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Preface

With roots in enumerative geometry and Hilbert’s 15th problem, modern Schubert
Calculus studies classical and quantum intersection rings on spaces with symme-
tries, such as flag manifolds. The presence of symmetries leads to particularly rich
structures, and it connects Schubert Calculus to many branches of mathematics,
including algebraic geometry, combinatorics, representation theory, and theoretical
physics. For instance, the study of the quantum cohomology ring of a Grassmann
manifold combines all these areas in an organic way. The current volume show-
cases some of the newest developments in the subject, as presented at the
“International Festival in Schubert Calculus”, a conference held at Sun Yat-sen
University in Guangzhou, China, during November 6–10, 2017.

The event included a 1-day mini-school and a 4-day international conference
entitled “Trends in Schubert Calculus”. There were over 80 participants, more than
one half of which were international, from countries such as Australia, France,
Germany, India, Japan, Korea, Poland, Russia, United Kingdom, and the U.S.A.
This event continued the tradition of conferences in Schubert Calculus with large
international participation; there were three such conferences in the past decade
(Toronto 2010, Osaka 2012 and Bedlewo 2015).

The current volume includes 12 papers authored by some of the speakers,
covering a large array of topics, including several high-quality surveys. Each of the
papers was refereed by two anonymous experts in the field. This volume could not
have existed without the combined efforts of the authors and referees, and we are
grateful for everyone’s contribution.

Problems with roots in classical Schubert Calculus attracted significant attention.
The factorial Grothendieck polynomials, which investigate polynomials repre-
senting Schubert classes in K theory, were discussed in the paper by Matsumura
and Sugimoto. The related problem of finding formulas for cohomology classes of
various degeneracy loci is addressed in a paper by Darondeau and Pragacz. Yet
another problem with roots in Schubert’s classical work, that of finding formulas for
the order of contact between manifolds, is investigated in the paper by Domitrz,
Mormul, and Pragacz. Finally, Duan and Zhao address and survey Schubert’s
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classical problem of characteristics, and find presentations for the integral coho-
mology rings of flag manifolds, including those of exceptional Lie types.

There are rich connections between Schubert Calculus and the combinatorics of
symmetric functions and polynomials. A survey by Pechenik and Searles highlights
the properties of some of the most important bases of polynomials relevant for
geometry. Expanding on this, a topic of current high interest is to relate and apply
Schubert Calculus methods to problems in (combinatorial and geometric) repre-
sentation theory.

Three papers in the volume address such connections: Anderson and Nigro
investigate the geometric Satake correspondence in relation to minuscule Schubert
Calculus; McGlade, Ram, and Yang wrote a survey on the combinatorics and
geometry of integrable representations of quantum affine algebras with a particular
focus on level 0; this is motivated by Schubert Calculus on semi-infinite flag
manifolds. Finally, Su and Zhong wrote a survey showcasing applications of
Maulik and Okounkov’s theory of stable envelopes on the cotangent bundle of a
flag variety to various problems in geometry and representation theory. This recent
direction, which one may call “Cotangent Schubert Calculus”, is closely related to
the study of characteristic classes of singular varieties; from this viewpoint, it is
studied by Fehér, Rimányi, and Weber.

Methods and questions from Schubert Calculus can be adapted to varieties
related to flag manifolds or to generalizations of the cohomology ring. A survey by
Abe and Horiguchi is investigating the properties of the cohomology rings of
Hessenberg varieties; these generalize the usual flag varieties, the Peterson variety,
and the Springer fibre. In another direction, Hudson, Matsumura, and Perrin address
the problem of defining stable Bott-Samelson classes in the algebraic cobordism;
this is closely related to the outstanding problem of defining Schubert classes in
more general oriented cohomology theories.

Finally, a paper by Kim, Oh, Ueda, and Yoshida gives an expository account of
quasimap theory, and proves a generalization of toric residue mirror symmetry to
Grassmannians.

These papers provide a broad overview of current interests in Schubert Calculus
and related areas. We would like to thank again all the anonymous referees for their
invaluable help, and the Springer editorial staff for the assistance with various
technical parts. Finally, we are grateful to Sun Yat-sen University for generously
providing funds for this conference and to Springer Nature for providing us the
opportunity to publish these papers.

All papers in this volume have been refereed and are in a final form. No version
of any of them will be submitted for publication elsewhere.

Guangzhou, China Jianxun Hu
Guangzhou, China Changzheng Li
Blacksburg, USA
May 2020

Leonardo C. Mihalcea
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Factorial Flagged Grothendieck
Polynomials

Tomoo Matsumura and Shogo Sugimoto

Abstract The factorial flagged Grothendieck polynomials are defined by flagged
set-valued tableaux of Knutson–Miller–Yong [10]. We show that they can be
expressed by a Jacobi–Trudi type determinant formula, generalizing the work of
Hudson–Matsumura [8].As an application,weobtain alternative proofs of the tableau
and the determinant formulas of vexillary double Grothendieck polynomials, which
were originally obtained by Knutson–Miller–Yong [10] and Hudson–Matsumura [8]
respectively. Furthermore, we show that each factorial flagged Grothendieck poly-
nomial can be obtained by applying K -theoretic divided difference operators to a
product of linear polynomials.

Keywords Factorial grothendieck polynomials · Flagged partitions · Flagged
set-valued tableaux · Vexillary permutations · Jacobi–Trudi formula · Double
grothendieck polynomials

1 Introduction

The double Grothendieck polynomials introduced by Lascoux and Schützenberger
[11, 12] represent the torus-equivariant K -theory classes of the structure sheaves
of Schubert varieties in the flag varieties. Their combinatorial formula in terms of
pipe dreams or rc graphs was obtained by Fomin–Kirillov [4, 5]. By restricting to
Grassmannian elements, ormore generally, vexillary permutations,Knutson–Miller–
Yong [10] expressed the associated double Grothendieck polynomials as factorial
flagged Grothendieck polynomials defined in terms of flagged set-valued tableaux.
This can be regarded as a unification of the work of Wachs [17] and Chen–Li–Louck
[3] on flagged tableaux and the work of Buch [2] and McNamara [16] on set-valued
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2 T. Matsumura and S. Sugimoto

tableaux. On the other hand, the first author, in the joint work [7] with Hudson, Ikeda
andNaruse, obtained a determinant formula of the double Grothendieck polynomials
associated to Grassmannian elements (cf. [14]). Such an explicit closed formula was
later generalized to the vexillary case in [1, 8]. Motivated by these results, the first
author [15] studied (non-factorial, or single) flagged Grothendieck polynomials and
showed their determinant formula in general, beyond the ones given by vexillary
permutations.

In this paper, we extend the results in [15] to the factorial (or double) case. Let
x = (xi )i∈Z>0 and b = (bi )Z>0 be infinite sequences of variables and β a formal
variable.We denote u ⊕ v = u + v + βuv for variables u and v. Consider a partition
λ = (λ1 ≥ · · · ≥ λr > 0) with a flagging f = (0 < f1 ≤ · · · ≤ fr ). Let T (λ, f )
be the set of flagged set-valued tableaux of the flagged partition (λ, f ). For each
T ∈ T (λ, f ), we denote

[x |b]T =
∏

e∈T

(
xval(e) ⊕ bval(e)−r(e)+c(e)

)
,

where the product runs over all entries e of T , val(e) denotes the numeric value of
e, and r(e) (resp. c(e)) denotes the row (resp. column) index of e. Following the
work [9, 10] of Knutson–Miller–Yong, we define the factorial flagged Grothendieck
polynomial associated to (λ, f ) by

Gλ, f (x |b) :=
∑

T∈T (λ, f )

β|T |−|λ|[x |b]T .

The following is the main result of this paper.

Main Theorem (Theorem 3.5). For a flagged partition (λ, f ) of length r , we have

Gλ, f (x |b) = det

( ∞∑

s=0

(
i − j

s

)
βsG[ fi , fi+λi−i]

λi+ j−i+s

)

1≤i, j≤r

where G[p,q]
m = G[p,q]

m (x |b),m ∈ Z, p, q ∈ Z≥0, are polynomials in x and b with
coefficients in Z[β], defined by the generating function

∑

m∈Z
G[p,q]
m um = 1

1 + βu−1

∏

1≤i≤p

1 + βxi
1 − xiu

∏

1≤i≤q

(1 + (u + β)bi ).

Our proof is a generalization of the ones in [15, 17] to the factorial (double)
case. We prove that both the tableau and determinant expressions satisfy the same
compatibility with divided difference operators, allowing us to show that they coin-
cide by induction. The first author employed a similar argument in order to show
a tableau formula for double Grothendieck polynomials associated to 321-avoiding
permutations [13]. If we specialize our formula at β = 0, we recover the result by
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Chen–Li–Louck [3] for flagged double Schur functions. Our proof is different from
theirs, which is based on the lattice-path interpretation of the tableau expression. It
is also worth stressing that our proof is completely self-contained. In particular, as a
consequence of our main theorem, we obtain a purely algebraic and combinatorial
proof of the formula

G[p,p+m−1]
m (x |b) =

∑

T∈T ((m),(p))

[x |b]T .

To the best of the authors’ knowledge, the only proof of this formula available in the
literature uses a geometric argument established in [7].

As an application, we obtain an alternative proof of the tableau and determi-
nant formulas of vexillary double Grothendieck polynomials obtained by Knutson–
Miller–Yong [10] and Hudson–Matsumura [8] respectively. We also generalize it to
arbitrary factorial flagged Grothendieck polynomials: we show that each of them can
be obtained by consecutively applying divided difference operators to a product of
linear polynomials. The corresponding results for (non-factorial) flagged Schur and
Grothendieck polynomials were obtained in [15, 17] respectively.

2 Flagged Grothendieck Polynomials

Let x = (xi )Z>0 and b = (bi )Z>0 be sets of infinitely many variables. Let Z[β] be the
polynomial ring of a formal variable β where we set degβ = −1. Let Z[β][x, b]
and Z[β][[x, b]] be the rings of polynomials and of formal power series in x and b
respectively. Throughout the paper, for each f ∈ Z[β][[x, b]], let f � be the element
obtained from f by increasing by 1 the index of all the xi ’s. We use the general-
ized binomial coefficients

(n
i

)
given by (1 + x)n = ∑

i≥0

(n
i

)
xi for n ∈ Z with the

convention that
(n
i

) = 0 for all integers i < 0.

2.1 Flagged Partitions and Their Tableaux

A partition λ of length r is a weakly decreasing sequence of positive integers
(λ1, . . . ,λr ). We identify λ with its Young diagram {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ r},
depicted as a left-aligned array of boxes such that in the i th row from the top there are
exactly λi boxes. Let |λ| be the total number of boxes in the Young diagram of λ, i.e.
|λ| = λ1 + · · · + λr . A flagging f of a partition of length r is a weakly increasing
sequence of positive integers ( f1, . . . , fr ). We call the pair (λ, f ) a flagged partition.

A set-valued tableau T of shape λ is an assignment of a finite subset of positive
integers to each box of the Young diagram of λ, satisfying the requirement that
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• weakly increasing in each row: max A ≤ min B if A fills the box (i, j) and B fills
the box (i, j + 1) for 1 ≤ i ≤ r and 1 ≤ j ≤ λi − 1.

• strictly increasing in each column: max A < min B if A fills the box (i, j) and B
fills the box (i + 1, j) for 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ λi+1.

An element e of a subset assigned to a box of T is called an entry of T and denoted
by e ∈ T . The total number of entries in T is denoted by |T |. For each e ∈ T , let
val(e) be its numeric value, r(e) its row index, and c(e) its column index. A flagged
set-valued tableau of a flagged partition (λ, f ) is a set-value tableau of shape λ
additionally satisfying that the sets assigned to the boxes of the i-th row are subsets
of {1, . . . , fi }. Let T (λ, f ) be the set of all flagged set-valued tableaux of (λ, f ).

For each tableau T ∈ T (λ, f ), we define

[x |b]T :=
∏

e∈T
(xval(e) ⊕ bval(e)−r(e)+c(e))

where we set u ⊕ v := u + v + βuv. Following Knutson–Miller–Yong ([9, 10]), we
define the factorial flagged Grothendieck polynomial Gλ, f (x |b) as follows.
Definition 2.1 For a flagged partition (λ, f ), we define

Gλ, f = Gλ, f (x |b) =
∑

T∈T (λ, f )

β|T |−|λ|[x |b]T .

If λ is an empty partition, we set Gλ, f = 1, and if f1 = 0, we set Gλ, f = 0.

Example 2.2 Let λ = (3, 1) and f = (2, 4). Then T (λ, f ) contains tableaux such
as

1 1 12
23

12 2 2
34

1 12 2
23

2 2 2
4 .

If we change f to f ′ = (2, 3), then T (λ, f ′) doesn’t contain the second and forth
tableaux.

If T is the first tableau in the above list, |T | = 6 and we have

[x |b]T = (x1 ⊕ b1)(x1 ⊕ b2)(x1 ⊕ b3)(x2 ⊕ b4)(x2 ⊕ b1)(x3 ⊕ b2).

2.2 Divided Difference Operators and G[ p,q]
m

Definition 2.3 For each positive integer i , define the K-theoretic divided difference
operator πi by

πi ( f ) = (1 + βxi+1) f − (1 + βxi )si ( f )

xi − xi+1

for each f ∈ Z[β][[x, b]], where si permutes xi and xi+1.
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The following properties of πi are easy to check (cf. [15, Sect. 2.1]).

Lemma 2.4 For each positive integer i and f, g ∈ Z[β][[x, b]], we have
(1) πi ( f g) = πi ( f )g + si ( f )πi (g) + βsi ( f )g.
(2) If f is symmetric in xi and xi+1, then πi ( f ) = −β f and πi ( f g) = f πi (g).
(3) πi ( f ) = −β f , then f is symmetric in xi and xi+1.

Definition 2.5 Define G[p,q]
m = G[p,q]

m (x |b),m ∈ Z, p, q ∈ Z≥0, by the generating
function

G[p,q]
u =

∑

m∈Z
G[p,q]
m um = 1

1 + βu−1

∏

1≤i≤p

1 + βxi
1 − xiu

∏

1≤i≤q

(1 + (u + β)bi ).

If q = 0, then we denote G[p]
m = G[p,q]

m .

Remark 2.6 (1) Since the degree of u in G[0,q]
u is at most q, we see that G[0,q]

m = 0
for m > q.

(2) We can show that G[p,q]
m = (−β)−m for m ≤ 0 by a direct computation. In fact,

by using 1 + (u + β)bi = 1−ub̄i
1+βb̄i

where b̄i = 1−ubi
1+βbi

, we have

G[p,q]
u = 1

1 + βu−1

∏

1≤i≤p

1 + βxi
1 − xi u

∏

1≤i≤q

1 − ub̄i
1 + βb̄i

=
∏

1≤i≤p

(1 + βxi )
∏

1≤i≤q

1

1 + βb̄i

∑

m∈Z

⎛

⎝
∑

l≥0

∑

n≥0

hm+n−l (x)el (−b̄)(−β)n

⎞

⎠ um .

Suppose m ≤ 0. Then the coefficient of um in the summation is

∏

1≤i≤p

1

1 + βxi

∏

1≤i≤q

(1 + βb̄i )(−β)−m .

Thus we have G[p,q]
m = (−β)−m for m ≤ 0.

(3) Similarly to (2), we can also check that G[1]
m = xm1 for m ≥ 0.

(4) We have G[1,q]
q+r = xr1G

[1,q]
q for any integer r ≥ 0. Indeed, if we let

q∏

i=1

(1 + (u + β)bi ) =
q∑

i=0

Eiu
i ,

then, by (3), we can compute

G[1,q]
q+r =

d∑

i=0

G[1]
i+r Eq−i = xr1

q∑

i=0

G[1]
i Eq−i = xr1G[1,q]

q .
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The following basic lemmas will be used in the next section.

Lemma 2.7 For each m ∈ Z, p, q ∈ Z≥0, we have πi (G[p,q]
m ) =

{
G[p+1,q]
m−1 (i = p),

−βG[p,q]
m (i �= p).

Proof The claim follows from applying divided difference operators to the generat-
ing function of G[p,q]

m (cf. [15, Lemma 1]). �
Lemma 2.8 Let t and ti (i = 1, . . . , n)bearbitrary positive integers and t ′ := t + 1.
We have

πt

(
n∏

i=1

(xt ⊕ bti )

)
=

n−1∑

v=0

(
v∏

i=1

(xt ⊕ bti )
n∏

i=v+2

(xt ′ ⊕ bti )

)
+ β

n−1∑

v=1

(
v∏

i=1

(xt ⊕ bti )
n∏

i=v+1

(xt ′ ⊕ bti )

)
.

In particular, πt (xt ⊕ bt1) = 1.

Proof We prove the claim by induction on n. When n = 1, we can show that πt (xt ⊕
bs) = 1 by a direct computation. For a general n, we apply Lemma 2.4 (1) with
f = xt ⊕ btn and g the rest:

πt

(
n∏

i=1

(xt ⊕ bti )

)
=

n−1∏

i=1

(xt ⊕ bti ) + (xt ′ ⊕ btn )πt

(
n−1∏

i=1

(xt ⊕ bti )

)
+ β(xt ′ ⊕ btn )

n−1∏

i=1

(xt ⊕ bti ).

By the induction hypothesis, we have

πt

(
n∏

i=1

(xt ⊕ bti )

)
=
n−1∏

i=1

(xt ⊕ bti ) + (xt ′ ⊕ btn )
n−2∑

v=0

(
v∏

i=1

(xt ⊕ bti )
n−1∏

i=v+2

(xt ′ ⊕ bti )

)

+β

(
(xt ′ ⊕ btn )

n−2∑

v=1

(
v∏

i=1

(xt ⊕ bti )
n−1∏

i=v+1

(xt ′ ⊕ bti )

)
+ (xt ′ ⊕ btn )

n−1∏

i=1

(xt ⊕ bti )

)
.

This is exactly the right hand side of the desired formula. �
Remark 2.9 Since the left hand side of the formula in Lemma 2.8 is symmetric in
the variables bt1 , . . . , btn , we can conclude that the right hand side is symmetric in
xt and xt+1.

Lemma 2.10 ([cf. Lemma 3 [15]]) For any integers m ∈ Z, p ∈ Z≥1 and q ∈ Z≥0,
we have

1

1 + x1β

(
G[p,q]
m − x1G[p,q]

m−1

)
= (

G[p−1,q]
m

)�
.

Proof It follows from the identity

∑

m∈Z

1

1 + x1β

(
G[p,q]
m − x1G[p,q]

m−1

)
um =

(
∑

m∈Z
G[p−1,q]
m um

)�

,

which can be checked by a direct computation. �
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3 Propositions and the Main Theorem

In this section, we prove the main theorem. First we show four propositions that will
be used in the proof of the main theorem given at the end of this section. Throughout
the section, we let (λ, f ) to be a flagged partition of length r .

Definition 3.1 We denote the following determinantal expression by G̃λ, f =
G̃λ, f (x |b):

G̃λ, f (x |b) = det

( ∞∑

s=0

(
i − j

s

)
βsG[ fi , fi+λi−i]

λi−i+ j+s

)

(1≤i, j≤r)

.

If λ = ∅, we set G̃λ, f = 1. If λ �= ∅ and f1 = 0, the first row of the determinant is
identically zero by Remark 2.6 (1) so that we set G̃λ, f = 0.

Proposition 3.2 For any integer q ≥ 0, we have G̃(q),(1)(x |b) = G(q),(1)(x |b), or
equivalently, G[1,q]

q =
q∏

i=1

(x1 ⊕ bi ).

Proof We prove the claim by induction on q. When q = 0, it is trivial. Suppose that
q > 0. By definition of G[p,q]

m , we have

∑

m∈Z
G[1,q]
m um =

(
∑

m∈Z
G[1,q−1]
m um

)
(1 + βbq + bqu),

so that
G[1,q]
q = G[1,q−1]

q (1 + βbq) + G[1,q−1]
q−1 bq .

Since G[1,q−1]
q = x1G[1,q−1]

q−1 by Remark 2.6 (4), we obtain

G[1,q]
q = G[1,q−1]

q−1 x1(1 + βbq) + G[1,q−1]
q−1 bq = G[1,q−1]

q−1 (x1 ⊕ bq).

The induction hypothesis implies the desired formula. �

Proposition 3.3 If f1 = 1, then we have

(1) G̃λ, f (x |b) = G[1,λ1]
λ1

· G̃λ′, f ′(x |b)�,
(2) Gλ, f (x |b) = G[1,λ1]

λ1
· Gλ′, f ′(x |b)�,

where λ′ = (λ2,λ3, . . . ,λr ) and f ′ = ( f2 − 1, f3 − 1, . . . , fr − 1).

Proof (1) We show that the left hand side coincides with the right hand side by
the column operation of subtracting the ( j − 1)-st column multiplied with x1(1 +
x1β)−1 from the j-th column for j = 2, . . . , r . By Remark 2.6 (4), the (1, j) entry
of G̃λ, f (x |b) is
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∞∑

s=0

(
1 − j

s

)
βsG[1,λ1]

λ1−1+ j+s =
∞∑

s=0

(
1 − j

s

)
βs x j−1+s

1 G[1,λ1]
λ1

= (1 + x1β)1− j x j−1
1 G[1,λ1]

λ1
.

Thus after the above column operation, the first row of G̃λ, f (x |b) becomes
(G[1,λ1]

λ1
, 0, . . . , 0). We compute the (i, j) entry of the resulting determinant for

i, j ≥ 2:

∞∑

s=0

(
i − j

s

)
βsG[ fi , fi+λi−i]

λ1−i+ j+s − x1
1 + x1β

∞∑

s=0

(
i − j + 1

s

)
βsG[ fi , fi+λi−i]

λi−i+ j−1+s

=
∞∑

s=0

(
i − j

s

)
βsG[ fi , fi+λi−i]

λ1−i+ j+s − x1
1 + x1β

∞∑

s=0

((
i − j

s

)
+

(
i − j

s − 1

))
βsG[ fi , fi+λi−i]

λi−i+ j−1+s

=
∞∑

s=0

(
i − j

s

)
βs

(
G[ fi , fi+λi−i]

λ1−i+ j+s − x1
1 + x1β

G[ fi , fi+λi−i]
λ1−i+ j+s−1

)
− x1β

1 + x1β

∞∑

s′=−1

(
i − j

s′

)
βs′G[ fi , fi+λi−i]

λi−i+ j+s′

=
∞∑

s=0

(
i − j

s

)
βs 1

1 + x1β

(
G[ fi , fi+λi−i]

λi−i+ j+s − x1G[ fi , fi+λi−i]
λi−i+ j+s−1

)

=
∞∑

s=0

(
i − j

s

)
βs

(
G[ fi−1, fi+λi−i]

λi−1+ j+s

)�

.

Here we have used a well-known identity for binomial coefficients for the first equal-
ity, the fact that

(i− j
s ′

) = 0 for s ′ = −1 for the third equality, and Lemma 2.10 for the
last equality. Finally the desired formula follows from the cofactor expansion with
respect to the first row for the resulting determinant after the column operation.

(2) For any T ∈ T (λ, f ), the entries on the first row of T are all 1 and all other
entries are greater than 1. There is a bijection from T (λ, f ) to T (λ′, f ′) sending T
to T ′ obtained from T by deleting its first row and decreasing the numeric values of
the rest of the entries by 1. Under this bijection, we have

[x |b]T =
(
[x |b]T ′)� ·

λ1∏

j=1

(x1 ⊕ b j ).

Now the claim follows from Proposition 3.2. �

Proposition 3.4 If λ1 > λ2 and f1 < f2, then we have

(1) π f1 G̃λ, f (x |b) = G̃λ′, f ′(x |b),
(2) π f1Gλ, f (x |b) = Gλ′, f ′(x |b),
where λ′ = (λ1 − 1,λ2, . . . ,λr ) and f ′ = ( f1 + 1, f2, . . . , fr ).

Proof (1) First observe that the entries of the determinant are symmetric in x f1
and x f1+1 except the ones on the first row, since f1 < f2. We consider the cofactor
expansion of G̃λ, f (x |b) with respect to the first row: let �i, j be the cofactor of the
(i, j) entry and we have
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G̃λ, f =
r∑

j=1

(−1)1+ j�1, j

∞∑

s=0

(
1 − j

s

)
βsG[ f1, f1+λ1−1]

λ1−1+ j+s .

Applying π f1 to this expansion, then we obtain

π f1 G̃λ, f =
r∑

j=1

(−1)1+ j�1, j

∞∑

s=0

(
1 − j

s

)
βsπ f1

(
G[ f1, f1+λ1−1]

λ1−1+ j+s

)

=
r∑

j=1

(−1)1+ j�1, j

∞∑

s=0

(
1 − j

s

)
βsG[ f1+1, f1+λ1−1]

λ1−2+ j+s ,

in view of Lemma 2.4 (2) and Lemma 2.7. The last expression is the cofactor expan-
sion of G̃λ′, f ′ , and thus we obtain the desired formula.

(2) Let t := f1 and t ′ := f1 + 1. Firstwe define an equivalence relation inT (λ, f )
as follows. Two tableaux T1, T2 ∈ T (λ, f ) are equivalent if the next two conditions
are satisfied:

(i) the boxes containing either t or t ′ in T1 coincide with those in T2;
(ii) if each box (1,λ1) in T1 and T2 contains t , then both of them contain only t or

both of them contain t along with other entries.

LetA be an equivalence class for T (λ, f ), then the configuration of t and t ′ for the
tableaux inA can be depicted as in Fig. 1. The one row rectangle A1 on the first row
consists of m1 boxes with entries t . Each one-row rectangle Ai (2 ≤ i ≤ k) with ∗
consists of mi boxes and each box contains t or t ′ or both so that the total number
of entries t and t ′ in Ai is mi or mi + 1. Each two-row rectangle Bj (1 ≤ j ≤ k)
consists of ri columns with t on the first row and t ′ on the second. Note that mi and
ri may be 0 so that the rectangles in Fig. 1 may be not connected.

A1B1

A2B2

AkBk

t · · · t · · · 1-st rowt · · · t
t′ · · · t′t · · · t

t′ · · · t′
∗ · · · ∗ m1

r1m2

r2

···

∗ · · · ∗t · · · t
t′ · · · t′ · · · k-th rowmk

rk

Fig. 1 Configuration of t and t ′ for A
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Let us write

GA :=
∑

T∈A
β|T |−|λ|[x |b]T = R(A1)R

′(A ), R′(A ) := R(A )

(
k∏

i=2

R(Ai )

) ⎛

⎝
k∏

j=1

R(Bj )

⎞

⎠ ,

where R(A ) is the polynomial contributed from the entries other than t and t ′ and
R(Ai ) and R(Bj ) are the polynomials contributed from the entries t and t ′ in Ai and
Bj respectively. It is obvious that R(A ) and R(Bj ) (1 ≤ j ≤ k) are symmetric in xt
and xt ′ . Moreover, in view of Remark 2.9, R(Ai ) (2 ≤ i ≤ k) are also symmetric in
xt and xt ′ . Thus R′(A ) is symmetric in xt and xt ′ .

Next we decompose T (λ, f )/∼ into the subsetsH1,H2,H3 consisting of equiv-
alence classes with configurations respectively satisfying conditions (1) m1 = 0, (2)
m1 = 1 and the box (1,λ1) contains t along with other entries, (3) m1 ≥ 1 and the
box (1,λ1) contains only t . There is a bijection from H1 to H2 sending A to A ′
whose configuration is obtained by inserting t in the box (1,λ1) of A . This also
defines a bijection from A to A ′ (say, it maps T to T ′). Under this bijection, we
have GA ′ = β(xt ⊕ bt−1+λ1)GA . Since GA is symmetric in xt and xt ′ , by Lemma
2.4 (2) and Lemma 2.8, we have πt (GA ′) = βGA . Thus

πt

⎛

⎝
∑

A ∈H1�H2

GA

⎞

⎠ =
∑

A ∈H1

(
πt

(
GA

) + πt
(
GA ′

) ) =
∑

A ∈H1

( − βGA + βGA
) = 0.

As a consequence, we have

πt
(
Gλ, f

) = πt

⎛

⎝
∑

A ∈H3

GA

⎞

⎠ . (1)

Now it remains to show that the right hand side of (1) coincides with Gλ′, f ′ .
Define an equivalence relation ∼ in T (λ′, f ′) by the condition (i), that is, T ′

1 and T ′
2

in T (λ′, f ′) are equivalent if the boxes containing either t or t ′ in T ′
1 coincide with

those in T ′
2. For an arbitrary equivalence class A

′ for T (λ′, f ′), we can describe its
configuration of t and t ′ as in Fig. 2. Similarly to Fig. 1, Ai (2 ≤ i ≤ k) is a rectangle
consisting ofmi boxes with entries t , t ′ or both of them, Bj (1 ≤ j ≤ k) is a two-row
rectangle with r j columns with t on the first row and t ′ on the second. The right-most
rectangle A′

1 has m
′
1 boxes with entries t , t

′ or both of them.
There is a bijection from H3 to T (λ′, f ′)/∼ sending an equivalence class A

to A ′ whose configuration of t and t ′ is obtained from the one for A by erasing
the box (1,λ1) and replacing t with ∗ in the rectangle A1. Under this bijection,
πt (GA ) = GA ′ . Indeed, let A ∈ H3 with the configuration as depicted in Fig. 1
and A ′ ∈ T (λ′, f ′)/∼ as in Fig. 2 where m ′

1 = m1 − 1 ≥ 0. We have R(A1) =
m1∏

i=1

(xt ⊕ bt−1+λ1−m1+i ). By Lemma 2.4 (2) and Lemma 2.8, we have
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A′
1B1

A2B2

AkBk

∗ · · · ∗ · · · 1-st rowt . . . t

t′ . . . t′t . . . t

t′ . . . t′
∗ · · · ∗ m′

1

r1m2

r2

···

∗ · · · ∗t . . . t

t′ . . . t′ · · · k-th rowmk

rk

Fig. 2 Configuration of t and t ′ for A ′

πt (GA )=
{
m1−1∑

v=0

(
v∏

i=1

(xt ⊕ bt−1+λ1−m1+i )

m1∏

i=v+2

(xt ′ ⊕ bt−1+λ1−m1+i )

)

+ β

m1−1∑

v=1

(
v∏

i=1

(xt ⊕ bt−1+λ1−m1+i )

m1∏

i=v+1

(xt ′ ⊕ bt−1+λ1−m1+i )

)}
R′(A ),

which is exactly GA ′ . Thus we have

πtGλ, f =
∑

A ∈H3

πt (GA ) =
∑

A ′∈T (λ′, f ′)/∼
GA ′ = Gλ′, f ′ .

This completes the proof. �

Theorem 3.5 For a flagged partition (λ, f ), we have Gλ, f (x |b) = G̃λ, f (x |b).
Proof With the help of Proposition 3.2, 3.3, and 3.4, the proof is by induction
on | f | = f1 + · · · + fr , parallel to the one in [15]. If | f | = 1, then λ = (λ1) and
f = (1). Thus it follows from Proposition 3.2. Suppose that | f | > 1. We prove
in two cases: f1 = 1 or f1 > 1. If f1 = 1, then we can apply Proposition 3.3 to
both G̃λ, f and Gλ, f . The right hand sides of the resulting formulas coincide by
the induction hypothesis, and thus the claim holds. If f1 > 1, then Proposition 3.4
implies that πg1 G̃μ,g = G̃λ, f and πg1Gμ,g = Gλ, f where μ = (λ1 + 1,λ2, . . . ,λr )

and g = ( f1 − 1, f2, . . . , fr ). The left hand sides of these equalities coincide by the
induction hypothesis, and thus the claim holds. �

4 Vexillary Double Grothendieck Polynomials

In this section, we prove that the double Grothendieck polynomials associated to
vexillary permutations are in fact factorial Grothendieck polynomials (Theorem 4.2),
giving an alternative proof to the corresponding results in [8, 10]. Moreover we show
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that any factorial Grothendieck polynomial can be obtained from a product of certain
linear polynomials by applying a sequence of divided difference operators (Theorem
4.3).

The doubleGrothendieck polynomialswere introduced by Lascoux and Schützen-
berger [11, 12]. For any permutation w ∈ Sn , we define the associated double
Grothendieck polynomial Gw = Gw(x |b) as follows. Let w0 be the longest element
of the symmetric group Sn . We set

Gw0 =
∏

i+ j≤n

(xi ⊕ b j ).

For an element w ∈ Sn such that �(w) < �(w0), we can choose a simple reflection
si ∈ Sn such that �(wsi ) = �(w) + 1. Here �(w) is the length of w. We then define

Gw = πi (Gwsi ).

The polynomial Gw is defined independently from the choice of such si , since the
divided difference operators satisfy the Coxeter relations. From this point of view,
we can write Gw = πvGw0 with v = w0w and πv = πik · · ·πi1 where v = si1 · · · sik
is a reduced expression.

A permutation w ∈ Sn is called vexillary if it is 2143-avoiding, i.e. there is no
a < b < c < d such that w(b) < w(a) < w(d) < w(c). We briefly recall how to
obtain a flagged partition from a vexillary permutation. We follow [6, 10] (cf. [8]).
For each w ∈ Sn , let rw be the rank function of w ∈ Sn defined by rw(p, q) := �{i ≤
p| w(i) ≤ q} for 1 ≤ p, q ≤ n. The diagram D(w) of w is defined as

D(w) := {(p, q) ∈ {1, . . . , n} × {1, . . . , n} | w(p) > q, and w−1(q) > p}.

The essential set Ess(w) is the subset of D(w) given by

Ess(w) := {(p, q) | (p + 1, q), (p, q + 1) /∈ D(w)}.

If w is vexillary, we can choose a flagging set of w (cf. [8]), which is a subset
{(pi , qi ), i = 1, . . . , r} of {1, . . . , n} × {1, . . . , n} containing Ess(w) and satisfying

p1 ≤ p2 ≤ · · · ≤ pr , q1 ≥ q2 ≥ · · · ≥ qr , (2)

pi − rw(pi , qi ) = i, ∀i = 1, . . . , r. (3)

An associated flagged partition (λ(w), f (w)) of length r is given by setting fi (w) :=
pi and λ(w)i = qi − pi + i for i = 1, . . . , r . We remark that the set T (λ(w), f (w))

depends only on w but not on the choice of a flagging set.

Example 4.1 A permutation w ∈ Sn is dominant if D(w) is the Young diagram of
a partition and the values of rw on D(w) are zero. Such permutation is vexillary, and
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in this case, λ(w) is the partition whose Young diagram is D(w) and its flagging is
f (w) = (1, 2, . . . , r) where r is the length of λ(w).

The following theorem was obtained in [8, 10]. We give an alternative proof.

Theorem 4.2 If w ∈ Sn is vexillary, then we have Gw = Gλ(w), f (w).

Proof We closely follow the proof of Theorem 2 in [15], which is by induction on
(n, �(w0) − �(w))with the lexicographic order. For the longest elementw0 ∈ Sn , by
definition, we have

Gλ(w0), f (w0) =
∏

i+ j≤n

(xi ⊕ b j ) = Gw0 .

Consider w ∈ Sn with w �= w0, id. Let d be the leftmost descent of w, i.e. d is the
smallest number such that w(d) > w(d + 1). If d > 1 (Case 1), by Proposition 3.4,
the proof is identical to the one in [15]. Suppose that d = 1. Ifm := w(1) < n (Case
2), let w′ := smw and consider the dominant permutation

u = (m + 1,m,m + 2,m + 3, . . . , n,m − 1,m − 2, . . . , 1),

as in [15]. The proof is identical to the one in [15], except that we have

π1Gu = (x1 ⊕ bm)−1Gu, Gλ(w), f (w) = (x1 ⊕ bm)−1Gλ(w′), f (w′).

The former identity holds sincewehaveGu = (x1 ⊕ bm)Ru where Ru is symmetric in
x1 and x2. The latter follows from the fact that there is a bijection fromT (λ(w), f (w))
to T (λ(w′), f (w′)) sending T to T ′ which is obtained from T by adding a box in the
first row with entry 1. Finally, if w(1) = n (Case 3), we find a reduced expression
si1 · · · sik ofw0w where i1, . . . , ik ≥ 2. Letw′ = (w(2), . . . , w(n)) ∈ Sn−1. Then we
have

Gw =
n−1∏

i=1

(x1 ⊕ bi ) · πikπik−1 · · · πi1

⎛

⎝
∏

i+ j≤n−1

(xi+1 ⊕ b j )

⎞

⎠ =
n−1∏

i=1

(x1 ⊕ bi ) · (
Gw′

)�
.

By the induction hypothesis and Proposition 3.2, we have

Gw = G[1,n−1]
n−1

(
Gλ(w′), f (w′)

)�
.

Since f (w)1 = 1 and ( f (w′)1, . . . , f (w′)n−1) = ( f (w′)2 − 1, . . . , f (w′)n − 1),
Proposition 3.3 implies the claim. �

Theorem 4.3 Let (λ, f ) be a flagged partition of length r . Then we have

Gλ, f = πw

⎛

⎝
r∏

i=1

ai∏

j=1

(xi ⊕ b j )

⎞

⎠ ,
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where ai = λi + fi − i for 1 ≤ i ≤ r and w = (sr sr+1 · · · s fr−1) · · · (s2s3 · · · s f2−1)

(s1s2 · · · s f1−1).

Proof The proof is by induction on | f |. If | f | = 1, we see that Gλ, f = x1 ⊕ b1
and w = id so that the claim is trivial. Suppose that | f | > 1. If f1 = 1, let λ′ =
(λ2, . . . ,λr ) and f ′ = ( f2 − 1, . . . , fr − 1). By Proposition 3.3, we have Gλ, f

= (Gλ′, f ′)�
∏λ1

j=1(x1 ⊕ b j ). By the induction hypothesis, we can write (Gλ′, f ′)� =
πw

(∏r
i=2

∏ai
j=1(xi ⊕ b j )

)
. Since s1 doesn’t appear in the reduced expression of

w, we obtain the desired formula. If f1 > 1, since λ′ = (λ1 + 1,λ2, . . . ,λr ), f ′ =
( f1 − 1, f2, . . . , fr ), Proposition 3.4 and the induction hypothesis imply the claim:

Gλ, f = π f1−1Gλ′, f ′ = π f1−1πws f1−1

⎛

⎝
r∏

i=1

ai∏

j=1

(xi ⊕ b j )

⎞

⎠ = πw

⎛

⎝
r∏

i=1

ai∏

j=1

(xi ⊕ b j )

⎞

⎠ .

This completes the proof. �
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Flag Bundles, Segre Polynomials, and
Push-Forwards

Lionel Darondeau and Piotr Pragacz

Abstract In this note, we give Gysin formulas for partial flag bundles for the classi-
cal groups.We then giveGysin formulas for Schubert varieties inGrassmannbundles,
including isotropic ones. All these formulas are proved in a rather uniform way by
using the step-by-step construction of flag bundles and the Gysin formula for a pro-
jective bundle. In this way we obtain a comprehensive list of new general formulas.
The content of this paper was presented by Piotr Pragacz at the International Festival
in Schubert Calculus in Guangzhou, November 6–10, 2017.

Keywords Push forward · Gysin maps · Segre polynomials · Classical flag
bundles · Kempf-Laksov bundles · Schubert bundles

1 Introduction

Let E → X be a vector bundle of rank n on a variety X over an algebraically
closed field. Let π : F(E) → X be the bundle of flags of subspaces of dimensions
1, 2, . . . , n − 1 in the fibers of E → X . The flag bundle F(E) is used, e.g., in split-
ting principle, a standard technique which reduces questions about vector bundles
to the case of line bundles; namely the pullback bundle π∗E decomposes as a direct
sum of line bundles. One can construct F(E) inductively as a sequence of projec-
tive bundles, using the following iterative step, that decreases the rank by 1. Let
p1 : P(E) → X denote the projective bundle of lines in E , and letU1 := OP(E)(−1)
denote the universal subbundle on P(E), then one has a universal exact sequence of
vector bundles on P(E)
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0 → U1 −→ p∗
1E −→ Qn−1 → 0,

where Qn−1 (the universal quotient bundle on P(E)) is a rank n − 1 vector bundle.
Replacing E by Qn−1, one obtains a universal subbundle on P(Qn−1), together with
a universal quotient bundle Qn−2. Iterating this process until obtaining a quotient
bundle Q1 of rank one, one gets a sequence of projective bundles

F(E) := P(Q2)
pn−1−→ . . . → P(Qn−1)

p2−→ P(E)
p1−→ X, (1)

a flag bundle filtration

0 � (pn−1 ◦ · · · ◦ p2)
∗U1 � (pn−1 ◦ · · · ◦ p3)

∗U2 � . . . � Un−1 � π∗E,

where Ui → P(Qn+1−i ) is the kernel bundle of the composition

(pi ◦ · · · ◦ p1)
∗E � Qn−1 � . . . � Qn−i ,

and universal exact sequences of vector bundles on P(Qn−i+1):

0 → Ui/p
∗
i Ui−1 → p∗

i Qn−i+1 → Qn−i → 0. (2)

In the Grothendieck group of F(E), one can write (droping the pullback notation)

π∗E = U1 +U2/U1 + · · · +Un−1/Un−2 + Q1,

as the sum of (the pullback of) the different line bundles appearing in (1).
Now we would like to outline how to obtain a Gysin formula for the flag bundle

π : F(E) → X (cf. Example 1), and introduce some notation.
We shall work in the framework of intersection theory of [3]. Recall that a proper

morphism g : Y → X of nonsingular algebraic varieties over an algebraically closed
field yields an additive map g∗ : A•Y → A•X of Chow groups induced by push-
forward cycles, called the Gysin map. The theory developed in [3] allows also one
to work with singular varieties, or with cohomology. In this note, X will always be
nonsingular.

For E → X a vector bundle, let s(E) be the Segre class of E , that is the formal
inverse of the Chern class c(E) in the Chow ring of X . Let ξ = c1(OP(E)(1)); then
A•(P(E)) is generated algebraically by ξ over A•X—here we identify A•X with a
subring of A•(P(E))—and

(p1)∗ξ i = si−(n−1)(E), (3)

cf. [3]. To obtain a Gysin formula for the sequence of projective bundles (1), it
suffices to appropriately iterate formula (3). The intermediate formulas involve the
individual Segre classes of the universal quotient bundles, that can be eliminated
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using (2) and theWhitney sum formula. However, it seems rather difficult to obtain a
universal formula in this way. A universal formula should hold for any polynomial in
characteristic classes of universal vector bundles and depend explicitly on the Segre
classes of the original bundle E . To obtain such a formula, we use the generating
series of the Segre classes of the universal quotient bundles. A prototype is the
reformulation of (3) in

(p1)∗ξ i = [tn−1](t i s1/t (E)
)
, (4)

where we consider the specialization in x = 1/t of the Segre polynomial sx (E) =∑
i si (E)xi and where for a monomial m and a Laurent polynomial P , [m](P)

denotes the coefficient of m in P . Formula (4) and the projection formula imply that
for any polynomial f in one variable with coefficients in A•X

(p1)∗ f (ξ) = [tn−1]( f (t)s1/t (E)
)
. (5)

In this formula, (i) one does not need to expand f into a combination of monomials;
(ii) one uses the Segre polynomial that, like the total Segre class, is a group homo-
morphism from the Grothendieck group of X to the multiplicative group of units
with degree zero term = 1 in A•X .

Iterating the Gysin formula (5) yields a closed universal Gysin formula for the
flag bundle F(E) → X , as announced in Example 1.

It is clear that the outlined strategy of proof applies to more general step-by-step
constructions than the construction (1) of the flag bundle F(E) → X . Considering
the truncated composition pk ◦ · · · ◦ p1 in (1) yields formulas for full flag bundles,
i.e. bundles of flags of subspaces of dimensions 1, 2, . . . , k in the fibers, for k =
1, . . . , n − 1. Then, using certain commutative diagrams (see [1, (5)]), one extends
these formulas to arbitrary partial flag bundles.

One other interesting generalization is to restrict to the zero locus of a section
of some vector bundle at each step of the sequence of projective bundles. In other
words, one can impose some geometric conditions that the subspaces of the flag have
to satisfy. An illustrative example is Theorem 2.3, in the orthogonal setting, obtained
by considering at each step quadric bundles of isotropic lines in projective bundles
of lines.

This method of step-by-step construction of generalized flag bundles leads to
uniform short proofs of the different results announced in this note.

This note is organized as follows. In Sect. 2, we shall announce universal Gysin
formulas for partial flag bundles for general linear groups, symplectic groups and
orthogonal groups. The proofs of the results announced there can be found in [1].

In Sect. 3 we give Gysin formulas for Kempf–Laksov flag bundles. These general-
ized flag bundles are used to desingularize Schubert varieties in Grassmann bundles.
Theorem 3.1 is established in [2]. Theorem 3.2 is announced for the first time in the
present note.
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2 Universal Gysin Formulas for Flag Bundles

In this section, the letter f denotes a polynomial in the indicated number of variables
with coefficients in A•X . The appropriate symmetries that f has to satisfy to be in
the Chow ring of the flag bundle under consideration are always implied. Here we
consider non-singular varieties X . Note that the theory developed in Fulton’s book [3]
allows one to generalize the results to singular varieties over a field and their Chow
groups; moreover, for complex varieties, one can also use the cohomology rings with
integral coefficients.

We shall discuss separately the cases of general linear groups, symplectic groups
and orthogonal groups.

2.1 General Linear Groups

Let E → X be a rank n vector bundle. Let 1 ≤ d1 < · · · < dm = d ≤ n − 1 be a
sequence of integers. We denote by π : F(d1, . . . , dm)(E) → X the bundle of flags
of subspaces of dimensions d1, . . . , dm in E . On F(d1, . . . , dm)(E), there is a uni-
versal flagUd1 � · · · � Udm of subbundles of π∗E , where rk(Udk ) = dk (the fiber of
Udk over the point (Vd1 � · · · � Vdm ⊂ E(x)), where x ∈ X , is equal to Vdk ). For a
foundational account on flag bundles, see [4].

For i = 1, . . . , d, set ξi = −c1(Ud+1−i/Ud−i ).

Theorem 2.1 With the above notation, for f (ξ1, . . . , ξd) ∈ A•(F(d1, . . . , dm)(E)),

one has

π∗ f (ξ1, . . . , ξd) =
[
t1
e1 . . . td

ed
](

f (t1, . . . , td)
∏

1≤i< j≤d
(ti − t j )

∏

1≤i≤d
s1/ti (E)

)
,

where for j = d − dk + i with i = 1, . . . , dk − dk−1, we denote e j = n − i .

Example 1 For the complete flag bundle π : F(E) → X , one has

π∗ f (ξ1, . . . , ξn−1) =
[n−1∏

i=1
tn−1
i

](
f (t1, . . . , tn−1)

∏

1≤i< j≤n−1
(ti − t j )

n−1∏

i=1
s1/ti (E)

)
;

and for the Grassmann bundle π : F(d)(E) → X , one has

π∗ f (ξ1, . . . , ξd) =
[ d∏

i=1
tn−i
i

](
f (t1, . . . , td)

∏

1≤i< j≤d
(ti − t j )

d∏

i=1
s1/ti (E)

)
.
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2.2 Symplectic Groups

Let E → X be a rank 2n vector bundle equipped with a non-degenerate symplectic
form ω : E ⊗ E → L (with values in a certain line bundle L → X ). We say that a
subbundle S of E is isotropic if S is a subbundle of its symplectic complement Sω,
where

Sω := {w ∈ E | ∀v ∈ S : ω(w, v) = 0}.

Let 1 ≤ d1 < · · · < dm ≤ n be a sequence of integers. We denote by π : Fω(d1,
dm)(E) → X the bundle of flags of isotropic subspaces of dimensions d1, . . . , dm in
E . On Fω(d1, . . . , dm)(E), there is a universal flag Ud1 � · · · � Udm of subbundles
of π∗E , where rk(Udk ) = dk .

For i = 1, . . . , d, set ξi = −c1(Ud+1−i/Ud−i ).

Theorem 2.2 With theabovenotation, for f (ξ1, . . . , ξd) ∈ A•(Fω(d1, . . . , dm)(E)),

one has

π∗ f (ξ1, . . . , ξd ) =
[
t1
e1 · · · td ed

](
f (t1, . . . , td )

∏

1≤i< j≤d
(c1(L) + ti + t j )(ti − t j )

∏

1≤i≤d
s1/ti (E)

)
,

where for j = d − dk + i with i = 1, . . . , dk − dk−1, we denote e j = 2n − i .

Example 2 For the symplectic Grassmann bundle π : Fω(d)(E) → X , whereω has
values in a trivial line bundle, one has

π∗ f (ξ1, . . . , ξd) =
[ d∏

i=1
t2n−i
i

](
f (t1, . . . , td)

∏

1≤i< j≤d
(t2i − t2j )

d∏

i=1
s1/ti (E)

)
.

