chern roots of T ∗X, and the indeterminates of B to the
Chern roots of f∗(T ∗Y ).

Similarly to [22], [23], and [24], we shall write the Poincaré dual of [V η(f)],
for a singularity η and a general map f : X → Y , in the form∑

I

αISI(T ∗X − f∗(T ∗Y ))

with integer coefficients αI . Accordingly, we shall write

(17) T η =
∑
I

αISI ,

where SI is identified with SI(A− B) for the universal Chern roots A and B.
Note that in this notation, the Thom polynomial of the singularity A1(r) for

r ≥ 1 is T A1
r = Sr. Another example is the Thom polynomial of A2(1). In [28], it

is written as c21 + c2, whereas in the present notation it is S11 + 2S2.
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Recall (from [24]) that the h-part of T Ai
r is the sum of all Schur functions

appearing nontrivially in T Ai
r (multiplied by their coefficients) such that the cor-

responding partitions satisfy the following condition: I contains the rectangle par-
tition ((r+h−1)h), but it does not contain the larger Young diagram ((r+h)h+1).
The polynomial T Ai

r is a sum of its h-parts, h = 1, 2, . . . .
In one instance (the proof of Proposition 2), we shall also use multi-Schur

functions. For their definition and properties, we refer the reader to [14].

§4. Main result and its proof

Since the singularities 6= A3 whose codimension is ≤ codim(A3) are: A0, A1, A2

and, for r ≥ 2, III 2,2 (see [19]), Theorem 1 yields the following equations (in T ),
characterizing the Thom polynomial T A3

r (see also [2, Sect. 4]):

T (−Br−1) = T (x− Br−1 − 2x ) = T (x− Br−1 − 3x ) = 0,(18)

T (x− Br−1 − 4x ) = R(x+ 2x + 3x ,Br−1 + 4x ),(19)

T (x1 + x2 − D− Br−2) = 0.(20)

Here,

D = 2x1 + 2x2 + x1 + x2 .

We assume that x, x1, x2 and b1, . . . , br are variables; we set Bi := {b1, . . . , bi}.
Note that these variables, in the following, will be specialized to the Chern roots
of the cotangent bundles.

By [24], we know that T A3
r must contain (as its 1-part) the following combi-

nation of Schur functions, denoted by F (3)
r in [24]:

(21) Fr :=
∑

j1≤j2≤r

Sj1,j2( 2 + 3 )Sr−j2,r−j1,r+j1+j2 .

By [24, Corollary 11], equations (18) and (19) are satisfied by the function Fr.
For r = 1, this means that

(22) F1 = S111 + 5S12 + 6S3

is the Thom polynomial for A3(1).
However, for r ≥ 2, Fr does not satisfy the last vanishing, imposed by III 2,2.

In the following we shall modify Fr in order to obtain the Thom polynomial for A3.
In fact, our goal is to give an expression for the Thom polynomial for A3 (for any r)
as a Z-linear combination of Schur functions. For r = 2, the Thom polynomial is
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(23) S222 + 5S123 + 6S114 + 19S24 + 30S15 + 36S6 + 5S33,

and it differs from its 1-part F2 by 5S33 which is the “correction” 2-part in this
case (see [24]).

Define integers ei,j for i ≥ 2 and j ≥ 0 in the following way. First, e20, e30,
e40, . . . are the coefficients 5, 24, 89, . . . in the Taylor expansion of

5− 6z
(1− z)(1− 2z)(1− 3z)

= 5 + 24z+89z2 + 300z3 + 965z4 + 3024z5 + 9329z6 + · · · .

Moreover, we set e2,j = e3,j = 0 for j ≥ 1, e4,j = e5,j = 0 for j ≥ 2, e6,j = e7,j = 0
for j ≥ 3 etc. To define the remaining ei,j ’s, we use the recursive formula

(24) ei+1,j = ei,j−1 + ei,j .

