Tangency and regular separation

Piotr Pragacz
(IM PAN, Warszawa)
with Wojciech Domitrz, Piotr Mormul and Christophe Eyral

Introduction

Two plane curves, both nonsingular at a point x^{0}, are said to have a contact of order at least k at x^{0} if,

Introduction

Two plane curves, both nonsingular at a point x^{0}, are said to have a contact of order at least k at x^{0} if, in properly chosen regular parametrizations, those two curves have identical Taylor polynomials of degree k about x^{0}.

Why it is important to study the "order of tangency"?

Why it is important to study the "order of tangency"?

Let us discuss this notion for Thom polynomials of singularities (real or complex). Thom polynomials measure complexity of singularities and were studied by René Thom and many others.

Why it is important to study the "order of tangency"?
Let us discuss this notion for Thom polynomials of singularities (real or complex). Thom polynomials measure complexity of singularities and were studied by René Thom and many others.

An important property of Thom polynomials is their positivity closely related to Schubert calculus.

Why it is important to study the "order of tangency"?
Let us discuss this notion for Thom polynomials of singularities (real or complex). Thom polynomials measure complexity of singularities and were studied by René Thom and many others.

An important property of Thom polynomials is their positivity closely related to Schubert calculus.

Namely, the order of tangency allows one to define for example the jets of Lagrangian submanifolds.

Why it is important to study the "order of tangency"?

Let us discuss this notion for Thom polynomials of singularities (real or complex). Thom polynomials measure complexity of singularities and were studied by René Thom and many others.

An important property of Thom polynomials is their positivity closely related to Schubert calculus.

Namely, the order of tangency allows one to define for example the jets of Lagrangian submanifolds.

The space of these jets is a fibration over the Lagrangian Grassmannian and leads to a positive decomposition of a Lagrangian Thom polynomial in the basis of Lagrangian Schubert cycles.

Two manifolds M and \widetilde{M} embedded in \mathbb{R}^{m}, both of class C^{r}, $r \geq 1$, and the same dimension p, intersecting at $x^{0} \in M \cap \widetilde{M}$, for $k \leq r$, have at x^{0} the order of tangency at least k,

Two manifolds M and \tilde{M} embedded in \mathbb{R}^{m}, both of class C^{r}, $r \geq 1$, and the same dimension p, intersecting at $x^{0} \in M \cap \widetilde{M}$, for $k \leq r$, have at x^{0} the order of tangency at least k, when there exist a neighbourhood $U \ni u^{0}$ in \mathbb{R}^{p} and parametrizations (diffeomorphisms onto their images)

$$
q:\left(U, u^{0}\right) \rightarrow\left(M, x^{0}\right), \quad \tilde{q}:\left(U, u^{0}\right) \rightarrow\left(\tilde{M}, x^{0}\right)
$$

of class C^{r} such that

Two manifolds M and \tilde{M} embedded in \mathbb{R}^{m}, both of class C^{r}, $r \geq 1$, and the same dimension p, intersecting at $x^{0} \in M \cap \tilde{M}$, for $k \leq r$, have at x^{0} the order of tangency at least k,
when there exist a neighbourhood $U \ni u^{0}$ in \mathbb{R}^{p} and parametrizations (diffeomorphisms onto their images)

$$
q:\left(U, u^{0}\right) \rightarrow\left(M, x^{0}\right), \quad \tilde{q}:\left(U, u^{0}\right) \rightarrow\left(\widetilde{M}, x^{0}\right)
$$

of class C^{r} such that

$$
\begin{equation*}
(\tilde{q}-q)(u)=\mathrm{o}\left(\left|u-u^{0}\right|^{k}\right) \tag{1}
\end{equation*}
$$

when $U \ni u \rightarrow u^{0}$.

Two manifolds M and \tilde{M} embedded in \mathbb{R}^{m}, both of class C^{r}, $r \geq 1$, and the same dimension p, intersecting at $x^{0} \in M \cap \tilde{M}$, for $k \leq r$, have at x^{0} the order of tangency at least k,
when there exist a neighbourhood $U \ni u^{0}$ in \mathbb{R}^{p} and parametrizations (diffeomorphisms onto their images)

$$
q:\left(U, u^{0}\right) \rightarrow\left(M, x^{0}\right), \quad \tilde{q}:\left(U, u^{0}\right) \rightarrow\left(\tilde{M}, x^{0}\right)
$$

of class C^{r} such that

$$
\begin{equation*}
(\tilde{q}-q)(u)=o\left(\left|u-u^{0}\right|^{k}\right) \tag{1}
\end{equation*}
$$

when $U \ni u \rightarrow u^{0}$.
This definition does not depend on the choice of q and \tilde{q}.

Two manifolds M and \tilde{M} embedded in \mathbb{R}^{m}, both of class C^{r}, $r \geq 1$, and the same dimension p, intersecting at $x^{0} \in M \cap \tilde{M}$, for $k \leq r$, have at x^{0} the order of tangency at least k,
when there exist a neighbourhood $U \ni u^{0}$ in \mathbb{R}^{p} and parametrizations (diffeomorphisms onto their images)

$$
q:\left(U, u^{0}\right) \rightarrow\left(M, x^{0}\right), \quad \tilde{q}:\left(U, u^{0}\right) \rightarrow\left(\tilde{M}, x^{0}\right)
$$

of class C^{r} such that

$$
\begin{equation*}
(\tilde{q}-q)(u)=\mathrm{o}\left(\left|u-u^{0}\right|^{k}\right) \tag{1}
\end{equation*}
$$

when $U \ni u \rightarrow u^{0}$.
This definition does not depend on the choice of q and \tilde{q}.
In the category of complex analytic varieties, parametrizations are biholomorphisms onto their images.

$$
f(u)=o(h(u)) \quad \text { when } u \rightarrow u_{0}
$$

$f(u)=o(h(u)) \quad$ when $u \rightarrow u_{0}$
means
$\lim _{u \rightarrow u_{0}} \frac{f(u)}{h(u)}=0$.
" $f(u)$ is much smaller than $h(u)$ for u near u_{0}. ."

Proposition

The condition (1) is equivalent to

$$
\begin{equation*}
T_{\nu^{0}}^{k}(q)=T_{\nu^{0}}^{k}(\tilde{q}), \tag{2}
\end{equation*}
$$

Proposition

The condition (1) is equivalent to

$$
\begin{equation*}
T_{u^{0}}^{k}(q)=T_{L^{0}}^{k}(\tilde{q}), \tag{2}
\end{equation*}
$$

where $T_{u^{0}}^{k}(\cdot)$ means the Taylor polynomial about u^{0} of degree k.

Proposition

The condition (1) is equivalent to

$$
\begin{equation*}
T_{u^{0}}^{k}(q)=T_{u^{0}}^{k}(\tilde{q}), \tag{2}
\end{equation*}
$$

where $T_{u^{0}}^{k}(\cdot)$ means the Taylor polynomial about u^{0} of degree k.
.(1) $\Rightarrow(2)$.

$$
\begin{gathered}
o\left(\left|u-u^{0}\right|^{k}\right)=\tilde{q}(u)-q(u)=\left(\tilde{q}(u)-T_{u^{0}}^{k}(\tilde{q})\left(u-u^{0}\right)\right) \\
+\left(T_{u^{0}}^{k}(\tilde{q})\left(u-u^{0}\right)-T_{u^{0}}(q)\left(u-u^{0}\right)\right)+\left(T_{u^{0}}(q)\left(u-u^{0}\right)-q(u)\right),
\end{gathered}
$$

Proposition

The condition (1) is equivalent to

$$
\begin{equation*}
T_{u^{0}}^{k}(q)=T_{u^{0}}^{k}(\tilde{q}) \tag{2}
\end{equation*}
$$

where $T_{u^{0}}^{k}(\cdot)$ means the Taylor polynomial about u^{0} of degree k.
. 1) $\Rightarrow(2)$.

$$
\begin{aligned}
& \circ\left(\left|u-u^{0}\right|^{k}\right)=\tilde{q}(u)-q(u)=\left(\tilde{q}(u)-T_{u^{0}}^{k}(\tilde{q})\left(u-u^{0}\right)\right) \\
+ & \left(T_{u^{0}}^{k}(\tilde{q})\left(u-u^{0}\right)-T_{u^{0}}(q)\left(u-u^{0}\right)\right)+\left(T_{u^{0}}(q)\left(u-u^{0}\right)-q(u)\right)
\end{aligned}
$$

where the first and last summands are $o\left(\left|u-u^{0}\right|^{k}\right)$ by Taylor.