2.3 Orthogonal Groups

Let E → X be a vector bundle of rank 2n or 2n + 1 equipped with a non-degenerate
orthogonal form Q : E ⊗ E → L (with values in a certain line bundle L → X ).
We say that a subbundle S of E is isotropic if S is a subbundle of its orthogonal
complement S⊥, where

S⊥ := {w ∈ E | ∀v ∈ S : Q(w, v) = 0}.

Let 1 ≤ d1 < · · · < dm ≤ n be a sequence of integers. We denote by
π : FQ(d1, . . . , dm)(E) → X the bundle of flags of isotropic subspaces of dimen-
sions d1, . . . , dm in E . On FQ(d1, . . . , dm)(E), there is a universal flag Ud1 � · · · �

Udm of subbundles of π∗E , where rk(Udk ) = dk .
For i = 1, . . . , d, set ξi = −c1(Ud+1−i/Ud−i ).
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Theorem 2.3 With the above notation, for f (ξ1, . . . , ξd ) ∈ A•(FQ(d1, . . . , dm)(E)),

one has

π∗ f (ξ1, . . . , ξd ) =
[
t1
e1 · · · td ed

](
f (t1, . . . , td )

∏

1≤i≤d
(2ti + c1(L))

∏

1≤i< j≤d
(c1(L) + ti + t j )(ti − t j )

∏

1≤i≤d
s1/ti (E)

)
,

where for j = d − dk + i with i = 1, . . . , dk − dk−1, we denote e j = rk(E) − i .

Note that, if the rank is 2n and d = n, we consider both of the two isomorphic
connected components of the flag bundle. Thus, if one is interested in only one of
the two components, the result should be divided by 2. When c1(L) = 0, this makes
appear the usual coefficient 2n−1.

3 Universal Gysin Formulas for Kempf–Laksov Flag
Bundles

In this section, we give Gysin formulas for Kempf–Laksov flag bundles, that are
desingularizations of Schubert bundles in Grassmann bundles. We also extend the
results to the symplectic setting. The orthogonal cases will be treated elsewhere.

3.1 General Linear Groups

Let E → X be a rank n vector bundle on a variety X with a reference flag of bundles
E1 � · · · � En = E on it, where rk(Ei ) = i . Letπ : Gd(E) = F(d)(E) → X be the
Grassmann bundle of subspaces of dimension d in the fibers of E . For any partition
λ ⊆ (n − d)d , there is the Schubert bundle �λ : �λ(E•) → X in Gd(E) given over
the point x ∈ X by

�λ(E•)(x) := {V ∈ Gd(E)(x) : dim(V ∩ En−d−λi+i (x)) ≥ i, for i = 1, . . . , d}.
(6)

We denote by

(ν1, . . . , νd) := (n − d − λd + d, . . . , n − d − λ1 + 1)

the dimensions of the spaces of the reference flag involved in the definition of
�λ(E•)—in reverse order—. The partition ν is a strict partition, and furthermore,
n − i ≤ νi ≤ ν1 = n − λd ≤ n for any i . Note that the above definition of �λ(E•)
can be restated using ν with the conditions

dim(V ∩ Eνi (x)) ≥ d + 1 − i, for i = 1, . . . , d. (7)
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For a strict partitionμ ⊆ (n)d withd parts, consider theflagbundleϑμ : Fμ(E•) →
X given over the point x ∈ X by

Fμ(E•)(x) :=
{
0 � V1 � · · · � Vd ∈ F(1, . . . , d)(E)(x) : Vd+1−i ⊆ Eμi (x), for i = 1, . . . , d

}
.

(8)
We will call Kempf–Laksov flag bundles such bundles ϑμ introduced in [5].

These appear naturally as desingularizations of Schubert bundles. For a parti-
tion λ ⊆ (n − d)d , defining ν as above, by (7) the forgetful map F(1, . . . , d)(E) →
Gd(E) induces a birationalmorphism Fν(E•) → �λ(E•). On the Schubert cell given
over the point x ∈ X by

�̊λ(E•)(x) :=
{
V ∈ Gd(E)(x) : dim(V ∩ Eνi (x)) = d + 1 − i, for i = 1, . . . , d

}
,

which is open dense in �λ(E•), the inverse map is V �→ (V ∩ Eνd (x), . . . , V ∩
Eν1(x)). It establishes a desingularization of �λ(E•) (see [5]).

We construct Fμ(E•) by induction on the length of flags. For d = 1, it is sim-
ply P(Eμd ). Assume thus that for d > 1 we have constructed the variety F ′ ⊆
F(1, . . . , d − 1)(E) parametrizing flags

{
0 � V1 � · · · � Vd−1 ∈ F(1, . . . , d − 1)(E)(x) : Vd+1−i ⊆ Eμi (x), for i = 2, . . . , d

}
.

LetUd−1 be the universal subbundle of rank d − 1 on F(1, . . . , d − 1)(E). Note that
in restriction to F ′, the condition Vd−1 ⊆ Eμ2(x) yields:Ud−1 ⊆ Eμ2 ⊆ Eμ1 ; we can
therefore consider the subvariety

P((Eμ1 |F ′)/(Ud−1|F ′)) ⊆ P((E/Ud−1)|F ′) ⊆ P(E/Ud−1) = F(1, . . . , d)(E).

Iterating this inductive step, we get a sequence of projective bundles

Fμ(E•) = P(Eμ1/Ud−1) → P(Eμ2/Ud−2) → . . . → P(Eμd−1/U1) → P(Eμd ).

(9)
Set ξi = −c1(Ud−i+1/Ud−i ), i = 1, . . . , d, the first Chern class of the universal line
bundle on P(Eμi /Ud−i ) (we only imply the restriction of the universal subbundles
to this subvariety).

Let f be a polynomial in d variables with coefficients in A•(X).

Theorem 3.1 With the above notation, one has

(ϑμ)∗ f (ξ1, . . . , ξd ) =
[
t
μ1−1
1 · · · tμd−1

d

]
(

f (t1, . . . , td )
∏

1≤i< j≤d
(ti − t j )

∏

1≤i≤d
s1/ti (Eμi )

)

.

A proof of this theorem is based on (9) and (5).
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3.2 Symplectic Groups

Let E → X be a rank 2n symplectic vector bundle endowed with the symplectic
form ω : E ⊗ E → L with value in a line bundle L → X , over a variety X . For
d ∈ {1, . . . , n}, let Gω

d (E) = Fω(d)(E) be the Grassmannian bundle of isotropic
d-planes in the fibers of E . Let

0 = E0 � E1 � · · · � En = Eω
n � · · · � Eω

0 = E

be a reference flag of isotropic subbundles of E and their symplectic complements,
where rk(Ei ) = i . For i = 1, . . . , n, we set En+i := Eω

n−i . For a partition λ ⊆ (2n −
d)d , there is the Schubert cell �̊λ(E•) in Gω

d (E) given over the point x ∈ X by the
conditions

�̊λ(E•)(x) := {
V ∈ Gω

d (E)(x) : dim
(
V ∩ E2n−d+i−λi (x)

) = i, for i = 1, . . . , d
}
.

Denote νd+1−i := 2n − d + i − λi the dimension of the reference space appear-
ing in the i th condition. A partition indexing the Schubert cell �̊λ must satisfy the
conditions νi + ν j �= 2n + 1 (see [6, p. 174], where this is shown for d = n, and for
arbitrary d the argument is the same). For such partitions one defines the Schubert
bundle �λ : �λ → X as the Zariski-closure of �̊λ, given over a point x ∈ X by the
conditions

�λ(E•)(x) := {
V ∈ Gω

d (E)(x) : dim
(
V ∩ E2n−d+i−λi (x)

) ≥ i, for i = 1, . . . , d
}
.

For a strict partition μ ⊆ (2n)d with d parts, such that μi + μ j �= 2n + 1 for all
i, j , we introduce the isotropic Kempf–Laksov bundle ϑμ : Fμ(E•) → X given over
the point x ∈ X by

Fμ(E•)(x) := {
0 � V1 � · · · � Vd ∈ Fω(1, . . . , d)(E)(x) : Vd+1−i ⊆ Eμi (x)

}
.

Note that as in the previous section, Fν(E•) is birational to �λ(E•), but here it is not
smooth in general.

Let Ui stands for the restriction to Fμ(E•) of the rank i universal bundle on
F(1, . . . , d)(E). Set ξi = −c1(Ud−i+1/Ud−i ), for i = 1, . . . , d.

Let f be a polynomial in d variables with coefficients in A•(X).

Theorem 3.2 With the above notation, one has

(ϑμ)∗ f (ξ1, . . . , ξd ) =
[
t
μ1−1
1 · · · tμd−1

d
](

f (t1, . . . , td )
∏

1≤i< j≤d
(ti − t j )

∏

1≤i< j≤d
μi+μ j>2n+1

(c1(L) + ti + t j )
∏

1≤ j≤d
s1/t j (Eμ j )

)
.

A proof of this theorem will appear in a separate publication.
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Wojciech Domitrz, Piotr Mormul, and Piotr Pragacz

Abstract We study the order of tangency between twomanifolds of same dimension
and give that notion three quite different geometric interpretations. Related aspects
of the order of tangency, e.g., regular separation exponents, are also discussed.
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1 Introduction

In the present paper we discuss the order of tangency (or that of contact) between
manifolds and its relation to enumerative geometry started with classical Schubert
calculus.

Two plane curves, both sufficiently smooth and nonsingular at a point x0, are said
to have a contact of order at least k at x0 if, in properly chosen regular parametriza-
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tions, those two curves have identical Taylor polynomials of degree k about the
respective preimages of x0.1

Alternatively, those curves have such contact when their minimal regular separa-
tion exponent at x0, cf. [11], is not smaller than k or is not defined.

Formulas enumerating contacts have been widely investigated. For example in
[3] the authors derive a formula for the number of contacts of order n between
members of a specified-parameter family of plane curves and a generic plane curve
of sufficiently high degree.

Contact problems of this sort have been of both old and new interests, particularly
in the light of Hilbert’s 15th problem to make rigorous the classical calculations of
enumerative geometry, especially those undertaken by Schubert [16]. The situation
regarding ordinary (i.e., first–order) contacts between families of varieties is now
well understood thanks in large measure to the contact formula of Fulton, Kleiman
and MacPherson [6]. The above mentioned formula in [3] generalizes that given by
Schubert in [17] for the number of double contacts between a given plane curve and
a specified 2-parameter family of curves. Schubert made his computations through
the use of what has come to be known as “Schubert triangles”. This theory has been
made completely rigorous by Roberts and Speiser, see, e.g., [15], and independently
by Collino and Fulton [2].

Apart from contact formulas, an important role is played by the “order of tan-
gency”. Let us discuss this notion for Thom polynomials. Among important prop-
erties of Thom polynomials we record their positivity closely related to Schubert
calculus (see, e.g., [12] and also [14] for a survey). Namely, the order of tangency
allows one to define the jets of Lagrangian submanifolds. The space of these jets is
a fibration over the Lagrangian Grassmannian and leads to a positive decomposition
of the Lagrangian Thom polynomial in the basis of Lagrangian Schubert cycles.

In this paper, we give three approaches to the order of tangency. The first one
(in Sect. 2) is by the Taylor approximations of local parametrizations of manifolds.
The second one (a min-max procedure in Sect. 3) makes use of curves sitting in the
relevant manifolds. The third approach (in Sect. 4) is by Grassmann bundles. We
show that these three approaches are equivalent. We basically work with manifolds
over the reals (of various classes of smoothness), but the results carry over—in the
holomorphic category—to complex manifolds.

In the last two sections, we discuss some issues related to the “closeness” of
pairs of geometric objects: branches of algebraic sets and relations with contact
geometry. In fact, in Sect. 5 discussed are the regular separation exponents of pairs
of semialgebraic sets, sometimes called Łojasiewicz exponents (not to be mixed with
the by now classical exponent in the renowned Łojasiewicz inequality for analytic
functions). Then, in Sect. 6 we report on an unexpected application of a modification
of tangency order in 3D which yields an elegant criterion for a rank-2 distribution
on a 3-manifold to be contact.

1Some authors prefer to use at this place Taylor polynomials of degree k − 1 instead, see for instance
[3] and [4].
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These concluding sections are not less important than the preceding ones. They
show that the precise measurement of closeness is sometimesmore demanding—and
giving more—than merely bounding below tangency orders.

In the case of singular varieties different approaches to tangency orders lead to
different notions. In this respect we refer the reader to [5] where compared were two
discrete symplectic invariants of singular curves: the Lagrangian tangency order and
index of isotropy.

2 By Taylor

One situation that is frequently encountered at the crossroads of geometry and anal-
ysis deals with pairs of manifolds which are the graphs of functions of the same
number of variables. Such graphs can intersect, or touch each other, at a prescribed
point, with various degrees of closeness.

Our departing point is a definition of such proximity going precisely in the spirit
of a benchmark reference book [9], p. 18, although not formulated expressis verbis
there.

Definition Two manifolds M and ˜M embedded in R
m , both of class Cr , r ≥ 1,

and the same dimension p, intersecting at x0 ∈ M ∩ ˜M , for k ≤ r , have at x0 the
order of tangency at least k, when there exist a neighbourhood U � u0 in R

p and
parametrizations2 (diffeomorphisms onto the image)

q : (

U, u0
) → (

M, x0
)

, q̃ : (

U, u0
) → (

˜M, x0
)

of class Cr such that
(

q̃ − q
)

(u) = o
(

∣

∣u − u0
∣

∣

k
)

(1)

when U � u → u0.

(We underline the existence clause in this definition. Supposing having already such
a couple of local parametrizations q and q̃ , there is an abundance of other pairs of
Cr parametrizations serving the vicinities of x0 in M and ˜M , respectively, and not
satisfying the condition (1). Note also that in this definition the order of tangency is
automatically at least 0.)

Below in •• in Sect. 3, and also in Sect. 4 we restrict ourselves to parametrizations
of very specific type—just the graphs of Cr mappings going from p dimensions to
m − p dimensions. This appears to be possible while not violating the key condi-
tion (1).

Naturally enough, the notion of the order of tangency not smaller than . . . is
invariant under the local Cr diffeomorphisms of neighbourhoods in R

m of the tan-
gency point x0.

2The standard topology language adopted, among many other sources, in [13]
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Attention. In the real C∞ category it is possible for the order of tangency to be at
least k for all k ∈ N. In other words—be infinite even though {x0} = M ∩ ˜M . The
rest of this paper is to be read with this remark in mind.

As a matter of record, basically the same definition is evoked in Proposition on
page 4 in [8]. In [8] there is also proposed the following reformulation of (1).

Proposition 1 The condition (1) is equivalent to

T k
u0

(

q
) = T k

u0

(

q̃
)

, (2)

where T k
u0

( · )

means the Taylor polynomial about u0 of degree k.

Implication (1) ⇒ (2).

o
(

∣

∣u − u0
∣

∣

k
)

= q̃(u) − q(u) = (

q̃(u) − T k
u0

(

q̃
)

(u − u0)
)

+ (

T k
u0

(

q̃
)

(u − u0) − T k
u0

(

q
)

(u − u0)
) + (

T k
u0

(

q
)

(u − u0) − q(u)
)

, (3)

where the first and last summands on the right hand side are o
(

∣

∣u − u0
∣

∣

k
)

by Taylor.

So is the middle summand

T k
u0

(

q̃
)

(u − u0) − T k
u0

(

q
)

(u − u0) = o
(

∣

∣u − u0
∣

∣

k
)

and (2) follows from the following general result.

Lemma 1 Let w ∈ R[u1, u2, . . . , u p] , degw ≤ k, w(u) = o
(|u|k) when u → 0 in

R
p. Then w is identically zero.

The proof goes by induction on k ≥ 0, with an obvious start for k = 0. Then, assum-
ing this for the polynomials of degrees smaller than k ≥ 1 and taking a polynomialw
of degree k as in the wording of the lemma, we can assume without loss of generality
that w is homogeneous of degree k (the terms of lower degrees vanish altogether by
the inductive assumption). Let u ∈ R

p, |u| = 1, be otherwise arbitrary. Then

t kw(u) = w(tu) = o
(|tu|k) = o

(|t |k) when t → 0 .

Hence w(u) = 0 and the vanishing of w follows.
Implication (1) ⇐ (2).
This implication is obvious, because now the middle term on the right hand side

of (3) vanishes, so that the right hand side is automatically o
(

∣

∣u − u0
∣

∣

k
)

. �
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3 By Curves

In the discussion in this section important will be the quantity

s : = sup{k ∈ N : the order of tangency ≥ k} . (4)

(Note that an additional restriction here on k is k ≤ r , cf. Definition above.) If the
class of smoothness r = ∞, then, by the very definition, the condition (1) holds for
all k if and only if s = ∞.

Is it possible to ascertain something similar in the finite-order-of-tangency case?
With an answer to this question in view, we stick in the present section to the

notation introduced in Sect. 2, but assume additionally that

s < r . (5)

(Reiterating, the quantity s is defined in (4) above, and r is the assumed class of
smoothness of the underlying manifolds, finite or infinite when the category is real.
When r = ∞, the condition (5) simply says that s is finite.)

Our second approach uses pairs of curves lying, respectively, in M and ˜M .
We naturally assume that Tx0 M = Tx0 ˜M . Our actual objective is to show that

Theorem 1 Under (5),

min
v

(

max
γ, γ̃

(

max
{

l ∈ {0} ∪ N : |γ(t) − γ̃(t)| = o
(|t |l) when t → 0

})

)

= s . (6)

The minimum is taken over all 0 �= v ∈ Tx0 M = Tx0 ˜M. The outer maximum is
taken over all pairs of Cr curves γ ⊂ M, γ̃ ⊂ ˜M such that γ(0) = x0 = γ̃(0), and—
both non-zero!—velocities γ̇(0), ˙̃γ(0) are both parallel to v.

Attention. In this theorem the assumption (5) is essential; our proof would not work
in the situation s = r .

Proof of Theorem 1 • It is quick to show that the integer on the left hand side of
equality (6) is at least s. Indeed, for every fixed vector v as above, v = dq(u0)u
(without loss of generality, u is like in the proof of Lemma1), one can take δ(t) =
q(u0 + tu) and δ̃(t) = q̃

(

u0 + tu
)

. Then

|δ(t) − δ̃(t)| = o
(|tu|s) = o

(|t |s)

and so
max
γ, γ̃

(

max
{

l : |γ(t) − γ̃(t)| = o
(|t |l) when t → 0

}) ≥ s .

In view of the arbitrariness in our choice of v, the same remains true after taking the
minimum over all admissible v’s which is actually done on the left hand side of (6).
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••To show the opposite non-sharp inequality in (6) ismore involved. It is precisely
in this part that the additional assumption s ≤ r − 1 is needed. We study the two
manifolds in the vicinity of x0 via an appropriate local Cr diffeomorphism of the
ambient space, after which

(

M, x0
) =

(

{

x p+1 = x p+2 = · · · = xm = 0
}

, 0
)

and

( ˜M, x0) =
(

{

x j = F j (x1, x2, . . . , x p) , j = p + 1, p + 2, . . . , m
}

, 0
)

for some Cr functions F j . Having the manifolds so neatly (graph-like) positioned,
we take the most adapted parametrizations

q(u1, u2, . . . , u p) = (

u1, u2, . . . , u p, 0, 0, . . . , 0
)

,

q̃
(

u1, u2, . . . , u p
) =

(

u1, u2, . . . , u p, F
(

u1, u2, . . . , u p
)

)

,

where F = (

F p+1, F p+2, . . . , Fm
)

. This—important—necessitates some extra
technical work. Firstly the initial couple of parametrizations satisfying (1) is being
straightened simultaneously with manifolds M and ˜M . Naturally enough, the result-
ing parametrizations keep satisfying (1), but are not yet of the above-desired form.
So the parametrizations and manifolds are to be additionally slightly upgraded via
another local Cr ambient diffeomorphism so as (a) to keep the simple description of
manifolds and (b) to have the eventual parametrizations adapted as desired above.

Given the definition (4) of s, there hold

T s
u0(q) = T s

u0

(

q̃
)

and T s+1
u0 (q) �= T s+1

u0

(

q̃
)

,

that is,
T s

u0(F) = 0 and T s+1
u0 (F) �= 0 .

It follows that there exist an integer j ∈ {p + 1, p + 2, . . . , m} and a vectorw ∈ R
p

such that
T s

u0(F j
)

(w) = 0 and T s+1
u0

(

F j
)

(w) �= 0 . (7)

Now let u and ũ be two Cr curves inRp passing at t = 0 through u0 and such that the
vectors u̇(0) and ˙̃u(0) are both non-zero and parallel tow. These curves in parameters
give rise to Cr curves δ(t) = q(u(t)) and δ̃(t) = q̃(ũ(t)) in the manifolds, both
having at t = 0 non-zero speeds parallel to the vector v : = dq(u0)w = dq̃(u0)w.
We will now estimate from above (by s) the left hand side of the equality (6) using,
no wonder, v, δ, and δ̃:
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|δ(t) − δ̃(t)| =
√

|u(t) − ũ(t)|2 + |F(

ũ(t)
)|2

≥ |F(

ũ(t)
)| ≥ |F j

(

ũ(t)
)| �= o

(|t |s+1
)

, (8)

where the last inequality necessitates an explanation. In fact, by (7) and for every
c �= 0

T s+1
u0

(

F j
)

(tcw) = (ct)s+1T s+1
u0

(

F j
)

(w) �= o
(|t |s+1

)

when t → 0 .

But ũ(t) − ũ(0) = ctw + o
(|t |) for some non-zero c, hence

T s+1
u0

(

F j
)(

ũ(t) − ũ(0)
) �= o

(|t |s+1) when t → 0

as well. Also, just by Peano in the class of smoothness s + 1 ≤ r , cf. (5),

F j (u) = T s+1
u0

(

F j
)(

u − u0) + o
(

∣

∣u − u0
∣

∣

s+1
)

when u → u0 in Rp. Therefore, F j
(

ũ(t)
) �= o

(|t |s+1
)

as written in (8).

Now it is important to note that the pair of curves δ and δ̃ produced by us above
is completely general in the category Cr for that chosen vector v. Hence it follows
that—for this precise vector v!—the quantity

max
γ, γ̃

(

max
{

l ∈ {0} ∪ N : |γ(t) − γ̃(t)| = o
(|t |l) when t → 0

})

does not exceed s. Understandingly, so does the minimum of such quantities over all
v’s in Tx0 M = Tx0 ˜M . Theorem1 is now proved. �

4 By Grassmannians

Our third approach is based on the introductory pages of [8] where a natural tower of
consecutive Grassmannians is being attached to every given local Cr parametrization
q as used by us in the preceding sections. However, to allow for a recursive definition
of tower’s members, a more general framework is needed.

Namely, to every C1 immersion H : N → N ′, N—an n-dimensional manifold,
N ′—an n′-dimensional manifold (manifolds not necessarily embedded in Euclidean
spaces!), we attach the so-called image map GH : N → Gn(N ′) of the tangent map
d H : for s ∈ N ,

GH(s) = d H(s)(Ts N ) , (9)
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where Gn(N ′) is the total space of the Grassmann bundle, with base N ′, of all
n-planes tangent to N ′. That is, Gn(N ′) is a new manifold, much bigger than N ′
(whenever n′ > n), of dimension n′ + n(n′ − n).

We stick in the present section to the notation from Sect. 2 and invariably use the
pair of parametrizations q and q̃ . So we are given the mappings

G q : U −→ G p
(

R
m
)

, G q̃ : U −→ G p
(

R
m
)

.

Upon putting M (0) = R
m , G(1) = G, there emerge two sequences of recursively

defined mappings. Namely, for l ≥ 1,

G(l)q : U −→ G p
(

M (l−1)) , G(l+1)q = G
(

G(l)q
)

and
G(l)q̃ : U −→ G p

(

M (l−1)
)

, G(l+1)q̃ = G
(

G(l)q̃
)

,

where, naturally, M (l) = G p
(

M (l−1)
)

. Now our objective is to show the following.

Theorem 2 Cr manifolds M and ˜M have at x0 the order of tangency at least k
(1 ≤ k ≤ r) iff there exist Cr parametrizations q and q̃ of the vicinities of x0 in,
respectively, M and ˜M, such that

G(k)q (u0) = G(k)q̃ (u0) . (10)

(Observe that, in (10), there is clearly encoded that q(u0) = x0 = q̃(u0).)

4.1 Proof of Theorem2

In what follows, of interest for us will be the situations when H in (9) above is
locally (and all is local in tangency considerations!) the graph of a C1 mapping
h : Rp ⊃ U → R

t . That is, for u ∈ U , H(u) = (

u, h(u)
) ∈ R

p+t = R
p × R

t . Then
(9) assumes by far more precise form

GH(u) =
(

u, h(u) ; d
(

u, h(u)
)

(u)
)

=
(

u, h(u); span{∂ j + h j (u) : j = 1, 2, . . . , p}
)

(11)

where the symbol h j means the partial derivative of a vector mapping h with respect
to the variable u j ( j = 1, . . . , p), and ∂ j + h j (u) denotes the partial derivative of
the vector mapping (ι, h) : U → R

p
(

u1, . . . , u p
) × R

t with respect to u j , where
ι : U ↪→ R

p is the inclusion.
Now observe that the expression for GH(u) on the right hand side of (11) is still

not quite useful. Yet there are charts in each newly appearing Grassmannian (see, for
instance, [8] or p. 46 in [1])!
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The chart in a typical fibre G p over a point in the base R
p+t , good for (11),

consists of all the entries in the bottommost rows (indexed by numbers p + 1, p +
2, . . . , p + t) in the (p + t) × p matrices

[

v1 | v2 | . . . | vp
]

with non-zero upper p × p minor, after multiplying the matrix on the right by the
inverse of that upper p × p submatrix. That is to say, taking as the local coordinates
all the entries in rows (p + 1)-st,. . ., (p + t)th of the matrix

[

v i
j

]

1≤i≤p+t
1≤ j≤p

(

[

v i
j

]

1≤i≤p
1≤ j≤p

)−1

.

That is, these coordinates are all t × p entries of the matrix

[

v i
j

]

p+1≤i≤p+t
1≤ j≤p

(

[

v i
j

]

1≤i≤p
1≤ j≤p

)−1

.

In these, extremely useful, glasses the description (11) gets stenographed to

GH(u) =
(

u, h(u) ; ∂h

∂u
(u)

)

, (12)

where, under the symbol ∂h
∂u (u) understood are all the entries of this Jacobian (t × p)-

matrix written in row and separated by commas. This technical simplification is
central for a proof that follows.

After this, basically algebraic, preparation we come back to Theorem2.
The order of tangency between M and ˜M at x0 being at least k precisely means

(Proposition1) the existence of local Cr parametrizations q and q̃ satisfying (2). So
we are just going to show that (10) ⇐⇒ (2).

Moreover, we assume without loss of generality—much like it has been the case
in the part •• of the proof of Theorem1—that M and ˜M are locally the graphs
of parametrizations q and q̃ , respectively. Which, at the same time, satisfy (2).
So (2) holds for q(u) = (u, f (u)), f : U → R

m−p
(

yp+1, . . . , ym
)

and for q̃(u) =
(u, f̃ (u)), f̃ : U → R

m−p
(

yp+1, . . . , ym
)

, x0 = (

u0, f (u0)
) = (

u0, f̃ (u0)
)

.
Implication (2) ⇒ (10).
We will derive such expressions for G(k)q (u) and G(k)q̃ (u), u ∈ U , that the use

of the condition (2) will just prompt by itself. An added value of this derivation
will be the control over the sets of natural local coordinates in the Grassmannians
in question. (With this information at hand the opposite implication (2)⇐ (10) will
follow in no time.) Our main technical tool for the ⇒ implication is

Lemma 2 For 1 ≤ l ≤ k there exists a local chart on the Grassmannian space
G p

(

M (l−1)
)

in which the mapping G(l)q evaluated at u assumes the form



36 W. Domitrz et al.

(

u, f (u);
(

l

1

)

× f[1](u),

(

l

2

)

× f[2](u), . . . ,

(

l

l

)

× f[l](u)

)

,

where f[ν](u) is a shorthand notation for the aggregate of all the partials of the νth
order at u, of all the components of f , which are in the number (m − p) × p ν , and
the symbol N × (∗) stands for the N copies going in row and separated by commas,
of an object (∗).

Attention. In this lemma we purposefully distinguish mixed derivatives taken in
different orders, simply disregarding the Schwarz symmetricity discovery.

Proof l = 1. We note that

G(1)q (u) =
(

u, f (u); span{∂ j + f j (u) : j = 1, 2, . . . , p}
)

,

in the relevant Jensen–Borisenko–Nikolaevskii chart, is nothing but

(

u, f (u); f[1](u)
) =

(

u, f (u);
(

l

1

)

× f[1](u)

)

.

The beginning of induction is done.
l ⇒ l + 1, l < k. The mapping G(l)q : U → M (l), evaluated at u, is already writ-

ten down, in appropriate local chart assumed to exist in M (l), as

(

u, f (u),

(

l

1

)

× f[1](u),

(

l

2

)

× f[2](u), . . . ,

(

l

l

)

× f[l](u)

)

. (13)

We work with G(l+1)q = G
(

G(l)q
)

. Now, (13) being clearly of the form H(u) =
(

u, h(u)
)

in the previously introduced notation, the mapping h reads

h(u) =
(

f (u),

(

l

1

)

× f[1](u),

(

l

2

)

× f[2](u), . . . ,

(

l

l

)

× f[l](u)
)

.

In order to have GH(u) written down, in view of (12), one ought to write in row:
u, then h(u), and then all the entries of the Jacobian matrix ∂h

∂u (u), also written in
row and separated by commas. The latter, in our shorthand notation, are computed
immediately. Namely

∂h

∂u
(u) =

((

l

0

)

× f[1](u),

(

l

1

)

× f[2](u),

(

l

2

)

× f[3](u), . . . ,

(

l

l

)

× f[l+1](u)

)

.

These entries on the right hand side are to be juxtaposed with the former entries
(

u, h(u)
)

. For better readability, we put together the groups of same partials (a yet
another permutation of Grassmann-type coordinates, cf. the wording of the lemma).
In view of the elementary identities

( l
ν−1

) + ( l
ν

) = (l+1
ν

)

, we get in the outcome
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(

u, f (u),

(

l + 1

1

)

× f[1](u),

(

l + 1

2

)

× f[2](u), . . . ,

(

l + 1

l

)

× f[l](u),

(

l + 1

l + 1

)

× f[l+1](u)

)

.

Lemma2 is now proved by induction.
We now take l = k in Lemma2 and get, for arbitrary u ∈ U , two similar visuali-

sations of G(k)q (u) and G(k)q̃ (u). At that, the equality (2) holds true at u = u0. As
a consequence, (10) follows.

Implication (2) ⇐ (10).
With the information on superpositions of the mappings G, gathered in the course

of proving the implication (2) ⇒ (10), this opposite implication is clear. Theorem2
is now proved. �

5 Algebraic Geometry Examples and Regular Separation
Exponents

In the present section, we shall work with the regular separation exponents of pairs
of sets, a notion due to Łojasiewicz [11]. We shall compute these exponents in sev-
eral natural examples, and compare the results with the information (when available)
about the relevant orders of tangency. These examples deal with branches of alge-
braic sets which often happen to be tangent one to another, with various degrees of
closeness.

Example 1 In the work [4] (Fig. 2 on page 37 there) analyzed is the following
algebraic set in R2(x, y)

C = {(x, y) : (y − x2)2 = x5} . (14)

The two branches of C issuing from the point (0, 0),

C− = {y = x2 − x5/2 , x ≥ 0} and C+ = {y = x2 + x5/2 , x ≥ 0} ,

could be naturally extended to one-dimensional manifolds D− and D+, both of class
C2—the graphs of functions

y−(x) = x2 − |x |5/2 and y+(x) = x2 + |x |5/2 ,

respectively. The Taylor polynomials of degree 2 about x = 0 of y− and y+ coincide.
Hence D− and D+ have at (0, 0) the order of tangency at least 2 (cf. Sect. 2), and
clearly not at least 3.

This example clearly suggests that, in real algebraic geometry, it would be perti-
nent to use non-integer measures of closeness. For instance, for the above sets y−(x)

and y+(x), we may take



38 W. Domitrz et al.

sup{α > 0 : y+(x) − y−(x) = o(|x |α) when x → 0} .

This kind of a generalized order of tangency would be 5/2 in the Colley–Kennedy
example.

In the local analytic geometry there is a precise name for this notion—theminimal
regular separation exponent for two (semialgebraic) branches, say X and Y , of an
algebraic set. That is, here the minimal exponent for X = C− and Y = C+. Some
authors working after [11] used to call such a quantity the Łojasiewicz exponent
of, in this case, C−, C+ at (0, 0). And denoted it—when specialized to the present
situation—by L(0,0)

(

C−, C+
)

.3

Remark 1 (i) Therefore, in Example 1, the rational number 5/2 is the minimal
regular separation exponent of the semialgebraic sets C− and C+ which touch
each other at (0, 0).

(ii) Example 1 quickly generalizes, by means of the equation (y − x N )2 = x2N+1

with N arbitrarily large, to yield a pair of CN manifolds having the order of
tangency at least N and not at least N + 1, and having the minimal regular
separation exponent N + 1

2 .

It has not been difficult in Example 1 to discern the pair of branches C− and C+,
initially slightly hidden in a synthetic equation (14). But it can happen considerably
worse in this respect. Consider, for instance

Example 2 (a) an algebraic set in the plane R2(x, y) defined by a single equation

(xy)2 = 1

4

(

x2 + y2
)3

. (15)

This set possesses a pair (even more than one such pair) of semialgebraic
branches touching each other at the point (0, 0). Yet it is not so immediate to
ascertain their minimal regular separation exponent. Only after recognizing in
(15) the classical quatrefoil x = cos(ϕ) sin(2ϕ), y = sin(ϕ) sin(2ϕ), it becomes
quick to compute the relevant minimal regular separation exponent equal to 2.

(b) It is even more interestingly with another algebraic set in 2D given by the equa-
tion

(

x2 + y2 − 1

2
x
)2 = 1

4

(

x2 + y2
)

. (16)

This set possesses as well a pair of semialgebraic branches {y ≤ 0} and {y ≥ 0}
touching each other at the point (0, 0). Yet it takes some time to find their min-
imal regular separation exponent. In fact, after discovering in (16) the classical
cardioid r = 1

2 (1 + cosϕ), that exponent turns out to be—one more time—a
non-integer (3/2, in the occurrence).

3However, this terminology is not yet definitely settled, as shown in a recent work [10]. The authors
of the latter speak just descriptively about ‘the Łojasiewicz exponent for the regular separation of
closed semialgebraic sets’.
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(c) It is worthy of note that for both explicitly defined algebraic sets (15) and (16)
one can apply general type bounds above, for the minimal separation exponent,
produced in [10]. Yet the estimations got in that way are unrealistically (by
factors of thousands) high.

Returning to the notion of the order of tangency, in the realm of algebraic geom-
etry the distinction between that order and minimal regular separation exponent
sometimes happens to be fairly clear, with both discussed quantities effectively com-
putable. An instructive instance of such a situation occurs in [18] (Example3.5 there).

Example 3 The author of [18] deals there with a pair of one-dimensional algebraic
manifolds N and Z in R2(x, y) intersecting at (0, 0). The manifold N = {y = 0} is
already utmostly simplified, whereas Z = {yd + yxd−1 + xs = 0} depends on two
integer parameters d and s, 1 < d < s, d odd. What we are going to discuss here is
a kind of reworking of Tworzewski’s original approach, see also Attention below.

These manifolds have at (0, 0) the order of tangency at least s − d, and not at least
s − d + 1, while their minimal regular separation exponent at (0, 0) is s − d + 1.

Indeed—to justify this one tries to present Z as the graph of a function y = y(x).
Clearly, y(0) = 0 and a function y(x) could not be divisible by, for instance, xs+1.
So, with no loss of generality,

y(x) = xk z(x) − xs−d+1

for certain integer k ≥ 1 and another function z(x) such that z(0) �= 0.
• The possibility k < s − d + 1 boils rather quickly down to k = 1, and then to the
relation

(

z − xs−d
)d + z = 0, impossible at x = 0, for

(

z(0)
)d + z(0) �= 0, d being

odd.
•• So k ≥ s − d + 1 and now

y(x) = xs−d+1z(x) − xs−d+1

for a certain function z(x). Upon substituting this y(x) to the defining equation
of Z and simplifying, (z − 1)d x (d−1)(s−d) + z = 0. Hence z(0) = 0. The Implicit
Function Theorem is applicable here around (0, 0), because

∂

∂ z

(

(z − 1)d x (d−1)(s−d) + z
)

∣

∣

∣

∣

(0,0)

= 1 .

One gets a locally unique C∞ function z(x), z(0) = 0, hence also a locally unique
function y(x) = xs−d+1z(x) − xs−d+1 whose graph is Z . Because the function z
vanishes at 0, the minuend in this expression for y is an ‘o’of the subtrahend when
x → 0. So the statements about the order of tangency andminimal regular separation
exponent follow immediately.
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Attention.When 2|d, the above-found resolving function y(x) is not the only solution
to the defining equation of Z . Namely, the necessary equality

(

z(0)
)d + z(0) = 0,

z(0) �= 0, is then possible with z(0) = −1 and

∂

∂ z

(

(

z − xs−d
)d + z

)

∣

∣

∣

∣

(0,−1)

= d(−1)d−1 + 1 = 1 − d �= 0 .

Hence the Implicit Function Theorem gives this time a locally unique (for that k = 1)
C∞ function z̃(x), z̃(0) = −1. Then the graph of

ỹ(x) = x z̃(x) − xs−d+1 = −x + (higher powers of x)

is a second branch of Z passing through (0, 0) ∈ R
2, transversal to N , in a stark

distinction to the previously found, tangent to N , branch.

Remark 2 More generally, one could not hope to get a precise information regarding
the minimal regular separation exponent for the pair of manifolds M, ˜M on the sole
basis of the assumptions in Theorem1. That is, basically, under (5). Despite the
inequality (8), that exponent need not necessarily be s + 1. Following Example 1
earlier in this section, one could just take the curves C− and C+ as the curves δ
and δ̃, respectively, in the proof of Theorem1. That is, to take M = C− = δ and
˜M = C+ = δ̃. Then, as the reader has lately seen, r = 2 and the quantity s defined
in (4) is also 2, while the minimal regular separation exponent is but s + 1

2 (= 5
2 ).

Even restricting oneself to a benchmark setting dim M = dim ˜M , an additional
enormous complication could come from the fact that the intersection M ∩ ˜M might
be a topologically highly nontrivial set (think about the C∞ category). And it is
precisely M ∩ ˜M which enters the definition of regular separation exponents for the
pair M, ˜M .

6 Relation with Contact Topology

Unsurprisingly, the notion of order of contact proves useful not only in algebraic
geometry (cf. Introduction), but also in geometry tout court. One not so obvious
application in the real category deals with the real contact structures in three dimen-
sions. Our summarising it here follows closely Sect. 1.6 in [7]. The author considers
there a couple � ⊂ M , where M is a contact 3-dimensionalmanifold and �—afixed
embedded surface in it. Contact means M being endowed with a contact structure,
say ξ, in T M .

When one approaches a given point p ∈ � by points q staying within�, a natural
question is about the order of smallness of the angle ∠

(

Tq�, ξq
)

. If that angle is an
‘O’ of the distance of q to p taken to power k (the distance measured in any chosen,
and hence every, set of smooth local coordinates about p), then it is said that ξ has the
order of contact at least k with � at p. (Therefore, what is discussed in this section
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differs a little from the notion of closeness of a pair of manifolds investigated in the
preceding sections. Yet the added value is substantial.)

That is, to say that the new order of contact is at least 1 at a given point p is
tantamount to saying that ξp = Tp�. And it is exactly 0 at p whenever ξp �= Tp�.

So it comes as a not small surprise that this elementary notion allows one to
characterise the contact structures as such! Namely, a theorem proved in [7] asserts
that a rank-2 tangent distribution ξ on a 3-dimensional M is contact iff ξ has the new
order of contact at most 1 with every surface � embedded in M , and this at every
point of �.

The next natural question in this direction iswhether it is possible to similarly char-
acterise contact structures on (2n + 1)-dimensional manifolds, n ≥ 2. The author of
[7] says nothing in this respect.
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On Schubert’s Problem
of Characteristics

Haibao Duan and Xuezhi Zhao

Abstract The Schubert varieties on a flag manifold G/P give rise to a cell decom-
position on G/P whose Kronecker duals, known as the Schubert classes on G/P ,
form an additive base of the integral cohomology H∗(G/P). The Schubert’s prob-
lem of characteristics asks to express a monomial in the Schubert classes as a linear
combination in the Schubert basis. We present a unified formula expressing the char-
acteristics of a flagmanifoldG/P as polynomials in the Cartan numbers of the group
G. As application we develop a direct approach to our recent works on the Schubert
presentation of the cohomology rings of flag manifolds G/P .
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problem of enumerative geometry. —Kleimann [40, 1987]
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The existence of a finite basis for the homologies in every closed manifold implies further-
more the solvability of Schubert’s “characteristics problems” in general. —Van derWaerden
[59, 1930]1

Schubert calculus is the intersection theory of the 19th century, together with
applications to enumerative geometry. Justifying this calculus was a major topic
of the 20 century algebraic geometry, and was also the content of Hilbert’s 15th
problem “Rigorous foundation of Schubert’s enumerative calculus” [33, 39, 50].
Thanks to the pioneer works [26, 59] of Van der Waerden and Ehresmann, the
problem of characteristics [53], considered by Schubert as the fundamental problem
of enumerative geometry, has had a concise statement by the 1950’s.

Let G be compact connected Lie group with a maximal torus T . For an one
parameter subgroupα : R → G its centralizer P is a parabolic subgroup onG, while
the homogeneous space G/P is a projective variety, called a flag manifold of G. Let
W (P,G) be the set of left cosets of theWeyl groupW ofG by theWeyl groupW (P)

of P with associated length function l : W (P,G) → Z. The following result was
discovered by Ehresmann [26, 1934] for the Grassmannians Gn,k of k-dimensional
linear subspaces on C

n , announced by Chevalley [13, 1958] for the complete flag
manifolds G/T , and extended to all flag manifolds G/P by Bernstein–Gel’fand–
Gel’fand [5, 1973].

Theorem 1.1 The flag manifold G/P admits a decomposition into the cells indexed
by the elements of W (P,G),

G/P = ∪
w∈W (P,G)

Xw, dim Xw = 2l(w), (1.1)

with each cell Xw the closure of an algebraic affine space, called the Schubert variety
on G/P associated to w. �

Since only even dimensional cells are involved in the decomposition (1.1), the
set {[Xw], w ∈ W (P,G)} of fundamental classes forms an additive basis of the
integral homology H∗(G/P). The cocycle classes sw ∈ H∗(G/P) Kronecker dual
to the basis (i.e. 〈sw, [Xu]〉 = δw,u , w, u ∈ W (P,G)) gives rise to the Schubert class
associated to w ∈ W (P,G). Theorem1.1 implies the following result, well known
as the basis theorem of Schubert calculus [59, Sect. 8].

Theorem 1.2 The set {sw,w ∈ W (P,G)} of Schubert classes forms an additive
basis of the integral cohomology H∗(G/P). �

An immediate consequence is that anymonomial sw1 · · · swk in theSchubert classes
on G/P can be expressed as a linear combination of the basis elements

sw1 · · · swk =
∑

w∈W (P,G),l(w)=l(w1)+···+l(wk ),

aw
w1,...,wk

· sw, aw
w1,...,wk

∈ Z, (1.2)

1This English translation of the profound discovery of van der Waerden in German [59] is due to
Schappacher [56].
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where the coefficients aw
w1,...,wk

are called characteristics by Schubert [26, 53, 59].

The problem of characteristics.Given amonomial sw1 · · · swk in theSchubert classes, deter-
mine the characteristics aw

w1,...,wk
for all w ∈ W (P,G) with l(w) = l(w1) + · · · + l(wr ). �

The characteristics are of particular importance in geometry, algebra and topology.
They provide solutions to the problems of enumerative geometry [51–54]; were seen
by Hilbert as “the degree of the final equations and the multiplicity of their solutions”
of a system [33]; and are requested by describing the cohomology ring H∗(G/P) in
the Schubert basis [60, p. 331]. Notably, the degree of a Schubert variety [54] and the
multiplicative rule of two Schubert classes [53] are two special cases of the problem
which have received considerable attentions in literatures, see [15, 16] for accounts
on the earlier relevant works.

This paper summaries and simplifies our series works [15, 16, 19–21] devoted
to describe the integral cohomologies of flag manifolds by a minimal system of
generators and relations in the Schubert classes. Precisely, based on a formula of
the characteristics aw

w1,···,wk
stated in Sect. 2 and established in Sect. 3, we address in

Sects. 4 and 5 a more direct approach to the Schubert presentations [20, 21] of the
cohomology rings of flag manifolds G/P .

2 The Formula of the Characteristics aww1,...,wk

To investigate the topology of a flagmanifoldG/P wemay assume that the Lie group
G is 1-connected and simple. Resorting to the geometry of the Stiefel diagram of the
Lie group G we present in Theorem2.4 a formula that boils down the characteristics
aw

w1,...,wk
to the Cartan matrix of the group G.

Fix a maximal torus T on G and set n = dim T . Equip the Lie algebra L(G) with
an inner product (, ) so that the adjoint representation acts as isometries of L(G).
The Cartan subalgebra of G is the linear subspace L(T ) ⊂ L(G).

The restriction of the exponential map exp : L(G) → G on L(T ) defines a set
S(G) of 1

2 (dimG − n) hyperplanes on L(T ), namely, the set of singular hyperplanes
through the origin in L(T ) [11, p. 226]. These planes divide L(T ) into finitely many
convex regions, each one is called a Weyl chamber of G. The reflections on L(T ) in
these planes generate the Weyl group W of G [35, p. 49].

Themap exp on L(T ) carries the normal line l (through the origin) of a hyperplane
L ∈ S(G) to a circle subgroup on T . Let±α ∈ l be the non-zero vectorswithminimal
length so that exp(±α) = e (the group unit). The set �(G) consisting of all those
vectors ±α is called the root system of G. Fixing a regular point x0 ∈ L(T ) −
∪L∈D(G)L the set of simple roots relative to x0 is

�(x0) = {β ∈ �(G) | (β, x0) > 0} [35, p. 47].
In addition, for a simple root β ∈ � the simple reflection relative to β is the reflection
σβ in the plane Lβ ∈ S(G) perpendicular to β. If β,β′ ∈ � the Cartan number

β ◦ β′ := 2(β,β′)/(β′,β′)
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is always an integer, and only 0,±1,±2,±3 can occur [35, p. 55].
Since the set of simple reflections {σβ | β ∈ �} generates W [11, p. 193] every

w ∈ W admits a factorization of the form

w = σβ1 ◦ · · · ◦ σβm ,βi ∈ �. (2.1)

Definition 2.1 The length l(w) of an elementw ∈ W is the least number of factors in
all decompositions of w in the form (2.1). The decomposition (2.1) is called reduced
if m = l(w).

For a reduced decomposition (2.1) of w the m × m (strictly upper triangular)
matrix Aw = (ai, j ) with ai, j = 0 if i ≥ j and −β j ◦ βi if i < j is called the Cartan
matrix of w relative to the decomposition (2.1). �

Example 2.2 In [57] Stembridge asked for an approach to find a reduced decom-
position (2.1) for each w ∈ W . Resorting to the geometry of the Cartan subalgebra
L(T ) this task can be implemented by the following method.

Picture W as the W -orbit {w(x0) ∈ L(T ) | w ∈ W } through the regular point x0.
For a w ∈ W let Cw be a line segment on L(T ) from the Weyl chamber containing
x0 to w(x0), that crosses the planes in S(G) once at a time. Assume that they are met
in the order Lα1 , . . . , Lαk , αi ∈ �(G). Then l(w) = k and w = σαk ◦ · · · ◦ σα1 . Set

β1 = α1, β2 = σα1(α2), . . . , βk = σα1 ◦ · · · ◦ σαk−1(αk).

Then, from βi ∈ � and σβi = σα1 ◦ · · · ◦ σαi−1 ◦ σαi ◦ σαi−1 ◦ · · · ◦ σα1 one sees that
w = σβ1 ◦ · · · ◦ σβk , which is reduced because of l(w) = k. �

Let Z[x1, . . . , xm] = ⊕n≥0Z[x1, . . . , xm](n) be the ring of integral polynomials in
x1, . . . , xm , graded by deg xi = 1.