We obtain the following matrix [ei,j ]i≥2,j≥0:

e2,0 0 0 0 0 . . .

e3,0 0 0 0 0 . . .

e4,0 e4,1 0 0 0 . . .

e5,0 e5,1 0 0 0 . . .

e6,0 e6,1 e6,2 0 0 . . .

e7,0 e7,1 e7,2 0 0 . . .

e8,0 e8,1 e8,2 e8,3 0 . . .
...

...
...

...
...

=

5 0 0 0 0 . . .

24 0 0 0 0 . . .

89 24 0 0 0 . . .

300 113 0 0 0 . . .

965 413 113 0 0 . . .

3024 1378 526 0 0 . . .

9329 4402 1904 526 0 . . .
...

...
...

...
...

Remark. Note that arguing as in the proof of Proposition 19 in [23], we get the
following closed formula for ei,j : for i ≥ 2 and j ≥ 0,

ei,j =
1

2j+1

[
(3i+1 − 32(j+1))− (2i+j+2 − 23(j+1))

−
j∑
s=1

2s(32(j−s+1) − 23(j−s+1))
((

i− 2j − 2s+ 1
s

)
−
(

2s− 2
s

))]
.

For example, we have

ei,2 =
1
23

[
(3i+1 − 36)− (2i+4 − 29)− 2(34 − 26)(i− 5)− 22

((
i− 3

2

)
− 1
)]
.
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Consider the following matrix whose elements are two-row partitions (the
symbol “∅" denotes the empty partition):

33 ∅ ∅ ∅ ∅ . . .

45 ∅ ∅ ∅ ∅ . . .

57 66 ∅ ∅ ∅ . . .

69 78 ∅ ∅ ∅ . . .

7, 11 8, 10 99 ∅ ∅ . . .

8, 13 9, 12 10, 11 ∅ ∅ . . .

9, 15 10, 14 11, 13 12, 12 ∅ . . .
...

...
...

...
...

We use for this matrix the same “matrix coordinates” as for the previous one.
Denote by I(i, j) the partition in the (i, j)th entry. So, e.g., I(i, 0) = (i+ 1, 2i−1)
for i ≥ 2.

For r ≥ 2, we set

(25) Hr :=
∑
j≥0

er,jSI(r,j).

Denote by Φ the linear endomorphism of the free Z-module spanned by the
Schur functions indexed by partitions of length ≤ 3 that sends a Schur function
Si1,i2,i3 to Si1+1,i2+1,i3+1. We define

(26) Hr := Hr + Φ(Hr−1),

or equivalently, by iteration

(27) Hr = Hr + Φ(Hr−1) + Φ2(Hr−2) + · · ·+ Φr−2(H2).

Alternatively, we have

(28) Hr =
r−2∑
i=0

∑
{j≥0: i+2j≤r−2}

er−i,jSi,r+j+1,2r−i−j−1.

We now state the main result of this paper (here H1 = 0).

Theorem 2. For r ≥ 1, the Thom polynomial of A3(r) is equal to Fr +Hr.

In other words, the function Hr is the 2-part of T A3
r , and its h-parts are zero

for h ≥ 3.

Example 1. We have the following values of H2, H3 = Φ(H2) + H3, . . . , H7 =
Φ(H6) +H7:
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H2 = 5S33,

H3 = 5S144 + 24S45,

H4 = 5S255 + 24S156 + 24S66 + 89S57,

H5 = 5S366 + 24S267 + 24S177 + 89S168 + 113S78 + 300S69,

H6 = 5S477 + 24S378 + 24S288 + 89S279 + 113S189 + 300S1,7,10 + 113S99

+ 413S8,10 + 965S7,11,

H7 = 5S588 + 24S489 + 24S399 + 89S3,8,10 + 113S2,9,10 + 300S2,8,11 + 113S1,10,10

+ 413S1,9,11 + 965S1,8,12 + 526S10,11 + 1378S9,12 + 3024S8,13.

In the proof of the theorem, we shall need several properties of the functions
Hr and Fr.