Under (1), so is the middle summand

Under (1), so is the middle summand

$$
T_{u^{0}}^{k}(\tilde{q})\left(u-u^{0}\right)-T_{u^{0}}^{k}(q)\left(u-u^{0}\right)=\mathrm{o}\left(\left|u-u^{0}\right|^{k}\right)
$$

Under (1), so is the middle summand

$$
T_{u^{0}}^{k}(\tilde{q})\left(u-u^{0}\right)-T_{u^{0}}^{k}(q)\left(u-u^{0}\right)=\mathrm{o}\left(\left|u-u^{0}\right|^{k}\right)
$$

and (2) follows from the following general result.

Under (1), so is the middle summand

$$
T_{u^{0}}^{k}(\tilde{q})\left(u-u^{0}\right)-T_{u^{0}}^{k}(q)\left(u-u^{0}\right)=\mathrm{o}\left(\left|u-u^{0}\right|^{k}\right)
$$

and (2) follows from the following general result.
Lemma
Let $w \in \mathbb{R}\left[u_{1}, u_{2}, \ldots, u_{p}\right], \operatorname{deg} w \leq k, w(u)=\mathrm{o}\left(|u|^{k}\right)$ when $u \rightarrow 0$ in \mathbb{R}^{p}. Then w is identically zero.

Under (1), so is the middle summand

$$
T_{u^{0}}^{k}(\tilde{q})\left(u-u^{0}\right)-T_{u^{0}}^{k}(q)\left(u-u^{0}\right)=\mathrm{o}\left(\left|u-u^{0}\right|^{k}\right)
$$

and (2) follows from the following general result.
Lemma
Let $w \in \mathbb{R}\left[u_{1}, u_{2}, \ldots, u_{p}\right], \operatorname{deg} w \leq k, w(u)=\mathrm{o}\left(|u|^{k}\right)$ when $u \rightarrow 0$ in \mathbb{R}^{p}. Then w is identically zero.

The implication: Proposition $\Rightarrow(1)$ is easy.

Consider the quantity

$s=s\left(M, \tilde{M} ; x^{0}\right):=\sup \{k \in \mathbb{N}$: the order of tangency $\geq k\}$.
(3)

Consider the quantity
$s=s\left(M, \widetilde{M} ; x^{0}\right):=\sup \{k \in \mathbb{N}:$ the order of tangency $\geq k\}$.
(3)

Note that an additional restriction here on k is $k \leq r$. If the class of smoothness $r=\infty$, then the condition (1) holds for all k if and only if $s=\infty$.

Consider the quantity
$s=s\left(M, \widetilde{M} ; x^{0}\right):=\sup \{k \in \mathbb{N}$: the order of tangency $\geq k\}$.
(3)

Note that an additional restriction here on k is $k \leq r$. If the class of smoothness $r=\infty$, then the condition (1) holds for all k if and only if $s=\infty$.

Let us assume additionally that

$$
\begin{equation*}
s<r \tag{4}
\end{equation*}
$$

When $r=\infty$, the condition (4) simply says that s is finite.

Our second approach uses pairs of curves lying, respectively, in M and \widetilde{M}. We assume that $T_{x^{0}} M=T_{x^{0}} \tilde{M}$.

Our second approach uses pairs of curves lying, respectively, in M and M. We assume that $T_{x^{0}} M=T_{x^{0}} M$.

Theorem
Under (4),

$$
\min _{v}\left(\max _{\gamma, \tilde{\tilde{\gamma}}}\left(\max \left\{I \in\{0\} \cup \mathbb{N}:|\gamma(t)-\tilde{\gamma}(t)|=\mathrm{o}\left(|t|^{\prime}\right) \text { when } t \rightarrow 0\right\}\right)\right)=s .
$$

(5)

Our second approach uses pairs of curves lying, respectively, in M and \mathscr{M}. We assume that $T_{x^{0}} M=T_{x^{0}} \mathcal{M}$.
Theorem
Under (4),

$\min _{v}\left(\max _{\gamma, \tilde{\tilde{\gamma}}}\left(\max \left\{I \in\{0\} \cup \mathbb{N}:|\gamma(t)-\tilde{\gamma}(t)|=\mathrm{o}\left(|t|^{\prime}\right)\right.\right.\right.$ when $\left.\left.\left.t \rightarrow 0\right\}\right)\right)=s$.

(5)

The minimum is taken over all $0 \neq v \in T_{x^{0}} M=T_{x^{0}} \widetilde{M}$. The outer maximum is taken over all pairs of C^{r} curves $\gamma \subset M$, $\tilde{\gamma} \subset \widetilde{M}$ such that $\gamma(0)=x^{0}=\tilde{\gamma}(0)$, and - both non-zero! velocities $\dot{\gamma}(0), \dot{\tilde{\gamma}}(0)$ are both parallel to v .

Attention. In this theorem the assumption (4) is essential; our proof would not work in the situation $s=r$.

It is quick to show that the LHS of (5) is at least s. Indeed, for every fixed vector v as above, $v=d q\left(u^{0}\right) \mathbf{u}$ (without loss of generality, $\mathbf{u} \in \mathbb{R}^{p},|\mathbf{u}|=1$). We now take $\delta(t)=q\left(u^{0}+t \mathbf{u}\right)$ and $\tilde{\delta}(t)=\tilde{q}\left(u^{0}+t \mathbf{u}\right)$.

It is quick to show that the LHS of (5) is at least s. Indeed, for every fixed vector v as above, $v=d q\left(u^{0}\right) \mathbf{u}$ (without loss of generality, $\mathbf{u} \in \mathbb{R}^{p},|\mathbf{u}|=1$). We now take $\delta(t)=q\left(u^{0}+t \mathbf{u}\right)$ and $\tilde{\delta}(t)=\tilde{q}\left(u^{0}+t \mathbf{u}\right)$. Then

$$
|\delta(t)-\tilde{\delta}(t)|=o\left(|t \mathbf{u}|^{s}\right)=o\left(|t|^{s}\right)
$$

and so, in that equality,

$$
\max _{\gamma, \tilde{\gamma}}\left(\max \left\{I:|\gamma(t)-\tilde{\gamma}(t)|=o\left(|t|^{\prime}\right) \text { when } t \rightarrow 0\right\}\right) \geq s
$$

It is quick to show that the LHS of (5) is at least s. Indeed, for every fixed vector v as above, $v=d q\left(u^{0}\right) \mathbf{u}$ (without loss of generality, $\mathbf{u} \in \mathbb{R}^{p},|\mathbf{u}|=1$). We now take $\delta(t)=q\left(u^{0}+t \mathbf{u}\right)$ and $\tilde{\delta}(t)=\tilde{q}\left(u^{0}+t \mathbf{u}\right)$. Then

$$
|\delta(t)-\tilde{\delta}(t)|=o\left(|t \mathbf{u}|^{s}\right)=o\left(|t|^{s}\right)
$$

and so, in that equality,

$$
\max _{\gamma, \tilde{\gamma}}\left(\max \left\{I:|\gamma(t)-\tilde{\gamma}(t)|=o\left(|t|^{\prime}\right) \text { when } t \rightarrow 0\right\}\right) \geq s
$$

In view of the arbitrariness in our choice of v, the same remains true after taking the minimum over all admissible v 's on equality's LHS.

The opposite inequality is more involved. It is here where a delicate assumption $s \leq r-1$ is needed. We skip the details.

Our third approach is based on a tower of consecutive Grassmannians attached to a local C^{r} parametrization q.

Our third approach is based on a tower of consecutive Grassmannians attached to a local C^{r} parametrization q.

To every C^{1} immersion $H: N \rightarrow N^{\prime}, N$ - an n-dimensional manifold, N^{\prime} - an n^{\prime}-dimensional manifold, we attach the so-called image map $\mathcal{G H}: N \rightarrow G_{n}\left(N^{\prime}\right)$ of the tangent map d H :

Our third approach is based on a tower of consecutive Grassmannians attached to a local C^{r} parametrization q.

To every C^{1} immersion $H: N \rightarrow N^{\prime}, N$ - an n-dimensional manifold, N^{\prime} - an n^{\prime}-dimensional manifold, we attach the so-called image map $\mathcal{G H}: N \rightarrow G_{n}\left(N^{\prime}\right)$ of the tangent map $d H:$ for $s \in N$,

$$
\begin{equation*}
\mathcal{G H}(s)=d H(s)\left(T_{s} N\right), \tag{6}
\end{equation*}
$$

where $G_{n}\left(N^{\prime}\right)$ is the total space of the Grassmann bundle, with base N^{\prime}, of all n planes tangent to N^{\prime} (often denoted $G_{n}\left(T_{N^{\prime}}\right)$).