Definition 2.3 For a m × m strictly upper triangular integer matrix A = (ai, j )
the triangular operator TA associated to A is the additive homomorphism TA :
Z[x1, . . . , xm](m) → Z defined recursively by the following elimination rules:

(i) If m = 1 (consequently A = (0)) then TA(x1) = 1;
(ii) If h ∈ Z[x1, . . . , xm−1](m) then TA(h) = 0;
(iii) For any h ∈ Z[x1, . . . , xm−1](m−r) with r ≥ 1,

TA(h · xrm) = TA′(h · (a1,mx1 + · · · + am−1,mxm−1)
r−1),

where A′ is the (m − 1) × (m − 1) strictly upper triangular matrix obtained from A
by deleting both of the mth column and row.

Byadditivity,TA is defined for everyh ∈ Z[x1, . . . , xm](m) using theunique expan-
sion h = ∑

0≤r≤m
hr · xrm with hr ∈ Z[x1, . . . , xm−1](m−r). �

For a parabolic subgroup P of G the set W (P,G) of left cosets of W by W (P)

can be identified with the subset of W

W (P,G) = {w ∈ W | l(w) ≤ l(ww′), w′ ∈ W (P)} (by [5, 5.1]),
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where l is the length function on W . Assume that w = σβ1 ◦ · · · ◦ σβm , βi ∈ �, is a
reduced decomposition of an element w ∈ W (P,G) with associated Cartan matrix
Aw = (ai, j )m×m . For a multi-index I = {i1, . . . , ik} ⊆ {1, . . . ,m} we put |I | := k
and set

σI := σβi1
◦ · · · ◦ σβik

∈ W, xI := xi1 · · · xik ∈ Z[x1, . . . , xm].

Our promised formula for the characteristics is:

Theorem 2.4 For every monomial sw1 · · · swk in the Schubert classes on G/P with
l(w) = l(w1) + · · · + l(wk) we have

aw
w1,...,wk

= TAw

(
�

i=1,...,k

(
�

σI=wi ,|I |=l(wi ),I⊆{1,...,m}
xI

))
. (2.2)

Remark 2.5 Formula (2.2) reduces the characteristic aw
w1,...,wk

to a polynomial in
the Cartan numbers of the group G, hence applies uniformly to all flag manifolds
G/P .

If k = 2 the characteristic aw
w1,w2

is well known as a Littlewood–Richardson coef-
ficient, and the formula (2.2) has been obtained byDuan in [16]. In [62]Willems gen-
eralizes the formula of aw

w1,w2
to the more general context of flag varieties associated

to Kac–Moody groups, and for the equivariant cohomologies. Recently, Bernstein
and Richmond [10] obtained also a formula expressing aw

w1,w2
in the Cartan numbers

of G. �

3 Proof of the Characteristics Formula (2.2)

In this paper the homologies and cohomologies are over the ring Z of integers.
If f : X → Y is a continuous map between two topological spaces X and Y , f∗
(resp. f ∗) denote the homology (resp. cohomology) homomorphism induced by
f . For an oriented closed manifold M (resp. a connected projective variety) the
notion [M] ∈ Hdim M(M) stands for the orientation class. In addition, the Kro-
necker pairing between cohomology and homology of a space X is written as
〈, 〉 : H∗(X) × H∗(X) → Z. The proof of Theorem2.4 makes use of the celebrated
K -cycles on G/T constructed by Bott and Samelson in [8, 9]. We begin by recalling
the construction of these cycles, as well as their basic properties developed in [8, 9,
15, 16].

For a simple Lie group G fix a regular point x0 ∈ L(T ) and let � be the set of
simple roots relative to x0. For a β ∈ � let Kβ be the centralizer of the subspace
exp(Lβ) on G, where Lβ ∈ S(G) is the plane perpendicular to β. Then T ⊂ Kβ and
the quotient Kβ/T is diffeomorphic to the 2-sphere [9, p. 996].

The 2-sphere Kβ/T carries a natural orientation specified as follows. The Cartan
decomposition of the Lie algebra L(Kβ) relative to the maximal torus T ⊂ Kβ takes
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the form L(Kβ) = L(T ) ⊕ ϑβ , where ϑβ ⊂ L(G) is the root space belonging to
the root β [35, p. 35]. Taking a non-zero vector v ∈ ϑβ and letting v′ ∈ ϑβ be such
that [v, v′] = β, where [, ] is the Lie bracket on L(G), then the ordered base {v, v′}
furnishes ϑβ with an orientation that is irrelevant to the choices of v. The tangent
map of the quotient πβ : Kβ → Kβ/T at the group unit e ∈ Kβ maps the 2-plane ϑβ

isomorphically onto the tangent space to the sphere Kβ/T at the point πβ(e). In this
manner the orientation {v, v′} on ϑβ furnishes the sphere Kβ/T with the orientation
ωβ = {πβ(v),πβ(v′)}.

For an ordered sequence β1, . . . ,βm ∈ � ofm simple roots (repetitions like βi =
β j may occur) let K (β1, . . . ,βm) be the product group Kβ1 × · · · × Kβm . With T ⊂
Kβi the product T × · · · × T (m-copies) acts on K (β1, . . . ,βm) by

(g1, . . . , gm)(t1, . . . , tm) = (g1t1, t
−1
1 g2t2, . . . , t

−1
m−1gmtm).

Let �(β1, . . . ,βm) be the base manifold of this principal action that is oriented
by the ωβi , 1 ≤ i ≤ m. The point on �(β1, . . . ,βm) corresponding to the point
(g1, . . . , gm) ∈ K (β1, . . . ,βm) is called [g1, . . . , gm].

The integral cohomology of the oriented manifold �(β1, . . . ,βm) has been deter-
mined by Bott and Samelson in [8]. Letϕi : Kβi /T → �(β1, . . . ,βm) be the embed-
ding induced by the inclusion Kβi → K (β1, . . . ,βm) onto the i th factor group, and
put

yi = ϕi∗(ωβi ) ∈ H2(�(β1, . . . ,βm)), 1 ≤ i ≤ m.

Form the m × m strictly upper triangular matrix A = (ai, j )m×m by setting

ai, j = 0 if i ≥ j, but ai, j = −2(β j ,βi )/(βi ,β
′
i ) if i < j.

It is easy to see from the construction that the set {y1, . . . , ym} forms a basis of the
second homology group H2(�(β1, . . . ,βm)).

Lemma 3.1 ([9]) Let x1, . . . , xm ∈ H 2(�(β1, . . . ,βm)) be the Kronecker duals of
the cycle classes y1, . . . , ym on �(β1, . . . ,βm). Then

H∗(�(β1, . . . ,βm)) = Z[x1, . . . , xm]/J , (3.1)

where J is the ideal generated by x2j − �
i< j

ai, j xi x j , 1 ≤ j ≤ m. �

In view of (3.1) the map p�(β1,...,βm ) from the polynomial ring Z[x1, . . . , xm] onto
its quotient H∗(�(β1, . . . ,βm)) gives rise to the additive map

∫

�(β1,...,βm )

: Z[x1, . . . , xm](m) → Z

evaluated by
∫
�(β1,...,βm )

h = 〈
p�(β1,...,βm )(h), [�(β1, . . . ,βm)]〉. The geometric impli-

cation of the triangular operator TA in Definition2.3 is shown by the following result.
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Lemma 3.2 ([15, Proposition 2])We have
∫

�(β1,...,βm )

= TA : Z[x1, . . . , xm](m) → Z.

In particular,
∫
�(β1,...,βm )

x1 · · · xm = 1. �
For a parabolic P on G we can assume, without loss of the generalities, that T ⊆

P ⊂ G. For a sequence β1, . . . ,βm of simple roots the associated Bott–Samelson’s
K-cycle on G/P is the map

ϕβ1,...,βm ;P : �(β1, . . . ,βm) → G/P

defined by ϕβ1,...,βm ;P([g1, . . . , gm]) = g1 · · · gm P . If P = T Hansen [32] has shown
that certain K -cycles are desingularizations of the Schubert varieties on G/T . The
following more general result allows one to translate the calculation with Schu-
bert classes on G/P to computing with monomials in the much simpler ring
H∗(�(β1, . . . ,βm)).

Lemma 3.3 With respect the Schubert basis on H∗(G/P) the induced map of
ϕβ1,...,βm ;P on the cohomologies is given by

ϕ∗
β1,...,βm ;P(sw) = (−1)l(w) �

σI =w,|I |=l(w),I⊆[1,...,m]
xI , w ∈ W (P;G). (3.2)

Proof With T ⊆ P ⊂ G themapϕβ1,...,βm ;P factors throughϕβ1,...,βm ;T in the fashion

�(β1, . . . ,βm)
ϕβ1 ,...,βm ;T→ G/T

↘ ↓ π
ϕβ1,...,βm ;P G/P

,

where the map π is the fibration with fiber P/T . By [16, Lemma 5.1] formula
(3.2) holds for the case P = T . According to [5, Sect. 5] the induced map π∗ :
H∗(G/P) → H∗(G/T ) is given by π∗(sw) = sw, w ∈ W (P;G), showing formula
(3.2) for the general case T ⊂ P . �

Proof of Theorem 2.4 For a monomial sw1 · · · swk in the Schubert classes of G/P
assume as in (1.2) that

sw1 · · · swk =
∑

w∈W (P;G),l(w)=m

aw
w1,...,wk

· sw, aw
w1,...,wk

∈ Z, (3.3)

where m = l(w1) + · · · + l(wk). For an element w0 ∈ W (P;G) with a reduced
decomposition w0 = σβ1 ◦ · · · ◦ σβm , βi ∈ �, let Aw0 = (ai, j )m×m be the relative
Cartan matrix. Applying the ring map ϕ∗

β1,...,βm ;P to the Eq. (3.3) on H∗(G/P) we
obtain by (3.2) the equality on the group H 2m(�(β1, . . . ,βm))
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(−1)l(w1)+···+l(wk ) �
1≤i≤k

(
�

σI =wi ,|I |=l(wi ),I⊆{1,...,m}
xI

)
= (−1)maw0

w1,...,wk
· x1 · · · xm .

Applying
∫
�(β1,...,βm )

to both sides we get by Lemma3.2 that

(−1)l(w1)+···+l(wk ) · TAw

(
�

1≤i≤k

(
�

σI =wi ,|I |=l(wi ),I⊆{1,...,m}
xI

))
= (−1)m · aw0

w1,...,wk
.

This is identical to (2.2) because of m = l(w1) + · · · + l(wk). �

4 The Cohomology of Flag Manifolds G/P

The classical Schubert calculus amounts to the determination of the intersection rings on
Grassmann varieties and on the so called “flag manifolds” of projective geometry. —Weil
[60, p. 331]

A classical problem of topology is to express the integral cohomology ring
H∗(G/H) of a homogeneous space G/H by a minimal system of explicit gen-
erators and relations. The traditional approach due to H. Cartan, Borel, Baum, Toda
utilize various spectral sequence techniques [2, 3, 37, 58, 64], and the calculation
encounters the same difficulties when applied to a Lie groupG with torsion elements
in its integral cohomology, in particular, when G is one of the five exceptional Lie
groups [38, 58, 61].

However, if P ⊂ G is parabolic, Schubert calculus makes the structure of the
ring H∗(G/P) appearing in a new light. Given a set {y1, . . . , yk} of k elements
let Z[y1, . . . , yk] be the ring of polynomials in y1, . . . , yk with integer coefficients.
For a subset {r1, . . . , rm} ⊂ Z[y1, . . . , yk] of homogenous polynomials denote by
〈r1, . . . , rm〉 the ideal generated by r1, . . . , rm .

Theorem 4.1 For each flag manifold G/P there exist a set {y1, . . . , yk} of Schubert
classes on G/P, and a set {r1, . . . , rm} ⊂ Z[y1, . . . , yk] of polynomials, so that the
inclusion {y1, . . . , yk} ⊂ H∗(G/P) induces a ring isomorphism

H∗(G/P) = Z[y1, . . . , yk]/〈r1, . . . , rm〉, (4.1)

where both the numbers k and m are minimal subject to this presentation. �

Proof Let D(H∗(G/P)) ⊂ H∗(G/P) be the ideal of the decomposable elements.
Since the ring H∗(G/P) is torsion free and has a basis consisting of Schubert classes,
there is a set {y1, . . . , yk}of Schubert classes onG/P that corresponds to a basis of the
quotient group H∗(G/P)/D(H∗(G/P)). In particular, the inclusion {y1, . . . , yk} ⊂
H∗(G/P) induces a surjective ring map
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f : Z[y1, . . . , yk] → H∗(G/P).

Since ker f is an ideal the Hilbert basis theorem implies that there exists a finite
subset {r1, . . . , rm} ⊂ Z[y1, . . . , yn] so that ker f = 〈r1, . . . , rm〉. We can of course
assume that the number m is minimal subject to this constraint.

As the cardinality of a basis of the quotient group H∗(G/P)/D(H∗(G/P)) the
number k is an invariant ofG/P . In addition, if one changes the generators y1, . . . , yk
to y′

1, . . . , y
′
k , then each old generator yi can be expressed as a polynomial gi in the

new ones y′
1, . . . , y

′
k , and the invariance of the numberm is shown by the presentation

H∗(G/P) = Z[y′
1, . . . , y

′
k]/〈r ′

1, . . . , r
′
m〉,

where r ′
j is obtained from r j by substituting gi for yi , 1 ≤ j ≤ m. �

A presentation of the ring H∗(G/P) in the form of (4.1) will be called a Schubert
presentation of the cohomology of G/P , while the set {y1, . . . , yk} of generators
will be called a set of special Schubert classes on G/P . Based on the characteristic
formula (2.2) we develop in this section algebraic and computational machineries
implementing Schubert presentation of the ring H∗(G/P). To be precise the follow-
ing conventions will be adopted throughout the remaining part of this section.

(i) G is a 1-connected simple Lie group with Weyl groupW , and a fixed maximal
torus T ;

(ii) A set � = {β1, . . . ,βn} of simple roots of G is given and ordered as the vertex
of the Dykin diagram of G pictured on [32, p. 58];

(iii) For each simple root βi ∈ � write σi instead of σβi ∈ W ; ωi in place of the
Schubert class sσβi

∈ H 2(G/T ).

Note that Theorem1.2 implies that the set {ω1, . . . ,ωn} is the Schubert basis of
the second cohomology H 2(G/T ), whose elements is identical to the fundamental
dominant weights of G in the context of Borel and Hirzebruch [4, 17].

4.1 Decomposition

By convention (iii) each w ∈ W admits a factorization of the form

w = σi1 ◦ · · · ◦ σik , 1 ≤ i1, . . . , ik ≤ n, l(w) = k.

hence can be written as w = σ[I ] with I = (i1, . . . , ik). Such expressions of w may
not be unique, but the ambiguity can be dispelled by employing the following notion.
Furnish the set of all reduced decompositions of w

D(w) := {w = σ[I ] | I = (i1, . . . , ik), l(w) = k}.
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with the order ≤ given by the lexicographical order on the multi-indexes I . Call
a decomposition w = σ[I ] minimized if I is the minimal one with respect to the
order. As result every w ∈ W possesses a unique minimized decomposition.

For a subset K ⊂ {1, . . . , n} let PK ⊂ G be the centralizer of the 1-parameter
subgroup {exp(tb) ∈ G | t ∈ R} on G, where b ∈ L(T ) is a vector that satisfies

(βi , b) > 0 if i ∈ K ; (βi , b) = 0 if i /∈ K .

Then every parabolic subgroup P is conjugate inG to some PK with K ⊂ {1, . . . , n},
while the Weyl group W (P) ⊂ W is generated by the simple reflections σ j with
j /∈ K . Resorting to the length function l on W we embed the set W (P;G) as the
subset of W (as in Sect. 2)

W (P;G) = {w ∈ W | l(w1) ≥ l(w),w1 ∈ wW (P)},

and put Wr (P;G) := {w ∈ W (P;G) | l(w) = r}. Since every w ∈ Wr (P;G) has
a unique minimized decomposition as w = σ[I ], the set Wr (P;G) is also ordered
by the lexicographical order on the multi-index I ’s, hence can be expressed as

Wr (P;G) = {wr,i | 1 ≤ i ≤ β(r)},β(r) := ∣∣Wr (P;G)
∣∣ , (4.2)

where wr,i is the i th element in the ordered setWr (P;G). In [19] a program entitled
“Decomposition” is composed, whose function is summarized below.

Algorithm 4.2 Decomposition.

Input: The Cartan matrix A = (ai j )n×n of G, and a subset K ⊂ {1, . . . , n}.
Output: The set W (PK ;G) being presented by the minimized decompositions of its ele-
ments, together with the index system (4.2) imposed by the order ≤ .

For examples of the results coming from Decomposition we refer to [22, 1.1–7.1].

4.2 Factorization of the Ring H∗(G/T) Using Fibration

The cardinality of the Schubert basis of G/T agrees with the order of the Weyl
group W , which in general is very large. To reduce the computation costs we may
take a proper subset K ⊂ {1, . . . , n} and let P := PK be the corresponding parabolic
subgroup. The inclusion T ⊂ P ⊂ G then induces the fibration

P/T
i

↪→ G/T
π→ G/P, (4.3)

where the induced maps π∗ and i∗ behave well with respect to the Schubert bases of
the three flag manifolds P/T , G/P and G/T in the following sense:
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(i) With respect to the inclusion W (P) ⊂ W the map i∗ carries the subset
{sw}w∈W (P)⊂W of the Schubert basis of H∗(G/T ) onto the Schubert basis of
H∗(P/T ).

(ii) With respect to the inclusion W (P;G) ⊂ W the map π∗ identifies the Schu-
bert basis {sw}w∈W (P;G) of H∗(G/P) with a subset of the Schubert basis of
H∗(G/T ).

For these reasons we can make no difference in notation between an element in
H∗(G/P) and its π∗ image in H∗(G/T ), and between a Schubert class on P/T and
its i∗ pre-image on G/T .

Assume now that {y1, . . . , yn1} and {x1, . . . , xn2} are respectively special Schubert
classes on P/T andG/P , andwith respect to themonehas theSchubert presentations

H∗(P/T ) = Z[yi ]1≤i≤n1

〈hs〉1≤s≤m1

; H∗(G/P) = Z[x j ]1≤ j≤n2

〈rt 〉1≤t≤m2

, (4.4)

where hs ∈ Z[yi ]1≤i≤n1 , rt ∈ Z[x j ]1≤ j≤n2 . The following result allows one to formu-
late the ring H∗(G/T ) by the simpler ones H∗(P/T ) and H∗(G/P).

Theorem 4.3 The inclusions yi , x j ∈ H∗(G/T ) induces a surjective ring map

ϕ : Z[yi , x j ]1≤i≤n1,1≤ j≤n2 → H∗(G/T ).

Furthermore, if {ρs}1≤s≤m1 ⊂ Z[yi , x j ] is a system satisfying

ρs ∈ ker ϕ and ρs |x j=0= hs, (4.5)

then ϕ induces a ring isomorphism

H∗(G/T ) = Z[yi , xi ]1≤i≤n1,1≤ j≤n2/ 〈ρs, rt 〉1≤s≤m1,1≤t≤m2
. (4.6)

Proof By the property (i) above the bundle (4.3) has the Leray–Hirsch property.
That is, the cohomology H∗(G/T ) is a free module over the ring H∗(G/P) with
the basis {1, sw}w∈W (P):

H∗(G/T ) = H∗(G/P){1, sw}w∈W (P)([36, p.231]), (4.7)

implying that ϕ surjects. It remains to show that for any g ∈ ker ϕ one has

g ∈ 〈ρs, rt 〉1≤s≤m1,1≤t≤m2
.

To this end we notice by (4.5) and (4.7) that

g ≡
∑

w∈W (PK )
gw · swmod 〈ρs〉1≤s≤m1

with gw ∈ Z[x j ]1≤ j≤n2 .

Thus ϕ(g) = 0 implies ϕ(gw) = 0, showing gw ∈ 〈rt 〉1≤t≤m2
by (4.4). �
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4.3 The Generalized Grassmannians

For a topological space X we set

H even(X) := ⊕r≥0H
2r (X), H odd(X) := ⊕r≥0H

2r+1(X).

Then H even(X) is a subring of H∗(X), while H odd(X) is a module over the ring
H even(X).

If P is a parabolic subgroup that corresponds to a singleton K = {i}, the flag
manifold G/P is called generalized Grassmannians of G corresponding to the
weight ωi [20]. With W 1(P;G) = {σi } consisting of a single element the basis
theorem implies that H 2(G/P) = Z is generated by ωi . Furthermore, letting Ps be
the semi-simple part of P , then the projection p : G/Ps → G/P is an oriented circle
bundle on G/P with Euler class ωi . With H odd(G/P) = 0 by the basis theorem the
Gysin sequence [48, p. 143]

· · · → Hr (G/P)
p∗→Hr (G/Ps)

β→Hr−1(G/P)
ω∪→Hr+1(G/P)

p∗→ · · · .

of p breaks into the short exact sequences

0 → ωi ∪ H 2r−2(G/P) → H 2r (G/P)
p∗→ H 2r (G/Ps) → 0 (4.8)

as well as the isomorphisms

β : H 2r−1(G/Ps) ∼= ker{H 2r−2(G/P)
ωi∪→ H 2r (G/P)}, (4.9)

where ωi∪ means taking cup product with ωi . In particular, formula (4.8) implies
that

Lemma 4.4 If S = {y1, . . . , ym} ⊂ H∗(G/P) is a subset so that
p∗S = {p∗(y1), . . . , p∗(ym)} is aminimal set of generators of the ring Heven(G/Ps),
then S′ = {ωi , y1, . . . , ym} is a minimal set of generators of H ∗(G/P). �

By Lemma4.4 the inclusions {ωi } ∪ S ⊂ H∗(G/P) , p∗S ⊂ H∗(G/Ps) extend
to the surjective maps π and π that fit in the commutative diagram

Z[ωi , y1, . . . , ym](2r) ϕ→ Z[y1, . . . , ym](2r)
π ↓ π ↓

H 2r−2(G/P)
ωi∪→ H 2r (G/P)

p∗→ H 2r (G/Ps) → 0

(4.10)

where Z[ωi , y1, . . . , ym] is graded by degωi = 2, deg yi , and where

ϕ(ωi ) = 0,ϕ(yi ) = yi ;π(yi ) = p∗(yi ).
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The next result showing in [20, Lemma 8] enables us to formulate a presentation of
the ring H∗(G/P) in term of H∗(G/Ps).

Theorem 4.5 Assume that {h1, . . . , hd} ⊂ Z[y1, . . . , ym] is a subset so that

Heven(G/Ps) = Z[p∗(y1), . . . , p∗(ym)]/ 〈
p∗(h1), . . . , p∗(hd)

〉
, (4.11)

and that {d1, . . . , dt } is a basis of the module Hodd(G/Ps) over H even(G/Ps). Then

H∗(G/P) = Z[ωi , y1, . . . , ym]/ 〈r1, . . . , rd;ωig1, . . . ,ωigt 〉 , (4.12)

where {r1, . . . , rd}, {g1, . . . , gt } ⊂ Z[ωi , y1, . . . , ym] are two sets of polynomials that
satisfy respectively the following “initial constraints”

(i) rk ∈ ker π with rk |ωi=0 = hk, 1 ≤ k ≤ d;
(ii) π(g j ) = β(d j ), 1 ≤ j ≤ t . �

4.4 The Characteristics

Tomake Theorems4.3 and 4.5 applicable in practical computation we develop in this
section a series of three algorithms, entitled Characteristics, Null-space, Giambelli
polynomials, all of them are based on the characteristic formula (2.2).

4.4.1 The Characteristics

For a w ∈ W (P;G) with the minimized decomposition w = σi1 ◦ · · · ◦ σim , 1 ≤
i1, . . . , im ≤ n, l(w) = m, we observe in formula (2.2) that

(i) The Cartan matrix Aw of w can be read directly from the Cartan matrix [35,
p. 59] of the Lie group G;

(ii) For a u ∈ W (P;G) with l(u) = r < m the solutions in the multi-indices I =
{ j1, . . . , jr } ⊆ {i1, . . . , im} to the equation σI = u in W (P;G) agree with the
solutions to the linear system σI (x0) = u(x0) on the vector space L(T ), where
x0 is the fixed regular point;

(iii) The evaluation the operator TAw
on a polynomial have been programmed using

different methods in [19, 65].

Summarizing, grantedwithDecomposition, formula (2.2) indicates an effective algo-
rithm to implement a parallel program whose function is briefed below.

Algorithm 4.6 : Characteristics.

Input: The Cartan matrix A = (ai j )n×n of G, and a monomial sw1 · · · swk in Schubert
classes on G/P .

Output: The expansion (1.2) of sw1 · · · swk in the Schubert basis. �
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4.4.2 The Null-Space

LetZ[y1, . . . , yk] be the ring of polynomials in y1, . . . , yk graded by deg yi > 0, and
letZ[y1, . . . , yk](m) be theZ -module consisting of all the homogeneous polynomials
with degreem. Denote byN

k the set of all k-tuples α = (b1, . . . , bk) of non-negative
integers. Then the set of monomials basis of Z[y1, . . . , yk](m) is

B(m) = {yα = yb11 · · · ybkk | α = (b1, . . . , bk) ∈ N
k, deg yα = m}. (4.13)

It will be considered as an ordered set with respect to the lexicographical order on
N

k , whose cardinality is called b(m).
Let S = {y1, . . . , yk} be a set of Schubert classes on G/P that generates the ring

H∗(G/P) multiplicatively. Then the inclusion S ⊂ H∗(G/P) induces a surjective
ring map f : Z[y1, . . . , yk] → H∗(G/P) whose restriction to degree 2m is

fm : Z[y1, . . . , yk](2m) → H 2m(G/P).

Combining the Characteristics with the function “Null-space” in Mathematica, a
basis of ker fm can be explicitly exhibited.

Let sm,i be the Schubert class corresponding to the elementwm,i ∈ W (P;G).With
respect to the Schubert basis {sm,i | 1 ≤ i ≤ β(m)} on H 2m(G/P) every monomial
yα ∈ B(2m) has the unique expansion

πm(yα) = cα,1 · sm,1 + · · · + cα,β(m) · sm,β(m), cα,i ∈ Z,

where the coefficients cα,i can be evaluated by the Characteristics. The matrix
M( fm) = (cα,i )b(2m)×β(m) so obtained is called the structure matrix of fm . The built-
in function Null-space in Mathematica transforms M( fm) to another matrix N ( fm)

in the fashion

In:=Null-space[M( fm)]

Out:= a matrix N ( fm) = (b j,α)(b(2m)−β(m))×b(2m),

whose significance is shown by the following fact.

Lemma 4.7 The set κi = ∑
yα∈B(2m) bi,α · yα, 1 ≤ i ≤ b(2m) − β(m), of polyno-

mials is a basis of the Z module ker fm. �

4.4.3 The Giambelli polynomials (i.e. The Schubert Polynomials [6])

For the unitary group G = U (n) of rank n with parabolic subgroup P = U (k) ×
U (n − k) the flag manifold Gn,k = G/P is the Grassmannian of k-planes through
the origin on C

n . Let 1 + c1 + · · · + ck be the total Chern class of the canonical
k-bundle on Gn,k . Then the ci ’s can be identified with appropriate Schubert classes
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on Gn,k (i.e. the special Schubert class on Gn,k), and one has the classical Schubert
presentation

H∗(Gn,k) = Z[c1, . . . , ck]/ 〈rn−k+1, . . . , rn〉 ,

where r j is the component of the formal inverse of 1 + c1 + · · · + ck in degree
j . It follows that every Schubert class sw on Gn,k can be written as a polynomial
Gw(c1, . . . , ck) in the special ones, and such an expression is afforded by the classical
Giambelli formula [34, p. 112].

In general, assume that G/P is a flag variety, and that a Schubert presentation
(4.1) of the ring H∗(G/P) has been specified. Then each Schubert class sw of G/P
can be expressed as a polynomial Gw(y1, . . . , yk) in these special ones, and such
an expression will be called a Giambelli polynomial of the class sw. Based on the
Characteristics a program implementing Gw(y1, . . . , yk) has been compiled, whose
function is summarized below.

Algorithm 4.8 : Giambelli polynomials

Input: A set {y1, . . . , yk} of special Schubert classes on G/P .

Output: Giambelli polynomials Gw(y1, . . . , yk) for all w ∈ W (P;G).

We clarify the details in this program. By (4.13) we can write the ordered mono-
mial basis B(2m) of Z[y1, . . . , yk](2m) as {yα1 , . . . , yαb(2m)}. The corresponding struc-
ture matrix M( fm) in degree 2m then satisfies

⎛

⎜⎝
yα1

...

yαb(2m)

⎞

⎟⎠ = M( fm)

⎛

⎜⎝
sm,1
...

sm,β(m)

⎞

⎟⎠ .

Since fm surjects thematrixM( fm) has a β(m) × β(m)minor equal to±1. The stan-
dard integral row and column operation diagonalizing M( fm) [55, p. 162–164] pro-
vides us with two unique invertible matrices P = Pb(2m)×b(2m) and Q = Qβ(m)×β(m)

that satisfy

P · M( fm) · Q =
(
Iβ(m)

C

)

b(2m)×β(m)

, (4.14)

where Iβ(m) is the identitymatrix of rankβ(m). TheGiambelli polynomials is realized
by the procedure below.

Step 1. Compute M( fm) using the Characteristics;
Step 2. Diagonalize M( fm) to get the matrices P and Q;

Step 3. Set

⎛

⎜⎝
Gm,1

...

Gm,β(m)

⎞

⎟⎠ = Q · [P]
⎛

⎜⎝
yα1

...

yαb(2m)

⎞

⎟⎠,
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where [P] is formed by the first β(m) rows of P . Obviously, the polynomial Gm, j so
obtained depends only on the special Schubert classes {y1, . . . , yk} on G/P , and is
a Giambelli polynomial of sm, j , 1 ≤ j ≤ β(m).

5 Application to the Flag Manifolds G/T

A calculus, or science of calculation, is one which has organized processes by which passage
is made, mechanically, from one result to another. —De Morgan.

Among all the flag manifolds G/P associated to a Lie group G it is the complete
flag manifold G/T that is of crucial importance, since the inclusion T ⊆ P ⊂ G of
subgroups induces the fibration

P/T ↪→ G/T
π−→ G/P

in which the induced map π∗ embeds the ring H∗(G/P) as a subring of H∗(G/T ),
see the proof of Theorem4.3. Further, according to E. Cartan [63, p. 674] all
the 1-connected simple Lie groups consist of the three infinite families SU (n),
Sp(n), Spin(n) of the classical groups, as well as the five exceptional ones:
G2, F4, E6, E7, E8, while for any compact connected Lie group G with a maximal
torus T one has a diffeomorphism

G/T = G1/T1 × · · · × Gk/Tk

with each Gi an 1-connected simple Lie group and Ti ⊂ Gi a maximal torus. Thus,
the problem of finding Schubert presentations of flag manifolds may be reduced to
the special cases G/T where G is 1-connected and simple.

In this section we determine the Schubert presentation of the ring H∗(G/T ) in
accordance to G is classical or exceptional. Recall that for a simple Lie group G
with rank n the fundamental dominant weights {ω1, . . . ,ωn} of G [4] is precisely the
Schubert basis of H 2(G/T ) [17, Lemma 2.4].

5.1 The Ring H∗(G/T) Classical Lie Group

If G = SU (n + 1) or Sp(n) Borel [3] has shown that

H∗(G/T ) = Z [ω1, . . . ,ωn] /
〈
Z [ω1, . . . ,ωn]

+,W
〉
,

where Z [ω1, . . . ,ωn]+,W is the ring of the integral Weyl invariants of G in positive
degrees. It follows that if we let cr (G) ∈ H 2r (G/T ) be respectively the r th element
symmetric polynomial in the sets
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{ω1,ωk − ωk−1,−ωn | 2 ≤ k ≤ n} or {±ω1,±(ωk − ωk−1) | 2 ≤ k ≤ n} ,

then we have

Theorem 5.1 For G = SU (n) or Sp(n) Schubert presentation of H∗(G/T ) is

H∗(SU (n)/T ) = Z
[
ω1, . . . ,ωn−1

]
/ 〈c2, . . . , cn〉 ,cr = cr (SU (n)); (5.1)

H∗(Sp(n)/T ) = Z [ω1, . . . ,ωn] / 〈c2, . . . , c2n〉 ,c2r = c2r (Sp(n)). (5.2)

�
Turning to the group G = Spin(2n) let yk be the Schubert class on Spin(2n)/T

associated to the Weyl group element

wk = σ[n − k, . . . , n − 2, n − 1], 2 ≤ k ≤ n − 1

(in the notation of Sect. 4.1). According to Marlin [46, Proposition 3]

H∗(Spin(2n)/T ) = Z[ω1, . . . ,ωn, y2, . . . , yn−1]/
〈
δi , ξ j ,μk

〉
(5.3)

where

δi := 2yi − ci (ω1, . . . ,ωn), 1 ≤ i ≤ n − 1,
ξ j := y2 j + (−1) j y2j + 2

∑
1≤r≤ j−1

(−1)r yr y2 j−r , 1 ≤ j ≤ [
n−1
2

]
,

μk := (−1)k y2k + 2
∑

2k−n+1≤r≤k−1
(−1)r yr y2k−r ,

[
n
2

] ≤ k ≤ n − 1,

and where ci (ω1, . . . ,ωn) is the i th elementary symmetric function on set

{ωn,ωi − ωi−1,ωn−1 + ωn − ωn−2,ωn−1 − ωn | 2 ≤ i ≤ n − 2} .

Since each Schubert class y2 j with 1 ≤ j ≤ [
n−1
2

]
can be expressed as a polynomial

in the y2i+1’s by the relations of the type ξk , we obtain that

Theorem 5.2 The Schubert presentation of H∗(Spin(2n)/T ) is

H∗(Spin(2n)/T ) = Z[ω1, . . . ,ωn, y3, y5, . . . , y2[ n−1
2 ]−1]/ 〈ri , hk〉 , (5.4)

where ri and hk are the polynomials obtained respectively from δi andμk by replacing
the classes y2r with the polynomials (by the relation ξr )

(−1)r−1y2r + 2
∑

1≤k≤r−1

(−1)k−1yk y2r−k .

�
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Similarly, if G = Spin(2n + 1) one can deduce a Schubert presentation of the
ring H∗(G/T ) from Marlin’s formula [46, Proposition 2].

Remark 5.3 For the classical Lie groupsG theGiambelli polynomials (i.e. Schubert
polynomials) of the Schubert classes on G/T have been determined by Billey and
Haiman [6].

In comparison with Marlin’s formula (5.3) the presentation (5.4) is more concise
for involving fewer generators and relations. A basic requirement of topology is to
present the cohomology of a space X by aminimal systemof generators and relations,
so that the (rational) minimal model and κ -invariants of the Postnikov tower of X
[30] can be formulated accordingly. �

5.2 The Ring H∗(G/T) for an Exceptional Lie Group

Having clarified the Schubert presentation of the ring H∗(G/T ) for the classical
G we proceed to the exceptional cases G = F4, E6 or E7 (the result for the case
E8 comes from the same calculation, only the presentation [21, Theorem 5.1] is
slightly lengthy). In these cases the dimension s = dimG/T and the number t of
the Schubert classes on G/T are

(s, t) = (48, 1152), (72, 51840) or (126, 2903040),

respectively. Instead of describing the ring H∗(G/T ) using the totality of t3

Littlewood–Richardson coefficients cw
u,v (with c

w
u,v = 0 for l(w) �= l(u) + l(v) being

understood) the idea of Schubert presentation brings us the following concise and
explicit formulae of the ring H∗(G/T ).

Theorem 5.4 For G = F4, E6 and E7 the Schubert presentations of the cohomolo-
gies H∗(G/T ) are

H∗(F4/T ) = Z[ω1,ω2,ω3,ω4, y3, y4]/ 〈ρ2, ρ4, r3, r6, r8, r12〉 , where (5.5)

ρ2 = c2 − 4ω2
1;

ρ4 = 3y4 + 2ω1y3 − c4;
r3 = 2y3 − ω3

1;
r6 = y23 + 2c6 − 3ω2

1 y4;
r8 = 3y24 − ω2

1c6;
r12 = y34 − c26.

H∗(E6/T ) = Z[ω1, . . . ,ω6, y3, y4]/ 〈ρ2, ρ3, ρ4, ρ5, r6, r8, r9, r12〉 , where (5.6)

ρ2 = 4ω2
2 − c2;

ρ3 = 2y3 + 2ω3
2 − c3;
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ρ4 = 3y4 + ω4
2 − c4;

ρ5 = 2ω2
2 y3 − ω2c4 + c5;

r6 = y23 − ω2c5 + 2c6;
r8 = 3y24 − 2c5y3 − ω2

2c6 + ω3
2c5;

r9 = 2y3c6 − ω3
2c6;

r12 = y34 − c26.

H∗(E7/T ) = Z[ω1, . . . ,ω7, y3, y4, y5, y9]/
〈
ρi , r j

〉
, where (5.7)

ρ2 = 4ω2
2 − c2;

ρ3 = 2y3 + 2ω3
2 − c3;

ρ4 = 3y4 + ω4
2 − c4;

ρ5 = 2y5 − 2ω2
2 y3 + ω2c4 − c5;

r6 = y23 − ω2c5 + 2c6;
r8 = 3y24 + 2y3y5 − 2y3c5 + 2ω2c7 − ω2

2c6 + ω3
2c5;

r9 = 2y9 + 2y4y5 − 2y3c6 − ω2
2c7 + ω3

2c6;
r10 = y25 − 2y3c7 + ω3

2c7;
r12 = y34 − 4y5c7 − c26 − 2y3y9 − 2y3y4y5 + 2ω2y5c6 + 3ω2y4c7 + c5c7;
r14 = c27 − 2y5y9 + 2y3y4c7 − ω3

2 y4c7;
r18 = y29 + 2y5c6c7 − y4c27 − 2y4y5y9 + 2y3y35 − 5ω2y25c7,

where the cr ’s are the polynomials cr (P) in the weights ω1, . . . ,ωn defined in (5.17);
and where the yi ’s are the Schubert classes on G/T associated to the Weyl group
elements tabulated below:

yi F4/T (F/P{1}) E6/T (E6/P{2}) E7/T (E7/P{2})
y3 σ[3,2,1] σ[5,4,2] σ[5,4,2]
y4 σ[4,3,2,1] σ[6,5,4,2] σ[6,5,4,2]
y5 σ[7,6,5,4,2]
y6 σ[3,2,4,3,2,1] σ[1,3,6,5,4,2] σ[1,3,6,5,4,2]
y7 σ[1,3,7,6,5,4,2]
y9 σ[1,5,4,3,7,6,5,4,2].

(5.8)

To reduce the computational complexity of deriving Theorem5.4 we choose for
each G = F4, E6 or E7 a parabolic subgroup P associated to a singleton K = {i},
where the index i , as well as the isomorphism types of P and its simple part Ps , is
stated in the table below

G F4 E6 E7

i 1 2 2
P; Ps Sp(3) · S1; Sp(3) SU (6) · S1; SU (6) SU (7) · S1; SU (7)

. (5.9)

In view of the circle bundle associated to P (see in Sect. 4.3)

S1 ↪→ G/Ps p→ G/P (5.10)
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the calculation will be divided into three steps, in accordance to cohomologies of the
three homogeneous spaces G/Ps , G/P and G/T .

Step 1. The cohomologies H∗(G/Ps). By the formulae (4.8) and (4.9) the additive
structure of H∗(G/Ps) is determined by the homomorphisms

H 2r−2(G/P)
∪ω→ H 2r (G/P).

Explicitly, with respect to the Schubert basis {sr,1, . . . , sr,β(r)} of H 2r (G/P), β(r) =
|Wr (P;G)|, the expansions

ω ∪ sr−1,i =
∑

ai, j · sr, j

give rise to a β(r − 1) × β(r) matrix Ar that satisfies the linear system

⎛

⎜⎜⎜⎝

ω ∪ sr−1,1

ω ∪ sr−1,2
...

ω ∪ sr−1,β(r−1)

⎞

⎟⎟⎟⎠ = Ar

⎛

⎜⎜⎜⎝

sr,1
sr,2
...

sr,β(r)

⎞

⎟⎟⎟⎠ .

Since ω ∪ sr−1,i is a monomial in Schubert classes, the Characteristics is applicable
to evaluate the entries of Ar . Diagonalizing Ar by the integral row and column
reductions [50, p. 162–166] one obtains the non-trivial groups Hr (G/Ps), together
with their basis, as that tabulated below, where

(1) yi := p∗(yi ) with yi the Schubert classes in table (5.8);
(2) For simplicity the non-trivial groups Hr (G/Ps) are printed only up to the stage

where all the generators and relations of the ring Heven(G/Ps) emerge.

Step 2. The cohomologies H∗(G/P). Summarizing the contents of Table1 we find
that

Heven(F4/P
s) = Z[y3, y4, y6]/

〈
p∗(h3), p∗(h6), p∗(h8), p∗(h12)

〉
,

where

h3 = 2y3, h6 = 2y6 + y23 , h8 = 3y24 , h12 = y26 − y34 ,

and that Hodd(F4/Ps) has the Heven(F4/Ps) -module basis {d23}. By Theorem4.3
we obtain the partial presentation

H∗(F4/P) = Z[ω1, y3, y4, y6]/
〈
r3, r6, r8, r12, r

′
12

〉
,
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Table 1 Non-trivial cohomologies of F4/Ps

Nontrivial Hk Basis elements Relations

H6 ∼= Z2 s̄3,1(= y3) 2y3 = 0

H8 ∼= Z s̄4,2(= y4)

H12 ∼= Z4 s̄6,2(= y6) −2y6 = y23
H14 ∼= Z2 y3y4
H16 ∼= Z3 y24 3y24 = 0

H18 ∼= Z2 y3y6
H20 ∼= Z4 y4y6
H26 ∼= Z2 y3y4y6
H23 ∼= Z d23 = β−1(2s11,1 − s11,2)

Table 2 Non-trivial cohomologies of E6/Ps

Nontrivial Hk Basis elements Relations

H6 ∼= Z s̄3,2(= y3)

H8 ∼= Z s̄4,3(= y4)

H12 ∼= Z s̄6,1(= y6) −2y6 = y23
H14 ∼= Z y3y4
H16 ∼= Z3 y24 3y24 = 0

H18 ∼= Z2 y3y6 2y3y6 = 0

H20 ∼= Z y4y6
H22 ∼= Z3 y3y

2
4

H26 ∼= Z2 y3y4y6
H28 ∼= Z3 y24y6
H23 ∼= Z d23= β−1(s11,1−s11,2−s11,3+s11,4−s11,5+s11,6)

H29 ∼= Z d29= β−1(−s14,1+s14,2+s14,4− s14,5) 2d29 = ±y3d23

indicating that the inclusion {ω1, y3, y4, y6} ⊂ H∗(F4/P) induces the surjective ring
map f : Z[ω1, y3, y4, y6] → H∗(F4/P). Further, according to Lemma4.7, comput-
ing with the Null-space N ( fm) in the order m = 3, 6, 8 and 12 suffices to decide
the generators of the ideal ker f to yields the Schubert presentation

H∗(F4/P) = Z[ω1, y3, y4, y6]/ 〈r3, r6, r8, r12〉 ,where (5.11)

r3 = 2y3 − ω3
1;

r6 = 2y6 + y23 − 3ω2
1 y4;

r8 = 3y24 − ω2
1 y6;

r12 = y26 − y34 .

Similarly, combining the Null-space with the contents of Tables2 and 3 one gets
the Schubert presentations of the ring H∗(G/P) for G = E6 and E7 as
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Table 3 Non-trivial cohomologies of E7/Ps

Nontrivial Hk Basis elements

H6 ∼= Z s3,2 = ȳ3
H8 ∼= Z s4,3 = ȳ4
H10 ∼= Z s5,4 = ȳ5
H12 ∼= Z s6,5 = ȳ23 + ȳ6
H14 ∼= Z ⊕ Z s7,6 = −ȳ7; ȳ3 ȳ4
H16 ∼= Z ȳ3 ȳ5 − 2 ȳ24
H18 ∼= Z2 ⊕ Z ⊕ Z ȳ33 + ȳ3 ȳ6 + ȳ4 ȳ5 + ȳ9; −ȳ4 ȳ5; ȳ33 + ȳ9
H20 ∼= Z ⊕ Z ȳ3 ȳ7 − ȳ25 ; ȳ3 ȳ7 + ȳ4 ȳ6
H22 ∼= Z ⊕ Z ȳ23 ȳ5 − ȳ3 ȳ24 + ȳ4 ȳ7; −2 ȳ4 ȳ7 + ȳ5 ȳ6
H24 ∼= Z2 ⊕ Z ⊕ Z ȳ43 + ȳ23 ȳ6 + ȳ3 ȳ4 ȳ5 + ȳ3 ȳ9

ȳ23 ȳ6 + ȳ3 ȳ4 ȳ5 − ȳ34 ; −ȳ34 + ȳ5 ȳ7 + ȳ26
H26 ∼= Z2 ⊕ Z ⊕ Z ȳ33 ȳ4 + ȳ3 ȳ4 ȳ6 + ȳ24 ȳ5 + ȳ4 ȳ9

ȳ3 ȳ4 ȳ6 + ȳ3 ȳ25 − 3ȳ24 ȳ5 + ȳ6 ȳ7
ȳ33 ȳ4 + ȳ23 ȳ7 + 2 ȳ24 ȳ5 + ȳ4 ȳ9

H28 ∼= Z2 ⊕ Z ⊕ Z ȳ33 ȳ5 + ȳ3 ȳ5 ȳ6 + ȳ4 ȳ25 + ȳ5 ȳ9
3ȳ23 ȳ

2
4 + 5ȳ4 ȳ25 + ȳ5 ȳ9

ȳ33 ȳ5 + 2 ȳ23 ȳ
2
4 + ȳ3 ȳ4 ȳ7 + ȳ3 ȳ5 ȳ6 + 4ȳ4 ȳ25 +

ȳ5 ȳ9
H30 ∼= Z2 ⊕ Z ⊕ Z −ȳ53 − ȳ3 ȳ34 + ȳ4 ȳ5 ȳ6 + ȳ35 + ȳ6 ȳ9

−ȳ53 + ȳ23 ȳ4 ȳ5 − 3ȳ3 ȳ34 + ȳ3 ȳ5 ȳ7 − ȳ24 ȳ7 + ȳ35
ȳ23 ȳ4 ȳ5 + ȳ3 ȳ5 ȳ7 + ȳ24 ȳ7 + ȳ4 ȳ5 ȳ6

H32 ∼= Z2 ⊕ Z2 ⊕ Z ⊕ Z ȳ43 ȳ4 + ȳ23 ȳ4 ȳ6 + ȳ3 ȳ24 ȳ5 + ȳ3 ȳ4 ȳ9
ȳ23 ȳ

2
5 + ȳ3 ȳ6 ȳ7 + ȳ4 ȳ5 ȳ7 + ȳ25 ȳ6 + ȳ7 ȳ9

ȳ43 ȳ4 + ȳ3 ȳ24 ȳ5 + ȳ3 ȳ4 ȳ9 + ȳ3 ȳ6 ȳ7 + ȳ44
ȳ23 ȳ4 ȳ6 + ȳ3 ȳ24 ȳ5 − ȳ44 + ȳ4 ȳ5 ȳ7 + ȳ25 ȳ6

H34 ∼= Z38 ⊕ Z ȳ43 ȳ5 + ȳ3 ȳ4 ȳ25 + ȳ3 ȳ5 ȳ9 + 2 ȳ34 ȳ5
ȳ43 ȳ5 + 2 ȳ33 ȳ

2
4 + ȳ23 ȳ4 ȳ7 + 9ȳ34 ȳ5 + ȳ4 ȳ6 ȳ7

H36 ∼= Z2 ⊕ Z2 ⊕ Z20 ⊕ Z ȳ33 ȳ4 ȳ5 + ȳ3 ȳ4 ȳ5 ȳ6 + ȳ24 ȳ
2
5 + ȳ4 ȳ5 ȳ9

13ȳ63 + 30 ȳ23 ȳ
3
4 + ȳ3 ȳ6 ȳ9 + ȳ24 ȳ

2
5 + ȳ4 ȳ5 ȳ9 +

ȳ36
−4ȳ63 + ȳ33 ȳ4 ȳ5 − 11ȳ23 ȳ

3
4 + ȳ3 ȳ6 ȳ9 + ȳ5 ȳ6 ȳ7

13ȳ63 + ȳ33 ȳ4 ȳ5 + 28ȳ23 ȳ
3
4 − ȳ24 ȳ

2
5 + ȳ4 ȳ5 ȳ9

H∗(E6/P) = Z[ω2, y3, y4, y6]/ 〈r6, r8, r9, r12〉 ,where (5.12)

r6 = 2y6 + y23 − 3ω2
2 y4 + 2ω3

2 y3 − ω6
2;

r8 = 3y24 − 6ω2y3y4 + ω2
2 y6 + 5ω2

2 y
2
3 − 2ω5

2 y3;
r9 = 2y3y6 − ω3

2 y6;
r12 = y26 − y34 .
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H∗(E7/P) = Z[ω2, y3, y4, y5, y6, y7, y9]/
〈
r j

〉
j∈�

where � = {6, 8, 9, 10, 12, 14, 18},
(5.13)

r6 = 2y6 + y23 + 2ω2y5 − 3ω2
2 y4 + 2ω3

2 y3 − ω6
2;

r8 = 3y24 − 2y3y5 + 2ω2y7 − 6ω2y3y4 + ω2
2 y6 + 5ω2

2 y
2
3 + 2ω3

2 y5 − 2ω5
2 y3;

r9 = 2y9 + 2y4y5 − 2y3y6 − 4ω2y3y5 − ω2
2 y7 + ω3

2 y6 + 2ω4
2 y5;

r10 = y25 − 2y3y7 + ω3
2 y7;

r12 = y26 + 2y5y7 − y34 + 2y3y9 + 2y3y4y5 + 2ω2y5y6 − 6ω2y4y7 + ω2
2 y

2
5 ;

r14 = y27 − 2y5y9 + y4y25 ;
r18 = y29 + 2y5y6y7 − y4y27 − 2y4y5y9 + 2y3y35 − ω2y25 y7.