The next result says that the addition of Hr to Fr is “irrelevant” for what
concerns the conditions (18) and (19) imposed by the singularities Ai, i = 0, 1, 2, 3.

Lemma 2. The function Hr satisfies (18) and the equation

(29) Hr(x− Br−1 − 4x ) = 0.

Proof. According to (15), each Schur function of index (i1, i2, i3) with i2, i3 ≥
r + 1 vanishes when evaluated at x − Br−1 − y, y any indeterminate. Therefore
Hr satisfies the required nullities, which correspond to taking y = 0, x, 2x , 3x
or 4x .

Thanks to the lemma, in order to prove the theorem, it suffices to show the
equality

(30) (Fr +Hr)(x1 + x2 − D− Br−2) = 0,

which is equivalent to the vanishing of T A3
r at the Chern class c(III 2,2(r)).

Set X2 := (x1, x2). Due to (15), each Schur function occurring in the expan-
sion of Hr is such that

Sc,r+1+a,r+1+b(X2 − D− Br−2) = R(X2,D + Br−2) · Sc(−D− Br−2) · Sa,b(X2).

We set

(31) Vr(X2; Br−2) :=
Hr(X2 − D− Br−2)
R(X2,D + Br−2)

,

so that

(32) Vr(X2; Br−2) =
r−2∑
i=0

∑
{j≥0: i+2j≤r−2}

er−i,jSi(−D− Br−2)Sj,r−i−j−2(X2).
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We have the following recursive relation which follows from the observation that
the coefficient of br−2 in Vr(X2; Br−2) is equal to −Vr−1(X2; Br−3).

Lemma 3. For r ≥ 2, we have

(33) Vr(X2; Br−2) =
r−2∑
i=0

Vr−i(X2; 0)Si(−Br−2).

Thus it is sufficient to compute Vr(X2; 0).

Proposition 1. For r ≥ 2, we have

(34) Vr(X2; 0) = 3r−2(3Sr−2(X2)− 2S1,r−3(X2)).

(In particular, V2(X2; 0) = 5 and V3(X2; 0) = 9S1(X2).)

The proof of the proposition is given in the Appendix.

We now determine the specialization Fr(X2 − D− Br−2).

Lemma 4. The resultant R(X2,D + Br−2) divides Fr(X2 − D− Br−2).

Proof. By [24, Proposition 10], we have

Fr(x− Br) = R(x+ 2x + 3x ,Br),

and making in Fr(X2 − D− Br−2) the substitutions x1 = 0 and x1 = 2x2, we get

Fr(− 2x2 − Br−2) = R(0 + 0 + 0, 2x2 + Br−2 + 0) = 0,

and

Fr(x2 − 2x1 − x1 + x2 − Br−2)

= R(x2 + 2x2 + 3x2 , 2x1 + x1 + x2 + Br−2)

= R(x2 + 2x2 + 3x2 , 2x1 + 3x2 + Br−2) = 0.

Moreover, if x1 ∈ Br−2 and A := Br−2 − x1, then Fr(X2 − D− Br−2) becomes

Fr(x2 − 2x1 − 2x2 − x1 + x2 − A)

= R(x2 + 2x2 + 3x2 , 2x1 + 2x2 + x1 + x2 + A) = 0.

These vanishings imply the assertion of the lemma.

We set

(35) Ur(X2; Br−2) :=
Fr(X2 − D− Br−2)
R(X2,D + Br−2)

.
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Note that each variable b ∈ Br−2 appears at most with degree 3 in
Fr(X2 − D − Br−2), and hence at most with degree 1 in Ur(X2; Br−2). We have
the following precise recursive relation which follows from the observation that the
coefficient of b3r−2 in Fr(X2 − D− Br−2) is equal to Fr−1(X2 − D− Br−3).

Lemma 5. For r ≥ 2, we have

(36) Ur(X2; Br−2) =
r−2∑
i=0

Ur−i(X2; 0)Si(−Br−2).