Our third approach is based on a tower of consecutive Grassmannians attached to a local C^{r} parametrization q.

To every C^{1} immersion $H: N \rightarrow N^{\prime}, N$ - an n-dimensional manifold, N^{\prime} - an n^{\prime}-dimensional manifold, we attach the so-called image map $\mathcal{G H}: N \rightarrow G_{n}\left(N^{\prime}\right)$ of the tangent map $d H:$ for $s \in N$,

$$
\begin{equation*}
\mathcal{G H}(s)=d H(s)\left(T_{s} N\right), \tag{6}
\end{equation*}
$$

where $G_{n}\left(N^{\prime}\right)$ is the total space of the Grassmann bundle, with base N^{\prime}, of all n planes tangent to N^{\prime} (often denoted $G_{n}\left(T_{N^{\prime}}\right)$).

Recall that $M, \widetilde{M} \subset \mathbb{R}^{m}$.

We use as previously the pair of parametrizations q and \tilde{q}. So we are now given the mappings

$$
\mathcal{G q}: U \longrightarrow G_{p}\left(\mathbb{R}^{m}\right), \quad \mathcal{G} \tilde{q}: U \longrightarrow G_{p}\left(\mathbb{R}^{m}\right)
$$

We use as previously the pair of parametrizations q and \tilde{q}. So we are now given the mappings

$$
\mathcal{G q}: U \longrightarrow G_{p}\left(\mathbb{R}^{m}\right), \quad \mathcal{G} \tilde{q}: U \longrightarrow G_{p}\left(\mathbb{R}^{m}\right)
$$

Upon putting $M^{(0)}=\mathbb{R}^{m}, \mathcal{G}^{(1)}=\mathcal{G}$, we get two sequences of recursively defined mappings. Namely, for $I \geq 1$,

$$
\mathcal{G}^{(I)} q: U \longrightarrow G_{p}\left(M^{(I-1)}\right), \quad \mathcal{G}^{(I+1)} q=\mathcal{G}\left(\mathcal{G}^{(I)} q\right)
$$

We use as previously the pair of parametrizations q and \tilde{q}. So we are now given the mappings

$$
\mathcal{G} q: U \longrightarrow G_{p}\left(\mathbb{R}^{m}\right), \quad \mathcal{G} \tilde{q}: U \longrightarrow G_{p}\left(\mathbb{R}^{m}\right)
$$

Upon putting $M^{(0)}=\mathbb{R}^{m}, \mathcal{G}^{(1)}=\mathcal{G}$, we get two sequences of recursively defined mappings. Namely, for $I \geq 1$,

$$
\mathcal{G}^{(I)} q: U \longrightarrow G_{p}\left(M^{(I-1)}\right), \quad \mathcal{G}^{(I+1)} q=\mathcal{G}\left(\mathcal{G}^{(I)} q\right)
$$

and

$$
\mathcal{G}^{(I)} \tilde{q}: U \longrightarrow G_{p}\left(M^{(I-1)}\right), \quad \mathcal{G}^{(I+1)} \tilde{q}=\mathcal{G}\left(\mathcal{G}^{(I)} \tilde{q}\right)
$$

where, naturally, $M^{(I)}=G_{p}\left(M^{(I-1)}\right)$.

Theorem
C^{r} manifolds M and \widetilde{M} have at x^{0} the order of tangency at least $k(1 \leq k \leq r)$ iff

$$
\mathcal{G}^{(k)} q\left(u^{0}\right)=\mathcal{G}^{(k)} \tilde{q}\left(u^{0}\right)
$$

for any parametrizations q and \tilde{q} of M and \widetilde{M} around x^{0}.

Theorem
C^{r} manifolds M and \widetilde{M} have at x^{0} the order of tangency at least $k(1 \leq k \leq r)$ iff

$$
\mathcal{G}^{(k)} q\left(u^{0}\right)=\mathcal{G}^{(k)} \tilde{q}\left(u^{0}\right)
$$

for any parametrizations q and \tilde{q} of M and \widetilde{M} around x^{0}.
Let now H be the graph of a C^{1} mapping $h: \mathbb{R}^{p} \supset U \rightarrow \mathbb{R}^{t}$. That is, for $u \in U, H(u)=(u, h(u)) \in \mathbb{R}^{p+t}=\mathbb{R}^{p} \times \mathbb{R}^{t}$.

Theorem
C^{r} manifolds M and \widetilde{M} have at x^{0} the order of tangency at least $k(1 \leq k \leq r)$ iff

$$
\mathcal{G}^{(k)} q\left(u^{0}\right)=\mathcal{G}^{(k)} \tilde{q}\left(u^{0}\right)
$$

for any parametrizations q and \tilde{q} of M and \tilde{M} around x^{0}.
Let now H be the graph of a C^{1} mapping $h: \mathbb{R}^{p} \supset U \rightarrow \mathbb{R}^{t}$. That is, for $u \in U, H(u)=(u, h(u)) \in \mathbb{R}^{p+t}=\mathbb{R}^{p} \times \mathbb{R}^{t}$.
Then (6) is (with $j=1,2, \ldots, p$)

$$
\begin{equation*}
\mathcal{G H}(u)=(u, h(u) ; d(u, h(u))(u))=\left(u, h(u) ; \operatorname{span}\left\{\partial_{j}+h_{j}(u)\right\}\right) \tag{7}
\end{equation*}
$$

Theorem
C^{r} manifolds M and \widetilde{M} have at x^{0} the order of tangency at least $k(1 \leq k \leq r)$ iff

$$
\mathcal{G}^{(k)} q\left(u^{0}\right)=\mathcal{G}^{(k)} \tilde{q}\left(u^{0}\right)
$$

for any parametrizations q and \tilde{q} of M and \tilde{M} around x^{0}.

Let now H be the graph of a C^{1} mapping $h: \mathbb{R}^{p} \supset U \rightarrow \mathbb{R}^{t}$. That is, for $u \in U, H(u)=(u, h(u)) \in \mathbb{R}^{p+t}=\mathbb{R}^{p} \times \mathbb{R}^{t}$.
Then (6) is (with $j=1,2, \ldots, p$)
$\mathcal{G H}(u)=(u, h(u) ; d(u, h(u))(u))=\left(u, h(u) ; \operatorname{span}\left\{\partial_{j}+h_{j}(u)\right\}\right)$
The h_{j} means the partial derivative of a vector mapping h w.r.t. u_{j}.

Theorem
C^{r} manifolds M and \widetilde{M} have at x^{0} the order of tangency at least $k(1 \leq k \leq r)$ eff

$$
\mathcal{G}^{(k)} q\left(u^{0}\right)=\mathcal{G}^{(k)} \tilde{q}\left(u^{0}\right)
$$

for any parametrization q and \tilde{q} of M and \tilde{M} around x^{0}.

Let now H be the graph of a C^{1} mapping $h: \mathbb{R}^{p} \supset U \rightarrow \mathbb{R}^{t}$. That is, for $u \in U, H(u)=(u, h(u)) \in \mathbb{R}^{p+t}=\mathbb{R}^{p} \times \mathbb{R}^{t}$. Then (6) is (with $j=1,2, \ldots, p$)
$\mathcal{G} H(u)=(u, h(u) ; d(u, h(u))(u))=\left(u, h(u) ; \operatorname{span}\left\{\partial_{j}+h_{j}(u)\right\}\right)$
The h_{j} means the partial derivative of a vector mapping h w.r.t. u_{j}. Moreover, $\partial_{j}+h_{j}(u)$ is the partial derivative of $(\iota, h): U \rightarrow \mathbb{R}^{p}\left(u_{1}, \ldots, u_{p}\right) \times \mathbb{R}^{t}$ w.r.t. u_{j}, where $\iota: U \hookrightarrow \mathbb{R}^{p}$ is the inclusion.

Now observe that the expression for $\mathcal{G} H(u)$ on the right hand side of (7) is still not quite useful. Yet there are standard charts in each newly appearing Grassmannian.

Now observe that the expression for $\mathcal{G} H(u)$ on the right hand side of (7) is still not quite useful. Yet there are standard charts in each newly appearing Grassmannian. In these coordinates, (7) becomes

$$
\begin{equation*}
\mathcal{G} H(u)=\left(u, h(u) ; \frac{\partial h}{\partial u}(u)\right) \tag{8}
\end{equation*}
$$

Now observe that the expression for $\mathcal{G} H(u)$ on the right hand side of (7) is still not quite useful. Yet there are standard charts in each newly appearing Grassmannian. In these coordinates, (7) becomes

$$
\begin{equation*}
\mathcal{G} H(u)=\left(u, h(u) ; \frac{\partial h}{\partial u}(u)\right) \tag{8}
\end{equation*}
$$

where, under the symbol $\frac{\partial h}{\partial u}(u)$ understood are all the entries of this Jacobian $(t \times p)$-matrix written in a row.