Step 3. Computing with the Weyl invariants. In addition to (5.10) the parabolic
subgroup P on G specified by table (5.9) induces also the fibration

P/T
i

↪→ G/T
π→ G/P(i.e.(4.3)), (5.14)

where Schubert presentation of the cohomology of the base space G/P has been
decided by (5.11), (5.12) and (5.13). On the other hand, with

P/T = Sp(3)/T 3, SU (6)/T 5 or SU (7)/T 6 for G = F4, E6 or E7

the cohomology of the fiber space P/T is given by Theorem5.1 as

H∗(P/T ) =
{

Z[ω2,ω3,ω4]
〈c2,c4,c6〉 if G = F4

Z[ω1,ω3,...,ωn ]
〈cr ,2≤r≤n〉 ifG = Enwith n = 6, 7.

(5.15)

Thus, Theorem4.3 is applicable to fashion the ring H∗(G/T ) in question from the
known ones H∗(P/T ) and H∗(G/P). To this end we need only to specify a system
{ρr } satisfying the constraints (4.5). The invariant theory of Weyl groups serves this
purpose.

Recall that the Weyl group W of G can be identified with the subgroup of
Aut (H 2(G/T )) generated by the automorphisms σi , 1 ≤ i ≤ n, whose action on
the Schubert basis {ω1, . . . ,ωn} of H 2(G/T ) is given by the Cartan matrix

(
ai j

)
n×n

of G as

σi (ωk) =
{

ωi if k �= i ;
ωi − ∑

1≤ j≤n ai jω j if k = i
. (5.16)

Introduce for each G = F4, E6 and E7 the polynomials cr (P) in ω1,··· ,ωn by the
formula

cr (P) :=
{
er (o(ω4,W (P))), 1 ≤ r ≤ 4 ifG = F4;
er (o(ωn,W (P)), 1 ≤ r ≤ n ifG = En, n = 6, 7

, (5.17)
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where o(ω,W (P)) ⊂ H 2(G/T ) denotes the W (P)-orbit through ω ∈ H 2(G/T ),
and where er (o(ω,W (P))) ∈ H 2r (G/T ) is the r th elementary symmetric function
on the set o(ω,W (P)). For instance if G = F4, E6 we have by (5.16) that

o(ω4,W (P)) = {
ω4 ,ω3 − ω4,ω2 − ω3,ω1 − ω2 + ω3,ω1 − ω3 + ω4,ω1 − ω4

}
,

o(ω6,W (P)) = {ω6,ω5 − ω6,ω4 − ω5,ω2 + ω3 − ω4,ω1 + ω2 − ω3,ω2 − ω1} .

On the other hand, according to Bernstein–Gel’fand–Gel’fand [5, Proposition 5.1]
the induced map π∗ in (4.3) injects, and satisfies the relation

Imπ∗ = H∗(G/T )W (P) = H∗(G/P),

implying cr (P) ∈ H∗(G/P). Since cr (P) is an explicit polynomial in the Schubert
classes ωi the Giambelli polynomials is functional to express it as a polynomial gr
in the special Schubert classes on H∗(G/P) given by table (5.8):

G F4 E6 E7

g2 4ω2
1 4ω2

2 4ω2
2

g3 2y3 + 2ω3
2 2y3 + 2ω3

2
g4 3y4 + 2ω1y3 3y4 + ω4

2 3y4 + ω4
2

g5 3ω2y4 − 2ω2
2 y3 + ω5

2 2y5 + 3ω2y4 − 2ω2
2 y3 + ω5

2
g6 y6 y6 y6 + 2ω2y5
g7 y7

. (5.18)

Up to now we have accumulated sufficient information to show Theorem5.4.

Proof of Theorem 5.4 For each G = F4, E6 or E7 Schubert presentations for the
cohomologies of the base G/P and of the fiber P/T have been determined by
(5.11)–(5.13) and (5.15), respectively, while a system {ρr } satisfying the relation
(4.5) is seen to be ρr := cr (P) − gr . Therefore, Theorem 4.3 is directly applicable to
formulate a presentation of the ring H∗(G/T ). The results can be further simplified
to yield the desired formulae (5.5)–(5.7) by the following observations:

(a) Certain Schubert classes yk from the base space G/P can be eliminated against
appropriate relations of the type ρk , e.g. if G = E7 the generators y6, y7 and the
relations ρ6, ρ7 can be excluded by the formulae of g6 and g7, which implies that
y6 = c6 − 2ω2y5 and y7 = c7, respectively;

(b) Without altering the ideal, higher degree relations of the type ri may be simplified
modulo the lower degree ones by the following fact. For two ordered sequences
{ fi }1≤i≤n and {hi }1≤i≤n of a graded polynomial ring with

deg f1 < · · · < deg fn and deg h1 < · · · < deg hn
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write {hi }1≤i≤n ∼ { fi }1≤i≤n to denote the statements that deg hi = deg fi and that
( fi − hi ) ∈ 〈

f j
〉
1≤ j<i . Then { fi }1≤i≤n ∼ {hi }1≤i≤n implies that 〈h1, . . . , hn〉

= 〈 f1, . . . , fn〉. �

5.3 A Type Free Characterization of the Ring H∗(G/T)

For an 1-connected simple Lie groupG with rank n denote by D(G) ⊂ H∗(G/T ) the
ideal of decomposable elements. Let h(G) be the cardinality of a basis of the quotient
group H∗(G/T )/D(G) and setm = h(G) − n − 1. The results of Theorems5.1, 5.2
and 5.4 can be summarized into one formula, without referring to the types of the
group G (see [21, Theorems 1.2 and 1.3]).

Theorem 5.5 For each simple Lie group G there exist a set {y1, . . . , ym} of m
Schubert classes on G/T with 2 < deg y1 < · · · < deg ym, so that the inclusion
{ω1, . . . ,ωn, y1, . . . , ym} ∈ H∗(G/T ) induces the Schubert presentation

H∗(G/T ) = Z[ω1, . . . ,ωn, y1, . . . , ym]/ 〈
ei , f j , g j

〉
1≤i≤k;1≤ j≤m , (5.19)

where
(i) k = n − m for all G �= E8 but k = n − m + 2 for G = E8;
(ii) ei ∈ 〈ω1, . . . ,ωn〉, 1 ≤ i ≤ k;
(iii) the pair ( f j , g j ) of polynomials is related to the Schubert class y j in the

fashion
f j = p j · y j + α j ,g j = y

k j

j + β j , 1 ≤ j ≤ m,
where p j ∈ {2, 3, 5} and α j ,β j ∈ 〈ω1, . . . ,ωn〉;

(iv) ignoring the ordering, the sequence
{
deg ei , deg g j

}
1≤i≤k;1≤ j≤m of integers

agrees with the degree sequence of the basic Weyl invariants of the group G (over
the field of rationals). �

Concerning assertion (iv) we remark that for each simple Lie group G the degree
sequence, as well as explicit formulae, of the basic Weyl invariants P1, . . . , Pn of
G has been determined by Chevalley and Mehta [12, 47].

6 Further Remarks on the Characteristics

6.1. Certain parameter spaces of the geometric figures concerned by Schubert [51,
Chap. 4] may fail to be flag manifolds, but can be constructed by performing finite
number of blow-ups on flag manifolds along the centers again in flag manifolds, see
the examples in Fulton [27, Example 14.7.12], or in [18] for the construction of the
parameter spaces of the complete conics and quadrics on the 3-space P

3. As results
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the relevant characteristics can be computed from those of flag manifolds via strict
transformations (e.g. [18, Examples 5.11; 5.12]).

6.2. As the intersection multiplicities of certain Schubert varieties on G/P , the
characteristics aw

w1,...,wk
are always non-negative by Van der Waerden [59]. Due to

the importance of these numbers in geometry their effective computability (rather
than positivity) had been the top priority in the classical approach [51, 52, 54], see
also Fulton [27, 14.7].

Motivated by the Littlewood–Richardson rule [45] for the structure constants
of the Grassmannian Gn,k a remarkable development of Schubert calculus has taken
place in algebraic combinatorics since 1970’s, where themain concern is to find com-
binatorial descriptions of characteristics by which the positivity become transparent.
This idea has inspired beautiful results on the enumerations of Yong tableaux, Mon-
drian tableaux, Chains in the Bruhat order, and puzzles by Buch, Graham, Coskun,
Knutson and Tao [7, 14, 28, 43, 44], greatly enriched the classical Schubert calculus.

6.3. According to Van derWaerden [59] andWeil [60, p. 331] Hilbert’s 15th prob-
lem has been solved satisfactorily. In particular, in the context of modern intersection
theory (e.g. [27, 29]) rigorous treatment of the major enumerative results of Schu-
bert [51] had been completed independently by many authors (e.g. [1, 41, 42, 49])2;
granted with the basis theorem the characteristics of flag manifolds can be evaluated
uniformly by the formula (2.2), while the Schubert presentations of the cohomology
rings of flag manifolds have also been available (e.g. [3, 6, 20, 21, 46]).

However, Schubert calculus remains a vital and powerful tool in constructing
the cohomologies of much broad spaces, such as the homogeneous spaces G/H
associated to Lie groups G. In contrast to the basis theorem (i.e. Theorem1.2) the
cohomologies of such spaces may be nontrivial in odd degrees, and may contain
torsion elements. Nevertheless, inputting the formula (5.19) into the Koszul complex

E∗,∗
2 (G) = H∗(G/T ) ⊗ H∗(T )

associated to the fibration G → G/T a unified construction of the integral cohomol-
ogy rings of all the 1-connected simpleLie groupsG has been carried out byDuan and
Zhao in [23]. In addition, the formula (2.2) of the characteristics has been extended
to evaluate the Steenrod operators on the modp cohomologies of flagmanifolds [24],
and of the exceptional Lie groups [25].

6.4.As is of today Schubert calculus has entered the intersection of several rapidly
developingfields ofmathematics, andhas beengeneralized to the studies of other gen-
eralized cohomology theories, such as equivariant, quantum cohomology, K-theory,
and cobordism, all of them are different deformations of the ordinary cohomology
[31]. In this regard the present paper is by no means a comprehensive survey on the
contemporary Schubert calculus. It illustrates a passage from the Cartan matrices of

2The enumerative results in Schubert [51] were mutually verifiable with the results of other geome-
ters (e.g. Salmon, Clebsch, Chasles and Zeuthen) of the same period, hence were already known to
be correct at that time.
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Lie groups to the cohomology of homogeneous spaces, where Schubert’s character-
istics play a central role.

Acknowledgements The authors would like to thank their referees for valuable suggestions and
improvements on the earlier version of the paper.
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Asymmetric Function Theory

Oliver Pechenik and Dominic Searles

Abstract The classical theory of symmetric functions has a central position in alge-
braic combinatorics, bridging aspects of representation theory, combinatorics, and
enumerative geometry. More recently, this theory has been fruitfully extended to the
larger ring of quasisymmetric functions, with corresponding applications. Here, we
survey recent work extending this theory further to general asymmetric polynomials.

Keywords Symmetric function · Quasisymmetric function · Schubert
polynomial · Slide polynomial · Demazure character · Demazure atom · Quasikey
polynomial

1 The Three Worlds: Symmetric, Quasisymmetric,
and General Polynomials

One of the gems of 20th-century mathematics is theory of symmetric functions and
symmetric polynomials, as expounded in the classic textbooks [58, 59, 78]. In addi-
tion to its intrinsic beauty, this theory has important applications in representation
theory, algebraic geometry, and combinatorics.

First, we will review aspects of this symmetric function theory. Then, we discuss
the more general theory of quasisymmetric functions and polynomials, a very active
area of contemporary research. Finally, we turn to the combinatorial theory of gen-
eral asymmetric polynomials. While this seems naively like a very simple object,
the polynomial ring turns out to have a rich and beautiful combinatorial structure
analogous to that of the symmetric and quasisymmetric worlds, but far less explored.
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While the theory of symmetric polynomials is a textbook subject and that of qua-
sisymmetric polynomials has recently been nicely expounded in [61], we believe this
article is the first survey of corresponding developments in the asymmetric world.

In each world, we will consider a variety of additive bases for the algebra in
question. The power of the combinatorial theory comes from the bases having the
following three characteristics:

(1) positive combinatorial rules for change of basis,
(2) positive combinatorial multiplication rules in various bases, and
(3) algebraic/geometric interpretations of the basis elements.

We will attempt to elucidate all three properties in each case, to the extent that
such properties are known to hold. In some cases, our descriptions of geometric
interpretations require background that is beyond the scope of this article to recall;
readers without such background knowledge may safely skip such episodes.

2 The Symmetric World

Consider theZ-algebra Polyn := Z[x1, . . . , xn] of integral multivariate polynomials.
It carries a natural action of the symmetric group Sn on n letters, where the simple
transposition (i, i + 1) acts on f ∈ Polyn by swapping the variables xi and xi+1. Let
Symn := PolySn

n , the Sn-invariants. It is easy to see that Symn is a subring of Polyn;
we call it the ring of symmetric polynomials in n variables. Symn is naturally a
graded ring, inheriting the grading by degree from Polyn . We denote the degree m
homogeneous piece of a graded ring R by R(m).

Form ≤ n, we canmap Symn onto Symm by setting the last n − m variables equal
to 0. The inverse limit of the {Symn} with respect to these restriction maps is called
the ring of symmetric functions Sym, although its elements are not functions, but
rather formal power series in infinitely-many variables. Classically, one generally
prefers to study Sym; however, we will usually prefer the essentially equivalent
theory of Symn , as it extends more naturally to the asymmetric setting that is our
focus.

Wewill consider four of themost important additive bases of Symn: themonomial,
elementary, homogeneous, and Schur bases. Given bases A, B of a free Z-module,
we say that A refines B if every element of B can bewritten as a sum of elements of A
with nonnegative coefficients. For a much deeper exposition of symmetric function
theory than we provide, see any of the textbooks [58, 59, 78], which also provide
proofs that we omit. The relations among these four bases are illustrated in Fig. 1.

For aweak composition a (i.e., an infinite sequence of nonnegative integers with
finite sum), define a monomial

xa := xa11 xa22 · · · .
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For a partition λ (i.e., a weakly decreasing weak composition), let

mλ :=
∑

a

xa,

where the sum is over all distinctweak compositions that can be obtained by rearrang-
ing the parts of λ. If xa is a monomial of the symmetric function f , then necessarily
xb is also a monomial of f for every b that can be obtained by rearranging the parts of
a. Thus f can be written uniquely as a finite sum of themonomial symmetric func-
tions mλ. Therefore {mλ} is a Z-linear basis of Sym and the dimension of Sym(m) is
the number of partitions of m.

We may consider a second action of Sn on Polyn where a permutation acts by
permutingvariables and thenmultiplyingby the signof the permutation.Note that this
merely amounts to twisting the original action by tensoring with the 1-dimensional
sign representation of Sn . The invariants of this twisted action are the alternating
polynomials in n variables, vnSymn . These are precisely the polynomials where
setting any two variables equal yields 0. The sum of two alternating polynomials is
alternating, but the product is generally not. Hence vnSymn is not a subring of Polyn ,
although it is a module over Symn . As with Symn , vnSymn is graded by degree,
although for technical reasons one might prefer to shift the degree by

(n
2

)
.

Let vn := ∏
1≤i< j≤n(xi − x j ) be theVandermondedeterminant. This is an alter-

nating polynomial and moreover divides every other alternating polynomial. The
quotients are necessarily symmetric. Hence every alternating polynomial can be
written as vn times a symmetric polynomial. (This fact justifies the notation vnSymn
for the module of alternating polynomials.)

For a weak composition a of length n, define

j̃a :=
∑

σ∈Sn
sgn(σ)xσ(a).

Note that if xa is a term of the alternating polynomial f , then so is every other term
of j̃a . Moreover if a has any repeated parts, then clearly j̃a = 0. Hence vnSymn has a
natural basis of polynomials j̃θ, for θ ranging over strict partitions, that is partitions
with distinct parts.

Every strict partition of length n may be written uniquely as δ + λ, where δ =
(n − 1, n − 2, . . . , 0), λ is a partition, and the sum is componentwise. We write
jλ := j̃δ+λ, to obtain a basis of vnSym indexed by partitions. That is, the dimension
of the space of alternating polynomials of degree m + (n

2

)
equals the dimension of

the space of symmetric polynomials of degree m. Indeed, we can even identify the
isomorphism; it is just multiplication by vn = j̃δ = j(0). If we shifted the grading of
vnSymn as suggested above (so that vn is in degree 0), then multiplication by vn is
an isomorphism Symn → vnSymn of graded Sym-modules.

The basis of Symn obtained by pulling back the jλ basis of vnSymn is not the
basis of monomial symmetric polynomials, but rather something more interesting.
These important objects
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sλ := jλ
vn

are called the Schur polynomials.
Although the Schur polynomials are clearly symmetric and hence can be expanded

in the monomial basis, it is remarkable that the non-zero expansion coefficients are
uniformly positive. A recurring theme in this surveywill be such instances of positive
basis changes between a priori unrelated bases.

A combinatorial formula manifesting the monomial-positivity of Schur polyno-
mialswas given byLittlewood.Given a partitionλ = (λ1,λ2, . . .), we identifyλwith
its English-orientation Young diagram, consisting of λ1 left-justified boxes in the top
row, λ2 left-justified boxes in the second row, etc. A semistandard (Young) tableau
of shape λ is an assignment of a positive integer to each box of the Young diagram
such that the labelsweakly increase left to right across rows and strictly increase down
columns. Theweight of a tableau T is the weak composition wt(T ) := (a1, a2, . . .),
where ai records the number of boxes labeled i .

Theorem 2.1 (Littlewood, [47, 48]) For any partition λ, we have

sλ =
∑

T∈SSYT(λ)

xwt(T ).

��
Example 2.2 We have s(2,1)(x1, x2) = x21 x2 + x1x22 , owing to the two semistandard
tableaux

1 1
2

1 2
2

.

♦
We now turn to the last two bases of Symn that we will consider. For a partition

λ = (λ1,λ2, . . . ), we define the elementary symmetric function eλ by

eλ :=
∏

i

sλi

and the (complete) homogeneous symmetric function by

hλ :=
∏

i

s1λi .

It is not obvious that either of these families yields a basis of Symn; nevertheless,
each of them does, as was originally established by Isaac Newton. It also is not
obvious that, like the Schur basis, the elementary and homogeneous bases expand
positively in the mλ. However, in fact, something much stronger is true: each eλ and
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each hλ is a positive sum of Schur polynomials. This positivity is a consequence of
an even more remarkable positivity property:

Theorem 2.3 The Schur basis of Symn has positive structure coefficients. In other
words, for any partitions λ and μ, the product sλ · sμ expands as a positive sum of
Schur polynomials.

Corollary 2.4 For any λ, eλ and hλ are both Schur-positive, and hence monomial-
positive.

Proof By Theorem 2.3, any product of Schur polynomials is Schur-positive. Since
eλ and hλ are defined as products of special Schur polynomials, they are then Schur-
positive. By Theorem 2.1, Schur polynomials are monomial-positive. Hence, any
Schur-positive polynomial, in particular eλ or hλ, is also monomial-positive. ��

By commutativity and the definitions, it is transparent that both the elementary
and homogeneous bases of Symn also have positive structure coefficients.

There are a variety of distinct ways to establish Theorem 2.3. The most funda-
mental explanations involve interpreting the theorem representation-theoretically or
geometrically.

For a representation-theoretic approach, one can establish that Sym is isomor-
phic to the ring of polynomial representations of the general linear group in such a
way that the Schur functions are in one-to-one correspondence with the irreducible
representations. Under this identification, decomposing the tensor product of two
irreducible representations into irreducibles corresponds to expanding the product
of two Schur functions in the Schur basis. Hence, Theorem 2.3 follows. Similarly,
one can identify the Schur functions of homogeneous degree k with the irreducible
representations of the symmetric group Sn in such a way that multiplying Schur
functions corresponds to taking an ‘induction product’ of the corresponding repre-
sentations. Again, since the induction product representation is necessarily a direct
sum of irreducible representations, we recover Theorem 2.3. For more details on
these representation-theoretic proofs, see, e.g., [23, 59].

A geometric approach is to identify Sym with the Chow ring of complex Grass-
mannians, the classifying spaces for complex vector bundles. AGrassmannian comes
with a natural cell decomposition by certain subvarieties called Schubert varieties,
yielding an effective basis of the Chow ring. Under the identification with Sym, this
basis corresponds to the Schur polynomials. Multiplying Schur polynomials then
corresponds to intersection product on Schubert varieties, and again Theorem 2.3
follows. For more details on these geometric constructions, see, e.g., [23, 25, 59].

The above interpretations of Theorem 2.3 deepen its significance and provide rel-
atively easy proofs. Nonetheless, Theorem 2.3 is on its face a purely combinatorial
statement and so one might hope it also had a purely combinatorial proof. Indeed,
such a proof exists. Even better, it gives an explicit transparently-positive formula
for the positive integers appearing in the Schur expansion. This formula can then be
combined with the algebraic and geometric interpretations above to compute with
and to better understand aspects of representation theory and enumerative geometry.



78 O. Pechenik and D. Searles

(Indeed, the combinatorics described here can be directly interpreted in terms of rep-
resentations of quantum groups via M. Kashiwara’s theory of crystal bases [35–37];
see [12] for an excellent combinatorially-flavored introduction to these connections.)

We write λ ⊆ ν to mean that the Young diagram of the partition λ is a subset of
that for ν. The set-theoretic difference is called the skew Young diagram ν/λ. A
skew semistandard tableau is a filling of a skew diagram by positive integers, such
that rows weakly increase and columns strictly increase. Define the content of a skew
tableau as for tableaux of partition shape. The reading word of a (skew) tableau T
is the word given by reading the rows of T from top to bottom and from right to left
(like the ordinary reading order in Arabic or Hebrew). We say that T isYamanouchi
if every initial segment of its reading word contains at least as many is as (i + 1)s,
for each positive integer i .

Theorem 2.5 (Littlewood–Richardson rule) For partitions λ and μ, we have

sλ · sμ =
∑

ν

cν
λ,μsν,

where cν
λ,μ counts the number of Yamanouchi semistandard tableaux of skew shape

ν/λ and content μ.

Example 2.6 To compute the structure coefficient c(3,2,1)
(2,1),(2,1) via Theorem 2.5, we

consider fillings of the skew shape (3, 2, 1)/(2, 1):

using two 1s and one 2. There are three such fillings

1
1

2

1
2

1

2
1

1

all of which are semistandard. However, only the first two are Yamanouchi, as the
reading word of the third is 211, which has a 2 before any 1. Hence, c(3,2,1)

(2,1),(2,1) = 2.
♦

3 The Quasisymmetric World

In this section, we consider a third action of Sn on Polyn . Here, the simple trans-
position (i, i + 1) acts on f ∈ Polyn by swapping the variables xi and xi+1 in only
those terms where at most one of the two variables appears. The invariants of this
action are the subalgebra QSymn of quasisymmetric polynomials. Equivalently,
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quasisymmetric polynomials are those polynomials f such that, for all a1, . . . , ak ,
the coefficient in f of xa1i1 · · · xakik equals the coefficient in f of xa1j1 · · · xak

k
, whenever

i1 < · · · < ik and j1 < · · · < jk . Analogously to the symmetric case, one can also
define the ring QSym of quasisymmetric functions in infinitely-many variables as
the inverse limit of the QSymn , but again our focus is on the essentially equivalent
finite-variable case. For a much more detailed survey than we provide here of the
state of the art in quasisymmetric function theory, see [61].

We will consider three important bases of QSymn: the monomial, fundamental
and quasiSchur bases. The relations among these three bases are illustrated in Fig.
2.

A strong composition α is a finite sequence of positive integers; we identify α
with the weak composition obtained by appending infinitely many 0s to the end of
α. For any weak composition a, its positive part is the strong composition a+ given
by deleting all 0s.

For any strong compositionα, define themonomial quasisymmetric polynomial
Mα by

Mα(x1, . . . , xn) :=
∑

b

xb ∈ QSymn,

where the sum is over all weak compositions b with b+ = α and whose entries after
position n are all zero. Clearly, the monomial quasisymmetric polynomials yield a
basis of QSymn .

Example 3.1 We have

M13(x1, x2, x3) = x130 + x103 + x013 ∈ QSym3.

Note in particular that this polynomial is not an element of Sym3. ♦
It is clear that the monomial basis of QSymn must have positive structure coef-

ficients, as does the monomial basis of Symn discussed in Sect. 2. However, these
structure coefficients are slightly more interesting than those for the monomial sym-
metric functions. They are given by the overlapping shuffles of M. Hazewinkel [29],
which we now recall.

Let A and B be words in disjoint alphabets with A of length m and B of length
n. An overlapping shuffle of A and B is a surjection

t : {1, 2, . . . ,m + n} → {1, 2, . . . , k}

(for some max{m, n} ≤ k ≤ m + n) such that

t (i) < t ( j) whenever i < j ≤ m or m < i < j.

We write A�o B for the overlapping shuffle product of A and B, the formal sum
of all overlapping shuffles. The overlapping shuffle product α�o β of two strong
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compositions α and β is given by treating the strong compositions as words in
disjoint alphabets. Here, we identify an overlapping shuffle t : {1, 2, . . . ,m + n} →
{1, 2, . . . , k} of α and β with the strong composition γ defined by

γi :=
∑

t ( j)=i

(αβ) j ,

where αβ denotes the concatenation of the two strong compositions.

Example 3.2 We compute the overlapping shuffle product of (2) and (1, 2):

(2)�o (1, 2) = (2, 1, 2) + 2 · (1, 2, 2) + (3, 2) + (1, 4).

♦
Although the relevant combinatorial construction was somewhat involved, the

following positive multiplication formula is now essentially clear.

Theorem 3.3 For strong compositions α and β, we have

Mα · Mβ =
∑

γ

cγ
α,βMγ,

where cγ
α,β is the multiplicity of γ in the overlapping shuffle product α�o β.

Example 3.4 To compute M(2) · M(1,2) via Theorem 3.3, we compute the overlap-
ping shuffle product of (2) and (1, 2) as in Example 3.2. Then, the coefficients on
the various strong compositions give the coefficients on the various monomial qua-
sisymmetric polynomials in the product:

M(2) · M(1,2) = M(2,1,2) + 2M(1,2,2) + M(3,2) + M(1,4). ♦
Given two strong compositions α and β, we say β refines α and write β � α if

α can be obtained by summing consecutive entries of β, e.g. (1, 2, 1) � (1, 3) but
(2, 1, 1) � (1, 3).

Define the fundamental quasisymmetric polynomial Fα by

Fα(x1, . . . , xn) :=
∑

b

xb,

where the sum is over all distinct weak compositions bwith b+ � α andwhose entries
after position n are all zero.
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Example 3.5 We have

F13(x1, x2, x3) = x130 + x103 + x013 + x112 + x121.

♦
Theorem 3.6 The fundamental quasisymmetric polynomials expand positively in
the monomial quasisymmetric polynomials:

Fα(x1, . . . , xn) =
∑

β�α

Mβ(x1, . . . , xn).

A sign of the fundamental nature of the fundamental quasisymmetric polynomials
is that they also have positive structure coefficients. Their multiplication is also
governed by a shuffle product, that of S. Eilenberg and S. Mac Lane [19]. Let A and
B be words in the disjoint alphabetsA and B, respectively. Recall a shuffle of A and
B is a permutation of the concatenation AB such that the subword on the alphabet
A is A and the subword on B is B. Alternatively, if A has length m and B has length
n, we can think of a shuffle of A and B as a bijection

s : {1, 2, . . . ,m + n} → {1, 2, . . . ,m + n}

such that
s(i) < s( j) whenever i < j ≤ m or m < i < j.

The shuffle product of two strong compositions α and β is obtained as follows.
Let A denote the alphabet of odd integers and let B denote the alphabet of even
integers. Let A be the word in A consisting of α1 copies of 2�(α) − 1, followed by
α2 copies of 2�(α) − 3, all the way to α�(α) copies of 1. Likewise, let B denote the
word in B consisting of β1 copies of 2�(β), followed by β2 copies of 2�(β) − 2,
all the way to β�(β) copies of 2. Let Sh(A, B) denote the set of the

(|α|+|β|
|β|

)
shuffles

of A and B. For each C ∈ Sh(A, B), let Des(C) denote the descent composition
of C , i.e. the strong composition obtained by decomposing C into maximal runs of
increasing entries and letting Des(C)i be the number of entries in the i th increasing
run of C . Finally, define the shuffle product α� β of the strong compositions α
and β as the formal sum of strong compositions

α� β :=
∑

C∈Sh(A,B)

Des(C).

Example 3.7 Let α = (2) and β = (1, 2). Then A = 11 and B = 422. We compute
the set of shuffles of A and B:

Sh(A, B) = {4|22|11, 4|2|12|1, 4|122|1, 14|22|1, 4|2|112,
4|12|12, 14|2|12, 4|1122, 14|122, 114|22},
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where we have placed bars to indicate the decomposition of each shuffle into max-
imally increasing runs. The corresponding descent compositions are thus, respec-
tively,

{(1, 2, 2), (1, 1, 2, 1), (1, 3, 1), (2, 2, 1), (1, 1, 3), (1, 2, 2), (2, 1, 2), (1, 4), (2, 3), (3, 2)}.

Hence, we have

(2)� (1, 2) = 2(1, 2, 2) + (1, 1, 2, 1) + (1, 3, 1) + (2, 2, 1)

+ (1, 1, 3) + (2, 1, 2) + (1, 4) + (2, 3) + (3, 2).

Note that this sum is not multiplicity-free. ♦
Theorem 3.8 For strong compositions α and β, we have

Fα · Fβ =
∑

γ

cγ
α,βFγ,

where cγ
α,β is the multiplicity of γ in the ordinary shuffle product α� β.

Proving this theorem is given as Exercise 7.93 in [78].

Example 3.9 To compute F(2) · F(1,2) via Theorem 3.8, we compute the shuffle
product of (2) and (1, 2) as in Example 3.7. Then, the coefficients on the various
strong compositions give the coefficients on the various fundamental quasisymmetric
polynomials in the product:

F(2) · F(1,2) = 2F(1,2,2) + F(1,1,2,1) + F(1,3,1) + F(2,2,1) + F(1,1,3) + F(2,1,2) + F(1,4) + F(2,3) + F(3,2). ♦
The final basis for QSymn that we will consider is the basis of quasiSchur poly-

nomials introduced in [30]. For a detailed and readable survey of work related to
this basis, see [50]. For those unfamiliar with quasiSchur polynomials, the definition
may appear quite complicated; it originates as an important and tractable piece of
the theory of Macdonald polynomials. It is not transparent from this definition that
the quasiSchur polynomials are quasisymmetric, much less that they yield a basis of
QSymn .

First, wemust extend the definition of theYoung diagramof a partition to a general
weak composition a = (a1, a2, . . . ): Draw ai left-justified boxes in row i . (Here, in
accordance with our English orientation on Young diagrams for partitions, row 1
is the top row.) A (composition) tableau of shape a is an assignment of a positive
integer to each box of the Young diagram for a. (Sometimes, we will augment such a
tableau with an extra “zeroth” column of boxes (called the basement) immediately
left of the first column, and write bi for the positive integer labeling the basement
box in row i . Basement entries do not contribute to the weight of a tableau.)
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A triple of boxes in a composition tableau T is a set of three boxes in one of the
two following configurations:

Z X...
Y

Y...
Z X

upper row weakly longer upper row strictly shorter

Note, in particular, that a triple has exactly two boxes sharing a row and exactly two
boxes sharing a column. We say a triple is inversion if it is not the case that its labels
satisfy X ≤ Y ≤ Z .

A composition tableau is semistandard if

(S.1) entries do not repeat in a column,
(S.2) rows weakly decrease from left to right,
(S.3) every triple is inversion,
(S.4) entries in the first column equal their row indices.

(Note that, in the case of partition shape, this definition unfortunately does not coin-
cide with the definition of semistandard tableaux we have given previously.) For a
weak composition a, let ASST(a) denote the set of semistandard tableaux of shape
a. The quasiSchur polynomial for the strong composition α is then given by

Sα(x1, . . . , xn) =
∑

a+=α

∑

T∈ASST(a)

xwt(T ), (3.1)

where the first sum is over all weak compositions a of length n with positive part α.

Example 3.10 For α = (1, 3) and n = 3, we have

S(1,3)(x1, x2, x3) = x130 + x220 + x103 + x202 + 2x112 + x121 + x211 + x013 + x022,

where the monomials are determined by the semistandard composition tableaux
shown in Fig. 3. ♦

From the given definition of quasiSchur polynomials, it is not clear that they are
natural objects that we should expect to exhibit any nice properties. Nonetheless,
they participate in two beautiful positive combinatorial rules for basis expansion.

Since Symn ⊂ QSymn , we can ask how bases of Symn expand in bases of QSymn .
First, observe the following straightforward formula for the Mα-expansion of the
monomial symmetric polynomial mλ. For a weak composition a, we write ←−a for
the partition formed by sorting the entries of a into weakly decreasing order.

Proposition 3.11 The monomial symmetric polynomials expand positively in the
monomial quasisymmetric polynomials:
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sλ

eλ

hλ

mλ

Fig. 1 The four bases of Symn considered here. The arrows denote that the basis at the head refines
the basis at the tail. All four bases have positive structure coefficients

Sα

sλ

Fα Mα

mλ

Fig. 2 The three bases of QSymn considered here, together with some bases of Symn from Fig. 1.
The arrows denote that the basis at the head refines the basis at the tail. The star-shaped nodes have
positive structure coefficients

1
2 2 2

1
2 2 1

1

3 3 3

1

3 3 2

1

3 3 1

1

3 2 2

1

3 2 1
2
3 3 3

2
3 3 2

2
3 3 1

Fig. 3 The 10 semistandard composition tableaux associated to the quasiSchur polynomial
S(1,3)(x1, x2, x3). The quasiYamanouchi tableaux are shaded in blue, the initial tableaux in pink,
and those that are both quasiYamanouchi and initial in green

mλ(x1, . . . , xn) =
∑

←−α =λ

Mα(x1, . . . , xn).

The quasiSchur expansion of a Schur polynomial is beautifully parallel to the
formula of Proposition 3.11.

Theorem 3.12 ([30]) The Schur polynomials expand positively in the quasiSchur
polynomials:

sλ(x1, . . . , xn) =
∑

←−α =λ

Sα(x1, . . . , xn).
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Remark 3.13 Considering Fig. 2 together with Proposition 3.11 and Theorem 3.12,
one might be tempted to define polynomials

fλ(x1, . . . , xn) =
∑

←−α =λ

Fα(x1, . . . , xn).

Extrapolating from Fig. 2, it might appear plausible that { fλ} should form a basis of
Symn , perhaps even with positive structure coefficients. However, the polynomials
fλ are in general not even symmetric!
For example, in four or more variables, we have by Theorem 3.6 and Proposi-

tion 3.11 that

f31 = F31 + F13

= M31 + M211 + 2M121 + M112 + M13 + 2M1111

= m31 + m211 + 2m1111 + M121,

a symmetric polynomial plus M121.

To describe the expansion of quasiSchur polynomials into the fundamental basis,
we isolate an important subclass of semistandard composition tableaux. Fix a strong
composition α and consider T ∈ ASST(a) for some a with a+ = α. We say that T
is quasiYamanouchi if for every integer i appearing in T , either

• an i appears in the first column, or
• there is an i + 1 weakly right of an i .

We say T is initial if the set of integers i appearing in T is an initial segment of Z>0.

Theorem 3.14 The quasiSchur polynomials expand positively in the fundamental
quasisymmetric polynomials:

Sα(x1, . . . , xn) =
∑

T

Fwt(T )(x1, . . . , xn),

where the sum is over all initial quasiYamanouchi tableaux T such that T ∈
ASST(a) for some a with a+ = α.

A positive formula for the expansion of quasiSchur polynomials in fundamental
quasisymmetric polynomials was first given in [30] in terms of standard augmented
fillings. The formula in Theorem 3.14 above follows as a consequence of a result
in [77]; we state the expansion in these terms for consistency with formulas in the
upcoming sections.

Remark 3.15 Unlike the other two bases of QSymn that we have considered, the
quasiSchur basis does not have positive structure coefficients. For an example, see
[30, Sect. 7.1]. However, [31] proves a slightly weaker form of positivity, giving
a positive combinatorial formula for the quasiSchur expansion of the product of a
quasiSchur polynomial by a Schur polynomial.
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Just as the combinatorics of Symn is related to the representation theory of sym-
metric groups, the combinatorics of QSymn turns out to be related to the representa-
tion theory of 0-Hecke algebras (in type A). First, let us recall the standard Coxeter
presentation of the symmetric group Sn . It is easy to see that Sn is generated by the
simple transpositions si := (i, i + 1) for 1 ≤ i < n. With a little more effort, one
establishes that a generating set of relations is given by

• s2i = id,
• si s j = s j si for |i − j | > 1, and
• si si+1si = si+1si si+1.

The 0-Hecke algebraHn is the unital associative algebra over C defined by a very
similar presentation: Hn is generated by symbols σi (for 1 ≤ i < n) subject to

• σ2
i = σi ,

• σiσ j = σ jσi for |i − j | > 1, and
• σiσi+1σi = σi+1σiσi+1.

That is, the {σi } inHn act exactly like the corresponding {si } in Sn , except that they
are idempotent instead of being involutions.

The representation theory ofHn was first worked out in detail by P. Norton [65].
Despite the similarly between the descriptions of Sn and Hn , their representation
theory is rather different, as Hn is not semisimple. Indeed, the irreducible repre-
sentations of Hn are all 1-dimensional, while Sn has irreducible representations of
higher dimension. The irreducible representations ofHn are equinumerous with the
set of compositions α � (n).

There is a quasisymmetric Frobenius character map [18, 43] taking 0-Hecke-
representations to quasisymmetric functions in such a way that the irreducible repre-
sentations map to the fundamental quasisymmetric functions Fα. In this way, if the
quasisymmetric function f corresponds to the representation M , then decompos-
ing f as a sum of fundamental quasisymmetric functions corresponds to identifying
the unique direct sum of irreducible 0-Hecke representations that is equivalent to
M in the Grothendieck group of finite-dimensional representations. Certain explicit
and combinatorial Hn-representations are known whose quasisymmetric Frobenius
characters are precisely the quasiSchur functions [79]; unfortunately, these represen-
tations are not generally indecomposable.

The geometry of QSymn is much less well understood. In addition to its obvious
product structure,QSym also possesses a compatible coproduct, turning it into aHopf
algebra. Although we won’t describe it here, there is an important Hopf algebra
NSym of noncommutative symmetric functions that is Hopf-dual to QSym. (For
background on combinatorial Hopf algebras, see [27].) It is surprisingly easy to see
thatNSym is isomorphic to the homology of the loop space of the suspension ofCP

∞,
where the product structure on H�(��CP

∞) is given by concatenation of loops [10].
Indeed, this isomorphism even holds on the level of Hopf algebras. Since��CP

∞ is
anH-space, its homology and cohomology are dual Hopf algebras. (See, for example,
[28, 85] for background on H-spaces and their associated Hopf algebras.) From this
fact and the fact that QSym is Hopf-dual to NSym, it follows that H �(��CP

∞)
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is isomorphic to QSym. This interpretation was used in [10] to give cohomological
proofs of various properties of QSym; however, it seems that much more could be
done from this perspective. A recent construction, which appears closely related,
identifies QSym with the Chow ring of an algebraic stack of expanded pairs [66].

4 The Asymmetric World

In this section,we consider our fourth andfinal actionofSn onPolyn , the trivial action.
Although this action is trivial the associated combinatorics is not at all trivial, but full
of rich internal structure and deep connections to geometry and representation theory.
The invariant ring of this trivial action is, of course, the ring Polyn itself. However,
to emphasize analogies with the previous two sections, we will refer to the invariant
ring Polyn in this context as the ring of asymmetric functions ASymn . That is, we
write ASymn for the ring Z[x1, . . . , xn] when we think of it as an Sn-module with
the trivial Sn action, and we write Polyn for the same ring considered as an object in
the category of rings.

Bases of ASymn are indexed by weak compositions a of length at most n, with
the most obvious basis of ASymn being given by individual monomials:

Xa := xa .

Just as {mλ} is not the most interesting basis of Symn , the {Xa} basis of ASymn is not
very interesting either! Our goal in this section is to explore seven additional bases
of rather less trivial nature.

Arguably, the most interesting basis of ASymn is given by the Schubert polyno-
mials of A. Lascoux and M.-P. Schützenberger [52]. We will use consideration of
various formulas for Schubert polynomials to organize our discussion of the bases
of Fig. 4. Instead of indexing Schubert polynomials by weak compositions, it is
more convenient to index them by permutations. Hence, we first recall a standard
way to translate between permutations and weak compositions. For a permutation
π ∈ Sn , let ai denote the number of integers j > i such thatw(i) > w( j). (Note that

Fig. 4 The eight bases of
ASymn considered here. The
arrows denote that the basis
at the head refines the basis
at the tail. The star-shaped
nodes have positive structure
coefficients

Sa Da Qa

Aa

Fa

Ma

Pa

Xa
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ai ≤ n − i .) The weak composition aπ = (a1, a2, . . . , an) is called theLehmer code
of π. Visually, one may determine the Lehmer code of a permutation π as follows.

Consider an n × n grid of boxes and place a laser gun (or dot) in each position
(i,π(i)). Each laser gun fires to the right and down, destroying all boxes directly to
its right and all boxes directly below itself (including its own box). The surviving
boxes are the Rothe diagram RD(π) of the permutation π. One checks that the
Lehmer code of π records the number of boxes in each row of RD(π).

Example 4.1 Let π = 2413. The Rothe diagram RD(π) is shown below

,

where the surviving boxes are shaded in grey. Hence, the Lehmer code of π = 2413
is (1, 2, 0, 0). ♦

Consider the action of Sn on Polyn from Sect. 2, where permutations act by per-
muting variables. Now, for each positive integer, define an operator ∂i on Polyn
by

∂i ( f ) := f − si · f

xi − xi+1
.

Note that ∂i ( f ) is symmetric in the variables xi and xi+1. Now, for each permutation
w of the form n(n − 1) · · · 321 (in one-line notation), the Schubert polynomialSw

is defined to be

Sw :=
n∏

i=1

xn−i
i = X(n−1,n−2,...,1,0). (4.1)

(These permutations are exactly those that are longest in Coxeter length in Sn for
some n, i.e., they have the largest possible number of inversions; their Lehmer code
is (n − 1, n − 2, . . . , 1, 0).) For other permutations w, the corresponding Schubert
polynomials are defined recursively by

Sw := ∂iSw(i,i+1),

for any i such that w(i) < w(i + 1). Amazingly, this recursive definition is self-
consistent, so there is a uniquely defined Schubert polynomial Sw for each permu-
tation w.

Our first task in this section will be to obtain a more concrete understanding
of Schubert polynomials by describing how to write them non-recursively in the
monomial basis {Xa}. We’ll describe three different combinatorial formulas for this
expansion, exploring some other families of polynomials along the way.

The first such formula to be proven was given by S. Billey et al. [9]. For a permu-
tation π, a reduced factorization of π is a way of writing π as a product si1si2 · · · sik
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of simple transpositions with k as small as possible. The sequence of subscripts
i1i2 · · · ik is called a reduced word for π. We write Red(π) for the set of all reduced
words of the permutation π. Note that every reduced word α is a strong composition.
Given two strong compositions α and β, we say that β is α-compatible if

(R.1) α and β have the same length,
(R.2) β is weakly increasing (i.e., βi ≤ β j for i < j),
(R.3) β is bounded above by α (i.e., βi ≤ αi for all i), and
(R.4) β strictly increases whenever α does (i.e., if αi < αi+1, then βi < βi+1).

In this case, we write β � α.

Example 4.2 Ifα is the strong composition 121 (a reduced word for the longest per-
mutation inS3), thenwe claim that no strong composition isα-compatible. Supposeβ
were α-compatible. Since α1 < α2, we must have β1 < β2 by (R.4). Hence, β2 ≥ 2.
Therefore, by (R.2), β3 ≥ 2. But this is incompatible with (R.3), since α3 = 1.

On the other hand, for γ = 212 (the other reduced word for this permutation),
there is exactly one γ-compatible strong composition δ. By (R.3), we have δ2 = 1,
and hence by (R.2) we also have δ1 = 1. By (R.4), δ3 > δ2 = 1, but by (R.3) δ3 ≤ 2.
Hence, δ = 112 is the only γ-compatible strong composition. We write 112 � 212.

♦
Theorem 4.3 ([9, Theorem 1.1]) The Schubert polynomials expand positively in
monomials:

Sπ =
∑

α∈Red(π)

∑

β�α

∏

i

xβi .

Example 4.4 Let π = 321 = s1s2s1 = s2s1s2 be the longest permutation in S3.
Then, by Example 4.2, we have

Sπ =
∑

α∈Red(π)

∑

β�α

∏

i

xβi

=
∑

β�121

∏

i

xβi +
∑

δ�212

∏

i

xδi

= 0 + x1x1x2 = x21 x2 = X(2,1,0).

Note that this calculation is consistent with the definition given in Eq. (4.1). ♦
It might be reasonable to expect an important basis of ASymn to restrict to an

important basis of the subspace Symn ⊂ ASymn . Indeed, one piece of evidence for
the importance of Schubert polynomials is that those Schubert polynomials lying
inside Symn are exactly its basis of Schur polynomials.

Definition 4.5 Suppose we have vector spaces U ⊆ V with bases BU and BV ,
respectively. If BV ∩U = BU , we say the basis BV lifts the basis BU to V , or equiv-
alently that BV is a lift of BU .
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Since every Schur polynomial is a Schubert polynomial, in this language the Schubert
basis of ASymn is a lift of the Schur basis of Symn . To realize the Schur polyno-
mial sλ ∈ Symn as a Schubert polynomial, first realize the partition λ as a weak
composition of length n by padding it by an appropriate number of final 0s. Now,
reverse the letters of λ, so it becomes a weakly increasing sequence. The result-
ing weak composition is the Lehmer code of a unique permutation πλ, and one has
sλ = Sπλ

. Equivalently, for i ≤ n one has πλ(i) = λn−i+1 + i and for i > n one has
πλ(i) = min (Z>0 \ {πλ( j) : j < i}).

Since the Schubert polynomials lift the Schur polynomials, one might wonder
whether the Littlewood–Richardson rule (Theorem 2.5) also lifts to a positive com-
binatorial rule for the structure coefficients of the Schubert basis. Indeed, the Schubert
basis of ASymn , like the Schur basis of Symn , has positive structure coefficients!
However, no combinatorial proof of this fact is known andwe lack any sort of positive
combinatorial rule (even conjectural) to describe these structure coefficients (except
in a few very special cases, such as when the Schubert polynomials are actually
Schur polynomials). Discovering and proving such a rule is one of the most impor-
tant open problems in algebraic combinatorics. Part of our motivation for studying
the combinatorial theory of ASymn is the hope that such a theory will eventually lead
to a Schubert structure coefficient rule, just as the Littlewood–Richardson rule for
Schur polynomial structure coefficients eventually developed from the combinatorial
theory of Symn .

Without such a combinatorial rule, how then do we know that the Schubert basis
has positive structure coefficients? The answer comes, once again, from geome-
try and from representation theory. Geometrically, instead of looking at a complex
Grassmannian, as we did for Schur polynomials, we should consider a complex
flag variety Flagsn , the classifying space for complete flags V0 ⊂ V1 ⊂ · · · ⊂ Vn of
nested complex vector bundles with Vk of rank k. This space has an analogous cell
decomposition by Schubert varieties, yielding an effective basis of the Chow ring.
By identifying Schubert varieties with corresponding Schubert polynomials, mul-
tiplying Schubert polynomials corresponds to the intersection product on Schubert
varieties and positivity of structure coefficients follows. An alternative proof of pos-
itivity [82, 83] is given by interpreting Schubert polynomials as characters of certain
Kraśkiewicz–Pragacz modules (introduced in [41, 42]) for Borel Lie algebras.