Let π be the endomorphism of the C-vector space of functions of x1, x2,
defined by

π(f(x1, x2)) :=
x1f(x1, x2)− x2f(x2, x1)

x1 − x2
.

For any i, j ∈ N, we have

(37) π(xj1x
i
2) = Si,j(X2).

Proposition 2. The following identity holds for r ≥ 2:

(38) Fr(X2 − D) = −3r−2R(X2,D)(x1x2)r−2(3Sr−2(X2)− 2S1,r−3(X2)).

Proof. The identity is true for r = 2. To prove it for r ≥ 3, we compute in two
different ways the action of π on the multi-Schur function (see [14, 1.4.7, p. 9]):

(39) Sr,r;r(X2 + 2x1 + 3x1 − D;x1 − D).

Firstly, expanding (39), we have

π(Sr,r;r(X2 + 2x1 + 3x1 − D;x1 − D))

= π
( ∑
j1≤j2≤r

Sj1,j2( 2x1 + 3x1 ) Sr−j2,r−j1;r(X2 − D;x1 − D)
)

= π
( ∑
j1≤j2≤r

Sj1,j2( 2 + 3 ) Sr−j2,r−j1;r+j1+j2(X2 − D;x1 − D)
)

=
∑

j1≤j2≤r

Sj1,j2( 2 + 3 ) Sr−j2,r−j1,r+j1+j2(X2 − D)

= Fr(X2 − D).

Secondly, we subtract x1 from the arguments in the first two rows of (39)
without changing the determinant (see [14, Transformation Lemma 1.4.1]):

(40) Sr,r;r(X2 + 2x1 + 3x1 − D;x1 − D)

= Sr,r;r(X2 + 3x1 − 2x2 − x1 + x2 ;x1 − D).
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Then the elements in the first two rows of the last column become zero, and we
get the following factorization of the latter determinant in (40):

Sr,r(x2 + 3x1 − 2x2 − x1 + x2 ) · Sr(x1 − D).

Using the factorizations

Sr,r(x2 + 3x1 − 2x2 − x1 + x2 ) = −3r−2(x2 − 2x1)(x1x2)r−1(3x1 − 2x2)

and
Sr(x1 − D) = xr−2

1 x2(x1 − 2x2),

we infer that

(41) Sr,r;r(X2 + 2x1 + 3x1 − D;x1 − D)

= −3r−2R(X2,D)(x1x2)r−2xr−3
1 (3x1 − 2x2).

By (37), the result of applying π to (41) is

−3r−2R(X2,D)(x1x2)r−2(3Sr−2(X2)− 2S1,r−3(X2)).

Comparison of both these computations of π applied to (39) yields the propo-
sition.

In terms of Ur, we rewrite Proposition 2 as

Corollary 1. For r ≥ 2,

(42) Ur(X2; 0) = −3r−2(3Sr−2(X2)− 2S1,r−3(X2)).

Lemmas 3, 5, Proposition 1, and Corollary 1 imply (30), and this finishes the
proof of Theorem 2.

§5. Appendix: The Pascal staircase

We shall use the following variant of the Pascal triangle. Consider an infinite
matrix P = [ps,t] with rows and columns numbered by s, t = 1, 2, . . ..

We assume that p1,t = p2,t = 0 for t ≥ 2, p3,t = p4,t = 0 for t ≥ 3, p5,t =
p6,t = 0 for t ≥ 4 etc. (Speaking less formally, P is filled with 0’s above the
diagram of the infinite partition (0, 0, 1, 1, 2, 2, 3, 3, . . .).)

The first column is an arbitrary sequence v = (v1, v2, . . .). When it is the
sequence of coefficients of the Taylor expansion of a function f(z), we write Pf for
the corresponding P .
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To define the remaining ps,t’s, we use the recursive formula

(43) ps+1,t = ps,t−1 + ps,t.