Now observe that the expression for $\mathcal{G} H(u)$ on the right hand side of (7) is still not quite useful. Yet there are standard charts in each newly appearing Grassmannian. In these coordinates, (7) becomes

$$
\begin{equation*}
\mathcal{G} H(u)=\left(u, h(u) ; \frac{\partial h}{\partial u}(u)\right) \tag{8}
\end{equation*}
$$

where, under the symbol $\frac{\partial h}{\partial u}(u)$ understood are all the entries of this Jacobian $(t \times p)$-matrix written in a row.

We come back to the proof of the theorem.

We assume without loss of generality that both M and \widetilde{M} are, in the neighbourhoods of x^{0}, just graphs of C^{r} mappings, and the parametrizations q and \tilde{q} are the graphs of those mappings.

We assume without loss of generality that both M and \widetilde{M} are, in the neighbourhoods of x^{0}, just graphs of C^{r} mappings, and the parametrizations q and \tilde{q} are the graphs of those mappings. That is,
$q(u)=(u, f(u))$, where $f: U \rightarrow \mathbb{R}^{m-p}\left(y_{p+1}, \ldots, y_{m}\right)$
and

We assume without loss of generality that both M and \widetilde{M} are, in the neighbourhoods of x^{0}, just graphs of C^{r} mappings, and the parametrizations q and \tilde{q} are the graphs of those mappings. That is,
$q(u)=(u, f(u))$, where $f: U \rightarrow \mathbb{R}^{m-p}\left(y_{p+1}, \ldots, y_{m}\right)$
and
$\tilde{q}(u)=(u, \tilde{f}(u))$, where $\tilde{f}: U \rightarrow \mathbb{R}^{m-p}\left(y_{p+1}, \ldots, y_{m}\right)$.

We assume without loss of generality that both M and \widetilde{M} are, in the neighbourhoods of x^{0}, just graphs of C^{r} mappings, and the parametrizations q and \tilde{q} are the graphs of those mappings. That is,
$q(u)=(u, f(u))$, where $f: U \rightarrow \mathbb{R}^{m-p}\left(y_{p+1}, \ldots, y_{m}\right)$
and
$\tilde{q}(u)=(u, \tilde{f}(u))$, where $\tilde{f}: U \rightarrow \mathbb{R}^{m-p}\left(y_{p+1}, \ldots, y_{m}\right)$.
We shall show that the proposition (about Taylor series) implies the theorem.

Lemma

For $1 \leq I \leq k$ there exists such a local chart on the Grassmannian $G_{p}\left(M^{(I-1)}\right)$ in which the mapping $\mathcal{G}^{(I)} q$ evaluated at u has the form

Lemma

For $1 \leq I \leq k$ there exists such a local chart on the Grassmannian $G_{p}\left(M^{(I-1)}\right)$ in which the mapping $\mathcal{G}^{(I)} q$ evaluated at u has the form

$$
\left(u, f(u) ;\binom{I}{1} \times f_{[1]}(u),\binom{I}{2} \times f_{[2]}(u), \ldots,\binom{I}{I} \times f_{[1]}(u)\right),
$$

Lemma

For $1 \leq I \leq k$ there exists such a local chart on the Grassmannian $G_{p}\left(M^{(I-1)}\right)$ in which the mapping $\mathcal{G}^{(I)} q$ evaluated at u has the form

$$
\left(u, f(u) ;\binom{I}{1} \times f_{[1]}(u),\binom{I}{2} \times f_{[2]}(u), \ldots,\binom{I}{I} \times f_{[1]}(u)\right),
$$

where $f_{[\nu]}(u)$ is the aggregate of all the partials of the ν-th order at u, of all the components of f.

Lemma

For $1 \leq I \leq k$ there exists such a local chart on the Grassmannian $G_{p}\left(M^{(l-1)}\right)$ in which the mapping $\mathcal{G}^{(I)} q$ evaluated at u has the form

$$
\left(u, f(u) ;\binom{I}{1} \times f_{[1]}(u),\binom{I}{2} \times f_{[2]}(u), \ldots,\binom{I}{I} \times f_{[1]}(u)\right),
$$

where $f_{[\nu]}(u)$ is the aggregate of all the partials of the ν-th order at u, of all the components of f.

Attention. In this lemma we distinguish mixed derivatives taken in different orders.

Proof. $I=1$. We note that

$$
\mathcal{G}^{(1)} q(u)=\left(u, f(u) ; \operatorname{span}\left\{\partial_{j}+f_{j}(u): j=1,2, \ldots, p\right\}\right)
$$

Proof. $I=1$. We note that

$$
\mathcal{G}^{(1)} q(u)=\left(u, f(u) ; \operatorname{span}\left\{\partial_{j}+f_{j}(u): j=1,2, \ldots, p\right\}\right)
$$

This is nothing but

$$
\left(u, f(u) ; f_{[1]}(u)\right)=\left(u, f(u) ;\binom{I}{1} \times f_{[1]}(u)\right)
$$

The beginning of induction is done.
$I \Rightarrow I+1, I<k$. The mapping $\mathcal{G}^{(I)} q: U \rightarrow M^{(I)}$, evaluated at u, is already written down, in appropriate local chart assumed to exist in $M^{(1)}$, as
$I \Rightarrow I+1, I<k$. The mapping $\mathcal{G}^{(I)} q: U \rightarrow M^{(I)}$, evaluated at u, is already written down, in appropriate local chart assumed to exist in $M^{(1)}$, as

$$
\begin{equation*}
\left(u, f(u),\binom{I}{1} \times f_{[1]}(u),\binom{I}{2} \times f_{[2]}(u), \ldots,\binom{I}{I} \times f_{[1]}(u)\right) . \tag{9}
\end{equation*}
$$

$I \Rightarrow I+1, I<k$. The mapping $\mathcal{G}^{(I)} q: U \rightarrow M^{(I)}$, evaluated at u, is already written down, in appropriate local chart assumed to exist in $M^{(1)}$, as

$$
\begin{equation*}
\left(u, f(u),\binom{I}{1} \times f_{[1]}(u),\binom{I}{2} \times f_{[2]}(u), \ldots,\binom{I}{I} \times f_{[1]}(u)\right) . \tag{9}
\end{equation*}
$$

We work with $\mathcal{G}^{(1+1)} q=\mathcal{G}\left(\mathcal{G}^{(1)} q\right)$. Now, (9) being clearly of the form $H(u)=(u, h(u))$ in the previously introduced notation, the mapping h reads
$I \Rightarrow I+1, I<k$. The mapping $\mathcal{G}^{(I)} q: U \rightarrow M^{(I)}$, evaluated at u, is already written down, in appropriate local chart assumed to exist in $M^{(1)}$, as

$$
\begin{equation*}
\left(u, f(u),\binom{I}{1} \times f_{[1]}(u),\binom{I}{2} \times f_{[2]}(u), \ldots,\binom{I}{I} \times f_{[1]}(u)\right) . \tag{9}
\end{equation*}
$$

We work with $\mathcal{G}^{(1+1)} q=\mathcal{G}\left(\mathcal{G}^{(1)} q\right)$. Now, (9) being clearly of the form $H(u)=(u, h(u))$ in the previously introduced notation, the mapping h reads

$$
h(u)=\left(f(u),\binom{I}{1} \times f_{[1]}(u),\binom{I}{2} \times f_{[2]}(u), \ldots,\binom{I}{I} \times f_{[1]}(u)\right) .
$$

In order to have $\mathcal{G H}(u)$ written down, in view of (8), one ought to write in row: u, then $h(u)$, and then all the entries of the Jacobian matrix $\frac{\partial h}{\partial u}(u)$, also written in row.

In order to have $\mathcal{G H}(u)$ written down, in view of (8), one ought to write in row: u, then $h(u)$, and then all the entries of the Jacobian matrix $\frac{\partial h}{\partial u}(u)$, also written in row.

The latter, in our shorthand notation, are computed immediately. Namely

In order to have $\mathcal{G H}(u)$ written down, in view of (8), one ought to write in row: u, then $h(u)$, and then all the entries of the Jacobian matrix $\frac{\partial h}{\partial u}(u)$, also written in row.