The formula of Theorem 4.3 naturally leads us to consider another family of
polynomials. Suppose we fix a reduced word α ∈ Red(π) for some π ∈ Sn . Then,
Theorem 4.3 suggests defining a polynomial

F(α) :=
∑

β�α

∏

i

xβi , (4.2)

so that Theorem 4.3 may be rewritten as

Sπ =
∑

α∈Red(π)

F(α).
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Indeed, the formula of Eq. (4.2) makes sense for any strong composition α, not
necessarily a reduced word of a permutation.

Labeling these polynomials by strong compositions α is unnatural for at least
two reasons. For some α, we have F(α) = 0; for example, we have F(1, 2, 1) = 0
by Example 4.2. Those F(α) that are nonzero are called the fundamental slide
polynomials; these were introduced in [2], although the alternate definition we give
here follows [5]. Also, for α �= α′, we can have F(α) = F(α′) �= 0; for example, by
Example 4.2wehaveF(2, 1, 2) = X(2,1,0), but it is also equally clear thatF(3, 1, 2) =
X(2,1,0).

For any strong composition α, note that, if α has any compatible sequences, then
it has a unique such compatible sequence β(α) that is termwise maximal. Define the
weak composition a(α) by letting a(α)i denote the multiplicity of i in β(α). Then,
we define

Fa(α) := F(α).

It is clear then that every fundamental slide polynomial is, in this fashion, uniquely
indexed by a weak composition a. Moreover, every weak composition a appears
as an index on some Fa , and we have Fa �= Fb if a �= b. It is then not hard to see
by triangularity in the Xa basis that the set of fundamental slide polynomials forms
another basis of ASymn .

Clearly, the fundamental slide polynomials expand positively in the monomial
basis {Xa}. It is useful to have a formula for this expansion of Fa , based only on the
weak composition a. We first need a partial order on weak compositions: we write
a ≥ b and say a dominates b if we have

k∑

i=1

ai ≥
k∑

i=1

bi

for all k. (Note that the restriction of this partial order to the set of partitions recovers
the usual notion of dominance order.)

Theorem 4.6 ([2, 5])The fundamental slide polynomials expand positively inmono-
mials:

Fa =
∑

b≥a
b+�a+

Xb

Essentially by definition, the fundamental slide polynomials are pieces of Schu-
bert polynomials. Although the basis of Schubert polynomials has positive structure
constants, there is no reason to expect this property to descend to this basis of pieces.
Remarkably, however, the fundamental slide polynomials also have positive struc-
ture constants! The first clue that this might be the case comes from considering the
intersection of the fundamental slide basis with the subring QSymn ⊂ ASymn .
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Theorem 4.7 ([2]) We have Fa ∈ QSymn if and only if a is of the form 0kα, where
α is a strong composition of length n − k and 0kα denotes the weak composition
obtained from α by prepending k 0s.

Moreover, we have F0kα = Fα. Thus, the fundamental slide basis of ASymn is a
lift of the fundamental quasisymmetric polynomial basis of QSymn.

In light of Theorem4.7, onemight hope to extend the combinatorialmultiplication
rule of Theorem 3.8 to fundamental slide polynomials. Indeed, this is possible. We
need to extend the notion of the shuffle product of two strong compositions from
Sect. 3 to the slide product or pairs of weak compositions a, b. Here, we borrow
notation from [71]. As before, let A denote the alphabet of odd integers and let B
denote the alphabet of even integers. Let A be the word inA consisting of a1 copies
of 2�(a) − 1, followed by a2 copies of 2�(a) − 3, all the way to a�(a) copies of 1.
Likewise, let B denote the word in B consisting of b1 copies of 2�(b), followed by
b2 copies of 2�(b) − 2, all the way to b�(b) copies of 2.

For any wordW in a totally ordered alphabetZ , let Runs(W ) denote the sequence
of successivemaximallyweakly increasing runs of letters ofW read from left to right.
For a sequence S of words in Z and any subalphabet Y ⊆ Z , write CompY(S) for
the weak composition whose i th coordinate is the number of letters of Y in the i th
word of S.

Let Sh(a, b) denote the set of those shuffles C of A and B such that

CompA(Runs(C)) ≥ a and CompB(Runs(C)) ≥ b.

For C ∈ Sh(a, b), let BumpRuns(C) denote the unique dominance-minimal way to
insert words of length 0 into Runs(C)while preservingCompA(BumpRuns(C)) ≥ a
andCompB(BumpRuns(C)) ≥ b. Finally, define the slideproducta � b of theweak
compositions a and b as the formal sum of weak compositions

a � b :=
∑

C∈Sh(a,b)

Comp
Z
(BumpRuns(C)).

Example 4.8 Let a = (0, 1, 0, 2) and b = (1, 0, 0, 1). Then we consider the words
A = 511 and B = 82. The set of all shuffles of A and B is

{51182, 51812, 58112, 85112, 51821, 58121, 85121, 58211, 85211, 82511}.

Many of these shuffles C fail CompB(Runs(C)) ≥ b; for example, with C = 51821,
we have Runs(C) = (5, 18, 2, 1) and hence CompB(Runs(C)) = (0, 1, 1, 0) � b.
Thus we have

Sh(a, b) = {58112, 85112, 58121, 85121, 58211, 85211, 82511}.
The corresponding BumpRuns(C) for C ∈ Sh(a, b) are

{(58, ε, ε, 112), (8, 5, ε, 112), (58, ε, 12, 1), (8, 5, 12, 1), (58, ε, 2, 11), (8, 5, 2, 11), (8, 25, ε, 11)},
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where ε denotes the empty word. Thus, we have

(0, 1, 0, 2)� (1, 0, 0, 1) = (2, 0, 0, 3) + (1, 1, 0, 3) + (2, 0, 2, 1) + (1, 1, 2, 1) + (2, 0, 1, 2)

+ (1, 1, 1, 2) + (1, 2, 0, 2).

♦
Finally, we can state the multiplication rule for fundamental slide polynomials.

Theorem 4.9 ([2]) For weak compositions a and b, we have

Fa · Fb =
∑

c

Cc
a,bFc,

where Cc
a,b is the multiplicity of c in the slide product a � b.

It seems reasonable to expect that the positivity of Theorem 4.9 reflects some
geometry or representation theory governed by fundamental slide polynomials.
Sadly, no such interpretation of fundamental slide polynomials is known, except
in the quasisymmetric case.

A second formula for Schubert polynomials uses the combinatorial model of pipe
dreams. This model was successively developed in [7, 20, 21, 39]. A pipe dream
P is a tiling of the grid of boxes (extending infinitely to the east and south) with
turning pipes ��and finitely many crossing pipes . Such a tiling gives rise to a
collection of lines called pipes, which one imagines traveling from the left side of
the grid (the negative y-axis) to the top side (the positive x-axis). A pipe dream P
is called reduced if no two pipes cross each other more than once. The permutation
corresponding to a reduced pipe dream is the permutation given (in one-line notation)
by the columns in which the pipes end. The weight wt(P) of a pipe dream is the
weak composition whose i th entry is the number of crossing pipe tiles in row i of P
(where row 1 is the top row).

Example 4.10 The pipe dream

P = 1 2 3 4

1 �� �� �

2 �

3 �� �

4 �

corresponds to the permutation 1432. (Here, we omit the infinite collection of ��tiles
extending uninterestingly to the southeast.) The pipe dream P has weight (1, 2, 0).

♦
Given a permutation π, let PD(π) denote the set of reduced pipe dreams for π.

Theorem 4.11 ([7, 9]) The Schubert polynomial Sπ is the generating function of
reduced pipe dreams for π, i.e.,



94 O. Pechenik and D. Searles
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5 �

1 2 3 4 5
1 ��

2 �� �� �
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5 �
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2 �

3 �� �� �

4 �� �
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1 2 3 4 5
1 �� �� �

2 �� �

3 �� �� �

4 �� �

5 �

Fig. 5 The 7 reduced pipe dreams associated to the permutation 15324

Sπ =
∑

P∈PD(π)

xwt(P).

Example 4.12 We have S15324 = x031 + x121 + x211 + x310 + x310 + x130 + x220,
where the monomials are determined by the pipe dreams shown in Fig. 5. ♦

A reduced pipe dream P is quasiYamanouchi if the following is true for the
leftmost in every row: Either

(1) it is in the leftmost column, or
(2) it is weakly left of some in the row below it.

For a permutation π, write QPD(π) for the set of quasiYamanouchi reduced pipe
dreams for π. We obtain then the following formula for the fundamental slide poly-
nomial expansion of a Schubert polynomial.

Theorem 4.13 ([2]) The Schubert polynomials expand positively in the fundamental
slide polynomials:

Sπ =
∑

P∈QPD(π)

Fwt(P).

Before continuing to our third combinatorial formula for Schubert polynomials,
let us consider another basis of ASymn , closely related to the fundamental slide
polynomials. Recall from Theorem 4.7 that the fundamental slide polynomials are a
lift of the fundamental quasisymmetric polynomials. Onemight ask for an analogous
lift to ASymn of the monomial quasisymmetric polynomials. These are provided by
themonomial slide polynomials of [2], which we now discuss.

Looking back at the combinatorial formulas for fundamental and monomial qua-
sisymmetric polynomials, observe that they are identical, except that the formula for
Fα looks at weak compositions b with b+ � α while the formula for Mα looks at
weak compositions b with the more restrictive property b+ = α. It is easy then to
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guess the followingmodification of Theorem 4.6 that will yield the desired definition
of monomial slide polynomials.

Definition 4.14 For any weak composition a, themonomial slide polynomialMa

is defined by
Ma =

∑

b≥a
b+=a+

Xb.

By triangularity, it is straightforward that monomial slide polynomials form a
basis of ASymn . Moreover, we have the following analogue of Theorem 4.7:

Theorem 4.15 ([2])We haveMa ∈ QSymn if and only if a is of the form 0kα, where
α is a strong composition of length n − k.

Moreover, we have M0kα = Mα. Thus, the monomial slide basis of ASymn is a
lift of the monomial quasisymmetric polynomial basis of QSymn.

Just as the combinatorial multiplication rule of Theorem 3.8 for fundamental
quasisymmetric polynomials lifts to that of Theorem 4.9 for fundamental slide poly-
nomials, the combinatorial multiplication rule of Theorem 3.3 for monomial qua-
sisymmetric polynomials lifts to a rule for monomial slide polynomials.

First, we need to extend the overlapping shuffle product of Sect. 3 from strong
compositions to general weak compositions. Given weak compositions a and b,
treat them as words of some common finite length n by truncating at some position
past all their nonzero entries. By a + b we mean the weak composition that is the
coordinatewise sum of a and b. Consider the set S(a, b) of all pairs (a′, b′) of weak
compositions of equal length k ≤ n such that

• (a′)+ = a+ and (b′)+ = b+;
• a′ ≥ a and b′ ≥ b; and
• for all 1 ≤ i ≤ k, we have a′

i + b′
i > 0.

Fix (a′, b′) ∈ S(a, b). Let c be a weak composition of length r with zeros in
positions z1, . . . , zm such that c+ = a′ + b′. Define ca to be the weak composition of
length r having zeros in the same positions z1, . . . , zm and the remaining positions
of ca are the entries of a′, in order from left to right. Define cb similarly, using the
entries of b′. Then we have

• c = ca + cb, and
• (ca)+ = (a′)+ and (cb)+ = (b′)+.

For each such (a′, b′) ∈ S(a, b), let Bump(a′, b′) denote the unique dominance-least
weak composition satisfying

• Bump(a′, b′)+ = a′ + b′, and
• Bump(a′, b′)a ≥ a and Bump(a′, b′)b ≥ b.

The overlapping slide product of a and b is then the formal sum a �o b of the
Bump(a′, b′) for all (a′, b′) ∈ S(a, b).
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Example 4.16 Let a = (0, 1, 0, 2) and b = (1, 0, 0, 1), as in Example 4.8. Then
S(a, b) consists of the seven pairs

(
(0, 1, 0, 2), (1, 0, 1, 0)

)
,
(
(0, 1, 2, 0), (1, 0, 0, 1)

)
,
(
(0, 1, 2), (1, 0, 1)

)
,
(
(0, 1, 2), (1, 1, 0)

)
(
(1, 0, 2), (1, 1, 0)

)
,
(
(1, 2, 0), (1, 0, 1)

)
,
(
(1, 2), (1, 1)

)

The seven corresponding weak compositions Bump(a′, b′) are

(1, 1, 1, 2), (1, 1, 2, 1), (1, 1, 0, 3), (1, 2, 0, 2), (2, 0, 1, 2), (2, 0, 2, 1), (2, 0, 0, 3).

♦
Theorem 4.17 ([2]) For weak compositions a and b, we have

Ma · Mb =
∑

c

Cc
a,bMc,

where Cc
a,b is the multiplicity of c in the overlapping slide product a �o b.

The fundamental slide polynomials expand positively in themonomial slide basis.
Say that b � a if b ≥ a, and c ≥ b whenever c ≥ a and c+ = b+.

Theorem 4.18 [2] The fundamental slide polynomials expand positively in the
monomial slide polynomials:

Fa =
∑

b�a
b+�a+

Mb.

A third combinatorial formula for Schubert polynomials comes from a model
introduced (conjecturally) by Axel Kohnert [40]. Let D be a box diagram, i.e., any
subset of the boxes in an n × n grid. A Kohnert move on D selects the rightmost
box in some row and moves it to the first available empty space above it in the same
column (if such an empty space exists). Let KD(D) denote the set of all box diagrams
that can be obtained from D by some sequence (possibly empty) of Kohnert moves.
Define the weight wt(D) of a box diagram to be the weak composition where wt(D)i
records the number of boxes in the i th row of D from the top.

Example 4.19 Let D be the leftmost diagram in the top rowof Fig. 6 (which happens
to be theRothe diagram RD(15324)). The set of diagrams in Fig. 6 is exactlyKD(D).

♦

Theorem 4.20 ([4, 86, 87]) The Schubert polynomialSπ is the generating function
of the Kohnert diagrams for the Rothe diagram of π, i.e.,

Sπ =
∑

D∈KD(RD(π))

xwt(D).
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Fig. 6 The 7 Kohnert diagrams associated to RD(15324)

Example 4.21 We have S15324 = x031 + x121 + x211 + x310 + x310 + x130 + x220,
where the monomials are determined by the Kohnert diagrams shown in Fig. 6. Note
this is consistent with the computation in Example 4.12. ♦

Kohnert diagrams also yield another natural basis of ASymn , which we now
consider. Given a weak composition a, we can associate a box diagram D by first
obtaining the permutation w corresponding to a and then taking D = RD(w). This
construction, combined with the Kohnert moves, leads us to the characterization of
Schubert polynomials from Theorem 4.20. However, there is also a much easier way
to associate a box diagram D(a) to a weak composition a–namely, just take D(a)

to be the Young diagram of a, as described in Sect. 3. This leads us to the following
definition (really a theorem of Kohnert [40]): For a weak composition a, the key
polynomial Da is the generating function

Da :=
∑

D∈K D(D(a))

xwt(D).

Example 4.22 Let a = (0, 2, 1). Then Da = x021 + x111 + x201 + x210 + x120, as
computed by the Kohnert diagrams in Fig. 7. ♦

The definition of key polynomials that we have given here is not the original
one. These polynomials were first introduced in [17] where they were realized as
characters of (typeA)Demazuremodules; for this reason, they are often referred to as

Fig. 7 The 5 Kohnert diagrams associated to the weak composition (0, 2, 1)
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Demazure characters. Later theywere studied fromamore combinatorial perspective
by Lascoux and Schützenberger [54], who coined the term ‘key polynomial’. Key
polynomials also arise as a specialization [34, 76] of the nonsymmetric Macdonald
polynomials introduced in [15, 57, 67].

An alternative description of key polynomials is via a modification of the ∂i oper-
ators that define Schubert polynomials. For each positive integer, define an operator
πi on Polyn by

πi ( f ) := ∂i (xi f ).

Letw be a permutation and let si1 · · · sir be any reducedword forw. Then defineπw =
πi1 · · · πir . This is independent of the choice of reduced word since these operators
satisfy π2

i = πi and the usual commutation and braid relations for the symmetric
group. (That is to say, the action of the πi operators on Polyn is a representation
of the type A 0-Hecke algebra.) Let si act on a weak composition a by exchanging
the i th and (i + 1)st entries of a. Given a weak composition a, let w(a) denote the
permutation of minimal Coxeter length such that w(a) · a = ←−a . Finally, the key
polynomial Da is given by

Da = πw(a)x
←−a .

Example 4.23

D(0,2,1) = π1π2(x
2
1 x2)

= π1(x
2
1 x2 + x21 x3)

= x21 x2 + x1x
2
2 + x21 x3 + x1x2x3 + x22 x3.

Compare this calculation with that of Example 4.22. ♦
As is the case for Schubert polynomials, there are several additional combinatorial

formulas for key polynomials! An excellent overview can be found in [74]. Another
such combinatorial formula for the key polynomials is given in [31] in terms of semi-
skyline fillings. Let a be a weak composition of length n. We recall the definition of
a triple of entries from the previous section; this extends verbatim from diagrams of
compositions to diagrams of weak compositions.

A semi-skyline filling of D(a) is a filling of the boxes of D(a) with positive
integers, one per box, such that

(S.1) entries do not repeat in a column,
(S.2) entries weakly decrease from left to right along rows, and
(S.3) every triple of entries is inversion.

The weight wt(T ) of a semi-skyline filling is weak composition whose i th entry
records the number of occurrences of the entry i in T .

Let D(a) denote the diagram of D(a) augmented with an additional 0th column
called a basement, and let rev(a) denote the weak composition obtained by reading
the entries of a in reverse. Define a key semi-skyline filling for a to be a filling of
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3 3
2 2 2
1

3 3
2 2 1
1

3 3
2 1 1
1

3 2
2 1 1
1

3 1
2 2 2
1

Fig. 8 The five key semi-skyline fillings associated to 021

D(rev(a)), where the i th basement entry is n + 1 − i , satisfying (S.1), (S.2) and
(S.3) above (including on basement entries). Let DSST(a) denote the set of key
semi-skyline fillings for a.

Example 4.24 Let a = (0, 2, 1). The key semi-skyline fillings associated to a are
shown in Fig. 8. The basement boxes are shaded in grey. ♦

Theorem 4.25 ([31]) The key polynomial Da is given by

Da =
∑

T∈DSST(a)

xwt(T ).

Example 4.26 From Example 4.24, we again compute D(0,2,1) = x021 + x111 +
x201 + x210 + x120. ♦

Yet another formula for key polynomials is given in terms of Kohnert tableaux
[3]. Kohnert tableaux associate a canonical path in Kohnert’s algorithm from the
diagram of a weak composition to a given Kohnert diagram. In fact, the Kohnert
tableaux are equivalent to the key semi-skyline fillings turned upside down, but are
described by quite different local rules, which arise from Kohnert’s algorithm as
opposed to considerations in Macdonald polynomial theory. We omit the details of
this construction, for which see [3].

One might naturally ask, analogously for Schubert polynomials, whether key
polynomials restrict to an important basis of Symn ⊂ ASymn . Exactly the same as
for the Schubert polynomials, the key polynomials in Symn are exactly the basis of
Schur polynomials. Thus the key basis of ASymn is also a lift of the Schur basis
of Symn . The key polynomial Da is a Schur polynomial if and only if a is weakly
increasing; in this case, we have Da = s←−a .

Moreover, the stable limits of the key polynomials are exactly the Schur func-
tions. Given m ∈ Z≥0 and a weak composition a, recall that 0ma denotes the weak
composition obtained by prepending m zeros to a, e.g., 02(1, 0, 3) = (0, 0, 1, 0, 3).
The stable limit ofDa is the formal power series limm→∞ D0ma . The following result
is implicit in work of Lascoux and Schützenberger [54]; an explicit proof is given in
[3] with further details.

Theorem 4.27 ([3, 54]) Let a be a weak composition. Then the stable limit of the
key polynomial Da is the Schur function associated to the partition obtained by
rearranging the entries of a into decreasing order. That is,



100 O. Pechenik and D. Searles

lim
m→∞D0ma = s←−a (X).

Unlike the Schubert basis, however, the key basis does not have positive structure
constants.

Schubert polynomials expand in the key basis with positive coefficients, although
we omit the details of this decomposition. Let T be a semistandard Young tableau.
Define the column reading word colword(T ) of T to be the word obtained by writing
the entries of each column of T from bottom to top, starting with the leftmost column
and proceeding rightwards. Then, as given in [74, Theorem 4], we have

Sπ =
∑

colword(T )∈Red(π−1)

Dwt(K 0−(T ))

where the sum is over all semistandard Young tableaux T whose column reading
word is a reduced word for π−1, and K 0−(T ) is a semistandard Young tableau of
the same shape as T called the left nil key of T , as defined in [54, 74]. For another
approach to this decomposition, see [6].

The Demazure atoms Aa form another basis of ASymn , introduced and studied
in [54], where they are referred to as standard bases. Demazure atoms are char-
acters of quotients of Demazure modules, and, like key polynomials, also arise as
specializations of nonsymmetric Macdonald polynomials [60]. Just as we defined
fundamental slide polynomials as the pieces of Schubert polynomials given by the
summands of Theorem 4.3, we can define the Demazure atoms as the pieces of qua-
siSchur polynomials given by the summands of the definition in Eq. (3.1): Given a
weak composition a, the Demazure atom Aa is given by

Aa :=
∑

T∈ASST(a)

xwt(T ).

Example 4.28 We have

A(1,0,3) = x103 + x112 + x202 + x121 + x211,

where the monomials are determined by the five semistandard composition tableaux
of shape (1, 0, 3) from Fig. 3. ♦

The Demazure atom basis does not have positive structure coefficients. However,
it does exhibit a variety of surprising positivity properties. First, notice that the
definition that we have given immediately implies that the quasiSchur polynomial
Sα(x1, . . . , xn) expands positively in Demazure atoms.

Proposition 4.29 ([30]) The quasiSchur polynomials expand positively in the
Demazure atoms:

Sα(x1, . . . , xn) =
∑

a+=α

Aa,
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where the sum is over weak compositions a of length n.

It is also the case that key polynomials expand positively in Demazure atoms. Let
Sn act on weak compositions of length n via v · (a1, . . . , an) = (av−1(1), . . . , av−1(n)).
Given a weak composition a, let v(a) denote the permutation of minimal Coxeter
length such that v(a) · a = ←−a .

Theorem 4.30 ([54])The key polynomials expandpositively in theDemazure atoms:

Da =
∑

v(b)≤v(a)←−
b =←−a

Ab,

where ≤ denotes the (strong) Bruhat order on permutations.

Since every Schur polynomial is also a key polynomial, Theorem 4.30 implies that
Schur polynomials expand positively in the Demazure atoms.

Example 4.31 Let a = (1, 0, 3). Then v(a) = 231 and

D(1,0,3) = A(1,0,3) + A(1,3,0) + A(3,0,1) + A(3,1,0).

♦
Finally, we mention the following remarkable conjecture of V. Reiner andM. Shi-

mozono; for more details on this conjecture, see the work of A. Pun [72]. For a
generalization, see [64]. Observe that the conjecture would follow trivially from
Theorem 4.30 if either the key polynomial or the Demazure atom basis had positive
structure coefficients; however, neither does, so the conjecture is quite mysterious.

Conjecture 4.32 (Reiner–Shimozono) The product Da · Db expands positively in
Demazure atoms.

At this point, we have considered lifts to ASymn of the Schur polynomials (two
distinct lifts even), the fundamental quasisymmetric polynomials, and the monomial
quasisymmetric polynomials. It is natural then to hope for an appropriate lift of the
remaining basis of QSymn that we considered in Sect. 3, namely the quasiSchur
polynomials. The next basis we consider is exactly this desired lift, the quasikey
polynomials of [3]. The quasikey polynomials are a lifting of the quasiSchur basis
of QSymn to ASymn , and simultaneously a common coarsening of the fundamental
slide polynomial and Demazure atom bases.

Let a be a weak composition of length n. The quasikey polynomial associated
to a is given by

Qa :=
∑

b+=a+
b≥a

∑

T∈ASST(a)

xwt(T )

where the first sum is over all weak compositions b of length n satisfying b ≥ a in
dominance order and whose positive part is a+. The form of this definition is due
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to [77]. The quasikey polynomials were originally defined in [3] as a weighted sum
of quasi-Kohnert tableaux; we omit this alternate formulation.

Example 4.33 Let a = (1, 0, 3). Then

Q(1,0,3) = x130 + x220 + x103 + x112 + x202 + x121 + x211,

where the monomials are determined by the first seven semistandard composition
tableaux shown in Fig. 3. ♦

The definitionwe have given here immediately implies that each quasikey polyno-
mialQa expands positively in Demazure atoms. Specifically, we have the following.

Theorem 4.34 ([77, Theorem 3.4]) The quasikey polynomials expand positively in
the Demazure atoms: For a weak composition a of length n, we have

Qa =
∑

b+=a+
b≥a

Ab,

where the sum is over all weak compositions b of length n satisfying b ≥ a in domi-
nance order and whose positive part is a+.

Example 4.35 One easily calculates from Theorem 4.34 that

Q(1,0,3) = A(1,0,3) + A(1,3,0).

Compare this calculation to the tableaux of Fig. 3. ♦
Less clear from our definition is the following additional positivity property of

quasikey polynomials.

Theorem 4.36 ([2]) The quasikey polynomials expand positively in the fundamental
slide polynomials: For a weak composition a of length n, we have

Qa =
∑

T

Fwt(T ),

where the sum is over all quasiYamanouchi tableaux T whose support contains the
support of a, and such that T ∈ ASST(b) for some weak composition b of length n
with b+ = a+ and b ≥ a.

Example 4.37
Q(1,0,3) = F(1,0,3) + F(2,0,2)

where the two fundamental slides correspond to the 3rd and 5th composition tableaux
in Fig. 3. ♦
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Although we claimed that the quasikey polynomials were to be a lift fromQSymn
to ASymn of the quasiSchur polynomials, we have not yet explained this fact. The
sense of this lift is given in the following proposition.

Proposition 4.38 ([3, Theorem 4.16]) We have Qa ∈ QSymn if and only if a is of
the form 0kα, where α is a strong composition of length n − k. Moreover, we have

Q0kα = Sα(x1, . . . , xn).

Thus, the quasikey polynomial basis ofASymn is a lift of the quasiSchur polynomial
basis of QSymn.

Moreover, the quasikey polynomials stabilize to the quasiSchur functions:

Theorem 4.39 ([3, Theorem 4.17]) Let a be a weak composition. Then

lim
m→∞Q0ma = Sa+ .

As Schur polynomials expand positively in the quasiSchur polynomial basis, one
might hope for the same positivity to hold for their respective lifts, the key polynomi-
als (or Schubert polynomials) and quasikey polynomials. Indeed, these expansions
are positive, with positive combinatorial formulas mirroring the expansion of The-
orem 3.12. To provide a formula for this expansion, we need the concept of a left
swap on weak compositions. A left swap on a weak composition a exchanges two
entries ai and a j such that ai < a j and i < j . In essence, left swaps move larger
entries leftwards. Given a weak composition a of length n, define the set lswap(a)

to be all weak compositions b of length n that can be obtained from a by a sequence
of left swaps.

Example 4.40 We have

lswap(1, 0, 3) = {(1, 0, 3), (1, 3, 0), (3, 0, 1), (3, 1, 0)}. ♦
In fact, the elements of lswap(a) are exactly those weak compositions b such

that
←−
b = ←−a and w(b) ≤ w(a) in Bruhat order. Hence, in this new language, the

formula in Theorem 4.30 for expanding key polynomials in Demazure atoms may
be re-expressed as follows.

Proposition 4.41 ([77, Lemma 3.1])

Da =
∑

b∈lswap(a)

Ab.

Define Qlswap(a) to be those b ∈ lswap(a) such that for all c ∈ lswap(a) with
c+ = b+, one has c ≥ b in dominance order.
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Example 4.42 The set lswap(1, 0, 3) is computed in Example 4.40. Partitioning
lswap(1, 0, 3) into equivalence classes under the relation c ∼ bwhen c+ = b+ yields
classes {(1, 0, 3), (1, 3, 0)} and {(3, 0, 1), (3, 1, 0)}. Taking the weak composition
smallest in dominance order from each class then yields

Qlswap(1, 0, 3) = {(1, 0, 3), (3, 0, 1)}.

♦
Theorem 4.43 ([3, Theorem 3.7]) Let a be a weak composition of length n. Then

Da =
∑

b∈Qlswap(a)

Qb.

A key polynomial Da is a Schur polynomial if and only if the entries of a are
weakly increasing. In this case, by Proposition 4.38 and the definition of Qlswap, the
formula of Theorem 4.43 reduces to the formula of Theorem 3.12 for the quasiSchur
polynomial expansion of a Schur polynomial.

Quasikey polynomials do not have positive structure constants. This is immediate
from the fact that the quasikey polynomial basis contains all the quasiSchur poly-
nomials, which themselves do not have positive structure constants. However, [77]
gives a positive combinatorial formula for the quasikey expansion of the product of
a quasikey polynomial and a Schur polynomial, extending the analogous formula of
[31] for quasiSchur polynomials.

The final basis of ASymn that we consider here is the basis of fundamental par-
ticles introduced in [77]. Note that the formula for the Demazure atom expansion
of a quasikey polynomial given in Theorem 4.34 is identical to the formula for the
monomial expansion of a monomial slide polynomial given in Definition 4.14. The
main motivating property of fundamental particles is that this same formula will give
the fundamental particle expansion of a fundamental slide polynomial.

Given a weak composition a, let PSST(a) denote the set of those semistandard
composition tableaux of shape a satisfying the property that whenever i < j , every
label in row i is smaller than every label in row j . For example, PSST(1, 0, 3)
consists of the 3rd, 4th and 6th tableaux in Fig. 3.

Let a be a weak composition of length n. The fundamental particle associated
to a is given by

Pa :=
∑

T∈PSST(a)

xwt(T ).

Example 4.44 Let a = (1, 0, 3). Then

P(1,0,3) = x103 + x112 + x121.

♦
The following is straightforward from the definitions.
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Theorem 4.45 ([77]) The fundamental slide polynomials expand positively in the
fundamental particles: For a weak composition a of length n, we have

Fa =
∑

b+=a+
b≥a

Pb,

where the sum is over all weak compositions b of length n satisfying b ≥ a in domi-
nance order and whose positive part is a+.

The fundamental particles were constructed to be a refinement of the fundamental
slide polynomials (with a particular positive expansion formula), as in Theorem 4.45;
remarkably, the fundamental particles are also a refinement of the Demazure atoms.
Given a weak composition a, define the set HSST(a) of particle-highest semistan-
dard composition tableaux of shape a to be the set of those T ∈ ASST(a) such that
for each integer i appearing in T , either

• an i appears in the first column, or
• there is an i+ weakly right of an i , where i+ is the smallest integer greater than i
appearing in T .

Notice the particle-highest condition is a weakening of the quasiYamanouchi condi-
tion: every quasiYamanouchi tableau is necessarily particle-highest.

Establishing the last of the arrows shown inFig. 4,wehave the following additional
positivity.

Theorem 4.46 ([77]) The Demazure atoms expand positively in the fundamental
particles:

Aa =
∑

T∈HSST(a)

Pwt(T ).

Fundamental particles do not have positive structure constants, however, in anal-
ogy with quasikey polynomials and Demazure atoms, there is a positive combinato-
rial formula for the fundamental particle expansion of the product of a fundamental
particle and a Schur polynomial given in [77].

In this section, we have given three formulas for Schubert polynomials. Each
formula lead us to consider certain other families of polynomials described by similar
combinatorics. There is additionally a fourth, fundamentally different, formula for
Schubert polynomials given by A. Lascoux [45] in terms of the square-ice/6-vertex
model of statistical physics. This formula was recently rediscovered in [49] in the
guise of bumpless pipe dreams. (The connection between these two combinatorial
descriptions is detailed in [84].) We won’t describe this rule here, as its context
is currently unclear, although we think it is likely to be important. Connections to
Gröbner geometry appear in [32].
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5 The Mirror Worlds: K -Theoretic Polynomials

A trend in modern Schubert calculus is to look at Flagsn , Grassmannians, and
other generalized flag varieties, not through the lens of ordinary cohomology as in
Sects. 2–4, but through the sharper yet more mysterious lenses of other complex
oriented cohomology theories [16, 26, 55, 56].

Particularly well studied over the past 20years are combinatorial aspects of the
K -theory rings of these spaces. Early work here includes [20, 22, 52, 53]; however,
the area only became very active after the influential work of [14, 46]. Following
[8, 20, 33], it turns out that one can slightly generalize this setting to connective
K-theory with almost no extra combinatorial complexity (indeed, in some ways
the more general combinatorics seems easier). In general, each complex oriented
cohomology theory is determined by its formal group law, which describes how to
write the Chern class of a tensor product of two line bundles in terms of the two
original Chern classes. In the case of connective K -theory, the formal group law is

c1(L ⊗ M) = c1(L) + c1(M) + βc1(L)c1(M), (5.1)

where β is a formal parameter and L , M are complex line bundles on the space
in question. In this notation, the ordinary cohomology ring is recovered by setting
β = 0 and the ordinary K -theory ring is recovered (up to convention choices) by
setting β = −1. For more background on connective K -theory, see the appendix to
[1].

Just as the Schubert classes in the ordinary cohomology of Flagsn are represented
by the Schubert polynomials (as described in Sect. 4), we would like to have such
polynomial representatives for the corresponding connective K -theory classes. These
are provided by the β-Grothendieck polynomials {Sa} of S. Fomin and A. Kirillov
[20], as identified in [33]. These polynomials form a basis of ASymn[β], where β
is the formal parameter from Eq. (5.1). This basis is homogeneous if the parame-
ter β is understood to live in degree −1. Specializing at β = 0, one recovers the
Schubert basis {Sa} of ASymn . The usual Grothendieck polynomials of A. Lascoux
and M.-P. Schützenberger [52] are realized at β = −1. (To help the reader track
relations among bases, we deviate from established practice by denoting connec-
tive K -analogues by applying an ‘overbar’ to their cohomological specializations.)
Like the Schubert basis of ASymn , the β-Grothendieck polynomial basis has pos-
itive structure coefficients; this is, of course, currently only known by geometric
arguments [11], as there is no combinatorial proof of this fact even in the case β = 0.

Intersecting {Sa} with Symn[β] yields the basis {sλ} of symmetric Grothendieck
polynomials. These represent connective K -theory Schubert classes on Grassman-
nians. In this setting, like the Schur polynomial setting, a number of Littlewood–
Richardson rules for {sλ} are now known (e.g., [73, 80, 81]), following the first
found by A. Buch [14].

There is a beautiful combinatorial formula for sλ given by Buch [14], as a direct
extension of the Littlewood formula of Theorem 2.1 for Schur polynomials. A set-
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valued tableau T of shape λ is a filling of each cell of the Young diagram λ by a
nonempty set of positive integers. Deleting all but one number from each set resolves
T to an ordinary tableau, and T is called semistandard if all all such resolutions are
semistandard in the sense of Sect. 2. In other words, T is semistandard if the greatest
entry in each box is not larger than the least entry in the box to its right and is strictly
smaller than the least entry in the box directly below it. Let SV(λ) denote the set
of semistandard set-valued tableaux of shape λ. The weight of a set-valued tableau
T is the weak composition wt(T ) := (a1, a2, . . .), where ai records the number of
instances of the number i among all boxes of T .

Theorem 5.1 ([14, Theorem 3.1]) For any partition λ, we have

sλ =
∑

T∈SV(λ)

xwt(T ).

The remaining families of polynomials discussed in Sects. 2–4 are not currently
understood well in term of cohomology. Remarkably, however, from a combinatorial
perspective they all appear to have natural ‘connective K -analogues’. That is, for each
basis, there is a combinatorially-natural β-deformation that is homogeneous (with
the understanding that β has degree −1), forms a basis of ASymn[β], and (at least
conjecturally) shares the positivity properties of the original basis. These deformed
bases are presented in Table 1.

It is a mystery as to whether these various apparently K -theoretic families of
polynomials in fact have a geometric interpretation in terms of K -theory. If they
did, then presumably the β = 0 specialization considered in the previous sections
would similarly have a cohomological interpretation. Such an interpretation would
be rather surprising, as currently these specializations are only understood through
combinatorics and (in some cases) representation theory. Alternatively, perhaps there
is a general representation-theoretic construction that yields all of these various β-
deformations. No such construction is currently known, but for some ideas along
these lines see [24, 63, 69].

For details of the definitions of the bases from Table 1 and their relations, see
the references given there, especially [64] which contains a partial survey. Here,
we only briefly sketch hints of this theory. (However, the theory is in many ways
exactly parallel to that given in Sects. 2–4, so the astute reader can likely guess
approximations to many of the structure theorems.)

The notion of semistandard set-valued skyline fillings was introduced in [62],
and employed there to provide an explicit combinatorial definition of the Lascoux
polynomialsDa and the Lascoux atomsAa : K -theoretic analogues of key polynomi-
als and Demazure atoms, respectively. Such K -theoretic analogues have also been
studied in [13, 38, 44, 63, 64, 70, 75].

The basis Fa of glide polynomials was introduced in [71]. Glide polynomials are
simultaneously a K -theoretic analogue of the fundamental slide basis and a poly-
nomial lift of the multi-fundamental quasisymmetric basis [51] of quasisymmetric
polynomials. Remarkably, the glide basis also has positive structure constants, which
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Table 1 Bases from Sects. 2–4, together with their corresponding connective K -analogues. For
each K -theoretic family of polynomials, we have a given a few major references; however, these
references are generally not exhaustive

Symn Schur polynomial sλ Symmetric Grothendieck polynomial sλ

[14, 63]

QSymn Monomial quasisymmetric polynomial
Mα

Multimonomial polynomial Mα [51]

Fundamental quasisymmetric polynomial
Fα

Multifundamental polynomial Fα [51,
68, 71]

QuasiSchur polynomial Sα QuasiGrothendieck polynomial Sα [62,
64]

ASymn Schubert polynomial Sa Grothendieck polynomialSa [20, 39, 52]

Demazure character/key polynomial Da Lascoux polynomial Da [38, 62, 64, 75]

Quasikey polynomial Qa QuasiLascoux polynomial Qa [64]

Demazure atom/standard basis Aa Lascoux atom Aa [13, 62, 64, 70]

Fundamental particle/pion Pa kaon Pa [64]

Fundamental slide polynomial Fa glide polynomial Fa [64, 71]

can be described in terms the glide product [71] of weak compositions. The glide
product is a simultaneous generalization of the slide product of [2] and the multi-
shuffle product of [51] on strong compositions.

The quasiLascoux basis Qa and kaon basis Pa were introduced in [64]. These
are K -analogues of the quasi-key and fundamental particle bases. Remarkably, the
positivity relations between the bases in Fig. 4 have been proven to hold for their
K -analogues mentioned above [64, 71], with the exception of the expansion of
Grothendieck polynomials in Lascoux polynomials, whose positivity remains con-
jectural.

As outlined in the previous section, the product of an element of any basis in Fig. 4
with a Schur polynomial expands positively in that basis. It would be interesting to
know if the analogous result is true in the K -theory world: that product of an element
of a K -theoretic analogue and a symmetric Grothendieck polynomial expands posi-
tively in that K -theoretic basis. This is obviously true for the Grothendieck basis by
geometry. It is also true for the glide basis, since the glide basis has positive structure
constants and refines Grothendieck polynomials. We believe this question remains,
however, open for the Lascoux, quasiLascoux, Lascoux atom and kaon bases.
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42. Kraśkiewicz, Witold, Pragacz, Piotr: Schubert functors and Schubert polynomials. European

J. Combin. 25(8), 1327–1344 (2004)
43. Daniel Krob and Jean-Yves Thibon,Noncommutative symmetric functions. IV. Quantum linear

groups and Hecke algebras at q=0, J. Algebraic Combin. 6 (1997), no. 4, 339–376
44. Lascoux, A., Transition on Grothendieck polynomials, Physics and combinatorics, : (Nagoya),

World Sci. Publ. River Edge, NJ 2001, 164–179 (2000)
45. Alain Lascoux, Chern and Yang through ice, preprint (2002), www-igm.univ-

mlv.fr/ al/ARTICLES/ChernYang.ps.gz
46. Cristian Lenart, Combinatorial aspects of the K-theory of Grassmannians., Ann. Comb. 4

(2000), no. 1, 67–82
47. D. E. Littlewood, The construction of invariant matrices, Proc. London Math. Soc. (2) 43

(1937), no. 3, 226–240
48. Dudley, E.: Littlewood. Oxford University Press, New York, The Theory of Group Characters

and Matrix Representations of Groups (1940)
49. Thomas Lam, Seung Jin Lee, and Mark Shimozono, Back stable Schubert calculus, preprint

(2018), 63 pages, arXiv:1806.11233
50. KurtLuoto, StefanMykytiuk, andStephanie vanWilligenburg,An introduction toquasisymmet-

ric Schur functions, SpringerBriefs in Mathematics, Springer, New York, 2013, Hopf algebras,
quasisymmetric functions, and Young composition tableaux

http://arxiv.org/abs/1409.8356v5
http://arxiv.org/abs/1806.11233


Asymmetric Function Theory 111

51. Thomas Lam and Pavlo Pylyavskyy, Combinatorial Hopf algebras and K-homology of Grass-
mannians, Int. Math. Res. Not. IMRN (2007), no. 24, Art. ID rnm125, 48

52. AlainLascoux andMarcel-Paul Schützenberger, Structure deHopf de l’anneau de cohomologie
et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math.
295 (1982), no. 11, 629–633

53. Alain Lascoux and Marcel-Paul Schützenberger, Symmetry and flag manifolds., Invariant the-
ory, Proc. 1st 1982 Sess. C.I.M.E., Montecatini/Italy, Lect. Notes Math. 996, 118-144 (1983).,
1983

54. Lascoux, A., Schützenberger, M.-P., Keys & standard bases, Invariant theory and tableaux
(Minneapolis, MN, : IMA Vol. Math. Appl., vol. 19. Springer, New York 1990, 125–144
(1988)

55. Lenart, C., Zainoulline, K.: A Schubert basis in equivariant elliptic cohomology. New York J.
Math. 23, 711–737 (2017)

56. Cristian Lenart and Kirill Zainoulline, Towards generalized cohmology Schubert calculus via
formal root polynomials., Math. Res. Lett. 24 (2017), no. 3, 839–877

57. I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996),
189–207, Séminaire Bourbaki, Exp. No. 797 Vol. 1994/95

58. I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Classic Texts
in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015,
With contribution by A. V. Zelevinsky and a foreword by Richard Stanley, Reprint of the 2008
paperback edition

59. Laurent Manivel, Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS
Texts andMonographs, vol. 6, AmericanMathematical Society, Providence, RI; Société Math-
ématique de France, Paris, 2001, Translated from the 1998 French original by John R. Swallow,
Cours Spécialisés [Specialized Courses], 3

60. Mason, S.: A decomposition of Schur functions and an analogue of the Robinson-Schensted-
Knuth algorithm. Sém. Lothar. Combin. 57, B57e (2008)

61. Sarah K. Mason, Recent trends in quasisymmetric functions, Recent trends in algebraic com-
binatorics, Assoc. Women Math. Ser., vol. 16, Springer, Cham, 2019, pp. 239–279

62. Cara Monical, Set-valued skyline fillings, preprint (2016), 17 pages, arXiv:1611.08777
63. Cara Monical, Oliver Pechenik, and Travis Scrimshaw, Crystal structures for sym-

metric Grothendieck polynomials, Transformation Groups, preprint (2018), 47 pages
arXiv:1807.03294

64. Cara Monical, Oliver Pechenik, and Dominic Searles, Polynomials from combinatorial K-
theory, Canad. J. Math., to appear (2019), 35 pages, arXiv:1806.03802

65. Norton, P.N.: 0-Hecke algebras. J. Austral. Math. Soc. Ser. A 27(3), 337–357 (1979)
66. JakobOesinghaus,Quasisymmetric functions and the Chow ring of the stack of expanded pairs,

Res. Math. Sci. 6 (2019), no. 1, Paper No. 5, 18
67. Opdam, Eric: Harmonic analysis for certain representations of graded Hecke algebras. Acta

Math. 1, 75–121 (1995)
68. Rebecca Patrias, Antipode formulas for some combinatorial Hopf algebras, Electron. J. Com-

bin. 23 (2016), no. 4, Paper 4.30, 32
69. Oliver Pechenik, The genomic Schur function is fundamental-positive, Ann. Comb. 24, 95–108

(2020), arXiv:1810.04727, https://link.springer.com/article/10.1007/s00026-019-00483-2
70. Oliver Pechenik and Travis Scrimshaw, K-theoretic crystals for set-valued tableaux of rectan-

gular shapes, preprint (2019), 20 pages, arXiv:1904.09674
71. Oliver Pechenik andDominic Searles,Decompositions ofGrothendieck polynomials, Int.Math.

Res. Not. IMRN (2019), no. 10, 3214–3241
72. A. Pun, On deposition of the product of Demazure atoms and Demazure characters, preprint

(2016), 86 pages, arXiv:1606.02291
73. Pechenik, Oliver, Yong, Alexander: Genomic tableaux. J. Algebraic Combin. 45(3), 649–685

(2017)
74. Reiner, V., Shimozono, M.: Key polynomials and a flagged Littlewood-Richardson rule. J.

Combin. Theory Ser. A 70(1), 107–143 (1995)

http://arxiv.org/abs/1611.08777
http://arxiv.org/abs/1807.03294
http://arxiv.org/abs/1806.03802
http://arxiv.org/abs/1810.04727
https://link.springer.com/article/10.1007/s00026-019-00483-2
http://arxiv.org/abs/1904.09674
http://arxiv.org/abs/1606.02291


112 O. Pechenik and D. Searles

75. C.Ross andA.Yong,Combinatorial rules for three bases of polynomials, Sém.Lothar. Combin.
74 (2015), Art. B74a, 11 pages

76. Yasmine, B.: Sanderson, On the connection between Macdonald polynomials and Demazure
characters. J. Algebraic Combin. 11(3), 269–275 (2000)

77. Dominic Searles, Polynomial bases: positivity and Schur multiplication, Trans. Amer. Math.
Soc., in press (2019), 29 pages, https://doi.org/10.1090/tran/7670

78. Richard P. Stanley,Enumerative combinatorics. Vol. 2, Cambridge Studies inAdvancedMathe-
matics, vol. 62, Cambridge University Press, Cambridge, 1999,With a foreword by Gian-Carlo
Rota and appendix 1 by Sergey Fomin

79. Tewari, Vasu V., van Willigenburg, Stephanie J.: Modules of the 0-Hecke algebra and qua-
sisymmetric Schur functions. Adv. Math. 285, 1025–1065 (2015)

80. Thomas, Hugh, Yong, Alexander: A jeu de taquin theory for increasing tableaux, with appli-
cations to K -theoretic Schubert calculus. Algebra Number Theory 3(2), 121–148 (2009)

81. R. Vakil, A geometric Littlewood-Richardson rule, Ann. of Math. (2) 164 (2006), no. 2, 371–
421, Appendix A written with A. Knutson
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Minuscule Schubert Calculus and the
Geometric Satake Correspondence

Dave Anderson and Antonio Nigro

Abstract We describe a relationship between work of Gatto, Laksov, and their
collaborators on realizations of (generalized) Schubert calculus of Grassmannians,
and the geometric Satake correspondence of Lusztig, Ginzburg, and Mirković and
Vilonen. Along the way we obtain new proofs of equivariant Giambelli formulas
for the ordinary and orthogonal Grassmannians, as well as a simple derivation of
the “rim-hook” rule for computing in the equivariant quantum cohomology of the
Grassmannian.

Keywords Geometric Satake correspondence · Schubert calculus · Affine
Grassmannian · Pfaffian · Equivariant quantum cohomology

1 Introduction

The goal of this article is to illustrate connections between several circles of ideas in
Schubert calculus, representation theory, and symmetric functions. The driving force
behind the connections we explore is the geometric Satake correspondence—which,
in the special cases we examine, matches Schubert classes in the Grassmannian (and
related spaces) with weight vectors in exterior products (and related representations).
We will focus especially on an equivariant version of this correspondence, where
additional bases appear on both sides. An analysis of the transition matrices for
these bases leads us directly to well-known symmetric functions: the Schur S- and
P-functions, along with their factorial generalizations.
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The approach we take is primarily expository, at least in the sense that all the main
theorems have appeared previously. However, in describing a relationship among
notions which do not often appear side by side, we obtain some novel consequences:
new and simple proofs of the equivariant Giambelli formulas for ordinary and orthog-
onal Grassmannians, as well as of a rule for computing in the equivariant quantum
cohomology of the Grassmannian. This perspective should find further applications
within Schubert calculus. One themewewish to emphasize is this: when some aspect
of H∗

T Gr(k, n) appears related to exterior algebra, one can expect generalizations via
the Satake correspondence, either to other minuscule spaces, or to other subvarieties
of the affine Grassmannian.