We visualize this definition by

a b

�
⇒ a b

a+ b

We thus get the following Pascal staircase P = [ps,t]s,t=1,2,...:

v1 0 0 0 0 . . .

v2 0 0 0 0 . . .

v3 v2 0 0 0 . . .

v4 v3 + v2 0 0 0 . . .

v5 v4 + v3 + v2 v3 + v2 0 0 . . .

v6 v5 + v4 + v3 + v2 v4 + 2v3 + 2v2 0 0 . . .

v7 v6 + v5 + v4 + v3 + v2 v5 + 2v4 + 3v3 + 3v2 v4 + 2v3 + 2v2 0 . . .
...

...
...

...
...

Given an integer n ≥ 0, and an alphabet A, we define the function W (n) =
W (n,A) by

(44) W (n,A) :=
∑
i,j

pn+1−i,j+1 Si(−A)Sj,n−i−j(X2).

The functionW (n,A) is linear in the elements of the first column of P . There-
fore it is sufficient to restrict to the case v = (1, y, y2, . . .), i.e. to take P = P1/(1−zy)
to determine it.

Lemma 6. If P = P1/(1−zy) and A = x1 + x2 , then W (0) = 1 and for n ≥ 1,

(45) W (n, x1 + x2 ) = (y − 1)yn−1Sn(X2).

Proof. The entries contributing to Sk,n−k(X2), where k > 0 and 2k < n are, for
some a, b,

−a(x1 + x2)Sk−1,n−k(X2) −b(x1 + x2)Sk,n−k−1(X2)
(a+ b)Sk,n−k(X2)

and give −aSk,n−k(X2)− bSk,n−k(X2) + (a+ b)Sk,n−k(X2) = 0.
The entries contributing to Sk,k(X2), where k > 0 and n = 2k are, for some a,

−a(x1 + x2)Sk,k(X2) 0
aSk,k(X2)

and give −aSk,k(X2) + aSk,k(X2) = 0.
Moreover, the first column contributes to (yn − yn−1)Sn(X2).
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Taking now A = x1 + x2 + B instead of x1 + x2 , and using that

W (n,A) =
∑
i,j,k

pn+1−i−k,j+1 Si(− x1 + x2 )Sj,n−i−j−k(X2)Sk(−B)

=
∑
k

W (n− k, x1 + x2 )Sk(−B)

= (1− y−1)
∑
k

yn−kSn−k(X2)Sk(−B) = yn(1− y−1)Sn(X2 − y−1B),

we get the following corollary.

Corollary 2. For P = P1/(1−zy), if B is an arbitrary alphabet, then (apart from
initial values) we have

(46) W (n, x1 + x2 + B) = (y − 1)yn−1Sn(X2 − y−1B).

We apply the corollary with B = 2x1 + 2x2 . Expanding

Sn(X2 − y−1( 2x1 + 2x2 ))

= Sn(X2)− 2x1 + 2x2

y
Sn−1(X2) + 4

x1x2

y2
Sn−2(X2),

we get, for n ≥ 3,

(47) W (n,D) = yn−2(y − 1)(y − 2)Sn(X2)− 2yn−3(y − 1)(y − 2)S1,n−1(X2)

and initial conditions

W (0) = 1, W (1) = (y − 3)S1(X2),

W (2) = (y − 1)(y − 2)S2(X2)− 2(y − 3)S11(X2).

We come back to Proposition 1, and we take the Pascal staircase Pf associated
with the function

f =
5− 6z

(1− z)(1− 2z)(1− 3z)
= − 1/2

1− z
− 8

1− 2z
+

27/2
1− 3z

.

Then for P = Pf , and n = r − 2, the function W (n,D) is Vr(X2; 0).
We thus have to specialize y to 1, 2, 3 successively. Apart from initial values,

only y = 3 contributes, and we get, for n ≥ 3,

W (n,D) = 3n+1Sn(X2)− 2 · 3nS1,n−1(X2).

This proves Proposition 1, upon checking the cases r = 2, 3, 4 directly.
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