The latter, in our shorthand notation, are computed immediately. Namely
$\frac{\partial h}{\partial u}(u)=\left(\binom{I}{0} \times f_{[1]}(u),\binom{I}{1} \times f_{[2]}(u),\binom{I}{2} \times f_{[3]}(u), \ldots,\binom{I}{I} \times f_{[I+1]}(u)\right)$

In order to have $\mathcal{G H}(u)$ written down, in view of (8), one ought to write in row: u, then $h(u)$, and then all the entries of the Jacobian matrix $\frac{\partial h}{\partial u}(u)$, also written in row.

The latter, in our shorthand notation, are computed immediately. Namely
$\frac{\partial h}{\partial u}(u)=\left(\binom{I}{0} \times f_{[1]}(u),\binom{I}{1} \times f_{[2]}(u),\binom{I}{2} \times f_{[3]}(u), \ldots,\binom{I}{I} \times f_{[I+1]}(u)\right)$

These entries on the right hand side are to be juxtaposed with the former entries $(u, h(u))$.

For better readability, we put together the groups of same partials.

For better readability, we put together the groups of same partials.

In view of the elementary identities

$$
\binom{I}{\nu-1}+\binom{I}{\nu}=\binom{I+1}{\nu}
$$

we get in the outcome

For better readability, we put together the groups of same partials.

In view of the elementary identities

$$
\binom{I}{\nu-1}+\binom{I}{\nu}=\binom{I+1}{\nu}
$$

we get in the outcome
$\left(u, f(u),\binom{I+1}{1} \times f_{[1]}(u),\binom{I+1}{2} \times f_{[2]}(u), \ldots,\binom{I+1}{I+1} \times f_{[l+1]}(u)\right)$.
The lemma is now proved by induction.

We now take $I=k$ in the lemma and get, for arbitrary $u \in U$, two similar expressions for $\mathcal{G}^{(k)} q(u)$ and $\mathcal{G}^{(k)} \tilde{q}(u)$.

We now take $I=k$ in the lemma and get, for arbitrary $u \in U$, two similar expressions for $\mathcal{G}^{(k)} q(u)$ and $\mathcal{G}^{(k)} \tilde{q}(u)$.

Suppose that the proposition holds for $u=u^{0}$. As a consequence, the theorem now follows.

We now take $I=k$ in the lemma and get, for arbitrary $u \in U$, two similar expressions for $\mathcal{G}^{(k)} q(u)$ and $\mathcal{G}^{(k)} \tilde{q}(u)$.

Suppose that the proposition holds for $u=u^{0}$. As a consequence, the theorem now follows.

Conversely, assuming this theorem, we get that the partial derivatives of q and \tilde{q} at u^{0} are mutually equal. This gives the proposition.

We now take $I=k$ in the lemma and get, for arbitrary $u \in U$, two similar expressions for $\mathcal{G}^{(k)} q(u)$ and $\mathcal{G}^{(k)} \tilde{q}(u)$.

Suppose that the proposition holds for $u=u^{0}$. As a consequence, the theorem now follows.

Conversely, assuming this theorem, we get that the partial derivatives of q and \tilde{q} at u^{0} are mutually equal. This gives the proposition.

A natural question arises: What about branches of algebraic sets which often happen to be tangent one to another with various degrees of closeness?

It is well known that any pair of (closed) analytic subsets $X, Y \subset \mathbb{C}^{m}$ (of possibly different dimensions) satisfies so-called Łojasiewicz regular separation property at any point of $X \cap Y$:

It is well known that any pair of (closed) analytic subsets $X, Y \subset \mathbb{C}^{m}$ (of possibly different dimensions) satisfies so-called Łojasiewicz regular separation property at any point of $X \cap Y$:
for any $x^{0} \in X \cap Y$ there are $c, \nu>0$ such that for some neighbourhood $U \subset \mathbb{C}^{m}$ of x^{0} we have

It is well known that any pair of (closed) analytic subsets $X, Y \subset \mathbb{C}^{m}$ (of possibly different dimensions) satisfies so-called Łojasiewicz regular separation property at any point of $X \cap Y$:
for any $x^{0} \in X \cap Y$ there are $c, \nu>0$ such that for some neighbourhood $U \subset \mathbb{C}^{m}$ of x^{0} we have

$$
\begin{equation*}
\rho(x, X)+\rho(x, Y) \geq c \rho(x, X \cap Y)^{\nu} \quad \text { for } x \in U \tag{10}
\end{equation*}
$$

It is well known that any pair of (closed) analytic subsets $X, Y \subset \mathbb{C}^{m}$ (of possibly different dimensions) satisfies so-called Łojasiewicz regular separation property at any point of $X \cap Y$:
for any $x^{0} \in X \cap Y$ there are $c, \nu>0$ such that for some neighbourhood $U \subset \mathbb{C}^{m}$ of x^{0} we have

$$
\begin{equation*}
\rho(x, X)+\rho(x, Y) \geq c \rho(x, X \cap Y)^{\nu} \quad \text { for } x \in U \tag{10}
\end{equation*}
$$

where ρ is a distance induced by any of the usual norms on \mathbb{C}^{m}.

If furthermore $x^{0} \in \overline{X \backslash Y}$, then $\nu \geq 1$ and (10) is equivalent to

If furthermore $x^{0} \in \overline{X \backslash Y}$, then $\nu \geq 1$ and (10) is equivalent to

$$
\begin{equation*}
\rho(x, Y) \geq c^{\prime} \rho(x, X \cap Y)^{\nu} \quad \text { for } x \in U^{\prime} \cap X, \tag{11}
\end{equation*}
$$

where $c^{\prime}>0$ and U^{\prime} is a neighbourhood of x^{0}.

If furthermore $x^{0} \in \overline{X \backslash Y}$, then $\nu \geq 1$ and (10) is equivalent to

$$
\begin{equation*}
\rho(x, Y) \geq c^{\prime} \rho(x, X \cap Y)^{\nu} \quad \text { for } x \in U^{\prime} \cap X, \tag{11}
\end{equation*}
$$

where $c^{\prime}>0$ and U^{\prime} is a neighbourhood of x^{0}.
Actually, (10) and (11) are equivalent if $\nu \geq 1$.

If furthermore $x^{0} \in \overline{X \backslash Y}$, then $\nu \geq 1$ and (10) is equivalent to

$$
\begin{equation*}
\rho(x, Y) \geq c^{\prime} \rho(x, X \cap Y)^{\nu} \quad \text { for } x \in U^{\prime} \cap X \tag{11}
\end{equation*}
$$

where $c^{\prime}>0$ and U^{\prime} is a neighbourhood of x^{0}.
Actually, (10) and (11) are equivalent if $\nu \geq 1$.
The exponent ν satisfying the relation (10) for some U and $c>0$ is called a regular separation exponent of X and Y at x^{0}.

If furthermore $x^{0} \in \overline{X \backslash Y}$, then $\nu \geq 1$ and (10) is equivalent to

$$
\begin{equation*}
\rho(x, Y) \geq c^{\prime} \rho(x, X \cap Y)^{\nu} \quad \text { for } x \in U^{\prime} \cap X \tag{11}
\end{equation*}
$$

where $c^{\prime}>0$ and U^{\prime} is a neighbourhood of x^{0}.
Actually, (10) and (11) are equivalent if $\nu \geq 1$.
The exponent ν satisfying the relation (10) for some U and $c>0$ is called a regular separation exponent of X and Y at x^{0}.

The infimum of all regular separation exponents of X and Y at x^{0} is called the Łojasiewicz exponent of X and Y at x^{0}. It is denoted by $\mathcal{L}\left(X, Y ; x^{0}\right)$.

If furthermore $x^{0} \in \overline{X \backslash Y}$, then $\nu \geq 1$ and (10) is equivalent to

$$
\begin{equation*}
\rho(x, Y) \geq c^{\prime} \rho(x, X \cap Y)^{\nu} \quad \text { for } x \in U^{\prime} \cap X \tag{11}
\end{equation*}
$$

where $c^{\prime}>0$ and U^{\prime} is a neighbourhood of x^{0}.
Actually, (10) and (11) are equivalent if $\nu \geq 1$.
The exponent ν satisfying the relation (10) for some U and $c>0$ is called a regular separation exponent of X and Y at x^{0}.

The infimum of all regular separation exponents of X and Y at x^{0} is called the Łojasiewicz exponent of X and Y at x^{0}. It is denoted by $\mathcal{L}\left(X, Y ; x^{0}\right)$.

This exponent is an interesting metric invariant of the pointed pair $\left(X, Y ; x^{0}\right)$.