Our starting point is a very simple observation,whichmust be quite old. TheGrass-
mannian Gr(k, n) has a decomposition into Schubert cells, indexed by k-element
subsets of [n] := {1, . . . , n}. As C-vector spaces, therefore, one has

H∗(Gr(k, n), C) = H∗(Gr(k, n), C) = ∧k
C

n, (1)

and the cohomology ring H∗(Gr(k, n), C) acts as a certain ring of operators on the
exterior power. The rest of this story is an attempt to add asmuch structure as possible
to this identification.

As a first step, for k = 1, let us identify the basis of linear subspaces of P
n−1 with

the standard basis of C
n:

[Pn−i ] = εi in Hn−iP
n−1 = Hi−1

P
n−1.

(Since the spaces we consider have no odd-degree singular (co)homology, we will
economize notation by always writing Hi and Hi for singular homology and coho-
mology in degree 2i .) This induces a grading on C

n , and makes (1) an isomorphism
of graded vector spaces. More generally, writing �I for the Schubert variety corre-
sponding to I = {i1 < · · · < ik} ⊆ [n], we identify

[�I ] = εI := εi1 ∧ · · · ∧ εik

in H∗Gr(k, n) = H∗Gr(k, n).
To be a littlemore specific, since itwillmatter later, these are the oppositeSchubert

varieties: �I is the closure of the cell �◦
I whose representing k × n matrices have

pivots in columns I , with zeroes to the left of the pivots. For example, in Gr(3, 8)
we have

�◦
{2,4,7} =

⎡

⎣
0 1 ∗ 0 ∗ ∗ 0 ∗
0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 1 ∗

⎤

⎦ .

There is a standard bijection between I ⊆ [n] and partitions λ fitting inside the
k × (n − k) rectangle; one puts

λk+1− j = i j − j.
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Then, writing�λ = �I , the grading is realized by codim�λ = |λ| = λ1 + · · · + λk .
We will write σλ for the (co)homology class [�λ].

The essential idea is to exploit the isomorphism (1) and use linear algebra to
develop the basic ingredients of Schubert calculus—including Giambelli and Pieri
formulas. This can be done using elementary (though still nontrivial) methods.

Again, the first step is to examine the easiest case, where k = 1. The action of the
divisor class σ translates into an operator ξ on C

n , given by

ξ · εi =
{

εi+1 if i < n;
0 if i = n.

So this has matrix

ξ =

⎡

⎢
⎢
⎢
⎢
⎣

0

1
. . .

0
. . .

. . .

0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

(2)

and one can view it as an element of the Lie algebra gln (or sln). This Lie algebra
acts naturally on exterior powers

∧k
C

n , and the basic observation is that for any k,
σ acts on H∗Gr(k, n) (via cup product) just as the matrix ξ acts on

∧k
C

n (via the
Lie algebra action).

For example, consider σ1 acting on H∗Gr(2, n). We have

ξ · ε1 ∧ ε2 = ε2 ∧ ε2 + ε1 ∧ ε3

= ε1 ∧ ε3,

corresponding to σ · σ∅ = σ(1). Similarly,

ξ · ε1 ∧ ε3 = ε2 ∧ ε3 + ε1 ∧ ε4,

corresponding to σ · σ(1) = σ(1,1) + σ(2). Note, however, that the Lie algebra action

of the matrix ξ2 does not correspond to multiplication by σ2 . For instance, the Lie
algebra action gives

ξ2 · ε2 ∧ ε3 = ε4 ∧ ε3 + ε2 ∧ ε5

= ε2 ∧ ε5 − ε3 ∧ ε4,

which corresponds to the computation p2 · σ(1,1) = σ(3,1) − σ(2,2), where p2 is the
power sum symmetric polynomial.
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The question thus arises: are the above calculations merely coincidental? In the
next two sections, we will see that they are not, by viewing them as a shadow of the
geometric Satake correspondence, a major construction in modern representation
theory.

In Sect. 4, we show how the equivariant Giambelli formula—which computes
a Schubert class in H∗

T Gr(k, n) as a factorial Schur polynomial sλ(x |t)—follows
directly from the defining properties of the exterior power, putting computations of
Gatto, Laksov, Thorup, and others into the general context of the Satake correspon-
dence. Having done this, it is natural to proceed to the minuscule spaces of type
D: in Sect. 6, we apply similar methods to compute equivariant Schubert classes via
the factorial Schur P-functions Pλ(x |t), using computations on even-dimensional
quadrics (carried out in Sect. 5) in place of projective spaces. The functions sλ(x |t)
are frequently defined as a certain “Jacobi-Trudi” determinant, but they may also be
written as a ratio of two determinants (as was originally done by Cauchy); similarly,
Pλ(x |t) may be written either as a Pfaffian or as a ratio of two Pfaffians. A curi-
ous aspect of our arguments is that the ratio description of these functions appears
naturally, in contrast to most geometric arguments (dating to Giambelli), where the
Jacobi-Trudi formulation is used.

We turn to quantum cohomology in Sect. 7, where we give a short proof of the
equivariant rim-hook rule for computing in QH∗

T Gr(k, n). Here the Satake isomor-
phism serves only a psychological function, and is not logically necessary: the main
point is that the combinatorial operation of removing a rim hook from a partition
(and picking up a corresponding sign) is precisely that of reducing the indices of a
pure wedge modulo n.

Most of these ideas have appeared in the work of other authors, at least in some
form; as mentioned above, our primary aim is to indicate connections and extract
a few new consequences. We first learned of the possibility of a “formal” Schubert
calculus on exterior powers from a series of papers by Gatto and Laksov–Thorup in
the 2000s, and this point of view has been developed further by these authors and
their collaborators [14–17, 30–33]. More detailed references are given throughout
the article, and we point to further connections in a closing section (Sect. 8).

2 The Geometric Satake Correspondence

A second simple observation is the following: On one hand, the vector space
∧k

C
n

is a fundamental (and in fact, minuscule) representation V�k of sln . On the other
hand, Gr(k, n) = PGLn/P�k , where P�k is the parabolic corresponding1 to the
cocharacter �k of PGLn . In fact, if V = C

n is the standard representation of sln ,
it is most natural to regard Gr(k, n) = Gr(k, V ∗) as parametrizing k-planes in the
dual vector space.

1In general, a cocharacter � : C
∗ → T ⊆ G determines a reductive subgroup G� ⊆ G, the cen-

tralizer of its image; the corresponding parabolic P� is generated by G� together with the Borel.
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Work from the 1990’s by Ginzburg [18] and Mirković and Vilonen [41]—which
in turn builds on work of Lusztig [35] from the early 1980’s—puts this into a more
general context. To describe it we need some terminology and basic facts.

Any reductive group G with maximal torus T comes with a root datum R. Root
data have a built-in duality, and exchanging R with R∨ yields a Langlands dual
group G∨. The details will not be too important for now, beyond this: the roots of
G∨ are the coroots of G, and the characters of the maximal torus T ∨ ⊆ G∨ are
the co-characters of T ⊆ G. For example, (PGLn)

∨ ∼= SLn , (Sp2n)∨ ∼= SO2n+1,
(PSO2n)

∨ = Spin2n , and (GLn)
∨ ∼= GLn . (A significant part of Ginzburg and

Mirković–Vilonen’s program was to give a more intrinsic construction of G∨.)
LetK = C((z)) andO = C[[z]]. The affine Grassmannian of a complex reductive

group G is the infinite-dimensional orbit space

GrG = G(K)/G(O),

topologized as an ind-variety. The essence of geometric Satake is to relate the geom-
etry of GrG with the representation theory of G∨. We will describe a very small part
of this correspondence which suffices for our purposes.

The group G(O) acts on GrG via left multiplication, and its orbits are naturally
parametrized by dominant co-characters � : C

∗ → T . These, by duality, are the
same as dominant characters of T ∨. Since there is a well-known indexing of irre-
ducible representations of G∨ by dominant characters, we have a bijection of sets

{G(O)-orbit closures in GrG} ↔ {
irreducible representations of G∨}

Gr� ↔ V�

and as before the goal is to endow this with more structure.
Let g∨ = Lie(G∨), and take a regular nilpotent element ξ ∈ g∨. (Up to conjuga-

tion, in sln such an element is the matrix from (2). More generally, one can write
ξ = ∑

ai Eαi as a sum of simple root vectors.) Let a ⊆ g∨ be the centralizer of ξ, an
abelian Lie subalgebra of dimension equal to the rank of g. (In the case of ξ ∈ sln , this
subalgebra is spanned by thematrix powers ξ, ξ2, . . . , ξn−1.) Its universal enveloping
algebra, denoted U(a), acts naturally on any representation of a. Since a is abelian,
U(a) is just the polynomial algebra Sym∗

C
a.

Finally, I H∗X denotes the (middle-perversity) intersection homology of a space
X , with coefficients in C. This is a graded vector space which exhibits Poincaré
duality, and which comes with an action of H∗Y , for any X → Y , via cap product.

Theorem 1 (Geometric Satake [18, 41]) There are graded isomorphisms of alge-
bras

H∗(Gr◦
G) ∼= U(a) = Sym∗

C
a

and vector spaces
I H∗(Gr�) ∼= V�,
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for all dominant �, and these isomorphisms are compatible with the natural actions
of H∗(GrG) on I H∗(Gr�) (via cap product) and of U(a) on V� (via the representa-
tion of g∨). Furthermore, there is a natural basis of MV-cycles in I H∗(Gr�) which
corresponds to a weight basis of V�.

The statements proved by Ginzburg and Mirković–Vilonen are vastly stronger:
they establish an equivalence of tensor categories between the category of G(O)-
equivariant perverse sheaves and the representation category ofG∨. Wewill not need
this level of generality, however.

The connected components of GrG are indexed by elements of π1(G), and in fact
there is a natural group structure on the set of components. In the statement of the
theorem, Gr◦

G means the identity component, although in fact all components are
isomorphic—as spaces, but not compatibly with the left G(O)-action.

In general, the orbit closure Gr� is singular, hence the appearance of intersection
homology.However, theminimal orbit in each connected component ofGrG is closed,
so suchGr� = Gr� are smooth, and one has I H∗ = H∗ = H∗.WhenG is adjoint (so
G∨ is simply connected), these minimal orbits correspond to the minuscule weights
of G∨. For a minuscule weight �, one has Gr� = G/P�. Furthermore, in this case
theMV-cycles are precisely the Schubert varieties inG/P� (as noted in [26, Sect. 1]).

Example 2 The minuscule weights of sln are 0,�1, . . . ,�n−1, corresponding to
the n elements of π1(PGLn) = Z/nZ. The representations are the exterior powers∧k

C
n , and the orbits are the Grassmannians PGLn/P�k = Gr(k, n), for 0 ≤ k ≤

n − 1.
The minuscule weights of so2n are 0,�1,�n−1,�n , where the nonzero ones are

the fundamental weights corresponding to the three end-nodes of the Dn Dynkin
diagram. The representations are the standard one, V�1 = C

2n , and the half-spin
representations, V�n−1 = S

+
n and V�n = S

−
n . The orbits are the quadric Q2n−2 =

PSO2n/P�1 , and the two maximal orthogonal Grassmannians OG+(n, 2n) =
PSO2n/P�n−1 and OG−(n, 2n) = PSO2n/P�n .

In type Cn , the weight �1 corresponding to the standard representation of sp2n is
minuscule, and in type Bn , the weight �n corresponding to the spin representation
of so2n+1 is minuscule. The minimal orbits are isomorphic to P

2n−1 and OG+(n +
1, 2n + 2), respectively, so they already occur in types A and D.

Among simple groupsG, there are only a fewother instances of nonzerominuscule
weights. In type E6, the weights �1 and �6 are minuscule, corresponding to the 27-
dimensional Jordan algebra representation and its dual; the corresponding varieties
are the octonionic projective plane and its dual. In type E7, there is one nonzero
minuscule weight, whose corresponding representation is the 56-dimensional Brown
algebra, and whose corresponding homogeneous space is known as the Freudenthal
variety.

As a special case of Theorem 1, we have the isomorphism

H∗Gr(k, n) = ∧k
C

n,
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together with the compatible actions by divisor class and regular nilpotent, described
in the introduction—in particular, it is no coincidence that one can do this. We
will push this further to obtain a new perspective on Laksov’s computation of the
equivariant cohomology of Gr(k, n) in Sect. 4.

Remark 3 Let�C be the ring of symmetric functionswith coefficients inC. It can be
identifiedwith the infinite polynomial ringC[p1, p2, . . .], where pr = xr1 + xr2 + · · ·
is the power sum symmetric function. For G = PGLn , Bott [5] showed that there is
a natural map

�C → H∗Gr◦
G,

identifying the RHS as �C/(pn, pn+1, . . .) ∼= C[p1, . . . , pn−1]. Furthermore, this
identifies the subspace P ⊆ H∗Gr◦

G of primitive classes with the space spanned by
{p1, . . . , pn−1}. Ginzburg’s proof of the first part of Theorem1 establishes an isomor-
phism a ∼= P. So the power sum symmetric functions play a central role in this story;
we will see an echo of this in the rim-hook rule for quantum cohomology (Sect. 7).
(A word of caution: this isomorphism does not hold when one takes cohomology
with coefficients in Z. See [5, Proposition 8.1] for a more precise statement.)

3 The Equivariant Correspondence

There is an equivariant version of Theorem 1, whose proof is sketched in [18]. We
will write t for the generic element of the Cartan subalgebra t∨ ⊆ g∨ and use the
notation g∨[t] = g∨ ⊗ C[t∨] for the Lie algebra over the polynomial ring. Given
a g∨-module V , there is an induced g∨[t]-module V [t] := V ⊗ C[t∨], where the
action is given by

(x ⊗ f ) · (v ⊗ g) = (x · v) ⊗ ( f g),

for x ∈ g∨, v ∈ V , and f, g ∈ C[t∨].
Next suppose b∨ ⊆ g∨ is a Borel subalgebra containing t∨. Any character χ of

t∨ extends to one of b∨, and also to b∨[t]. If V is a b∨-module, we can twist it by
the character χ to obtain modules V (χ) and V (χ)[t] for b∨ and b∨[t], respectively.
Concretely, if one writes an element of b∨ = n∨ ⊕ t∨ as x = n + t , then for f, g ∈
C[t∨] and v ∈ V (χ) a weight vector for t∨, we have

(x ⊗ f ) · (v ⊗ g) = (n ⊗ f + t ⊗ f ) · (v ⊗ g)

= (n · v) ⊗ ( f g) + (t · v) ⊗ ( f g) + χ(t ⊗ f )(v ⊗ g).

Now let ξt = ξ − t in g∨[t] = g∨ ⊗ C[t∨], where ξ is a principal nilpotent as
before, and t is the generic element of the Cartan subalgebra t∨ ⊆ g∨. Concretely,
for gln this is
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ξt =

⎡

⎢
⎢
⎢
⎢
⎣

−t1

1
. . .

0
. . .

. . .

0 0 1 −tn

⎤

⎥
⎥
⎥
⎥
⎦

. (3)

Let at ⊆ g∨[t] be the centralizer of ξt . For gln , this subalgebra is spanned over
C[t∨] = Sym∗ t∨ by the matrix powers 1, ξt , ξ2t , . . . , ξ

n−1
t .

Theorem 4 (Equivariant Geometric Satake) There are isomorphisms

H∗
TGr◦

G
∼= UC[t∨](at ) = Sym∗

C[t∨] at

inducing compatible actions on

I HT
∗ (Gr�) ∼= V�(−�)[t].

The effect of twisting by the character −� is to move the highest weight vector
of V� to weight zero. This corresponds to endowing I HT∗ (Gr�) with a t∨-module
structure so that the fundamental class [Gr�] hasweight 0. This choice has the advan-
tage of identifying the action of the element ξt with equivariant multiplication by the
divisor class σ . (Of course, a similar isomorphism holds without the twist; noting

that σ = cT1 (O(1) ⊗ (−�)), where O(1) is the ample line bundle corresponding
to the weight �, the untwisted version identifies the action of ξt with multiplication
by cT1 (O(1)).)

Example 5 For g = gln , the action of ξt on V�2(−�2)[t] = (
∧2

C
n ⊗ (−t1 −

t2)) ⊗ C[t∨] is as follows.

ξt · (ε1 ∧ ε2) = ε2 ∧ ε2 + ε1 ∧ ε3 − (t1 + t2 − t1 − t2)ε1 ∧ ε2

= ε1 ∧ ε3,

corresponding to σ · σ∅ = σ(1) in H∗
T Gr(2, n). (The cancellation of the last term

shows why the twist by −� is necessary.) Similarly,

ξt · (ε1 ∧ ε3) = ε2 ∧ ε3 + ε1 ∧ ε4 − (t1 + t3 − t1 − t2)ε1 ∧ ε3

= ε2 ∧ ε3 + ε1 ∧ ε4 + (t2 − t3)ε1 ∧ ε3,

corresponding to σ · σ(1) = σ(1,1) + σ(2) + (t2 − t3)σ(1).

As in the non-equivariant case, one needs to beware of the notation: matrix powers
ξ
j
t do not correspond to iterates of the Lie algebra action, e.g., ξ

2
t · εI is generally not

equal to ξt · (ξt · εI ).

Example 6 Still in the case g = gln , let us consider higher powers of ξt . One com-
putes the entries of the matrix powers as
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ξ
j
t εi = εi+ j − h1(ti , . . . , ti+ j−1) εi+ j−1 + · · · + (−1) j h j (ti ) εi

=
j∑

a=0

(−1)a ha(ti , . . . , ti+ j−a) εi+ j−a,

where the ha are complete homogeneous symmetric polynomials in the indicated
variables. (That is, the (i + j − a, i) matrix entry of ξ

j
t is (−1)aha(ti , . . . , ti+ j−a).)

Incorporating the twist by −�k , the Lie algebra action on V�k (−�k)[t] is

ξ
j
t · εI =

(
j∑

a=0

(−1)a ha(ti1 , . . . , ti1+ j−a) εi1+ j−a

)

∧ εi2 ∧ · · · ∧ εik

+ εi1 ∧
(

j∑

a=0

(−1)a ha(ti2 , . . . , ti2+ j−a) εi2+ j−a

)

∧ · · · ∧ εik

+ · · · + εi1 ∧ εi2 ∧ · · · ∧
(

j∑

a=0

(−1)a ha(tik , . . . , tik+ j−a) εik+ j−a

)

− ((−t1)
j + · · · + (−tk)

j ) εI .

For instance,

ξ2t · (ε2 ∧ ε3) = (ε4 − (t2 + t3) ε3 + t22 ε2) ∧ ε3 + ε2 ∧ (ε5 − (t3 + t4) ε4 + t23 ε3)

− (t21 + t22 ) ε2 ∧ ε3

= ε2 ∧ ε5 − ε3 ∧ ε4 − (t3 + t4) ε2 ∧ ε4 + (t23 − t22 ) ε2 ∧ ε3.

The leading term agrees with the computation p2 · σ(1,1) = σ(3,1) − σ(2,2) in
H∗Gr(2, n) done in the introduction.

Anew feature appears in the equivariant correspondence.Let us pass to the fraction
fieldC(t∨), and consider g∨(t), etc., as Lie algebras over this field. Since the element
ξt is regular semisimple, its centralizer h ⊆ g∨(t) is a Cartan subalgebra. (In fact, h
is just the extension of at to C(t∨).) So our setup leads naturally to another basis for
V�(−�)(t), a basis of weight vectors for h(t), diagonalizing ξt .

What is this basis on the geometric side of the correspondence?By the localization
theorem (see [22, (6.3)]), there is a fixed-point basis for I HT∗ (Gr�) ⊗ C(t∨), and in
fact this basis corresponds to a (suitably chosen) weight basis for h.

Theorem 7 (Equivariant Satake, continued) Under the Satake isomorphism
I HT∗ (Gr�) ∼= V�(−�)[t], equivariant MV -cycles correspond to a weight basis
of V�(−�)[t] with respect to t∨, and the fixed point basis corresponds to a weight
basis with respect to h.

In general, there is ambiguity in choosing a weight basis. However, for minuscule
�, all weight spaces of V� are one-dimensional, so a weight basis is determined (up
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to scaling) by theCartan.As noted before, in this caseGr� = G/P� is homogeneous,
and the MV basis consists of (opposite) Schubert classes. This is the situation we
will consider for the remainder of the paper. Let us write X = G/P�.

Let us write {σλ} for the basis of Schubert classes in H∗
T X . The fixed point set

is XT = {pλ} (with λ running over the same set indexing Schubert classes), and we
will write {1λ} for the corresponding idempotent basis of H∗

T X
T = ⊕

H∗
T (pλ). The

localization theorem says that the restriction homomorphism (of C[t∨]-algebras)

ι∗ : H∗
T X → H∗

T X
T

becomes an isomorphism after tensoringwithC(t∨). An important part of equivariant
Schubert calculus is to compute the restriction of a Schubert class σλ to a fixed point
pμ. Formulas for these restrictions have been given by Billey for complete flag
varieties [4], and by Ikeda-Naruse, who consider special cases that are related to the
focus of this article [24].

The fact that the fixed-point classes form a basis of eigenvectors for ξt is part of a
general phenomenon, with a simple proof. Consider any nonsingular variety X with
finite fixed locus XT , and any class α ∈ (H∗

T X) ⊗ C(t∨).

Lemma 8 The idempotent classes 1p ∈ (H∗
T X) ⊗ C(t∨) = (H∗

T X
T ) ⊗ C(t∨) form

a basis of eigenvectors for the endomorphism x �→ α · x.
This is almost a tautology. Simply observe that for distinct fixed points p �= q, we
have 1p · 1q = 0. Writing α = ∑

αp · 1p, the statement follows.
Returning to minuscule Schubert calculus, the restrictions σλ|μ may be regarded

as matrix entries for the homomorphism ι∗, with respect to the Schubert and fixed-
point bases. The Satake correspondence translates the problem of computing this
matrix into the following:

Find the change-of-basis matrix relating weight bases of the minuscule representation
V�(−�)(t), with respect to two (specific) Cartan subalgebras, t∨ and h, of g∨(t).

This perspective also suggests a framework for setting up and solving the problem
of computing restrictions of Schubert classes σλ|μ. We will work this out in types A
and D below.

4 A Giambelli Formula for Grassmannians

We will describe a proof of the “equivariant Giambelli formula”

σλ = sλ(x |t) (4)

identifying the Schubert classσλ ∈ H∗
T Gr(k, n)with a factorial Schur polynomial, in

the spirit of Laksov’s approach to equivariant Schubert calculus [30]. The following
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definition of the factorial Schur polynomial can be found in Macdonald’s book [36,
Sect. I.3, Ex. 20]. The (generalized) factorial power is defined as

(x |t)a = (x + t1)(x + t2) · · · (x + ta).

Let I = {i1, . . . , ik} ⊆ [n] be the subset corresponding to the partition λ; recall that
this means λk+1−a = ia − a. One defines

sλ(x |t) =
det

(
(x j |t)i−1

)
i∈I,1≤ j≤k

det
(
(x j |t)i−1

)
1≤i, j≤k

.

An easy computation shows the denominator is

det
(
(x j |t)i−1

)
1≤i, j≤k = det(xi−1

j ) =
∏

1≤a<b≤k

(xa − xb) =: �,

the Vandermonde determinant, so the factorial Schur polynomial can also be written
as

sλ(x |t) =
det

(
(x j |t)i−1

)
i∈I,1≤ j≤k

�
.

The meaning of the Giambelli formula is this. By the localization theorem, the
equivariant cohomology of Gr(k, n) embeds in that of its fixed locus:

H∗
T Gr(k, n) ↪→ H∗

T (Gr(k, n)T ) =
⊕

J

C[t],

the sum being over all k-element subsets J ⊂ [n]. On the other hand, there is a pre-
sentation of H∗

T Gr(k, n) as a quotient ofC[t][x1, . . . , xk]Sk (symmetric polynomials
in x , with coefficients in C[t]). Composing with the localization homomorphism
gives

C[t][x1, . . . , xk]Sk →
⊕

J

C[t],

defined on the J th summand by sending xa �→ −t ja . The precise statement is this:

Theorem 9 Under the homomorphismC[t][x1, . . . , xk]Sk → H∗
T Gr(k, n), we have

sλ(x |t) �→ σλ. Equivalently, for each J = { j1 < · · · < jk}, we have

σλ|pJ = sλ(−t j1 , . . . ,−t jk |t).

Proof There are three simple steps. We describe them informally first, since we will
follow the same pattern in proving a type D formula later.

(1) Work out the case k = 1, corresponding to projective space. Here, by construc-
tion, the element ξt corresponds to multiplication by the hyperplane class σ
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on H∗
TP

n−1, written in the Schubert basis εi = [Pn−i ]. We choose a basis f i
diagonalizing the semisimple element ξt ; by Lemma 8, this basis coincides with
the basis of idempotents 1i , up to scalar. We normalize the f i so that f i = 1i ,
by requiring ε1 = f 1 + · · · + f n (since ε1 corresponds to 1 ∈ H∗

TP
n−1). The

expansion of εi in the f j basis is then a localization calculation, which is easy
for projective space.

(2) For each k > 1, take the weight basis {εI } of V�k (−�k)[t] = ∧k
C[t] C[t]n to be

εI = εi1 ∧ · · · ∧ εik . Verify that the action of ξt agrees with the known formula
for multiplication by σ on the Schubert basis of H∗

T Gr(k, n), so that we can
identify σI = εI . (The latter formula is often called the equivariant Chevalley
formula.)

(3) By Lemma 8 again, the vectors f j1 ∧ · · · ∧ f ik agree with the basis of idempo-
tents 1J , up to scalar; normalize it so that f J = 1J by requiring ε{1,...,k} = ∑

f J
(since ε{1,...,k} corresponds to 1 ∈ H∗

T Gr(k, n)). On the other hand, formulas
from Step (1) expressing εi in terms of f j yield (determinantal) formulas for εI
in terms of f j1 ∧ · · · ∧ f jk ; comparing with the normalized vectors f J proves
the theorem.

Now we proceed to work this out in detail. It is not hard to see that

fi = εi + 1

(ti+1 − ti )
εi+1 + · · · + 1

(tn − ti ) · · · (ti+1 − ti )
εn

is a basis of eigenvectors for ξt acting on C
n ⊗ C(t) (inverting nonzero characters).

This is related to εi by a unitriangular change of basis. However, note that σi |pi =
(t1 − ti ) · · · (ti−1 − ti ) (since �i = P

n−i is defined by the vanishing of the first i − 1
coordinates); this means that we must rescale to obtain the idempotent basis. In fact,

f i = 1

(t1 − ti ) · · · (ti−1 − ti )
fi

identifies with the idempotent basis 1i ∈ H∗
T (Pn−1)T . Since we know the restrictions

of εi = [Pn−i ] to fixed points, we see

εi =
∑

j

(t1 − t j ) · · · (ti−1 − t j ) f j

=
∑

j

(x j |t)i−1|x j=−t j f j .

using the generalized factorial power notation. This completes the first step.
For the second step, we take εI = εi1 ∧ · · · ∧ εik as our basis for V�k (−�k)[t] =

H∗
T Gr(k, n). The verification that ξt acts on this basis as σ does on the Schubert

basis is left to the reader. (Illustrative examples were done above.) We note that the
Chevalley formula says
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σ · σI =
∑

I+
σI+ + (t1 + · · · + tk − ti1 − · · · − tik )σI ,

where the sum is over I+ obtained from I by replacing some ia ∈ I such that ia + 1 /∈
I by ia + 1. (In terms of the corresponding partitions, λ(I+) is obtained from λ(I )
by adding a single box.)

Finally, from the definition of exterior product, we get

εI := εi1 ∧ · · · ∧ εik =
∑

J

det
(
(x j |t)i−1|x j=−t j

)
i∈I, j∈J

f j1 ∧ · · · ∧ f jk .

In particular,

ε{1,...,k} =
∑

J

det
(
(x j |t)i−1|x j=−t j

)
1≤i≤k, j∈J

f j1 ∧ · · · ∧ f jk

=
∑

J

�J f j1 ∧ · · · ∧ f jk ,

where
�J =

∏

1≤a<b≤k

(t ja − t jb)

is the specialization of the Vandermonde determinant �. Since ε{1,...,k} should be
identifiedwith 1 = [Gr(k, n)] in H∗

T Gr(k, n), this tells us that the idempotent classes
are

1J = f J := �J f j1 ∧ · · · ∧ f jk ,

and we can rewrite the above formula as

εI := εi1 ∧ · · · ∧ εik =
∑

J

(
det

(
(x j |t)i−1|x j=−t j

)
i∈I, j∈J

�J

)

f J

=
∑

J

sλ(x1, . . . , xk |t)|xa=−t ja f J ,

as required.

Remark 10 It is hard to give clear attribution to the equivariant Giambelli formula;
certainly it was known by around 2000. Reference to it appears in [28], and a proof
is in [40]. In retrospect, the Kempf–Laksov formula [27] is equivalent to (4). See
also [1] for more discussion and an alternative proof.

Likewise, it is difficult to identify the earliest appearance of the connection
between the gln-module

∧k
C

n and the cohomology of H∗Gr(k, n). While surely
known long before, it appears in several sources by the 2000s [14, 26, 30, 48].
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Remark 11 Recall that the Grassmannian Gr(k, n) = Gr(k, V ∗) embeds naturally
in P(

∧k V ∗) as the locus of “pure wedges” v1 ∧ · · · ∧ vk . Since our basis ε1, . . . , εn
for V is a weight basis for t∨, the dual basis ε∗

1, . . . , ε
∗
n is a weight basis for the

action of T on V ∗; the points of Gr(k, V ∗) corresponding to ε∗
I = ε∗

i1
∧ · · · ∧ e∗

ik
are

therefore precisely the T -fixed points. Thus the Satake correspondence exchanges T -
fixed points in Gr(k, V ∗) ⊆ P(

∧k V ∗) with Schubert classes in P(H∗Gr(k, V )) =
P(
∧k V ). When considered as cohomology classes on Gr(k, V ∗), do pure wedges

in P(
∧k V ) have a natural geometric meaning? What does this correspondence look

like when upgraded to the equivariant setting?

5 Quadrics

As another example, we describe the correspondence for minuscule varieties of type
D. To set things up, fix a basis

εn−1, . . . , ε1, ε0, ε0, ε1, . . . , εn−1

for V ∼= C
2n , and equip this vector space with the symmetric bilinear form defined

by 〈εı , ε j 〉 = δi, j . (The barred indices should be regarded as notation for nega-
tive integers.) The form identifies the dual basis for V ∗ = V as ε∗

i = εı . The sub-
spaces E = span{ε0, . . . , εn−1} and E = span{εn−1, . . . , ε0} are maximal isotropic
subspaces of V , and we have V = E ⊕ E .

We will take so2n ⊆ sl2n to be the algebra preserving the given bilinear form;
there is also a canonical identification so2n = ∧2 V (see, e.g., [12, Sect. 20]). We
take our principal nilpotent element ξ and generic t so that

ξt = ξ − t =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

tn−1

−1
. . .

. . . t1
−1 t0 0
−1 0 −t0

1 1
. . .

. . . −tn−2

1 −tn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5)

Using ε∗
ı = εi , ξ can also be written as
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ξ = −
n−1∑

i=1

ε∗
ı ⊗ εi−1 − ε∗

1
⊗ ε0 + ε∗

0
⊗ ε1 +

n−1∑

i=1

ε∗
i−1 ⊗ εi

= ε0 ∧ ε1 +
n−1∑

i=1

εi−1 ∧ εi ,

which exhibits it as an element of
∧2 V . Similarly, we have

ξt = ε0 ∧ ε1 +
n−1∑

i=1

εi−1 ∧ εi −
n−1∑

i=0

ti εı ∧ εi . (6)

Note that our indexing conventions and choice of form 〈 , 〉make it natural to identify
elements of

∧2 V with matrices which are skew-symmetric about the anti-diagonal.
The odd matrix powers ξt , ξ

3
t , . . . , ξ

2n−3
t all lie in so2n as well, and they are easily

seen to be linearly independent elements of the centralizer at of ξt . Since ξt is regular,
one knows dim at = n; the missing element is

ηt = −
n−1∑

j=1

(t j+1 · · · tn−1)ε0 ∧ ε j +
∑

0≤i≤ j≤n−1

(t0 · · · ti−1t j+1 · · · tn−1)εı ∧ ε j . (7)

For example, when n = 4, this is

ηt =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−t0t1t2
−t0t1 −t0t1t3
−t0 −t0t3 −t0t2t3
−1 −t3 −t2t3 −t1t2t3
1 t3 t2t3 0 t1t2t3
0 0 0 −t2t3 t2t3 t0t2t3
0 0 0 −t3 t3 t0t3 t0t1t3
0 0 0 −1 1 t0 t0t1 t0t1t2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

When discussing homogeneous spaces, we will assume n ≥ 3 to avoid set-
ting conventions for special cases.2 Consider the (2n − 2)-dimensional quadric
Q = Q2n−2 ⊆ P(V ∗) ∼= P

2n−1 of isotropic vectors for the given bilinear form. (In
coordinates,Q is defined by the vanishing of the quadratic form

∑n−1
i=0 Xı Xi , where

Xi = ε∗
i .) The torus T ∼= (C∗)n acts on V with weights−tn−1, . . . ,−t0, t0, . . . , tn−1,

inducing an action on Q.
The quadricQ is homogeneous for PSO2n , and the Satake correspondence iden-

tifies H∗
TQ with V�1(−�1)[t], where �1 = −tn−1 and V�1 = V is the standard

2When n = 1, the spaces are 0-dimensional; when n = 2, they coincide with type A spaces. For
n = 3, there are coincidencesQ4 = Gr(2, 4) and OG+(3, 6) = OG−(3, 6) = P

3. For n = 4, there
are also coincidences Q6 = OG+(4, 8) = OG−(4, 8). The reader may use these to verify our
claims, but beware that the torus actions are usually written differently.
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representation of so2n . To see this explicitly, define Schubert varieties in Q by

�ı = {ε∗
n−1

= · · · = ε∗
i+1

= 0},
�i = {ε∗

n−1
= · · · = ε∗

0
= ε∗

0 = · · · = ε∗
i−1 = 0}

for i > 0; and

�0 = {ε∗
n−1

= · · · = ε∗
1

= ε∗
0

= 0}
�0 = {ε∗

n−1
= · · · = ε∗

1
= ε∗

0 = 0}.

Identify the Schubert classes σi = [�i ] in HT
n−1−iQ = Hn−1+i

T Qwith basis elements
εi by

σı = (−1)i εı and σi = εi , (8)

for i ≥ 0. Using the twist by tn−1, we have

ξt · εı = −εı+1 − (−ti + tn−1)εı for i > 1,

ξt · ε1 = −ε0 − ε0 − (−t1 + tn−1)ε1,

ξt · ε0 = ε1 − (−t0 + tn−1)ε0, and

ξt · εi = εi+1 − (ti + tn−1)εi for i ≥ 0.

On the other hand, taking σ = σn−2 ∈ H 1
TQ to be the hyperplane class,

σ · σı = σı+1 + (ti − tn−1)σı for i > 1,

σ · σ1 = σ0 + σ0 + (t1 − tn−1)σ1,

σ · σ0 = σ1 + (t0 − tn−1)σ0, and

σ · σi = σi+1 + (−ti − tn−1)σi for i ≥ 0,

so (8) compatibly identifies the action of ξt with the product by σ .
Iterating the above computation of ξt · εi leads to a formula for the matrix entries

of ξ
2 j−1
t , for j = 1, . . . , n − 1:
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ξ
2 j−1
t =

n−1∑

k=0

n−1−k∑

i=0

(−1)2 j−1−kh2 j−1−k(ti , . . . , ti+k) εı ∧ εi+k

+
n−1∑

k=1

(−1)2 j−1−kh2 j−1−k(−t0, t1, . . . , tk) ε0 ∧ εk

+ 2
n−2∑

i=1

n−1∑

k=i+1

(−1)2 j−1−kh2 j−1−i−k(−ti ,−ti−1, . . . ,−t0, t0, . . . , tk) εi ∧ εk,

(9)
where in the last sum, the complete homogeneous symmetric functions are in i +
k + 2 variables, specialized as indicated to consecutive t’s.

The fixed points in the quadric Q are the 2n coordinate points:

QT = {pn−1, . . . , p0, p0, . . . , pn−1.}

That is, p j ∈ Q ⊆ P
2n−1 is the point with 1 in the j th coordinate and 0 elsewhere.

For each i , one computes the weights of T acting on the tangent space TpiQ to be
{t j − ti | j �= i, ı}, using the notation tj = −t j .

Using the defining equations, it is easy to write down the restrictions of Schubert
classes to fixed points. For i > 0, and any j , we have

σı |p j = (−tn−1 − t j ) · · · (−ti+1 − t j )

=
n−1∏

k=i+1

(−tk − t j ),

Thus σı |p j = 0 for j < ı , since the factor (−tj − t j ) is zero—and indeed, in this
case p j /∈ �ı .

For i = 0, we have

σ0|p0 =
n−1∏

k=1

(−tk + t0);

σ0|p j = (t0 − t j )
n−1∏

k=0
k �= j

(−tk − t j ) for j > 0;

and all other restrictions are zero. Finally, for i ≥ 0,

σi |p j =

⎛

⎜
⎜
⎝

n−1∏

k=0
k �= j

(−tk − t j )

⎞

⎟
⎟
⎠

i−1∏

k=0

(tk − t j ) for j ≥ i,
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and all other restrictions are zero.
Finally,we translate these calculations into a change of bases for the representation

V . Using εı = (−1)iσı and εi = σi for i ≥ 0, we have [Q] = σn−1 = (−1)n−1εn−1,
so by setting f i = (−1)n−11i , where 1i ∈ H∗

TQT is the idempotent class at pi , we
have

εn−1 = f n−1 + · · · + f 0 + f 0 + · · · + f n−1.

More generally, for i > 0 we have

εı =
n−1∑

j=ı

(
n−1∏

k=i+1

(tk + t j )

)

f j ;

for i = 0 we have

ε0 =
(
n−1∏

k=1

(tk − t0)

)

f 0 +
n−1∑

j=1

⎛

⎝(t j − t0)
∏

k>0,k �= j

(tk + t j )

⎞

⎠ f j ;

and for i ≥ 0 we have

εi =
n−1∑

j=i

⎛

⎜
⎜
⎝

i−1∏

k=0

(t2k − t2j )
n−1∏

k=i
k �= j

(tk + t j )

⎞

⎟
⎟
⎠ f j .

It will be convenient to rescale the basis { f i } so that {εi } is related by a unitrian-
gular change of basis. To this end, for each i let

fi = αi f i ,

where, for i ≥ 0, the scaling coefficients are αı = (−1)n−1−iσı |pı and αi = (−1)n−1

σi |pi . Now we may write, for i ≥ 0,

εı =
i∑

j=0

c ji fj +
n−1∑

j=0

c ji f j ,

and

εi =
i∑

j=0

b ji f j .

Explicitly, thematricesC = (c ji ),C = (c ji ), and B = (b ji ) are computed as follows.
For i > 0,
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c ji = 1
∏i

k= j+1(tk − t j )
for 0 ≤ j ≤ i;

c ji = 1
∏ j−1

k=0(t
2
k − t2j )

∏i−1
k= j+1(tk + t j )

for 0 ≤ j ≤ i;

and

c ji = 2t j
∏i

k=0(t
2
k − t2j )

∏ j−1
k=i+1(tk − t j )

for j > i.

For i = 0,

c00 = 1;
c00 = 0;

and

c j0 = 1

(−t0 − t j )
∏ j−1

k=1(tk − t j )
.

Finally, for i ≥ 0,

b ji = 1
∏ j−1

k=i (tk − t j )
.

Note the matrices C and B are indeed unitriangular.

6 Orthogonal Grassmannians

Nowwe turn to the maximal orthogonal Grassmannians OG±(n, 2n), also known as
spinor varieties.Wewill maintain the notation from the previous section, so V = C

2n

has a bilinear form and basis εi so that 〈εı , ε j 〉 = δi j . As noted above, the subspace
E ⊆ V spanned by ε0, ε1, . . . , εn−1 is isotropic with respect to the bilinear form,
as is the complementary subspace E = span{ε0, . . . , εn−1}. The orthogonal Grass-
mannian OG+(n, 2n) (respectively, OG−(n, 2n)) parametrizes all n-dimensional
isotropic subspaces L ⊆ V such that dim(E ∩ L) is even (resp., odd). We will focus
on the “+” case, and write OG(n) = OG+(n, 2n) from now on.

The torus T = (C∗)n acts on OG(n) via its action on V = C
2n; recall that this

is given by weights −tn−1, . . . ,−t0, t0, . . . , tn−1. The T -fixed points in OG(n) are
indexed by subsets I ⊆ {0, . . . , n − 1} such that the cardinality of I is even. For such
a subset, the fixed point pI corresponds to the subspace
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EI = span
({εi | i ∈ I } ∪ {εj | j /∈ I }) .

For example, p∅ = E .
Schubert varieties in OG(n) are also indexed by subsets I ⊆ {0, . . . , n − 1} of

even cardinality. As for the ordinary Grassmannian, the elements of I index pivots
for Schubert cells �◦

I , and �I is the closure. The isotropicity conditions mean that
exactly one of i or ı occurs as a pivot, for 0 ≤ i ≤ n − 1, and we record the positive
ones. For example, in OG(4) we have

�◦
{1,3} =

⎡

⎢
⎢
⎣

0 1 ∗ 0 ∗ 0 • 0
0 0 0 1 • 0 • 0
0 0 0 0 0 1 • 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎦ .

(From left to right, the columns are numbered 3, 2, 1, 0, 0, 1, 2, 3. Stars are free
entries, and bullets indicate entries that are dependent on the others, by the isotropicity
condition.) Similarly, �∅ = OG(n), and �{(0),1,...,n−1} = {p{(0),1,...,n−1}}, where 0 is
included or not, depending on the parity of n. Schubert varieties are T -invariant.

Frequently one interprets the subsets I as strict partitions λ, simply by reversing
order from increasing to decreasing. In this context, we will usually prefer the subset
notation to partition notation, although the latter is useful for indicating containment
relations: if I and J are subsets corresponding to partitions λ and μ, respectively,
then �I ⊆ �J if and only if λ ⊇ μ as Young diagrams. We will write I ≥ J in this
case. (If I = {i1 < · · · < ir } and J = { j1 < · · · < js}, then I ≥ J is equivalent to
r ≥ s and ia ≥ ja for 1 ≤ a ≤ s.) We write σI = [�I ] for the equivariant class of a
Schubert variety; it has degree |I | := ∑

ia .
Our main goal in this section is to compute formulas for the restrictions σI |pJ .

Since pI is the unique fixed point in the Schubert cell �◦
I , we have pI ∈ �J if and

only if I ≥ J . From matrix representatives, it is easy to see that the normal space to
�◦

I ⊂ OG(n) at the point pI has weights {−ti + t j | i > j; i ∈ I, j /∈ I } ∪ {−ti −
t j | i > j; i, j ∈ I }. It follows that

σI |pI =
∏

i∈I

⎛

⎜
⎜
⎝

∏

j /∈I
j<i

(−ti + t j )
∏

j∈I
j<i

(−ti − t j )

⎞

⎟
⎟
⎠ . (10)

The corresponding minuscule representation is the half-spin representation S
+ of

so2n . A brief description, suitable for our purposes, is in the appendix; to see this
worked out in detail, we recommend [12, Sect. 20], [10], or [37].

Recall our standard representation V of so2n splits into maximal isotropic sub-
spaces V = E ⊕ E , and we have fixed a basis εi so that εn−1, . . . , ε0 span E , and
e0, . . . , en−1 span E . As noted in the appendix, S = S

+ ⊕ S
− is an ideal of the Clif-

ford algebra Cl(V ), and S
+ has a basis of elements
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εI := εı ′1 · · · εı ′n−r
· ε, (11)

for I = {i1 < · · · < ir } ⊆ {0, . . . , n − 1} of even cardinality, with complement I ′ =
{i ′1 < · · · < i ′n−r }. Here ε = ε0 · · · εn−1.

The Cartan subalgebra is spanned by εı ∧ εi , and its eigenvalue on the weight
vector εI is computed to be

1

2

⎛

⎝
∑

j /∈I
t j −

∑

i∈I
ti

⎞

⎠ .

In particular, the highest weight vector ε∅ has weight �n = 1
2

∑
j t j . Twisting by

−�n , the action of t∨ on V�n (−�n)[t] has t · εI = (−∑
i∈I ti ) εI . Straightforward

computations also show

εı ∧ εi+1 · εI = εı · εi+1 · εI

=
{

εI+ if i ∈ I and i + 1 /∈ I ;
0 otherwise;

here I+ = (I � {i}) ∪ {i + 1}. Similarly, ε0 ∧ ε1 · εI = εI∪{0,1} if 0, 1 /∈ I , and is
zero otherwise.

This is enough to compute the action of ξt on S
+. For example,

ξt · ε∅ = ε{0,1};
ξt · ε{0,1} = (ε1 ∧ ε2) · ε{0,1} − t · ε{0,1}

= ε{0,2} + (t0 + t1) ε{0,1};
ξt · ε{0,2} = (ε0 ∧ ε1 + ε2 ∧ ε3) · ε{0,2} − t · ε{0,2}

= ε{1,2} + ε{0,3} + (t0 + t2) ε{0,2}.

The Schubert classes are identified by

σI = εI ,

so writing σ = σ{0,1} for the divisor class, the above calculation agrees with

σ · 1 = σ{0,1};
σ · σ{0,1} = σ{0,2} + (t0 + t1)σ{0,1};
σ · σ{0,2} = σ{1,2} + σ{0,3} + (t0 + t2)σ{0,2},

and once again the action of ξt corresponds to multiplication by σ .
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Now we are ready for the equivariant Giambelli formula for orthogonal Grass-
mannians. This says

σI = Pλ(x |t), (12)

where λ is the strict partition corresponding to I (i.e., write I in decreasing order),
and Pλ(x |t) is the factorial Schur P-function. These polynomials were studied by
Ivanov [25] and were shown to represent Schubert classes in H∗

T OG(n) by Ikeda
[23]; setting t = 0, they specialize to Schur’s P-functions (see [36, III.8]), which
were shown to represent Schubert classes by Pragacz [45].

Ivanov gives a formula for Pλ(x |t) as a ratio of Pfaffians, similar to the one
defining sλ(x |t), and inspired by Nimmo’s formula for Pλ(x) = Pλ(x |0) [42]. Let
A(x) = (ai j (x)) be the n × n skew-symmetric matrix with

ai j (x) = xi − x j

xi + x j
,

for 0 ≤ i, j ≤ n − 1. Given I = {i1 < · · · < ir }, let BI (x |t) = (bkl(x |t)) be the n ×
r matrix with

bkl(x |t) = (xk |t)il

Form the skew-symmetric matrix3

AI (x |t) =
[

A(x) BI (x |t)
−BI (x |t)t 0

]

.

Then the Ivanov–Nimmo formula is

Pλ(x |t) = Pf(AI (x |t))
Pf(A(x))

. (13)

By Schur’s identity, the denominator is

Pf(A(x)) =
∏

i< j

xi − x j

xi + x j
.

Writing PfK (A) for the Pfaffian of the submatrix on any subset of rows and columns
K ⊆ [n], note that

PfK (A(x)) =
∏

k<k ′ in K

xk − xk ′

xk + xk ′
.

3The indexing most natural to our setup is slightly nonstandard. The rows and columns of A(x)
are labelled n − 1, . . . , 0 (left to right, top to bottom); similarly, the rows of BI (x |t) are labelled
n − 1, . . . , 0 (top to bottom) and its columns are labelled i1, . . . , ik (left to right).
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Now we can state the theorem. The setting is analogous to that for ordinary
Grassmannians. For each even subset K ⊆ [n], there is afixedpoint pK ∈ OG(n) and
corresponding restriction homomorphism H∗

T OG(n) → C[t]. On the other hand,
there is a presentation of the cohomology in terms of symmetric functions, i.e.,
a surjective homomorphism C[t][x0, . . . , xn−1]Sn → H∗

T OG(n), and composition
with the fixed-point restriction to pK is the evaluation

C[t][x0, . . . , xn−1]Sn → C[t]

given by xi �→ −ti if i ∈ K , and xi �→ 0 if i /∈ K .

Theorem 12 Under the homomorphism C[t][x0, . . . , xn−1]Sn → H∗
T OG(n), we

have Pλ(x |t) �→ σI , where I is the subset corresponding to the strict partition λ.
Equivalently, for each K = {k1 < · · · < kr }, we have

σI |pK = Pλ(x |t)|x=−tK ,

where the specialization x = −tK means xi �→ −ti if i ∈ K, and xi �→ 0 if i /∈ K.

Proof We follow the same outline as in type A. The first step has been done in
the previous section, where we worked out the cohomology of quadrics and the
corresponding change of basis between εi and fi . The second step has been done
above: we identify the spinor εI ∈ S

+[t] = V�n (−�n)[t] with the Schubert class
σI ∈ H∗

T OG(n).
It remains to compute the idempotent basis, and the expansion of εI in this basis.

With fi as before, we define spinors f I by the same formula (11) defining εI :

f I = fı ′1 · · · fı ′n−r
· f, (14)

where f = f0 · · · fn−1. In fact, f = ε, since the change of basis is unitriangular.
Since ε∅ = σ∅ = 1 ∈ H∗

T OG(n), we compute this case first (to normalize the f I
basis). Using notation of the previous section,

εı = C · fı + C · fi .

Since C is unitriangular, if we multiply by its inverse and instead consider

ε̃ı = fı + C
−1
C · fi ,

we have
ε∅ = ε0 · · · εn−1 · ε = ε̃0 · · · ε̃n−1 · ε

in S
+. On the other hand, nowwe are in the situation of the Theorem of the Appendix,

which says

ε∅ =
∑

K

PfK (C
−1
C) fK .
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To compute these Pfaffians, it helps to introduce the n × n diagonal matrix S,
with diagonal entries

(t0 − tn−1) · · · (tn−2 − tn−1), (t0 − tn−2) · · · (tn−3 − tn−2), . . . , t0 − t1, 1.

Then SC
−1
CS = A = (a ji ), where a ji = t j−ti

t j+ti
. So for any K ⊆ [n],

PfK (A) = PfK (SC
−1
CS) = detK (S) · PfK (C

−1
C),

where detK (S) means the determinant of the submatrix on rows and columns K .
Combining the formulas

detK (S) =
∏

i<k
k∈K

(ti − tk) and PfK (A) =
∏

i< j
i, j∈K

t j − ti
t j + ti

,

we obtain

PfK (C
−1
C) = 1

∏

i<k
i,k∈K

(−ti − tk)
∏

i<k
i /∈K ,k∈K

(ti − tk)
.

Therefore, the idempotent classes f K are determined by writing

ε∅ =
∑

K

f K ,

that is, by setting

f K = PfK (C
−1
C) fK .

Equivalently,

fK =

⎛

⎜
⎜
⎝

∏

i<k
i,k∈K

(−ti − tk)
∏

i<k
i /∈K ,k∈K

(ti − tk)

⎞

⎟
⎟
⎠ f K .

Now we compute εI . Using notation from our computations at the end of Sect. 5,
the transition between εi and fi has the form

[
C B
C 0

]

.
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Since the Theorem of the Appendix computes εI as (−1)|I |εi1 · · · εir · ε∅, we may
replace εı by ε̃ı , which amounts to using the matrix

[
C

−1
C B

w◦ 0

]

,

where w◦ is the n × n matrix with 1’s on the antidiagonal and 0’s elsewhere. Now
formula (A.4) says

εI =
∑

K

PfK (AI ) fK , (15)

where

AI =
[
C

−1
C BI

−B
t
I 0

]

and BI is the submatrix of B on columns I .
(Note that unitriangularity of the matrix relating εi and fi implies that

εI = f I +
∑

K>I

PfK (AI ) fK

=

⎛

⎜
⎜
⎝

∏

j<i
i, j∈I

(−t j − ti )
∏

j<i
j /∈I,i∈I

(t j − ti )

⎞

⎟
⎟
⎠ f I + · · · ,

which agrees with the formula (10) for σI |pI .)
To conclude the proof, we must relate the coefficients PfK (AI ) to the evaluations

Pλ(x |t)|x=−tK . Observe first that

Pf(A(x))|x=−tK =
∏

k ′<k in K

−tk ′ + tk
−tk ′ − tk

= PfK (A)

= detK (S)PfK (C
−1
C).

Furthermore, scaling the first n rows and columns of AI by S, one computes

[
SC

−1
CS SBI

−B
t
I S 0

]

=
[

A(x) BI (x |t)
−BI (x |t)t 0

]∣
∣
∣
∣
x0=−t0,...,xn−1=−tn−1

,

and also that
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PfK

([
A(x) BI (x |t)

−BI (x |t)t 0

]∣
∣
∣
∣
x j=−t j , all j

)

=
(

Pf

[
A(x) BI (x |t)

−BI (x |t)t 0

])∣
∣
∣
∣
x=−tK

.

Taking Pfaffians on rows and columns K , it follows that

PfK (AI ) · detK (S) =
(

Pf

[
A(x) BI (x |t)

−BI (x |t)t 0

])∣
∣
∣
∣
x=−tK

.

So the Ivanov–Nimmo formula gives

Pλ(x |t)|x=−tK = PfK (AI )

PfK (C
−1
C)

,

which is precisely the coefficient of f K = PfK (C
−1
C) fK in the expansion of εI in

(15).

7 Rim Hook Rules for Quantum Cohomology

Consider a homogeneous space X = G/P such that H 2(X) ∼= C. (This includes all
minuscule G/P .) The (small) quantum cohomology ring of X is a C[q]-algebra
QH∗(X) = C[q] ⊗ H∗(X), where q is a formal parameter whose degree depends
on X , equipped with a product which deforms the usual cup product on H∗(X);
the structure constants in QH∗(X) are 3-point Gromov-Witten invariants, counting
certain rational curves in X . Using the action of a maximal torus T ⊆ G on X , there
are also equivariant versions QH∗

T (X). We will write T = (C∗)n , and

S = Sn = H∗
T (pt) ∼= C[t1, . . . , tn],

so QH∗
T (X) is an algebra over S[q]. (We continue to use C coefficients for coho-

mology, but all results of this section are equally valid with Z coefficients.)
For any N , consider the embedding of Grassmannians

ι : Gr(k, N ) ↪→ Gr(k, N + 1)

corresponding to the standard embedding of C
N in C

N+1 (as the span of the first
N standard basis vectors). Let us write TN = (C∗)N , and SN = H∗

TN
(pt). There

is a similar embedding of TN in TN+1 (corresponding to the map on charac-
ter groups Z

N+1 → Z
N sending tN+1 to 0 and all other ti to ti ). The embed-

ding ι is equivariant with respect to the inclusion of tori and their natural actions
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Fig. 1 A 7-rim hook of height 2

on the Grassmannians, so we have an inverse system of graded homomorphisms
ι∗ : H∗

TN+1
Gr(k, N + 1) → H∗

TN
Gr(k, N ). Let H∗

T∞Gr(k,∞) be the graded inverse
limit. This ring can be identified with the ring of symmetric polynomials in variables
x1, . . . , xk , with coefficients in S∞.

Writing �
(N )

λ for the Schubert variety in Gr(k, N ) and σ(N )

λ for its equivariant
cohomology class, one checks that ι−1�

(N+1)
λ = �

(N )

λ , and it follows that ι∗σ(N+1)
λ =

σ(N )

λ . Therefore we have well-defined classes σλ ∈ H∗
T∞Gr(k,∞).

Fixing n and T = Tn , for N > n, consider a (different) inclusion of tori T ↪→ TN

given by
(z1, z2, . . . , zn) �→ (z1, z2, . . . , zn, z1, z2, . . .);

equivalently, take the map on character groups Z
N → Z

n given by ti �→ ti (mod n),
where the representatives mod n are taken to be 1, . . . , n. This also defines a ring
homomorphism S∞ → Sn , inducing an algebra homomorphism H∗

T∞Gr(k,∞) →
H∗

T Gr(k,∞). We will see how to extend this to a homomorphism H∗
T Gr(k,∞) →

QH∗
T Gr(k, n).
The rim hook rule4 for the equivariant quantum cohomology of Gr(k, n) is a

recipe for computing quantum products in terms of ordinary products on Gr(k, N ),
for N > n. Given any partition λ, an n-rim hook (also called an n-border strip)
is a connected collection of n boxes on the southeast border of its diagram, with
exactly one box in each diagonal, such that the complement μ is also the diagram of
a partition. If the boxes appear in rows i through j of the diagram, the height of the
rim hook is j − i . See Fig. 1 for an example, and [36, Sect. I.1] for more details.

Any partition λ has a well-defined n-core μ, which is the partition obtained by
removing all possible n-rim hooks from λ, in any order. The parity of the sum of
the heights of these rim hooks is also independent of choices, so we can define
ε(λ/μ) = ∑

δ height(δ) (mod 2), taking the sum over a pieces of a decomposition
of the skew shape λ/μ into n-rim hooks δ.

Under the bijection between partitions λ with k parts and k-element subsets I of
{1, 2, . . .}, the operation of removing an n-rim hook corresponds to replacing some
element i ∈ I with i − n (and an n-rim hook exists only if there is an i > n such
that i − n is not in I ); the height of such a rim hook is the length of the permutation
needed to sort the resulting set into increasing order. Taking the n-core of λ can
be described as follows. Write the elements of I as sin + ri , for 1 ≤ i ≤ k and
1 ≤ ri ≤ n. Next consider the multiset of residues {ri }. For each r that appears in

4The non-equivariant rim hook rule was discovered by Bertram, Ciocan-Fontanine, and Fulton dur-
ing the 1996–7 program on quantum cohomology at Institut Mittag-Leffler [3]. Bertiger, Milićević,
and Taipale gave an equivariant generalization [2].
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this multiset, replace the j th occurrence of r by r + ( j − 1)n, obtaining a set I of k
distinct integers with the same multiset of residues modulo n. The n-core of λ is the
partition μ corresponding to I , and the sign (−1)ε(λ/μ) is the sign of the permutation
needed to sort I (see [36, Sect. I.1, Ex. 8]).

For example, consider λ = (7, 6, 3). For k = 3, this corresponds to the set I =
{4, 8, 10}. There are two ways to remove a 7-rim hook: replace 10 with 3 (obtaining
I ′ = {4, 8, 3}) or replace 8 with 1 (obtaining I ′ = {4, 1, 10}). In the first case, the
permutation which sorts I ′ has length 2, and in the second it has length 1. To find
the 7-core, write residues modulo 7 to obtain {4, 1, 3}; this is sorted to I = {1, 3, 4}
by a permutation of length 2, so μ = (1, 1) and ε(λ/μ) is even.

Given a class σλ ∈ H∗
T∞Gr(k,∞), for λ = (λ1 ≥ · · · ≥ λk ≥ 0), let μ be the n-

core of λ and define a linear map

ϕ : H∗
T∞Gr(k,∞) → QH∗

T Gr(k, n)

σλ �→
{

(−1)(k−1)s+ε(λ/μ) qs σμ if μ ⊆ ρk,n−k,

0 otherwise,

where s = (|λ| − |μ|)/n is the number of rim hooks removed fromλ to obtainμ. This
map factors into the specialization homomorphism H∗

T∞Gr(k,∞) → H∗
T Gr(k,∞)

described above, followed by a linearmapψ : H∗
T Gr(k,∞) → QH∗

T Gr(k, n)which
is given by the same formula as ϕ. The first is clearly an algebra homomorphism
(with respect to the ring map S∞ → S which cyclically specializes the t variables),
while the second is a priori a homomorphism of S-modules.

Theorem 13 (Equivariant rim hook rule [2, 3])Themapϕ respectsmultiplication: it
is a surjective homomorphism of algebras, compatible with the cyclic specialization
S∞ → S.

It suffices to show that the second factorψ is a surjective ring homomorphism.Wewill
give a simple proof, inspired by the Satake correspondence. (A similar construction
was described by Gatto [14]. The phrasing in terms of reduction modulo n also
appears in work by Buch [7, Corollary 1] and Sottile [47].) The basic idea is to show
that the kernel of ψ is an ideal, so that ψ induces a ring structure on its image; then
apply Mihalcea’s characterization of the quantum product [39] to conclude that the
product induced by ψ is the quantum product.

Before proving the theorem, we first consider the easier case of projective space,
so k = 1.Writing a class in H∗

TP
∞ asσsn+i , for 0 ≤ i ≤ n − 1, the rim hook rule says

ψ(σsn+i ) = qsσi . (In this case,ψ is an isomorphism of S-modules.) Both H∗
Tn

P
∞ and

QH∗
TP

n−1 are free S-algebras, generated by the divisor class σ = σ1, so to see that
ψ is an isomorphism of algebras it suffices to check that it respects multiplication by
σ . This is a simple application of a special case of the equivariant (quantum) Pieri
rule [39]: in H∗

TP
∞ one has

σ · σi = σi+1 + (t1 − t(i+1) (mod n))σi ,
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and in QH∗
Tn

P
n−1 one has

σ · σi =
{

σi+1 + (t1 − ti+1)σi for i < n − 1,

q σ0 + (t1 − tn)σn−1 for i = n − 1.

This computation can be rephrased to make it analogous to the one we did in the
introduction. There are homomorphisms with compatible identifications

H∗
T∞P

∞ H∗
TP

∞ QH∗
TP

n−1

(S∞)∞ (S)∞ (S[q])n,

ψ

ψ

(16)

where the first horizontal map is given by the cyclic specialization ti �→ ti (mod n) as
above. Identifying the standard basis εi with σi−1 as before, the rim hook rule says
ψ is given by εsn+i �→ qsεi , for 1 ≤ i ≤ n. (Recalling that εi is a weight vector with
weight ti , one sees that the cyclic specialization is necessary to make the second map
compatible with the Sn-module structure.)

Multiplicationbyσ onH∗
T∞P

∞ is givenby the infinitematrix ξt with−t1,−t2, . . .
on the diagonal, 1’s on the subdiagonal, and 0’s elsewhere. (One should twist (S∞)∞
by e−t1 as in Sect. 3 to get the correct action.) Specializing the diagonal variablesmod-
ulo n and applying the homomorphism ψ, the action of ξt on (S∞)∞ is transformed
into the action of the n × n matrix

ξq,t =

⎡

⎢
⎢
⎢
⎢
⎣

−t1 q

1
. . .

0
. . .

. . .

0 0 1 −tn

⎤

⎥
⎥
⎥
⎥
⎦

(17)

on (S[q])n , which agrees with multiplication by σ in QH∗
TP

n−1.

Lemma 14 The S-module homomorphism ψ : H∗
T Gr(k,∞) → QH∗

T Gr(k, n) is
surjective, and its kernel is an ideal.

Proof It is straightforward to see that ψ is surjective, and we leave this to the reader.
It is also easy to see that the kernel is generated (as an S-module) by two types of
elements:

(1) classes σλ such that the n-core of λ does not fit in ρk,n−k ; and
(2) differences (−1)ε(λ/μ)σλ − (−1)ε(λ

′/μ)σλ′ , for two partitions λ,λ′ of the same
size and with the same n-core μ.

We will show that the products of such elements with S-algebra generators for
H∗

T Gr(k, C
∞) are also in the kernel of ψ.

Making identifications
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H∗
T Gr(k,∞) QH∗

T Gr(k, n)

∧k
S S

∞ ∧k
S[q](S[q])n,

ψ

ψ

(18)

up to sign the homomorphism ψ is induced by the corresponding map described
above for projective space: if one sends εsn+i to ((−1)k−1q)s εi , thenψ is the induced
map on the kth exterior power. Furthermore, from this point of view, the operators
ξt , ξ

2
t , . . . , ξ

k
t —or rather, the cohomology classes they correspond to—form a set

of S-algebra generators for H∗
T Gr(k,∞). (To see this, recall that H∗

T Gr(k,∞) is
isomorphic to the ring of symmetric polynomials in k variables with coefficients in
S, and that the leading term of ξ

j
t corresponds to multiplication by the power sum

function p j ; these generate the ring of symmetric polynomials, for 1 ≤ j ≤ k.)
Now let us consider the generators of the kernel of ψ, using the correspondence

between partitions and k-element sets to write classes in H∗
T Gr(k,∞) as σλ = εI .

For I = {i1 < · · · < ik}, extract residues by writing ia = san + ra . The n-core of
λ fits inside ρk,n−k if and only if the residues ra are all distinct, and two partitions
λ,λ′ share the same n-core if and only if the corresponding sets I, I ′ share the same
multiset of residues.

Suppose εI is the first type of generator for the kernel, so I has at least two elements
i, i ′ with the same residue modulo n. Reordering as necessary, we can write

εI = ±(εi ∧ εi ′ ∧ · · · ).

Using the formula from Example 6,

ξ
j
t · (εi ∧ εi ′ ∧ · · · ) =

(
j∑

a=0

(−1)a ha(ti , . . . , ti+ j−a) εi+ j−a

)

∧ εi ′ ∧ · · ·

+ εi ∧
(

j∑

a=0

(−1)a ha(ti ′ , . . . , ti ′+ j−a) εi ′+ j−a

)

∧ · · ·

+ ( terms involving εi ∧ εi ′ ∧ · · · );

Due to the cyclic specialization, the subscripts on the t variables should be read mod-
ulo n, and since i ≡ i ′ (mod n), the coefficients ha(ti , . . . , ti+ j−a) and ha(ti ′ , . . . ,
ti ′+ j−a) are equal. After applying ψ, the first two terms cancel, and all the others go
to zero. It follows that ξ j

t · εI also lies in the kernel.
The second case is similar. Recall that the sign (−1)ε(λ/μ) is equal to the sign of

the permutation needed to sort the residues of I into increasing order. Suppose I and
I ′ have the same (distinct) residues modulo n, and are such that the corresponding
partitions λ and λ′ have the same size. Then

(−1)ε(λ/μ) εI − (−1)ε(λ
′/μ) εI ′ = (εs1n+r1 ∧ · · · ∧ εskn+rk ) − (εs′1n+r1 ∧ · · · ∧ εs′kn+rk ),
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for r1 < · · · < rk . A calculation analogous to the previous one shows that the product
of this difference with ξ

j
t remains in the kernel of ψ.

Proof of Theorem 13 As remarked above, it suffices to show that ψ is a ring
homomorphism. By the lemma, ker(ψ) is an ideal of H∗

T Gr(k,∞). Let A =
H∗

T Gr(k,∞)/ ker(ψ), andwrite q ∈ A for the image of (−1)k−1σn . Thismakes A an
S[q]-algebra, with an S[q]-module basis indexed by partitions fitting inside ρk,n−k .
The homomorphism ψ maps this basis onto the Schubert basis for QH∗

T Gr(k, n).
We must check that this is an isomorphism of algebras.

By Mihalcea’s characterization of QH∗
T Gr(k, n) [39, Corollary 7.1], it suf-

fices to check that the isomorphism respects multiplication by the divisor class σ1.
On one hand, multiplication by σ1 on A is given by the action of a matrix ξq,t

on
∧k

S[q](S[q])n ⊗ e−�k . (The matrix ξq,t is the one of (17), with q replaced by
(−1)k−1q.) That is,

ξq,t · εI = εi1+1 ∧ εi2 ∧ · · · ∧ εik + · · · + εi1 ∧ εi2 ∧ · · · ∧ εik+1

+ (t1 + · · · + tk − ti1 − · · · − tik ) εI

(+ qε1 ∧ εi1 ∧ · · · ∧ εik−1),

with the last term occurring only if ik = n and i1 > 1. Writing this in terms of par-
titions, one recovers exactly the equivariant quantum Pieri formula [39, Theorem 1]
for multiplication by σ1 in QH∗

T Gr(k, n), as desired.5

8 Closing Remarks and Other Directions

8.1 Relation to Quantum Integrability

In [20, 21], Gorbounov, Korff, and Stroppel indicate an alternative approach to
the (equivariant) rim-hook rule, based on quantum integrability of the six-vertex
model. This model can be seen as a degeneration of the Yangian Hopf algebra (a
certain quantum group) which governs the cohomology of the cotangent space of
the Grassmannian. This fits in a major program initiated by Maulik and Okounkov
to relate representation theory of quantum groups to enumerative geometry [38, 44,
46].

The authors of [20, 21] consider a vector space V = Cv0 ⊕ Cv1. The standard
basis

{
vω1 ⊗ vω1 ⊗ . . . ⊗ vωn

}
of V⊗n , where ωi ∈ {0, 1}, can be identified with set

of 01-words {ω = ω1ω2 . . . ωn}. The set of words
{
ω : ∑n

i=1 ωi = k
}
is in bijection

with the set of multi-indexes I = {i1 < · · · < ik} ⊆ [n]. The bijection is given by
sending I to the 01-word with 1’s in positions i1, . . . , ik and 0’s elsewhere. Through

5Our indexing of t variables is reversed when compared with that of [39], since we use opposite
Schubert classes.
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this identification, let Vk ⊆ V⊗n be the vector subspace generated by vectors indexed
by this set. In [21], two bases for Vk ⊗ C[t1, . . . , tn] are constructed, which are called
respectively standard or spin basis6 and the Bethe vector basis. Then a connection is
made with equivariant cohomology of the Grassmannian, by identifying those bases
with the Schubert basis and the torus fixed point basis, respectively. The authors
construct certain (generating series of) operators denoted A + qD ([21, Sect. 5])
acting on the spin basis which match the action of quantum multiplication by the
divisor class on the Schubert basis.

This is analogous to the setup from the previous section, where the principal
nilpotent ξt is corrected by the nilpotent matrix

q

⎡

⎢
⎢
⎢
⎢
⎣

0 1

0
. . .

0
. . .

. . .

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

in order to match the quantum equivariant Chevalley rule after a twist.
We should also mention another closely related result by Lam and Templier, [32,

Proposition 4.13] where essentially the same presentation of the quantum Chevalley
operator is given.

8.2 Mirror Symmetry and the Gamma Conjectures

Mirror symmetry for Fano varieties roughly claims a correspondencewhich associate
to each Fano variety X a smooth quasi-projective variety Y endowed with a flat
map w : Y −→ A

1 with quasi-projective fibres, called superpotential. Under this
correspondence critical points of w give rise to vanishing cycles which through
homological mirror symmetry correspond to objects of the derived category Db(X)

of coherent sheaves on X .
The Gamma conjectures were formulated by Galkin, Golyshev and Iritani in [13],

refining previous conjectures by Dubrovin [11]. They claim that simple eigenvalues
of a certain variation of the quantum Chevalley operator denoted �0 are related to
characteristic classes �̂XCh(E), where E is an exceptional object of Db(X), which
in turn are constructed through flat sections of Dubrovin’s quantum connection

∇z∂z = z
∂

∂z
− 1

z
(c1(X)�0) + μ, (19)

6This “spin basis” is not directly connected to spin representations and the orthogonalGrassmannian,
as far as we are aware.
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a meromorphic flat connection on the trivial bundle H∗(X) × P
1 → P

1. In (19) μ is
the grading operator on H∗(X) and z is a local coordinate on P

1.
The Gamma conjectures were proved for Grassmannians in [13], (see also [9]),

by making fundamental use of the quantum correction to the Satake correspondence.

8.3 Other Representations

We have focused on minuscule representations in types A and D, with their cor-
responding (minuscule) homogeneous spaces G/P: Grassmannians, quadrics, and
orthogonal Grassmannians. It is natural to ask what can be said for other spaces.

In other types (E6 and E7), there is only one minuscule space, up to isomorphism,
so the approach we used in Sects. 4 and 6 does not seem productive. Isomorphisms
between quantum cohomology of these spaces and corresponding representations
were worked out by Golyshev and Manivel [19]. On the other hand, it would be
interesting to see an analogue of the rim-hook rule for orthogonal Grassmannians,
presumably related to an infinite-dimensional spin representation.

In a different direction, one can ask for the transitionmatrices between the “ε” and
“ f ” bases of non-minuscule representations. This should correspond to localization
formulas for MV-cycles. We have seen Schur S- and P-functions appear naturally
in the exterior and spin representations; what other symmetric functions arise this
way?
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Appendix: Pfaffians and Spinors

In this appendix, we prove a change-of-basis formula in the spin representation,
where Pfaffians play the role analogous to determinants in the exterior algebra. This
refines similar formulas of Chevalley and Manivel [10, 37].

First, for any complex vector space V with symmetric bilinear form 〈 , 〉, the
associated Clifford algebra is the quotient of the tensor algebra by two-sided ideal
forcing the relation v · w + v · w = 〈v,w〉1 for all vectors v,w ∈ V :

Cl(V ) := T •(V )/(v ⊗ w + w ⊗ v − 〈v,w〉1).
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(Note that this definition differs slightly from the standard one, where 〈v,w〉1 would
be replaced by 2〈v,w〉1—but it is equivalent, up to rescaling the form 〈 , 〉, since we
are not in characteristic 2.) If the bilinear form is zero, this is just the exterior algebra:
Cl(V ) ∼= ∧• V . In general, dimCl(V ) = 2dim V , with a basis consisting of products
vI = vi1 · · · vik of distinct basis elements of V . (One can prove this by degenerating
to the exterior algebra.)

We note the following general formulas in Cl(V ), which are immediate from the
defining relations. First, if x and y are orthogonal vectors in V (i.e., 〈x, y〉 = 0), then

x · y = −y · x (A.1)

inCl(V ). Next, suppose x = x1 · · · xr ∈ Cl(V ) is a product of vectors in V such that
X = span{x1, . . . , xr } ⊆ V is isotropic. Then for any vector y ∈ X ,

y · x = 0 (A.2)

in Cl(V ).
From now on, we assume dim V = 2n and its bilinear form is nondegenerate. Let

yn−1, . . . , y0, y0, . . . , yn−1 be an “orthogonal basis”, meaning 〈yı , y j 〉 = δi j . (We
interpret the bar as a negative sign, so ı = i .) Let y = y0 · · · yn−1. The spin repre-
sentation is the left ideal

S = Cl(V ) · y.

A (pure) spinor is an element of the form z · y ∈ S, where z = z1 · · · zn is a product
of vectors z1, . . . , zn ∈ V which span a maximal isotropic subspace of V .

Let [m] = {0, . . . ,m − 1} for any integer m ≥ 1. For a subset I = {i1 < · · · <

ir } ⊆ [n], let I ′ = {i ′1 < · · · < i ′n−r } = [n] � I . Given such an I , the corresponding
standard spinor is

yI := yı ′1 · · · yı ′n−r
· y.

These form a basis for S, as I ranges over all subsets of [n]. Note that y∅ =
y0 · · · yn−1 · y, and

yi1 · · · yir · y∅ = (−1)i1+···+ir yI , (A.3)

which is sometimes useful.
The spin representation becomes an so2n-module via the embedding so2n ∼=∧2 V ↪→ Cl(V ) by

v ∧ w �→ 1

2
(v · w − w · v) = v · w − 1

2
〈v,w〉1.

So so2n preserves the parity of basis vectors of Cl(V ), and the spin representation
breaks into two irreducible half-spin representations
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S = S
+ ⊕ S

−.

Our convention will be that S
+ is spanned by standard spinors yI , with I an even

subset of [n], i.e., it has even cardinality.
Now let xn−1, . . . , x0, x0, . . . , xn−1 be another orthogonal basis, and assume it is

related to the yi ’s by a unitriangular matrix:

xı = yı +
∑

j<i

c ji yj +
n−1∑

j=0

c ji y j

and
xi = yi +

∑

j>i

b ji y j .

Thus x = x0 · · · xn−1 is equal to y = y0 · · · yn−1.
We define pure spinors xI analogously, by

xI := xı ′1 · · · xı ′n−r
· y.

Our goal is to compute the expansion of xI in the basis yK .
In fact, we will be free to multiply by the inverse of the matrix C = (c ji ) and

assume that xı is written

xı = yı +
n−1∑

j=0

a ji y j .

In this case, the fact that the xı span an isotropic space is equivalent to the fact
that the matrix A = (a ji ) is skew-symmetric. Up to appropriately indexing rows and
columns, the x basis is related to the y basis by a matrix of the form

(
A B
w◦ 0

)

,

where w◦ is the matrix with 1’s on the antidiagonal and zeroes elsewhere. The top n
rows determine a skew-symmetric matrix (by replacing w◦ with −Bt ). For a subset
I ⊆ [n], let B(I ) be the submatrix formed by taking columns I of B, and let A(I )
be the skew-symmetric matrix

A(I ) =
(

A B(I )
−B(I )t 0

)

.

Only the top n rows are needed to performoperationswith such amatrix. For instance,
if n = 3 and I = {1}, the top rows are
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⎛

⎝
0 a21 a20 b20 b21 1

0 a10 b10 1 0
0 1 0 0

⎞

⎠

and

A(I ) =

⎛

⎜
⎜
⎝

0 a21 a20 b21
−a21 0 a10 1
−a20 −a10 0 0
−b21 −1 0 0

⎞

⎟
⎟
⎠

For even r , the Pfaffian of any r × r skew-symmetric matrix Amay be computed
recursively using the Laplace-type expansion formula

Pf(A) =
r−1∑

j=1

(−1) j−1a jr Pf ĵ,r (A),

where Pf ĵ,r (A) is the Pfaffian of the submatrix of A obtained by removing the j th
and r th rows and columns. Let PfK (A) denote the Pfaffian of the submatrix on rows
and columns K , and we always use the convention Pf∅(A) = 1.

Theorem For a subset I ⊆ [n], we have

xI =
∑

K⊆[n]
K even

PfK (A(I )) yK , (A.4)

where the sum is over subsets K of even cardinality.

See also [43, Corollary 2.4] for a related Pfaffian identity.

Proof First we establish the formula for x∅. In fact, for any m ≤ n, we have

x0 · · · xm−1 · y =
∑

K⊆[m]
K even

PfK (A) yk ′
1
· · · yk ′

s
· y,

where K ′ = {k ′
1 < · · · < k ′

s} = [m] � K . This is proved by induction onm, the base
casem = 0 being the tautology y = y. For the induction step, we compute using the
Laplace expansion formula:

x0 · · · xm · y = (−1)mxm · x0 · · · xm−1 · y

= (−1)m

⎛

⎝ym +
m−1∑

j=0

a jm y j

⎞

⎠
∑

K⊆[m]
PfK (A)yk ′

1
· · · yk ′

r
· y

=
∑

K⊆[m]
PfK (A)yk ′

1
· · · yk ′

r
· ym · y
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+
m−1∑

j=0

∑

K⊆[m]
(−1)ma jm PfK (A)y j · yk ′

1
· · · yk ′

r
· y.

Note

y j · yk ′
1
· · · yk ′

r
· y =

{
0 if j ∈ K ;
(−1)a−1yk ′

1
· · · ŷk ′

a
· · · yk ′

r
· y if j = k ′

a ∈ K ′.

So the second sum above becomes

∑

K

∑

j /∈K
(−1)m+a−1a jm PfK (A)yk ′′

1
· · · yk ′′

r−1
· y,

where K ′′ = K ′
� j . Combining the two and using Laplace expansion yields the

claimed formula for x∅.
The general case is similar. Using (A.3), it is equivalent to show

xi1 · · · xir · x∅ = (−1)i1+···+ir
∑

K⊆[n]
K even

PfK (A(I )) yK ,

and we do this by induction on r . Let I = {i1 < · · · < ir } and consider i > ir . We
compute:

xi1 · · · xir · xi · x∅ = (−1)r xi · xi1 · · · xir · x∅

= (−1)r

⎛

⎝
∑

j

b ji y j

⎞

⎠ (−1)i1+···+ir
∑

K

PfK (A(I ))yK

= (−1)r+i1+···+ir
∑

j

∑

K �� j

b ji PfK (A(I ))y j · yK

= · · ·
= (−1)i+i1+···+ir

∑

K

PfK (A(I ∪ {i}))yK ,

as desired.
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Positive Level, Negative Level and Level
Zero

Finn McGlade, Arun Ram, and Yaping Yang

Abstract This is a survey on the combinatorics and geometry of integrable repre-
sentations of quantum affine algebras with a particular focus on level 0. Pictures and
examples are included to illustrate the affine Weyl group orbits, crystal graphs and
Macdonald polynomials that provide detailed understanding of the structure of the
extremal weight modules and their characters. The final section surveys the alcove
walk method of working with the positive level, negative level and level zero affine
flag varieties and describes the corresponding actions of the affine Hecke algebra.

Keywords Affine flag varieties · Integrable representations · Quantum affine
algebras

AMS Subject Classifications Primary 17B37 · Secondary 17B67

1 Introduction

This paper is about positive level, negative level and level 0. It was motivated by the
striking result of [23], which establishes a Pieri-Chevalley formula for the K-theory
of the semi-infinite (level 0) affine flag variety. This made us want to learn more
about the level 0 integrable modules of quantum affine algebras. Our trek brought us
face to face with a huge literature, including important contributions from Drinfeld,
Kashiwara, Beck, Chari, Nakajima, Lenart–Schilling–Shimozono, Cherednik–Orr,
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Naito–Sagaki, Feigin–Makedonskyi, Kato, their coauthors and many others. It is a
beautiful theory and we count ourselves lucky to have been drawn into it.

The main point is that the integrable modules for quantum affine algebras U
naturally partition themselves into families: positive level, negative level and level
zero. Their structure is shadowed by the orbits of the affineWeyl group on the lattice
of weights for the affine Lie algebra, which take the shape of a concave up paraboloid
at positive level, a concave down paraboloid at negative level and a tube at level 0.
These integrable modules have crystal bases which provide detailed control of their
characters. At level 0 the characters are (up to a factor similar to aWeyl denominator)
Macdonald polynomials specialised at t = 0. The next amazing feature is that there
are Borel–Weil–Bott theorems for each case: positive level, negative level and level
0, where, respectively, the appropriate geometry is a positive level (thin) affine flag
variety, a negative level (thick) affine flag variety, and a level zero (semi-infinite)
affine flag variety.

This paper is a survey of the general picture of positive level, negative level, and
level zero, in the context of the combinatorics of affine Weyl groups and crystals, of
the representation theory of integrable modules for quantum affine algebras, and of
the geometry of affine flag varieties. In recent years, the picture has become more
and more rich and taken clearer focus. We hope that this paper will help to bring this
story to a wider audience by providing pictures and some explicit small examples
for ̂sl2 and ̂sl3.

1.1 Orbits of the Affine Weyl Group W Action on h∗

For̂sl2 the vector space h∗ is three dimensional with basis {δ,ω1,�0}, and the orbits
of the action of the affine Weyl group W ad on h∗ on different levels look like

Λ0-axis

ω1-axis

hα∨
1

hα∨
0

ω1−ω1

•
Λ

•
s1Λ

•
s0Λ

•
s1s0Λ

•
s0s1Λ

•
s1s0s1Λ

•
s0s1s0Λ

•
s1s0s1s0Λ

•
s0s1s0s1Λ

•
−s1Λ

•
−Λ

•
−s1s0Λ

•
−s0Λ

•
−s1s0Λ

•
−s0s1Λ

•
−s1s0s1Λ

•
−s0s1s0s1Λ

•
−s1s0s1s0Λ

W ad(ω1 + 2Λ0) (positive level), W adω1 (level 0), and W ad(−ω1 − 2Λ0) (negative level) mod δ
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Although informative, the picture above is misleading as it is a two dimensional
projection (mod δ) of what is actually going on. The W ad-action fixes the level (the
coefficient of �0) but it actually changes the δ coordinate significantly. Let us look
at the orbits in δ and ω1 coordinates (i.e. mod �0).

ω1-axis

δ-axis

•Λ = ω1 + 2Λ0•s1Λ

•s0Λ•s1s0Λ

•s0s1Λ•s1s0s1Λ

•s0s1s0Λ•(s1s0)2Λ

The positive level orbit W ad(ω1 + 2Λ0) mod Λ0

When the level (coefficient of �0) is large the parabola is wide, and it gets tighter as
the level decreases.

ω1-axis
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•
Λ = ω1 + 2Λ0
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•
s1Λ, s1Λ′

•
s0Λ

•
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•
s0s1Λ

•
s1s0s1Λ

•
s0s1s0Λ

•
s1s0s1s0Λ

••
s0s1Λ′

•
s1s0s1Λ′

••
s0s1s0s1Λ′

•

s1s0s1s0s1Λ′

At level 0, the parabola pops and becomes two straight lines.



156 F. McGlade et al.

ω1-axis

δ-axis

• (s0s1)3Λ
• (s0s1)2Λ
•s0s1Λ
•
Λ = ω1 + 0Λ0
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•s1s0s1Λ
•s1Λ
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The level 0 orbit W adω1 mod Λ0

At negative level the parabola forms again, but this time facing the opposite way, and
getting wider as the level gets more and more negative.

ω1-axis

δ-axis

•
s1Λ

•
−ω1 − 2Λ0 = Λ

•
s1s0Λ

•
s0Λ

•
s1s0s1Λ

•
s0s1Λ

•
(s1s0)2Λ

•
s0s1s0Λ

The orbit W ad(−ω1 − 2Λ0) (negative level) mod Λ0

The three different Bruhat orders on the affine Weyl group are visible on the
W ad-orbits:

v w if v(ω1 + �0) is higher than (ω1 + �0) in W ad(ω1 + �0),

v w if vω1 is higher than w(ω1 + 0�0) in W ad(ω1 + 0�0).

v w if v(−ω1 − �0) is higher than w(−ω1 − �0) in W ad(−ω1 − �0).

The definitions of the Bruhat orders onW ad and their relation to the closure order for
Schubert cells in affine flag varieties is made precise in Sect. 2.3. Indicative relations
illustrating the from of the Hasse diagrams of the positive level, negative level, and
level zero Bruhat orders for the Weyl group of ̂sl3 are pictured in Plate A (there are
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additional relations which are not displayed in the pictures—in an effort to make the
periodicity pattern easily visible).

For the case of g = ̂sl3 the affine Weyl group orbits take a similar form, with the
points sitting on a downward paraboloid at positive level, on an upward paraboloid
at negative level and with the paraboloid popping and becoming a tube at level 0 (for
an example tube see the picture of B(ω1 + ω2) for ̂sl3 in Plate D).

δ = 0

δ = −3

δ = 3

δ = 0

Positive level orbit W ad(ω1 + ω2 + 2Λ0) for sl3 Negative level orbit W ad(−ω1 − ω2 − 2Λ0) for sl3

1.2 Extremal Weight Modules L(�) and Their Crystals B(�)

For the affine Lie algebra g = ̂sl2 the weights of integrable g-modules always lie in
the set

h∗
Z

= Cδ + Zω1 + Z�0.

A set of representatives for the orbits of the action of W ad on h∗
Z
is

(h∗)int = (h∗)+int ∪ (h∗)0int ∪ (h∗)−int, where
(h∗)0int = {aδ + nω1 ∈ h∗

Z
| 0 ≤ n},

(h∗)+int = {aδ + mω1 + n�0 ∈ h∗
Z

| 0 ≤ m ≤ n},
(h∗)−int = {aδ − mω1 − n�0 ∈ h∗

Z
| 0 ≤ m ≤ n}.

These sets are illustrated (mod δ) below.
For each of the � ∈ (h∗)int, there is a (universal) integrable extremal weight

module L(�), which is highest weight if � ∈ (h∗)+int, is lowest weight (and not
highest weight) if � ∈ (h∗)−int, and which is neither highest or lowest weight when
� ∈ (h∗)0int. The module L(�) has a crystal B(�).

At positive level and negative levels the crystals B(�) are connected, but the
crystal B(�) is usually not connected in level 0. The connected components and
their structure are known explicitly from a combination of results of Kashiwara,
Beck–Chari–Pressley, Nakajima, Beck–Nakajima, Fourier–Littelmann, Ion and oth-
ers. These results are collected in Theorem 5 and Eq. (28) expresses the characters
of the L(�) in terms of Macdonald polynomials specialised at t = 0.
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ω1-axis

Λ0-axis

pos. level
integrable modules L(Λ)

level zero
integrable modules L(λ)

neg. level
integrable modules L(−Λ)

ω1 2ω1 3ω1 4ω1 5ω1

ω1 + Λ0

−ω1 − Λ0

1.3 Affine Flag Varieties G/I+, G/I0 and G/I−

There are three kinds of affine flag varieties for the loop group G = G(C((ε))):
the positive level (thin) affine flag variety G/I+, the negative level (thick) affine
flag variety G/I− and the level 0 (semi-infinite) affine flag variety G/I 0. A combi-
nation of results of Kumar, Mathieu, Kashiwara, Kashiwara–Tanisaki, Kashiwara–
Shimozono, Varagnolo–Vasserot, Lusztig and Braverman–Finkelberg have made it
clear that there is a Borel–Weil–Bott theorem for each of these:

H 0(G/I+,L�) ∼= L(�), for positive level � ∈ (h∗)+int,

H 0(G/I 0,Lλ) ∼= L(λ), for level zero λ ∈ (h∗)0int,

H 0(G/I−,L−�) ∼= L(−�), for negative − � ∈ (h∗)−int.

These Borel–Weil–Bott theorems tightly connect the representation theory with the
geometry. In all essential aspects the combinatorics of the positive level affine flag
variety and the loop Grassmannian generalizes to the negative level and the level 0
affine flag varieties.

Section 6 extends the results of [38] and displays the alcove walk combinatorics
for each of the three cases (positive level, negative level and level 0) in parallel. In
addition it describes the method for deriving the natural affine Hecke algebra actions
on the function spaces C(G/I+), C(I+\G/I+), C(I+\G/I+) and C(I−\G/I+).
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1.4 References and Technicalities

Section 2.1 introduces the affine Lie algebra and the homogeneous Heisenberg sub-
algebra following [17] and Sect. 2.2 gives explicit matrices describing the actions
of the affine Weyl group W ad on the affine Cartan h and its dual h∗. Section 2.3
defines the Bruhat orders on the affine Weyl group and explains their relation to the
corresponding affine flag varieties following [24] and [27, Sects. 7 and 11]. Sections
2.4 and 2.5 introduce the affine braid groups and Macdonald polynomials following
[40]. Section 2.6 treats the specializations of (nonsymmetric) Macdonald polynomi-
als at t = 0, t = ∞, q = 0 and q = ∞ and reviews the result of Ion [15] that relates
Macdonald polynomials at t = 0 to Demazure operators.

Section 2 follows [1, 3, 4], introducing the quantum affine algebra U, the conver-
sion to its loop presentation, the PBW-type elements and the quantum homogeneous
Heisenberg subalgebra. Section 3.2 defines integrableU-modules and Sect. 3.3 intro-
duces the extremal weight modules L(�) following [19, (8.2.2)] and [20, Sect. 3.1].
Section 3.4 reviews the Demazure character formulas for extremal weight modules.
Section 3.5 discusses the loop presentation of the level 0 extremal weight modules
and the fact that these coincide with the universal standard modules of [34] and
the global Weyl modules of [9]. Letting U′ be U without the element D, Sect. 3.6
explains how to shrink the extremal weight module to a local Weyl module and how
this provides a classification of finite dimensional simple U′-modules by Drinfeld
polynomials.

We have made a concerted effort to make a useful survey. In order to simplify the
expositionwe have brushed under the rug a number of technicalities which are wisely
ignored when one learns the subject (particularly (a) the difference between simply
laced cases and the general case requires proper attention to the diagonal matrix
which symmetrizes the affine Cartan matrix [17, (2.1.1)] causing the constants di
which pepper the quantum group literature and (b) the machinations necessary for

allowing multiple parameters t
1
2
i in Macdonald polynomials). The reader who needs

to sort out these features is advised to drink a strong double espresso to optimise clear
thinking, consult the references (particularly [4, 40]) and not trust our exposition.
Perhaps in the future a more complete (probably book length) version of this paper
will be completed which allows us to attend more carefully to these nuances and
include more detailed proofs. Having made this point, we can say that a careful
effort has been made to provide specific references to the literature at every step and
we hope that this will be useful for the reader that wishes to go further.
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PLATEA:Bruhat orders on the affineWeyl group (partial, indicative, relations)
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PLATE B: Pictures of B(ω1 + �0), B(ω1 + 0�0) and B(−ω1 − �0) for ̂sl2
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PLATEC: Pictures for B(2ω1).Representative paths from the (first five) connected
components of B(2ω1) are

ω1-axis

δ-axis

∅

�

��



Positive Level, Negative Level and Level Zero 163

and the paths in B(2ω1)0 ⊆ B(ω1) ⊗ B(ω1) are
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PLATED: Pictures and characters of B(ω1 + ω2) for̂sl3.The colour red indicates
change in the δ-coordinate.
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At t = 0 and t = ∞ the normalized nonsymmetric Macdonald polynomials
Ẽs1s2s1ρ(q, t) are

Ẽs1s2s1ρ(q, 0) = Xs1s2s1ρ + Xs1s2ρ + Xs2s1ρ + Xs2ρ + Xs1ρ + Xρ + 2 + q,

Ẽs1s2s1ρ(q,∞) = Xs1s2s1ρ + q−1(Xs1s2ρ + Xs2s1ρ) + q−2(Xs1ρ + Xs2ρ + Xρ) + 2q−2 + q−1.

Letting q = e−δ (as in [17, (12.1.9)]), the Demazure module L(ω1 + ω2)≤s1s2s1 has
character

char(L(ω1 + ω2)≤s1s2s1) = 1

(1 − q−1)2
Ẽs1s2s1ρ(q

−1, 0) and

char(L(ω1 + ω2)) = 0q0q Ẽs1s2s1ρ(q
−1, 0) = 0q0q Ẽs1s2s1ρ(q

−1,∞),

where 0q = · · · + q−3 + q−2 + q−1 + 1 + q + q2 + · · · as in Remark 2.

Remark 1 The expansion

1

(1 − q−1)2
= (1 + q−1 + q−2 + · · · )(1 + q−1 + q−2 + · · · ) = 1 + 2q−1 + 3q−2 + 4q−3 + 5q−4 + · · ·

show that the sizes of the weight spaces of L(ω1 + ω2)≤s1s2s1 are growing as δ
increases. Similarly, in the character formula of L(ω1 + ω2), the factor 0q0q has
coefficient of qn equal to Card

({(k1, k2) ∈ Z
2 | k1 + k2 = n}) = ∞. This shows that

every weight space of the extremal weight module L(ω1 + ω2) is infinite dimensional.
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2 Affine Weyl Groups, Braid Groups and Macdonald
Polynomials

2.1 The Affine Lie Algebra g

Let g̊ be a finite dimensional complex semisimple Lie algebra and fix a Car-
tan subalgebra a ⊆ g̊ and a symmetric, ad-invariant, nondegenerate, bilinear form
〈, 〉 : g̊ × g̊ → C. The affine Kac–Moody algebra is

g =
(

⊕

k∈Z

g̊εk

)

⊕ CK ⊕ Cd, with bracket given by [K , xεk ] = 0, [K , d] = 0,

[d, xεk] = kxεk, and [xεk, yε�] = [x, y]εk+� + kδk,−�〈x, y〉K , (1)

for x, y ∈ g̊ and k, � ∈ Z (see [17, (7.2.2)]). Let θ be the highest root of g̊ (the highest
weight of the adjoint representation) and define

e0 = fθε, f0 = eθε
−1, and h0 = [e0, f0] = −hθ + K .

The miracle is that g is a Kac–Moody Lie algebra with Chevalley generators

e0, . . . , en, h0, . . . hn, d, f0, . . . fn, which satisfy Serre relations. (2)

Because of (2), g has a corresponding quantum enveloping algebra U = Uqg.
The Cartan subalgebra of g is

h = a ⊕ CK ⊕ Cd, where a ⊆ g̊ is the Cartan subalgebra of g̊.

Let R̊+ be the set of positive roots for g̊. For α ∈ R̊+, k ∈ Z, � ∈ Z�=0 and i ∈
{1, . . . , n}, let

xα+kδ = eαεk, x−α+kδ = fαεk, hi,� = hiε
�.

The homogeneous Heisenberg subalgebra (see [17, Sects. 8.4 and 14.8]) is

CK ⊕ a[ε, ε−1] with [hiεk, h jε
�] = kδk,−�

2

〈αi ,αi 〉αi (h j )K , (3)

and a[ε] is a commutative Lie algebra with basis {hiεk | i ∈ {1, . . . , n}, k ∈ Z≥0}.
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2.2 The Affine Weyl Group Wad and Its Action on h∗ and h

Let δ,ω1, . . . ,ωn,�0 be the basis in h∗ which is the dual basis to the basis
d, h1, . . . , hn, K of h. The affine Weyl group W ad is the subgroup of GL(h∗) gener-
ated by the linear transformations s0, s1, . . . , sn which, in the basis δ,ω1, . . . ,ωn,�0,
are

si =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 −αi (h1) 0 · · · 0
0 0 · · · 0 −αi (h2) 0 · · · 0
...

...
...

0 0 · · · 1 −αi (hi−1) 0 · · · 0
0 0 · · · 0 −1 0 · · · 0
0 0 · · · 0 −αi (hi+1) 1 · · · 0
...

...
...