Example Here we shall see that the order and exponent can be both integer and different. (The example, but not the reasoning, comes from a paper by Tworzewski.)

Example Here we shall see that the order and exponent can be both integer and different. (The example, but not the reasoning, comes from a paper by Tworzewski.)

Consider two curves N and Z in $\mathbb{C}^{2}(x, y)$ intersecting at $(0,0)$:

$$
N=\{y=0\} \quad \text { and } \quad Z=\left\{y^{d}+y x^{d-1}+x^{s}=0\right\},
$$

where $1<d<s$, and assume that d is odd.

Example Here we shall see that the order and exponent can be both integer and different. (The example, but not the reasoning, comes from a paper by Tworzewski.)

Consider two curves N and Z in $\mathbb{C}^{2}(x, y)$ intersecting at $(0,0)$:

$$
N=\{y=0\} \quad \text { and } \quad Z=\left\{y^{d}+y x^{d-1}+x^{s}=0\right\},
$$

where $1<d<s$, and assume that d is odd. What is their Łojasiewicz exponent at (0,0) ?

Example Here we shall see that the order and exponent can be both integer and different. (The example, but not the reasoning, comes from a paper by Tworzewski.)

Consider two curves N and Z in $\mathbb{C}^{2}(x, y)$ intersecting at $(0,0)$:

$$
N=\{y=0\} \quad \text { and } \quad Z=\left\{y^{d}+y x^{d-1}+x^{s}=0\right\},
$$

where $1<d<s$, and assume that d is odd. What is their Łojasiewicz exponent at (0,0) ?

We want to present Z as the graph of some function $y(x)$.

Example Here we shall see that the order and exponent can be both integer and different. (The example, but not the reasoning, comes from a paper by Tworzewski.)

Consider two curves N and Z in $\mathbb{C}^{2}(x, y)$ intersecting at $(0,0)$:

$$
N=\{y=0\} \quad \text { and } \quad Z=\left\{y^{d}+y x^{d-1}+x^{s}=0\right\},
$$

where $1<d<s$, and assume that d is odd. What is their Łojasiewicz exponent at (0,0) ?

We want to present Z as the graph of some function $y(x)$.

Lemma

There is a locally unique function

$$
y(x)=x^{s-d+1} z(x)-x^{s-d+1}
$$

whose graph is Z, with a C^{∞} function $z(x), z(0)=0$.

Example Here we shall see that the order and exponent can be both integer and different. (The example, but not the reasoning, comes from a paper by Tworzewski.)

Consider two curves N and Z in $\mathbb{C}^{2}(x, y)$ intersecting at $(0,0)$:

$$
N=\{y=0\} \quad \text { and } \quad Z=\left\{y^{d}+y x^{d-1}+x^{s}=0\right\},
$$

where $1<d<s$, and assume that d is odd. What is their Łojasiewicz exponent at (0,0) ?

We want to present Z as the graph of some function $y(x)$.

Lemma

There is a locally unique function

$$
y(x)=x^{s-d+1} z(x)-x^{s-d+1}
$$

whose graph is Z, with a C^{∞} function $z(x), z(0)=0$.
This is " $-x^{s-d+1 "}$ which dominates the computation.

Using $y(x)$, we compute the Łojasiewicz exponent. Here is a sketch. We discuss the inequality defining this exponent at (0, 0).

Using $y(x)$, we compute the Łojasiewicz exponent. Here is a sketch. We discuss the inequality defining this exponent at $(0,0)$.

Let $A=(x, 0)$ be the points on $N, B=(x, y(x))$ be the points on Z, and let O be the point $(0,0)$.

Using $y(x)$, we compute the Łojasiewicz exponent. Here is a sketch. We discuss the inequality defining this exponent at $(0,0)$.

Let $A=(x, 0)$ be the points on $N, B=(x, y(x))$ be the points on Z, and let O be the point $(0,0)$.

Using the function $y(x)$, the length $A B$ is of order $|x|^{s-d+1}$. Since $A O$ and $B O$ are of order $|x|$, the triangle inequality:

Using $y(x)$, we compute the Łojasiewicz exponent. Here is a sketch. We discuss the inequality defining this exponent at $(0,0)$.

Let $A=(x, 0)$ be the points on $N, B=(x, y(x))$ be the points on Z, and let O be the point $(0,0)$.

Using the function $y(x)$, the length $A B$ is of order $|x|^{s-d+1}$. Since $A O$ and $B O$ are of order $|x|$, the triangle inequality:

$$
A B \leq A O+B O
$$

implies the inequality (10) from the Łojasiewicz theorem.

Using $y(x)$, we compute the Łojasiewicz exponent. Here is a sketch. We discuss the inequality defining this exponent at $(0,0)$.

Let $A=(x, 0)$ be the points on $N, B=(x, y(x))$ be the points on Z, and let O be the point $(0,0)$.

Using the function $y(x)$, the length $A B$ is of order $|x|^{s-d+1}$. Since $A O$ and $B O$ are of order $|x|$, the triangle inequality:

$$
A B \leq A O+B O
$$

implies the inequality (10) from the Łojasiewicz theorem.
We get that the exponent is equal to $s-d+1$. (The order of tangency is $s-d$.)

Our goal is to investigate the behaviour of the Łojasiewicz exponent under hyperplane sections.

Our goal is to investigate the behaviour of the Łojasiewicz exponent under hyperplane sections.
Theorem
Let X and Y be analytic subsets in \mathbb{C}^{m}, and let $x^{0} \in X \cap Y$ such that $\mathcal{L}\left(X, Y ; x^{0}\right) \geq 1$.

Our goal is to investigate the behaviour of the Łojasiewicz exponent under hyperplane sections.
Theorem
Let X and Y be analytic subsets in \mathbb{C}^{m}, and let $x^{0} \in X \cap Y$ such that $\mathcal{L}\left(X, Y ; x^{0}\right) \geq 1$. Then for a general hyperplane H_{0} of \mathbb{C}^{m} passing through x^{0} we have

Our goal is to investigate the behaviour of the Łojasiewicz exponent under hyperplane sections.
Theorem
Let X and Y be analytic subsets in \mathbb{C}^{m}, and let $x^{0} \in X \cap Y$ such that $\mathcal{L}\left(X, Y ; x^{0}\right) \geq 1$. Then for a general hyperplane H_{0} of \mathbb{C}^{m} passing through x^{0} we have

$$
\mathcal{L}\left(X \cap H_{0}, Y \cap H_{0} ; x^{0}\right) \leq \mathcal{L}\left(X, Y ; x^{0}\right) .
$$

To prove it, we need the following proposition comparing the two following distances.

To prove it, we need the following proposition comparing the two following distances.
Proposition
Let X be an analytic subset in \mathbb{C}^{m}, and let $x^{0} \in X$. Then for a general hyperplane H_{0} of \mathbb{C}^{m} passing through x^{0},

To prove it, we need the following proposition comparing the two following distances.

Proposition

Let X be an analytic subset in \mathbb{C}^{m}, and let $x^{0} \in X$. Then for a general hyperplane H_{0} of \mathbb{C}^{m} passing through x^{0}, there exist $c>0$ and a neighbourhood U of x^{0} such that for all $x \in U \cap H_{0}$ we have

To prove it, we need the following proposition comparing the two following distances.

Proposition

Let X be an analytic subset in \mathbb{C}^{m}, and let $x^{0} \in X$. Then for a general hyperplane H_{0} of \mathbb{C}^{m} passing through x^{0}, there exist $c>0$ and a neighbourhood U of x^{0} such that for all $x \in U \cap H_{0}$ we have

$$
\rho\left(x, X \cap H_{0}\right) \leq c \rho(x, X) .
$$

To prove it, we need the following proposition comparing the two following distances.

Proposition

Let X be an analytic subset in \mathbb{C}^{m}, and let $x^{0} \in X$. Then for a general hyperplane H_{0} of \mathbb{C}^{m} passing through x^{0}, there exist $c>0$ and a neighbourhood U of x^{0} such that for all $x \in U \cap H_{0}$ we have

$$
\rho\left(x, X \cap H_{0}\right) \leq c \rho(x, X) .
$$

How the proposition implies the theorem?

To prove it, we need the following proposition comparing the two following distances.

Proposition

Let X be an analytic subset in \mathbb{C}^{m}, and let $x^{0} \in X$. Then for a general hyperplane H_{0} of \mathbb{C}^{m} passing through x^{0}, there exist $c>0$ and a neighbourhood U of x^{0} such that for all $x \in U \cap H_{0}$ we have

$$
\rho\left(x, X \cap H_{0}\right) \leq c \rho(x, X) .
$$

How the proposition implies the theorem?
Let us assume that x^{0} is the origin $0 \in \mathbb{C}^{m}$. If ν is a regular separation exponent for X and Y at 0 ,

To prove it, we need the following proposition comparing the two following distances.

Proposition

Let X be an analytic subset in \mathbb{C}^{m}, and let $x^{0} \in X$. Then for a general hyperplane H_{0} of \mathbb{C}^{m} passing through x^{0}, there exist $c>0$ and a neighbourhood U of x^{0} such that for all $x \in U \cap H_{0}$ we have

$$
\rho\left(x, X \cap H_{0}\right) \leq c \rho(x, X) .
$$

How the proposition implies the theorem?
Let us assume that x^{0} is the origin $0 \in \mathbb{C}^{m}$. If ν is a regular separation exponent for X and Y at 0 , then $\nu \geq \mathcal{L}(X, Y ; 0) \geq 1$, and for some $c^{\prime}>0$ we have

$$
\begin{equation*}
\rho(x, Y) \geq c^{\prime} \rho(x, X \cap Y)^{\nu} \tag{12}
\end{equation*}
$$

By the proposition applied to $X \cap Y$, there is $c>0$ such that for all $x \in H_{0}$ near 0 we have

By the proposition applied to $X \cap Y$, there is $c>0$ such that for all $x \in H_{0}$ near 0 we have

$$
c \rho(x, X \cap Y)^{\nu} \geq \rho\left(x, X \cap Y \cap H_{0}\right)^{\nu}
$$

By the proposition applied to $X \cap Y$, there is $c>0$ such that for all $x \in H_{0}$ near 0 we have

$$
c \rho(x, X \cap Y)^{\nu} \geq \rho\left(x, X \cap Y \cap H_{0}\right)^{\nu}
$$

Combined with (12), this gives
$\rho\left(x, Y \cap H_{0}\right) \geq \rho(x, Y) \geq c^{\prime} \rho(x, X \cap Y)^{\nu} \geq \frac{c^{\prime}}{c} \rho\left(x, X \cap Y \cap H_{0}\right)^{\nu}$
for all $x \in X \cap H_{0}$ near 0 , so that ν is a regular separation exponent for $X \cap H_{0}$ and $Y \cap H_{0}$ at 0 as desired.

We now comment on the proof of the proposition. It uses the Tadeusz Mostowski Lipschitz equisingularity theory.

We now comment on the proof of the proposition. It uses the Tadeusz Mostowski Lipschitz equisingularity theory.

We may assume that x^{0} is the origin $0 \in \mathbb{C}^{m}$. We work in a small neighbourhood of 0 .

We now comment on the proof of the proposition. It uses the Tadeusz Mostowski Lipschitz equisingularity theory.

We may assume that x^{0} is the origin $0 \in \mathbb{C}^{m}$. We work in a small neighbourhood of 0 .

Let $\check{\mathbb{P}}^{m-1}$ denote the set of all hyperplanes of \mathbb{C}^{m} through 0 , with its usual structure of manifold. The distance between two elements $H, K \in \check{\mathbb{P}}^{m-1}$ is the angle $\Varangle(H, K)$ between them, that is,

$$
\Varangle(H, K):=\arccos \frac{\langle v, w\rangle}{|v||w|},
$$

where v and w are normal vectors to the hyperplanes H and K respectively, considered with their underlying real structures, and where $\langle\cdot, \cdot\rangle$ is the standard inner product in $\mathbb{R}^{2 m}$.

Let

$$
\mathcal{X}:=\left\{(H, x) \in \check{\mathbb{P}}^{m-1} \times \mathbb{C}^{m} \mid x \in H \cap X\right\} .
$$

Let

$$
\mathcal{X}:=\left\{(H, x) \in \check{\mathbb{P}}^{m-1} \times \mathbb{C}^{m} \mid x \in H \cap X\right\} .
$$

By the very first Proposition of Mostowski's Dissertationes, in a neighbourhood

$$
\mathcal{U}:=\left\{(H, x) \in \check{\mathbb{P}}^{m-1} \times \mathbb{C}^{m} \mid \Varangle\left(H_{0}, H\right)<a \text { and }|x|<b\right\}
$$

of a generic $\left(H_{0}, 0\right)$, the set \mathcal{X} is Lipschitz equisingular over $\check{\mathbb{P}}^{m-1} \times\{0\}$.

Let

$$
\mathcal{X}:=\left\{(H, x) \in \check{\mathbb{P}}^{m-1} \times \mathbb{C}^{m} \mid x \in H \cap X\right\} .
$$

By the very first Proposition of Mostowski's Dissertationes, in a neighbourhood

$$
\mathcal{U}:=\left\{(H, x) \in \check{\mathbb{P}}^{m-1} \times \mathbb{C}^{m} \mid \Varangle\left(H_{0}, H\right)<a \text { and }|x|<b\right\}
$$

of a generic $\left(H_{0}, 0\right)$, the set \mathcal{X} is Lipschitz equisingular over $\breve{\mathbb{P}}^{m-1} \times\{0\}$.

That is, for any $(H, 0) \in \mathcal{U} \cap\left(\check{\mathbb{P}}^{m-1} \times\{0\}\right)$, there is a (germ of) Lipschitz homeomorphism

$$
\varphi:\left(\check{\mathbb{P}}^{m-1} \times \mathbb{C}^{m},(H, 0)\right) \rightarrow\left(\check{\mathbb{P}}^{m-1} \times \mathbb{C}^{m},(H, 0)\right)
$$

such that $p \circ \varphi=p\left(\right.$ where $p: \check{\mathbb{P}}^{m-1} \times \mathbb{C}^{m} \rightarrow \check{\mathbb{P}}^{m-1}$ is the standard projection) and $\varphi(\mathcal{X})=\check{\mathbb{P}}^{m-1} \times(H \cap X)$ (as germs at $(H, 0))$.

Actually, if $h=\left(h_{1}, \ldots, h_{m-1}\right)$ are coordinates in $\breve{\mathbb{P}}^{m-1}$ around H_{0} such that

$$
h_{1}\left(H_{0}\right)=\cdots=h_{m-1}\left(H_{0}\right)=0,
$$

Actually, if $h=\left(h_{1}, \ldots, h_{m-1}\right)$ are coordinates in $\check{\mathbb{P}}^{m-1}$ around H_{0} such that

$$
h_{1}\left(H_{0}\right)=\cdots=h_{m-1}\left(H_{0}\right)=0
$$

and if $x=\left(x_{1}, \ldots, x_{m}\right)$ are Cartesian coordinates in \mathbb{C}^{m},

Actually, if $h=\left(h_{1}, \ldots, h_{m-1}\right)$ are coordinates in $\check{\mathbb{P}}^{m-1}$ around H_{0} such that

$$
h_{1}\left(H_{0}\right)=\cdots=h_{m-1}\left(H_{0}\right)=0
$$

and if $x=\left(x_{1}, \ldots, x_{m}\right)$ are Cartesian coordinates in \mathbb{C}^{m},
then locally near $\left(H_{0}, 0\right)$, the standard vector fields $\partial_{h_{j}}$
$(1 \leq j \leq m-1)$ on $\breve{\mathbb{P}}^{m-1} \times\{0\}$ can be lifted to Lipschitz vector fields v_{j} on $\check{\mathbb{P}}^{m-1} \times \mathbb{C}^{m}$

Actually, if $h=\left(h_{1}, \ldots, h_{m-1}\right)$ are coordinates in $\check{\mathbb{P}}^{m-1}$ around H_{0} such that

$$
h_{1}\left(H_{0}\right)=\cdots=h_{m-1}\left(H_{0}\right)=0
$$

and if $x=\left(x_{1}, \ldots, x_{m}\right)$ are Cartesian coordinates in \mathbb{C}^{m},
then locally near $\left(H_{0}, 0\right)$, the standard vector fields $\partial_{h_{j}}$
$(1 \leq j \leq m-1)$ on $\check{\mathbb{P}}^{m-1} \times\{0\}$ can be lifted to Lipschitz vector fields v_{j} on $\check{\mathbb{P}}^{m-1} \times \mathbb{C}^{m}$
such that the flows of v_{j} preserve \mathcal{X}.

So, in particular, v_{j} is a Lipschitz vector field of the form

$$
v_{j}(h, x)=\partial_{h_{j}}\left|(h, x)+\sum_{\ell=1}^{m} w_{j \ell}(h, x) \partial_{x_{\ell}}\right|(h, x),
$$

So, in particular, v_{j} is a Lipschitz vector field of the form

$$
v_{j}(h, x)=\partial_{h_{j}}\left|(h, x)+\sum_{\ell=1}^{m} w_{j \ell}(h, x) \partial_{x_{\ell}}\right|(h, x),
$$

and there is $c^{\prime}>0$ such that

$$
\begin{equation*}
\left|w_{j \ell}(h, x)\right| \leq c^{\prime}|x| \text { near } 0 \tag{13}
\end{equation*}
$$

for all j, ℓ.

So, in particular, v_{j} is a Lipschitz vector field of the form

$$
v_{j}(h, x)=\partial_{h_{j}}\left|(h, x)+\sum_{\ell=1}^{m} w_{j \ell}(h, x) \partial_{x_{\ell}}\right|(h, x),
$$

and there is $c^{\prime}>0$ such that

$$
\begin{equation*}
\left|w_{j \ell}(h, x)\right| \leq c^{\prime}|x| \text { near } 0 \tag{13}
\end{equation*}
$$

for all j, ℓ.
Using the integral curves of these Lipschitz vector fields, we prove the proposition.

P. Pragacz, W. Domitrz, P. Mormul, Ch. Eyral

Tangency and regular separation

P. Pragacz, W. Domitrz, P. Mormul, Ch. Eyral

Tangency and regular separation

Corollary
Assume that $\operatorname{dim}(X)=\operatorname{dim}(Y)$. If $x^{0} \in \overline{X \backslash Y}$, then the tangency order $s\left(X, Y ; x^{0}\right) \leq \mathcal{L}\left(X, Y ; x^{0}\right)$.

Corollary
Assume that $\operatorname{dim}(X)=\operatorname{dim}(Y)$. If $x^{0} \in \overline{X \backslash Y}$, then the tangency order $s\left(X, Y ; x^{0}\right) \leq \mathcal{L}\left(X, Y ; x^{0}\right)$.

Remark. If $x^{0} \notin \overline{X \backslash Y}$, then $\nu=0$ or $\nu=1$ in (10), and in general, the above inequality is not true.

Assume that $\operatorname{dim}(X)=\operatorname{dim}(Y)$. If $x^{0} \in \overline{X \backslash Y}$, then the tangency order $s\left(X, Y ; x^{0}\right) \leq \mathcal{L}\left(X, Y ; x^{0}\right)$.

Remark. If $x^{0} \notin \overline{X \backslash Y}$, then $\nu=0$ or $\nu=1$ in (10), and in general, the above inequality is not true.

Let us first consider the special case where x^{0} is an isolated point of $X \cap Y$. By the assumption, x^{0} is an accumulation point of X. Then, by the inequality (11), and since the parametrization q is locally bi-Lipschitz, there exists $c>0$ such that for all u near u^{0} we have

Assume that $\operatorname{dim}(X)=\operatorname{dim}(Y)$. If $x^{0} \in \overline{X \backslash Y}$, then the tangency order $s\left(X, Y ; x^{0}\right) \leq \mathcal{L}\left(X, Y ; x^{0}\right)$.

Remark. If $x^{0} \notin \overline{X \backslash Y}$, then $\nu=0$ or $\nu=1$ in (10), and in general, the above inequality is not true.

Let us first consider the special case where x^{0} is an isolated point of $X \cap Y$. By the assumption, x^{0} is an accumulation point of X. Then, by the inequality (11), and since the parametrization q is locally bi-Lipschitz, there exists $c>0$ such that for all u near u^{0} we have

$$
\rho(q(u), Y) \geq c\left|u-u^{0}\right|^{\mathcal{L}\left(X, Y ; x^{0}\right)}
$$

Assume that $\operatorname{dim}(X)=\operatorname{dim}(Y)$. If $x^{0} \in \overline{X \backslash Y}$, then the tangency order $s\left(X, Y ; x^{0}\right) \leq \mathcal{L}\left(X, Y ; x^{0}\right)$.

Remark. If $x^{0} \notin \overline{X \backslash Y}$, then $\nu=0$ or $\nu=1$ in (10), and in general, the above inequality is not true.

Let us first consider the special case where x^{0} is an isolated point of $X \cap Y$. By the assumption, x^{0} is an accumulation point of X. Then, by the inequality (11), and since the parametrization q is locally bi-Lipschitz, there exists $c>0$ such that for all u near u^{0} we have

$$
\rho(q(u), Y) \geq c\left|u-u^{0}\right|^{\mathcal{L}\left(X, Y ; x^{0}\right)}
$$

while by (1) we have

$$
\rho(q(u), Y)<\left|u-u^{0}\right|^{s\left(X, Y ; x^{0}\right)}
$$

Assume that $\operatorname{dim}(X)=\operatorname{dim}(Y)$. If $x^{0} \in \overline{X \backslash Y}$, then the tangency order $s\left(X, Y ; x^{0}\right) \leq \mathcal{L}\left(X, Y ; x^{0}\right)$.

Remark. If $x^{0} \notin \overline{X \backslash Y}$, then $\nu=0$ or $\nu=1$ in (10), and in general, the above inequality is not true.

Let us first consider the special case where x^{0} is an isolated point of $X \cap Y$. By the assumption, x^{0} is an accumulation point of X. Then, by the inequality (11), and since the parametrization q is locally bi-Lipschitz, there exists $c>0$ such that for all u near u^{0} we have

$$
\rho(q(u), Y) \geq c\left|u-u^{0}\right|^{\mathcal{L}\left(X, Y ; x^{0}\right)}
$$

while by (1) we have

$$
\rho(q(u), Y)<\left|u-u^{0}\right|^{s\left(X, Y ; x^{0}\right)} .
$$

Thus the corollary holds true in this case.

The general case (i.e., $\operatorname{dim} X \cap Y=n>0$) follows from the 0 -dimensional case and the last theorem.

The general case (i.e., $\operatorname{dim} X \cap Y=n>0$) follows from the 0 -dimensional case and the last theorem.

Indeed, take n general hyperplanes H_{1}, \ldots, H_{n} in \mathbb{C}^{m} passing through x^{0}, so that $X \cap Y \cap H_{1} \cap \cdots \cap H_{n}$ is an isolated intersection.

The general case (i.e., $\operatorname{dim} X \cap Y=n>0$) follows from the 0 -dimensional case and the last theorem.

Indeed, take n general hyperplanes H_{1}, \ldots, H_{n} in \mathbb{C}^{m} passing through x^{0}, so that $X \cap Y \cap H_{1} \cap \cdots \cap H_{n}$ is an isolated intersection.

Let s_{i} (respectively, \mathcal{L}_{i}) denote the order of tangency (respectively, the Łojasiewicz exponent) of $X \cap H_{1} \cap \cdots \cap H_{i}$ and $Y \cap H_{1} \cap \cdots \cap H_{i}$ at x^{0}.

The general case (i.e., $\operatorname{dim} X \cap Y=n>0$) follows from the 0 -dimensional case and the last theorem.

Indeed, take n general hyperplanes H_{1}, \ldots, H_{n} in \mathbb{C}^{m} passing through x^{0}, so that $X \cap Y \cap H_{1} \cap \cdots \cap H_{n}$ is an isolated intersection.

Let s_{i} (respectively, \mathcal{L}_{i}) denote the order of tangency (respectively, the Łojasiewicz exponent) of $X \cap H_{1} \cap \cdots \cap H_{i}$ and $Y \cap H_{1} \cap \cdots \cap H_{i}$ at x^{0}.

Clearly, (1) implies $s_{i} \leq s_{i+1}$ while the last theorem shows $\mathcal{L}_{i} \geq \mathcal{L}_{i+1}$.

The general case (i.e., $\operatorname{dim} X \cap Y=n>0$) follows from the 0 -dimensional case and the last theorem.

Indeed, take n general hyperplanes H_{1}, \ldots, H_{n} in \mathbb{C}^{m} passing through x^{0}, so that $X \cap Y \cap H_{1} \cap \cdots \cap H_{n}$ is an isolated intersection.

Let s_{i} (respectively, \mathcal{L}_{i}) denote the order of tangency (respectively, the Łojasiewicz exponent) of $X \cap H_{1} \cap \cdots \cap H_{i}$ and $Y \cap H_{1} \cap \cdots \cap H_{i}$ at x^{0}.

Clearly, (1) implies $s_{i} \leq s_{i+1}$ while the last theorem shows $\mathcal{L}_{i} \geq \mathcal{L}_{i+1}$.

Thus the corollary follows from the inequality $s_{n} \leq \mathcal{L}_{n}$ (0-dimensional case).

THE END