0 0 · · · 0 −αi (hn) 0 · · · 0
0 0 · · · 0 0 0 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, for i ∈ {1, . . . , n} (4)

and, writing θ = a1α1 + · · · + anαn and hθ = [eθ, fθ] = a∨
1 h1 + · · · + a∨

n hn ,

s0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 a∨
1 a∨

2 · · · a∨
n −1

0 1 − a1a∨
1 −a1a∨

2 · · · −a1a∨
n a1

0 −a2a∨
1 1 − a2a∨

2 · · · −a2a∨
n a2

...
...

...

0 −ana∨
1 −ana∨

2 · · · 1 − ana∨
n an

0 0 0 · · · 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5)

Let a∗
R

= R-span{α1, . . . ,αn}. An alcove is a fundamental region for the action
of W ad on (Rδ + a∗

R
+ �0)/Rδ. As explained (for example) in [39, 40], there is a

bijection

W ad ←→ {alcoves}
1 �−→ {x + �0 ∈ a∗

R
+ �0 | x(hi ) > 0 for i ∈ {0, . . . , n}} (6)

Let aad
Z

= Z-span{h1, . . . , hn}. The finite Weyl group Wfin is generated by
s1, . . . , sn . The translation presentation of the affine Weyl group is

W ad = aad
Z

� Wfin = {tμ∨u | μ∨ ∈ aad
Z

, u ∈ Wfin} with
tμ∨ tν∨ = tμ∨+ν∨ and
utμ∨ = tuμ∨u,

(7)

for μ∨, ν∨ ∈ aad
Z
and u ∈ Wfin.

Let α∨
i be the image of hi under the isomorphism a

∼→ a∗ coming from the
nondegenerate bilinear form on a which is the restriction of the nondegerate bilinear
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form on g̊. In matrix form with respect to the basis δ,ω1, . . . ,ωn,�0 of h∗ the action
of W ad on h∗ is given by

tμ∨ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 k1 · · · kn − 1
2 〈μ∨,μ∨〉

... μ∨
1

0 1
...

... μ∨
n

0 · · · 0 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, for

μ∨ = k1h1 + · · · + knhn
= k1α∨

1 + · · · + knα∨
n

= k1
d1

α1 + · · · + kn
dn

αn

= μ∨
1 ω1 + · · · + μ∨

n ωn,

(8)

so that− 1
2 〈μ∨,μ∨〉 = − 1

2 (μ
∨
1 k1 + · · · μ∨

n kn). (In (8) d1, . . . , dn are the minimal pos-
itive integers such that the product of the diagonal matrix diag(d1, . . . , dn) with the
Cartan matrix is symmetric, see [17, (2.1.1)].)

The basis {d, h1, . . . , hn, K } of h is the dual basis to the basis {δ,ω1, . . . ,ωn,�0}
of h∗. Using the W ad-action on h given by

siμ
∨ = μ∨ − αi (μ

∨)hi , for i ∈ {0, . . . , n} and μ∨ ∈ h,

the matrices for the action of s0, s1, . . . , sn on h, in the basis {d, h1, . . . , hn, K }, are
the transposes of the matrices in (4) and (5).

2.3 The Positive Level, Negative Level and Level 0 Bruhat
Orders on Wad

In the framework of Sect. 6, where G = G̊(C((ε))) is the loop group, the closure
orders for the Schubert cells in the positive level (thin) affine flag variety G/I+, the
negative level (thick) affine flag variety G/I−, and the level 0 (semi-infinite) affine
flag variety G/I 0 give partial orders on the affine Weyl group W ad :

I+w I+ =
⊔

x w

I+x I+, I+w I 0 =
⊔

x w

I+x I 0, I+w I− =
⊔

x w

I+x I−.

These orders can be described combinatorially as follows.
An element w ∈ W ad is dominant if

w(ρ + �0) ∈ R≥0-span{ω1, . . . ,ωn} + �0, where ρ = ω1 + · · · + ωn.

In the identification (6) of elements of W ad with alcoves, the dominant elements of
W ad are the alcoves in the dominant Weyl chamber.

Let x, w ∈ W ad and let w = si1 · · · si� be a reduced word for w in the generators
s0, . . . , sn . The positive level Bruhat order on W ad is defined by
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x w if x has a reduced word which is a subword of w = si1 · · · si�
The negative level Bruhat order on W ad is defined by x w if x w.
The level 0 Bruhat order on W ad is determined by

(a) for dominant elements: If x, w are dominant then x w if and only if
x w,

(b) translation invariance: If μ∨ ∈ aad
Z
and x, w ∈ W then x w if and only if

xtμ∨ wtμ∨ .

Thepositive level length is�+ : W ad → Z≥0 givenby�+(w) = (length o f a reduced
word f or w).

The negative level length is �− : W ad → Z≤0 given by �−(w) = −�+(w).

The level 0 length is �0 : W ad → Z given by

�0(w) = �+(w) if w is dominant and �0(xtμ∨) − �0(ytμ∨) = �0(x) − �0(y),

for x, y ∈ W ad and μ∨ ∈ aad
Z
. Using the formula for �+ given in [30, (2.8)], gives a

formula for �0,

�0(utμ∨) = �+(u) + 2〈ρ,μ∨〉, for u ∈ Wfin,μ
∨ ∈ aad

Z
. (9)

The length functions �+, �− and �0 return, respectively, the dimension, the codimen-
sion and the relative dimension of Schubert cells in the positive level, negative level
and level 0 affine flag varieties.

2.4 The Affine Braid Groups Bsc and Bad

Let ω∨
1 , . . . ,ω∨

n be the basis of a which is dual to the basis α1, . . . ,αn of a∗. Let

aad
Z

= Z-span{h1, . . . , hn} ⊆ asc
Z

= Z-span{ω∨
1 , . . . ,ω∨

n }.

The affine braid group Bad (resp. Bsc) is generated by T1, . . . , Tn and Y λ∨
, λ∨ ∈ aad

Z

(resp. λ∨ ∈ asc
Z
), with relations

Y λ∨
Y σ∨ = Y λ∨+σ∨

, Ti Tj · · ·
︸ ︷︷ ︸

mi j factors

= Tj Ti · · ·
︸ ︷︷ ︸

mi j factors

,
T−1
i Y λ∨ = Y siλ∨

T−1
i , if 〈λ∨,αi 〉 = 0,

T−1
i Y λ∨

T−1
i = Y siλ∨

, if 〈λ∨,αi 〉 = 1,

for i ∈ {1, . . . , n} and λ∨ ∈ aad
Z

(resp. asc
Z
) and mi j = αi (h j )α j (hi ) for i, j ∈

{1, . . . , n} with i �= j .
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2.5 Macdonald Polynomials

Let

h∗
Z

= Z-span{δ,ω1, . . . ,ωn,�0} and a∗
Z

= Z-span{ω1, . . . ,ωn}.

The double affine Hecke algebra H̃ is presented by generators T0, . . . , Tn and Xμ,
μ ∈ h∗

Z
, with relations

XλXμ = Xλ+μ, TiTj · · ·
︸ ︷︷ ︸

mi j factors

= Tj Ti · · ·
︸ ︷︷ ︸

mi j factors

, T 2
i = (t

1
2 − t−

1
2 )Ti + 1, (10)

Ti X
μ = XsiμTi + (t

1
2 − t−

1
2 )

Xμ − Xsiμ

1 − Xαi
, T−1

i Xμ = XsiμT−1
i − (t

1
2 − t−

1
2 )

Xμ − Xsiμ

1 − X−αi
.

for i ∈ {0, . . . , n} and μ ∈ h∗
Z
. For w ∈ W ad put

Yw =
{

Ywsi T−1
i , if w wsi ,

Ywsi Ti , if w wsi ,
and let Y λ∨ = Y tλ∨ for λ∨ ∈ aad

Z
. (11)

Putting q = X δ = Y−K then, as an algebra over C[q±1, t± 1
2 ],

H̃ has basis {XμTuY
λ∨ | μ ∈ a∗

Z
+ Z�0, u ∈ Wfin,λ

∨ ∈ aad
Z

}, where Tu = Ti1 · · · Ti� ,

for a reduced word u = si1 · · · si� . The affine Hecke algebra is the subalgebra H of
H̃ with basis {TuY λ∨ | u ∈ Wfin,λ

∨ ∈ aad
Z

}. The polynomial representation of H̃ is

C [X ] = IndH̃
H (1) with basis {Xμ1 | μ ∈ a∗

Z
}, (12)

and Y K1 = q−11, Y−α∨
i 1 = t1, and Ti1 = t

1
2 1 for i ∈ {1, . . . , n}.

Let
T ∨
0 = Y α∨

0 X−�0T−1
0 X�0 and T ∨

i = Ti for i ∈ {1, . . . , n}. (13)

The automorphismof H̃ given by conjugation by X−�0 is the automorphism τ : H̃ →
H̃ of [10, (2.8)]. Extend H̃ to allow rational functions in the Y λ∨

. For each i ∈
{0, 1, . . . , n}, the intertwiner τ∨

i ∈ ˜H is

τ∨
i = T ∨

i + t− 1
2 (1 − t)

1 − Y−α∨
i

= (T ∨
i )−1 + t− 1

2 (1 − t)Y−α∨
i

1 − Y−α∨
i

so that Y λ∨
τ∨
i = τ∨

i Y
siλ∨

.

(14)
Let, for simplicity, μ ∈ Z-span{α1, . . . ,αn} (the general case μ ∈ a∗

Z
requires con-

sideration of the group�∨, the quotient of the weight lattice by the root lattice, and is
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treated in detail in [40]). The nonsymmetric Macdonald polynomial Eμ = Eμ(q, t)
is

Eμ = Eμ(q, t) = τ∨
i1 . . . τ∨

i� 1, where mμ = si1 . . . si� is a reduced word (15)

for the minimal length element in the coset tμWfin. The Eμ form a basis of C[X ]
consisting of eigenvectors for the Y λ∨

(the Cherednik–Dunkl operators).
Fix a reduced word mμ = si1 . . . si� as in (15). Identifying the elements of W ad

with alcoves as in (6), an alcove walk of type �mμ = (i1, . . . , i�) beginning at 1 (the
fundamental alcove) is a sequence of steps, of types i1, . . . , i�, where a step of type
j is (the signs – and + indicate that zs j z)

zsjz

− +

zsjz

− +

zsjz

− +

zsjz

− +
with zsj z.

positive j-crossing negative j-crossing positive j-fold negative j-fold

Let B(1, �mμ) be the set of alcove walks of type �mμ = (i1, . . . , i�) beginning at 1. For
a walk p ∈ B(1, �mμ) let

f +(p) = {k ∈ {1, . . . , �} | the kth step of p is a positive fold},
f −(p) = {k ∈ {1, . . . , �} | the kth step of p is a negative fold},
f (p) = f +(p) ∪ f −(p) = {k ∈ {1, . . . , �} | the kth step of p is a fold}.

For p ∈ B(1, �mμ) let end(p) be the endpoint of p (an element of W ad) and define
the weight wt(p) and the final direction ϕ(p) of p by

X end(p) = Xwt(p)T ∨
ϕ(p), with wt(p) ∈ a∗

Z
and ϕ(p) ∈ Wfin.

Using (14) and doing a left to right expansion of the terms of τ∨
i1

· · · τ∨
i�
1 produces

the monomial expansion of Eμ as sum over alcove walks as given in the following
theorem. For simplicity we state the following theorem for μ ∈ Z-span{α1, . . . ,αn}.
It holds, after a small technical adjustment to the statement, for all μ ∈ a∗

Z
, see [40]

for details.

Theorem 1 ([40, Theorem 3.1 and Remark 3.3]) Let μ ∈ Z-span{α1, . . . ,αn} and
let mμ be the minimal length element in the coset tμWfin. Fix a reduced word �mμ =
si1 · · · si� , let

β∨
1 = si� · · · si2α∨

i1 , β∨
2 = si� · · · si3α∨

i2 , . . . , β∨
� = α∨

i� ,

and let sh(β∨
k ) and ht(β∨

k ) be defined by Y β∨
k 1 = qsh(β∨

k )tht(β
∨
k )1 for k ∈ {1, . . . , �}.

Then
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Eμ(q, t) =
∑

p∈B(1, �mμ)

Xwt (p)t
1
2 (�(ϕ(p))

∏

k∈ f +(p)

t− 1
2 (1 − t)

1 − qsh(β
∨
k )tht(β

∨
k )

∏

k∈ f −(p)

t− 1
2 (1 − t)qsh(β

∨
k )tht(β

∨
k )

1 − qsh(β
∨
k )tht(β

∨
k )

.

2.6 Specializations of the Normalized Macdonald
Polynomials Ẽμ(q, t)

Ifmμ = tμm withm ∈ Wfin then Eμ(q, t) has top term t
1
2 �(m)Xμ (this term is the term

corresponding to the unique alcove walk in B( �mμ) with no folds). The normalized
nonsymmetric Macdonald polynomial is

Ẽμ(q, t) = t−
1
2 �(m)Eμ(q, t) so that Ẽμ(q, t) has top term Xμ.

Apath p ∈ B(1, �mμ) is positively folded if there are no negative folds, i.e. # f −(p) =
0.
A path p ∈ B(1, �mμ) is negatively folded if there are no positive folds, i.e. # f +(p) =
0.
A path p ∈ B(1, �mμ) is positive semi-infinite if �(ϕ(p)) − �(m) − # f (p) + 2
∑

k∈ f −(p)

ht (β∨
k ) = 0.Apath p ∈ B(1, �mμ) is negative semi-infinite if �(m) − �(ϕ(p))+

# f (p) + 2
∑

k∈ f +(p)

ht (β∨
k ) = 0.

Proposition 1 Let μ ∈ a∗
Z
. The specializations q = 0, t = 0, q−1 = 0 and t−1 = 0

are well defined and given, respectively, by

Ẽμ(0, t) =
∑

p∈B(1, �mμ)

p pos folded

t
1
2 (�(ϕ(p))−�(m)−# f (p))(1 − t)# f (p)Xwt(p),

Ẽμ(q, 0) =
∑

p∈B(1, �mμ)

p neg semi−inf

q
∑

k∈ f −(p) sh(β
∨
k )Xwt(p),

Ẽμ(∞, t) =
∑

p∈B(1, �mμ)

p neg folded

t−
1
2 (�(ϕ(p))−# f (p))(1 − t−1)# f (p)Xwt(p),

Ẽμ(q,∞) =
∑

p∈B(1, �mμ)

p pos semi−inf

q−∑k∈ f+(p) sh(β
∨
k )Xwt(p).

For i ∈ {0, 1, . . . , n} and f ∈ C[h∗
Z
] define

�i f = f − si f

1 − X−αi
and Di f = (1 + si )

1

1 − X−αi
f = f − X−αi si f

1 − X−αi
. (16)
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Equations (14), (13) and the last relation in (10) give that, as operators on the poly-
nomial representation,

t
1
2 τ∨

i = X−�0(Di − t�i )X
�0 + (1 − t)Y−α∨

i

1 − Y−α∨
i

for i ∈ {1, . . . , n}, and

t
1
2 τ∨

0 Y
α∨
0 = Y−α∨

0 t
1
2 τ∨

0 = X−�0(D0 − t�0)X
�0 + (1 − t)Y−α∨

0

1 − Y−α∨
0

.

When applied in the formula of (15), these formulas for (normalized) intertwiners
are specializable at t = 0, giving the following result (see the examples computed in
Sect. 4.2).

Theorem 2 ([15, Sect. 4.1]) Let μ ∈ a∗
Z
. There are unique ν ∈ a∗

Z
and j ∈ Z such

that
�0 + ν ∈ (h∗)+int and − jδ + μ + �0 ∈ W ad(�0 + ν).

Let w ∈ W ad be minimal length such that − j + μ + �0 = w(�0 + ν) and let w =
si1 · · · si� be a reduced word. Letting D0, . . . , Dn be the Demazure operators given
in (16),

Ẽμ(q, 0) = q− j X−�0Di1 · · · Di� X
νX�01.

3 Quantum Affine Algebras U and Integrable Modules

3.1 The Quantum Affine Algebra U

The quantum affine algebra U is the C(q)-algebra generated by

E0, . . . , En, F0, . . . , Fn, , K±1
0 , . . . , K±1

n , C± 1
2 , D±1

with Chevalley-Serre type relations corresponding to the affine Dynkin diagram.
Following [12, (11)], [28, Sect. 39], [1, end of Sect. 1], there is an action of the affine
braid group Bsc on U by automorphisms.

Let U+ be the subalgebra of U generated by E0, E1, . . . , En . As explained in [3,
Lemma 1.1 (iv)] and [4, (3.1)], there is a doubly infinite “longest element” for the
affine Weyl group with a favourite reduced expression w∞ = · · · si−1si0si1 · · · . This
reduced word is used, with the braid group action, to define root vectors in U+ by

Eβ0 = Ei0 , and Eβ−k = T−1
i0

T−1
i−1

· · · T−1
i−(k−1)

Ei−k and Eβk = Ti1Ti2 . . . Tik−1Eik ,

(17)
for k ∈ Z>0. For i ∈ {1, . . . , n} and r, s ∈ Z define the loop generators in U+

x+
i,r = Eαi+rδ = Y−rω∨

i Ei and x−
i,s = E−αi+sδ = Y sω∨

i Fi , (18)
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where Y rω∨
i and Y sω∨

i are elements of the braid group Bsc as defined in Sect. 2.4.
For r ∈ Z≥0 and s ∈ Z>0 these are special cases of the root vectors in (17). For
i ∈ {1, . . . , n} and r ∈ Z>0 define q(i)

r by

q(i)
r = x−

i,rx
+
i,0 − q−2x+

i,0x
−
i,r , let q(i)

+ (z) = 1 + (q − q−1)
∑

s∈Z>0

q(i)
s zs, (19)

and define p(i)
r and e(i)

r by

q(i)
+ (z) = exp

(
∑

r∈Z>0

(q − q−1)p(i)
r zr

)

and exp
(
∑

r∈Z>0

p(i)
r

[r ] z
r
)

= 1 +
∑

k∈Z>0

e(i)
k zk .

(20)
For a sequence of partitions �κ = (κ(1), . . . ,κ(n)) define

s�κ = sκ(1) · · · sκ(n) , where sκ(i) = det(e(i)
(κ(i))′r−r+s)1≤r,s≤mi , (21)

where (κ(i))′r is the length of the r th column of κ(i) andmi = �(κ(i)) (see [29, Chap. I
(3.5)]). For a sequence c = (· · · , c−3, c−2, c−1, �κ, c1, c2, c3, . . .) with ci ∈ Z≥0 and
all but a finite number of ci equal to 0. The corresponding PBW-type element of U+
is

Ec = (E (c0)
β0

E (c−1)

β−1
E (c−2)

β−2
· · · ) (sκ(1) · · · sκ(n) ) (· · · E (c3)

β3
E (c2)

β2
E (c1)

β1
). (22)

The Cartan involution is the C-linear anti-automorphism � : U → U given by

�(Ei ) = Fi , �(Fi ) = Ei , �(Ki ) = K−1
i , �(D) = D−1, �(q) = q−1,

and U− = �(U+). Putting p(i)
−r = �(p(i)

r ), then (see [12, Th. 2 (6)] and [1, Th. 4.7
(2)])

[p(i)
k ,p(i)

l ] = δk,−l
1

k

(qkαi (h j ) − q−kαi (h j )

q − q−1

)Ck − C−k

q − q−1
. (23)

Define q(i)
−s = �(q(i)

s ) and

q(i)
− (z−1) = 1 + (q − q−1)

∑

s∈Z>0

q(i)
−s z

−s (24)

The Heisenberg subalgebra H is the subalgebra of U generated by {p(i)
k | i ∈

{1, . . . , n}, k ∈ Z�=0}. InH ∩ U+ the p(i)
r (r ∈ Z>0) are the power sums, the q(i)

r (r ∈
Z>0) are the Hall-Littlewoods and the e(i)

r (r ∈ Z>0) are the elementary symmetric
functions and the s�κ are the Schur functions.
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3.2 Integrable U-Modules

As in (5), let hθ = a∨
1 h1 + · · · + a∨

n hn be the highest root of g̊ and let

�i = ωi + a∨
i �0, for i ∈ {1, . . . , n},

so that {δ,�1, . . . , �n,�0} is the dual basis in h∗ to the basis {d, h1, . . . , hn, h0} of
h. Let

h∗
Z

= {� ∈ h∗ | 〈�,α∨
i 〉 ∈ Z for i ∈ {0, 1, . . . , n}} = Cδ + Z-span{�0, . . . , �n}.

A set of representatives for the W ad-orbits on h∗
Z
is

(h∗)int = (h∗)+int ∪ (h∗)0int ∪ (h∗)−int, where

(h∗)+int = Cδ + Z≥0-span{�0, . . . , �n},

(h∗)0int = Cδ + 0�0 + Z≥0-span{ω1, . . . ,ωn},

(h∗)−int = Cδ + Z≤0-span{�0, . . . , �n}.
(25)

For ̂sl2 these sets are pictured (mod δ) in (0.2).
For i ∈ {0, 1, . . . , n} let U(i) be the subalgebra of U generated by {Ei , Fi , K

±1
i }.

An integrable U-module is a U-module M such that if i ∈ {0, . . . , n} then

ResUU(i)
(M) is a direct sum of finite dimensional U(i)-modules,

where ResUU(i)
(M) denotes the restriction of the U-module M to a U(i)-module.

LetM be an integrableU-module. Following [28, Sect. 5], for eachw ∈ W ad there
is a linear map

Tw : M → M such that Tw(um) = Tw(u)Tw(m),

for u ∈ U andm ∈ M (here Tw(u) refers to the braid group action onU). Thus, every
integrable module M is a module for the semidirect product Bad

� U where Bad is
the braid group of W ad.

3.3 Extremal Weight Modules L(�)

Let� ∈ (h∗)int. Following [19, (8.2.2)] and [20, Sect. 3.1], the extremal weight mod-
ule L(�) is the U-module
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generated by {uw� | w ∈ W } with relations Ki (uw�) = q〈w�,α∨
i 〉uw�,

Eiuw� = 0, and F
〈w�,α∨

i 〉
i uw� = usiw�, if 〈w�,α∨

i 〉 ∈ Z≥0, (26)

Fiuw� = 0, and E
−〈w�,α∨

i 〉
i uw� = usiw�, if 〈w�,α∨

i 〉 ∈ Z≤0,

for i ∈ {0, · · · , n}. The module L(�) has a crystal B(�) ([19, Prop. 8.2.2(ii)], [20,
Sect. 3.1]).

• If � ∈ (h∗)+int then L(�) is the simple U-module of highest weight � (see [17,
(10.4.6)]).

• If � /∈ (h∗)+int then L(�) is not a highest weight module.
• If � ∈ (h∗)−int then L(�) is the simple U-module of lowest weight �.

The finite dimensional simple modules, denoted Lfin(a(u))), are integrable weight
modules which are not extremal weight modules. The connection between the
Lfin(a(u)) and the L(λ) for λ ∈ (h∗)0int is given by Theorem 4 below.

The module L(�) is universal (see [21, Sect. 2.6], [2, Sect. 2.1], [36, Sect. 2.5]).
One way to formulate this universality is to let U0 be the subalgebra generated
by K±1

1 , . . . , K±1
n ,C± 1

2 , D±1, let intInd be an induction functor in the category of
integrable U-modules and write

L(�) = intIndUU0�Bad(S(�)), where S(�) = span{uw� | w ∈ W ad}

is theU0 � Bad-modulewith action given by Tiuw� = (−q)〈w�i ,α
∨
i 〉usiw� and Kiuw�

= q〈w�,α∨
i 〉uw�, for i ∈ {0, 1, . . . , n} and w ∈ W ad.

3.4 Demazure Submodules L(�)≤w

Let w ∈ W ad. The Demazure module L(�)≤w is the U+-submodule of L(�) given
by

L(�)≤w = U+uw� and char(L(�)≤w) =
∑

p∈B(�)≤w

ewt(p),

since L(�)≤w has a crystal B(�)≤w. The BGG-Demazure operator on C[h∗
Z
] =

C-span{Xλ | λ ∈ h∗
Z
} is given by

Di = (1 + si )
1

1 − X−αi
, for i ∈ {0, 1, . . . , n}.

Let � ∈ (h∗)int, w ∈ W and i ∈ {0, 1, . . . , n}.

If � ∈ (h∗)+int then Dichar(L(�)≤w)) =
{

char(L(�)≤siw), if siw w,

char(L(�)≤w), if siw w;
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if λ ∈ (h∗)0int then Dichar(L(λ)≤w) =
{

char(L(λ)≤siw), if siw w,

char(L(λ)≤w), if siw w;

if � ∈ (h∗)−int then Dichar(L(�)≤w) =
{

char(L(�)≤siw), if siw w,

char(L(�)≤w), if siw w;

(see [24, Theorem 8.2.9], [18], [21, Sect. 2.8] and [22, Theorems 4.7 and 4.11]).

3.5 An Alternate Presentation for Level 0 Extremal Weight
Modules

For λ = m1ω1 + · · · + mnωn ∈ (h∗)int and let x1,1, . . . , xm1,1, x1,2, . . . , xm2,2, . . .

x1,n, . . . , xmn ,n be n sets of formal variables. Letting e( j)
i = ei (x1, j , . . . , xm j , j ) denote

the elementary symmetric function in the variables x1, j , . . . , xm j , j define

RGλ = C[x±1
1,1, . . . , x

±1
m1,1]Sm1 ⊗ · · · ⊗ C[x±1

1,n, . . . , x
±1
mn ,n]Smn

= C[e(1)
1 , . . . , e(1)

m1−1, (e
(1)
m1

)±1] ⊗ · · · ⊗ C[e(n)
1 , . . . , e(n)

mn−1, (e
(n)
mn

)±1],
RG+

λ = C[x1,1, . . . , xm1,1]Sm1 ⊗ · · · ⊗ C[x1,n, . . . , xmn ,n]Smn , and

RG−
λ = C[x−1

1,1, . . . , x
−1
m1,1]Sm1 ⊗ · · · ⊗ C[x−1

1,n, . . . , x
−1
mn ,n]Smn .

Let

e(i)
+ (u) = (1 − x1,i u)(1 − x2,i u) · · · (1 − xmi ,i u) and

e(i)
− (u−1) = (1 − x−1

1,i u
−1)(1 − x−1

2,i u
−1) · · · (1 − x−1

mi ,i
u−1).

Let U′ be the subalgebra of U without the generator D.

Theorem 3 (see [36, Sect. 3.4]) The extremal weight module L(λ) is the (U′ ⊗Z

RGλ)-module generated by a single vector mλ with relations

x+
i,rmλ = 0, Kimλ = qmimλ, Cmλ = mλ,

q(i)
+ (u)mλ = Ki

e(i)
+ (q−1u)

e(i)
+ (qu)

mλ and q(i)
− (u−1)mλ = Ki

e(i)
− (qu−1)

e(i)
− (q−1u−1)

mλ,

where q(i)
+ (u) and q(i)

− (u−1) are as defined in (19) and (24).

In this form L(λ) has been termed the universal standard module [36, Sect. 3.4])
or the global Weyl module [9, Sect. 2]. See [36, Theorem 2] and [36, Remark 2.15]
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for discussion of how to see that the extremal weight module, the universal standard
module and the global Weyl module coincide.

Remark 2 Let

0q = 1

1 − q
+ q−1

1 − q−1
= · · · + q−3 + q−2 + q−1 + 1 + q + q2 + · · · ,

(although q−1

1−q−1 = 1
q−1 = −1

1−q , it is important to note that 0q is not equal to 0, it is a

doubly infinite formal series in q and q−1). Since deg(e(i)
j ) = j ,

gchar(RG+
λ ) =

(

n
∏

i=1

mi
∏

k=1

1

1 − qk

)

gchar(RG−
λ ) =

(

n
∏

i=1

mi
∏

k=1

1

1 − q−k

)

and

gchar(RGλ) =
(

0qm1

m1−1
∏

k=1

1

1 − qk

)(

0qm2

m2−1
∏

k=1

1

1 − qk

)

· · ·
(

0qmn

mn−1
∏

k=1

1

1 − qk

)

.

3.6 Level 0 L(λ) and Finite Dimensional Simple U-Modules
Lfin(a(u))

The loop presentation provides a triangular decomposition of U (different form the
usual triangular decomposition coming from the Kac–Moody presentation). The
extremal weight module L(λ) is the standard (Verma type) module for the loop
triangular decomposition (see [8, Theorem 2.3(b)], [36, Lemma 2.14] and [7, outline
of proof of Theorem 12.2.6]).

ADrinfeld polynomial is an n-tuple of polynomials a(u) = (a(1)(u), . . . , a(n)(u))

with a(i)(u) ∈ C[u], represented as

a(u) = a(1)(u)ω1 + · · · + a(n)(u)ωn, with a(i)(u) = (u − a1,i ) · · · (u − ami ,i )

so that the coefficient of u j in a(i)(u) is e(i)
mi− j (a1,i , . . . , ami ,i ), the (mi − j)th ele-

mentary symmetric function evaluated at the values a1,i , . . . , ami ,i . The local Weyl
module (a finite dimensional standard module) is defined by

Mfin(a(u)) = L(λ) ⊗RGλ ma(u), where e(i)
k (x1,i , x2,i , . . .)ma(u) = e(i)

k (a1,i , . . . , ami ,i )ma(u)

specifies the RGλ-action on ma(u). In other words, the module Mfin(a(u)) is L(λ)

except that variables x j,i from Sect. 3.5 have been specialised to the values a j,i . As
in Theorem 3, let U′ be the subalgebra of U without the generator D.

Theorem 4 (see [12, Theorem 2] and [8, Theorem 3.3]) The standard module
Mfin(a(u)) has a unique simple quotient Lfin(a(u)) and
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{Drinfeld polynomials} −→ {finite dimensional simple U′-modules}
a(u) = a(1)(u)ω1 + · · · + a(n)(u)ωn �−→ Lfin(a(u))

is a bijection.

3.7 Path Models for the Crystals B(�)

The work of Littelmann [25, 26] provided a particularly convenient model for the
crystals B(�) when � is positive or negative level. This model realizes the crystal
as a set of paths p : R[0,1] → h∗ with combinatorially defined Kashiwara operators
ẽ0, . . . , ẽn, f̃0, . . . , f̃n . In the LS (Lakshmibai-Seshadri) model the generator of the
crystal B(�) is the straight line path to �.

When λ ∈ (h∗)0int using

pλ : R[0,1] → h∗
t → tλ ,

the straight line path from 0 to λ,

as a generator for B(λ) may not be the optimal choice. Remarkably, Naito and
Sagaki (see [16, Definition 3.1.4 and Theorem 3.2.1] and [32, Theorem 4.6.1(b)]),
have shown that B(λ) can be constructed with sequences of Weyl group elements
and rational numbers as in [25, Sect. 1.2, 1.3 and 2.2] but with the positive level
length �+ and Bruhat order replaced by the level zero length �0 and Bruhat
order . However, when working with the Naito–Sagaki construction one must be
very careful not to identify the Naito–Sagaki sequences with actual paths (piecewise
linear maps from R[0,1] to h∗) because the natural map from Naito–Sagaki sequences
to paths is not always injective (an example is provided by [20, Remark 5.10]).

If � ∈ (h∗)+int then −� ∈ (h∗)−int and

B(�) = { f̃i1 · · · f̃ik p� | k ∈ Z≥0 and i1, . . . , ik ∈ {0, 1, . . . , n}}

B(−�) = {ẽi1 · · · ẽik p−� | k ∈ Z≥0 and i1, . . . , ik ∈ {0, 1, . . . , n}}.

are each a single connected component and their characters are determined by the
Weyl-Kac character formula [17, Theorem 11.13.3].

3.8 Crystals for Level 0 Extremal Weight Modules L(λ)

For general λ ∈ (h∗)0int the crystal B(λ) is not connected (as a graph with edges deter-
mined by the Kashiwara operators ẽ0, . . . , ẽn, f̃0, . . . f̃n). Let λ = m1ω1 + · · · +
mnωn , with m1, . . . ,mn ∈ Z≥0. By [4, Corollary 4.15], the map
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�λ : L(λ) −→ L(ω1)
⊗m1 ⊗ · · · ⊗ L(ωn)

⊗mn

uλ �−→ u⊗m1
ω1

⊗ · · · ⊗ u⊗mn
ωn

is injective (27)

and gives rise to an injection of crystals

B(λ) ↪→ B(ω1)
⊗m1 ⊗ · · · ⊗ B(ωn)

⊗mn

which takes the connected component of B(λ) containing bλ to the connected compo-
nent of B(ω1)

⊗m1 ⊗ · · · ⊗ B(ωn)
⊗mn containing b⊗m1

ω1
⊗ · · · ⊗ b⊗mn

ωn
. Kashiwara [20,

Theorem 5.15] fully described the structure of L(ωi ) (see [4, Theorem 2.16]). Beck-
Nakajima analyzed the PBW basis of (22) and use (27) to show that the connected
components of B(λ) are labeled by n-tuples of partitions κ = (κ(1), . . . ,κ(n)) such
that �(κ(i)) < mi . Together with a result of Fourier–Littelmann which shows that
the crystal of the level 0 module Mfin(a(u)) is isomorphic to a level one Demazure
crystal B(ν + �0)≤w, the full result is as detailed in Theorem 5 below.

A labeling set for a basis of RGλ/〈e(i)
mi

= 1〉 is

Sλ = {�κ = (κ(1), . . . ,κ(n)) | κ(i) is a partition with �(κ(i)) < mi for i ∈ {1, . . . , n}}.

The connected component of bλ in B(λ) is

B(λ)0 =
{

r̃i1 · · · r̃ik bλ | k ∈ Z≥0 and r̃i1 , . . . , r̃ik ∈ {ẽ0, . . . , ẽn, f̃0, . . . , f̃n}
}

.

Define Bfin(λ) to be the “crystal” which has a crystal graph which is the “quotient”
of the crystal graph of L(λ) obtained by identifying the vertices b and b′ if there is an
element s ∈ RGλ such that sG(b) = G(b′), where G(b) denotes the canonical basis
element of L(λ) corresponding to b.

Bfin(λ) is the crystal of the finite dimensional standard module Mfin(a(u)).

Theorem 5 (see [4, Theorem 4.16], [36, Sect. 3.4]) and [14, Proposition 3]) Let λ =
m1ω1 + · · · + mnωn ∈ (h∗)0int. As in Theorem 2, let ν ∈ a∗

Z
, j ∈ Z≥0 and w ∈ W ad

such that w(ν + �0) = − jδ + λ + �0 and w is minimal length. Then

B(λ) � B(λ)0 × Sλ and B(λ)0 � Z
k × Bfin(λ) and Bfin(λ) � B(ν + �0)≤w,

where k is the number of elements of m1, . . . ,mn which are nonzero.

Additional useful references for Theorem 5 are [36, Theorem 1] and [2, Theorem
1]. The first two statements in Theorem 5 are reflections of the very important fact
that L(λ) is free as an RGλ-module. This fact that L(λ) is free as an RGλ-module
was deduced geometrically, via the quiver variety, in [34, Theorem 7.3.5] (note that
property (TGw×C×) there includes the freeness, see the definition of property (TG)

after [34, (7.1.1)]). This freeness was understood more algebraically in the work
of Fourier–Littelmann [14] and Chari–Ion [6, Cor. 2.10]. Further understanding of
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the RGλ-action in terms of the geometry of the semi-infinite flag variety is in [5,
Sect. 5.1].

The last statement of Theorem 5 is proved by considering the map

B(λ) −→ B(�0) ⊗ B(λ)

∪| ∪|
Bfin(λ)

∼−→ B(ν + �0)≤w

given by b �→ b�0 ⊗ b.

where b�0 is the highest weight of the crystal B(�0). Combining the isomorphism
Bfin(λ) � B(ν + �0)≤w with Theorem 2 and the positive level formula in Sect. 3.4
gives

char(M(a(u))) = char(L(ν + �0)≤w) = q− j X−�0 Ẽλ(q, 0) and

char(L(λ)≤w0 ) = gchar(RG+
λ )Ẽw0λ(q, 0), char(L(λ)) = gchar(RGλ)Ẽw0λ(q, 0).

(28)

4 Examples for g = ̂sl2

Let g = ̂sl2 with h∗ = Cω1 ⊕ C�0 ⊕ Cδ with affine Cartan matrix

(

α0(h0) α0(h1)
α1(h0) α1(h1)

)

=
(

2 −2
−2 2

)

and
θ = α1 = 2ω1, θ∨ = α∨

1 = h1,
�1 = ω1 + �0, α0 = −α1 + δ,

Using that 〈α1,α1〉 = 2, if k ∈ Z and μ∨ = kα∨
1 = kα1 = k2ω1 = 2kω1 so that

μ∨
1 = 2k and − 1

2 〈μ∨,μ∨〉 = − 1
2 (k2k) = −k2. Thus, following (8), (4) and (5), in

the basis {δ,ω1,�0} of h∗,

tkα∨ =
⎛

⎝

1 −k −k2

0 1 2k
0 0 1

⎞

⎠ , s1 =
⎛

⎝

1 0 0
0 −1 0
0 0 1

⎞

⎠ , s0 =
⎛

⎝

1 1 −1
0 −1 2
0 0 1

⎞

⎠ .

These matrices are used to compute the W -orbits pictured in Sect. 1.1.

4.1 Macdonald Polynomials

The Demazure operators are given by

D1 f = f − X−2ω1 (s1 f )

1 − X−2ω1
and D0 f = f − X−α0 (s0 f )

1 − X−α0
= f − q−1X2ω1 (s0 f )

1 − q−1X2ω1
.
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The normalized Macdonald polynomials Ẽω1(q, t) and Ẽ−ω1(q, t) are

Ẽω1(q, t) and Ẽ−ω1(q, t) are

Ẽω1(q, t) = Xω1 and Ẽ−ω1(q, t) = X−ω1

= X−ω1

+
(1 − t)
1 − qt

Xω1

+
(1 − t−1)q−1

1 − q−1t−1 Xω1

giving Ẽω1(0, t) = Ẽω1(∞, t) = Ẽω1(q, 0) = Ẽω1(q,∞) = Xω1 and

Ẽ−ω1(0, t) = X−ω1 + (1 − t)Xω1 , Ẽ−ω1(∞, t) = X−ω1

Ẽ−ω1(q, 0) = X−ω1 + Xω1 , Ẽ−ω1(q,∞) = X−ω1 + q−1Xω1 .

The normalized Macdonald polynomials Ẽ2ω1(q, t) and Ẽ−2ω1(q, t) are

Ẽ2ω1(q, t) = X2ω1

= X2ω1

+
(1 − t)q
1 − qt

+
1 − t−1

1 q−1t−1

and

Ẽ−2ω1(q, t) = X−2ω1

= X−2ω1

+
1 − t

1 − qt

+
(1 − t−1)q−1

1 − q−1t−1

+
1 − t

1 − q2t
X2ω1

+
(1 − t−1)q−2

1 − q−2t−1 X2ω1

+
(1 − t)

(1 − q2t)
(1 − t)q
(1 − qt)

+
(1 − t−1)q−2

(1 − q−2t−1)
(1 − t−1)

(1 − q−1t−1)

giving
Ẽ2ω1(0, t) = X2ω1 , Ẽ2ω1(∞, t) = X2ω1 + (1 − t−1)

Ẽ2ω1(q, 0) = X2ω1 + q, Ẽ2ω1(q,∞) = X2ω1 + 1

and

Ẽ−2ω1 (0, t) = X−2ω1 + (1 − t)X2ω1 + (1 − t), Ẽ−2ω1 (∞, t) = X−2ω1 ,

Ẽ−2ω1 (q, 0) = X−2ω1 + X2ω1 + 1 + q, Ẽ−2ω1 (q, ∞) = X−2ω1 + q−2X2ω1 + q−1 + q−2.
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4.2 The Crystal B(�0) and B(ω1 + �0)

ω1-axis

δ-axis

•
Λ0

s0Λ0s1s0Λ0

s0s1s0Λ0s1s0s1s0Λ0

••

••

f̃0f̃1f̃1

f̃0
f̃0

f̃0

f̃0

f̃1f̃1

f̃1f̃1f̃1f̃1

f̃0f̃0

f̃0

f̃0

f̃1f̃1
f̃1f̃1

Initial portion of the crystal graph of B(Λ0) for

The characters of the first few Demazure modules in L(�0) are

char(L(�0)≤1) = X�0 = X�0 Ẽ0(q
−1, 0),

char(L(�0)≤s0 ) = D0X
�0 = X�0 (1 + qX2ω1 ) = qX�0 (X2ω1 + q−1) = qX�0 Ẽ2ω1 (q

−1, 0),

char(L(�0)≤s1s0 ) = D1D0X
�0 = X�0 (1 + qX2ω1 + q + qX−2ω1 )

= qX�0 (X−2ω1 + X2ω1 + 1 + q−1) = qX�0 Ẽ−2ω1 (q
−1, 0).

The crystal graph of B(ω1 + �0) is pictured in Plate B and

char(L(ω1 + �0)≤1) = X�0Xω1 = X�0 Ẽω1(q
−1, 0),

char(L(ω1 + �0)≤s1) = D1X
ω1+�0 = X�0(Xω1 + X−ω1) = X�0 Ẽ−ω1(q

−1, 0),

char(L(ω1 + �0)≤s0s1) = D0D1X
ω1+�0 = X�0(Xω1 + X−ω1 + qXω1 + q2X3ω1)

= q2X�0 Ẽ3ω1(q
−1, 0),

4.3 The Crystal B(ω1)

The crystal B(ω1) = {p−ω1+kδ, pω1+kδ | k ∈ Z} is a single connected component. The
crystal graph of B(ω1) is pictured in Plate B. Following [17, (12.1.9)] and putting q =
X−δ noting that Ẽ−ω1(q

−1, 0) = Xω1 + X−ω1 and Ẽ−ω1(q
−1,∞) = X−ω1 + qXω1 ,

then
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char(L(ω1)≤s1) = 1

1 − q−1
Ẽ−ω1(q

−1, 0) and

char(L(ω1)) = 0q Ẽ−ω1(q
−1, 0) = 0q Ẽ−ω1(q

−1,∞),

where 0q = · · · + q−3 + q−2 + q−1 + 1 + q + q2 + · · · as in Remark 2.

4.4 The Crystal B(2ω1)

On crystals, the injective U-module homomorphism L(2ω1) ↪→ L(ω1) ⊗ L(ω1)

given in (27) is the inclusion

B(ω1) ⊗ B(ω1) = {pw1ω1 ⊗ pw2ω1 | w1, w2 ∈ W ad}
∪|

B(2ω1) = {pw1ω1 ⊗ pw2ω1 | w1, w2 ∈ W ad with w1 w2}

The connected components of B(2ω1) are determined by

B(2ω1) = B(2ω1)0 × S2ω1 , where S2ω1 = {partitions κ with �(κ) < 2} = Z≥0.

For κ ∈ Z≥0, the connected component corresponding to κ, as a subset of B(ω1) ⊗
B(ω1), is

B(2ω1)κ = {pw1ω1 ⊗ pw2ω1 | w1 w2 and �0(w1) − �0(w2) ∈ {κ,κ + 1} }

Representatives of the components and the crystal graph of the connected component
B(2ω1)0 are pictured in Plate C. Inspection of the crystal graphs gives

char(L(2ω1)≤s1) = 1

1 − q−2

1

1 − q−1
Ẽ−2ω1(q

−1, 0), and

char(L(2ω1)) = 0q
1

1 − q
Ẽ−2ω1(q

−1, 0) = 0q
1

1 − q
Ẽ−2ω1(q

−1,∞).

5 Examples for g = ̂sl3

Let g = ̂sl3. The affine Dynkin diagram is and the affine Cartan matrix is

⎛

⎝

α0(h0) α0(h1) α0(h2)
α1(h0) α1(h1) α1(h2)
α2(h0) α2(h1) α2(h2)

⎞

⎠ =
⎛

⎝

2 −1 −1
−1 2 −1
−1 −1 2

⎞

⎠
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and h0 = −(h1 + h2) + K , α0 = −(α1 + α2) + δ, �1 = ω1 + �0, �2 = ω2

+ �0.

In the basis {δ,ω1,ω2,�0} of h∗ the action of the affine Weyl group W ad is given
by

s1 =

⎛

⎜

⎜

⎝

1 0 0 0
0 −1 0 0
0 1 1 0
0 0 0 1

⎞

⎟

⎟

⎠

s2 =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 1 0
0 0 −1 0
0 0 0 1

⎞

⎟

⎟

⎠

s0 =

⎛

⎜

⎜

⎝

1 1 1 −1
0 0 −1 1
0 −1 0 1
0 0 0 1

⎞

⎟

⎟

⎠

, and

tk1h1+k2h2 =

⎛

⎜

⎜

⎝

1 −k1 −k2 −k21 − k22 + k1k2
0 1 0 2k1 − k2
0 0 1 2k2 − k1
0 0 0 1

⎞

⎟

⎟

⎠

for k1, k2 ∈ Z.

These matrices are used to compute the orbits pictured at the end of Sect. 1.1.

5.1 The Extremal Weight Modules L(ω1) and L(ω2)

Letting C
3 = C-span{v1, v2, v3} be the standard representation of g̊ = sl3, the

extremal weight modules L(ω1) and L(ω2) for g = ̂sl3 are

L(ω1) = C
3 ⊗C C[ε, ε−1] and L(ω2) = (�2

C
3) ⊗C C[ε, ε−1],

with uω1 = v1 and uω2 = v1 ∧ v2, respectively. The crystals B(ω1) and B(ω2) have
realizations as sets of straight line paths:

B(ω1) = {pω1+kδ, ps1ω1+kδ, p−ω2+kδ | k ∈ Z}, B(ω2) = {pω2+kδ, ps2ω2+kδ, p−ω1+kδ | k ∈ Z}.
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ω 1
+

δ

−ω 2
+

δ

s 1
ω 1

+
δ

f̃ 1

f̃ 2

ω 1

−ω 2

s 1
ω 1

f̃ 1

f̃ 2

ω 1
− δ

−ω 2
− δ

s 1
ω 1

− δ

f̃ 1

f̃ 2

f̃0

f̃0

−ω 1
+

δ

s 2
ω 2

+
δ

ω 2
+

δ

f̃ 2

f̃ 1

−ω 1

s 2
ω 2

ω 2

f̃ 2

f̃ 1

−ω 1
− δ

s 2
ω 2

− δ

ω 2
− δ

f̃ 2

f̃ 1

f̃0

f̃0

B(ω1) crystal graph B(ω2) crystal graph

Each of the crystals B(ω1) and B(ω2) has a single connected component, all weight
spaces are one dimensional and

char(L(ω1)≤s2s1) = 1

1 − q−1
(Xω1 + Xs1ω1 + X−ω2) = 1

1 − q−1
Ẽ−ω2(q

−1, 0), and

char(L(ω1)) = 0q(X
ω1 + X−ω2 + Xs1ω1) = 0q Ẽ−ω2(q

−1, 0)

= 0q(q
−1Xω1 + q−1Xω2−ω1 + X−ω2) = 0q Ẽ−ω2(q

−1,∞).

where 0q = · · · + q−3 + q−2 + q−1 + 1 + q + q2 + · · · as in Remark 2.
For a ∈ C, the crystals of Mfin((u − a)ω1) ∼= C

3 and Mfin((u − a)ω2) ∼= �2(C3)

have crystal graphs Bfin(ω1) and Bfin(ω2).

ω1

s1ω1

−ω2

f̃1

f̃2

f̃0

ω2

s2ω2

−ω1

f̃2

f̃1

f̃0

Bfin(ω1) Bfin(ω2)
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5.2 The Extremal Weight Module L(ω1 + ω2)

To construct the crystal B(ω1 + ω2) use

B(ω1) ⊗ B(ω2) = {pvω1+kδ ⊗ pwω2+�δ | v ∈ {1, s1, s2s1}, w ∈ {1, s2, s1s2}, k ∈ Z, � ∈ Z}

with the tensor product action for crystals given by (see, for example, [39, Prop.
5.7])

f̃i (p1 ⊗ p2) =
{

f̃i p1 ⊗ p2, if d+
i (p1) > d−

i (p2),

p1 ⊗ f̃i p2, if d+
i (p1) ≤ d−

i (p2),
ẽi (p1 ⊗ p2) =

{

ẽi p1 ⊗ p2, if d+
i (p1) ≥ d−

i (p2),

p1 ⊗ ẽi p2, if d+
i (p1) < d−

i (p2).

where d±
i (p) are determined by

f̃
d+
i (p)

i p �= 0 and f̃
d+
i (p)+1

i p = 0, and ẽ
d−
i (p)

i p �= 0 and ẽ
d−
i (p)+1

i p = 0.

The crystal B(ω1 + ω2) is realized as a subset of B(ω1) ⊗ B(ω2) via the crystal
embedding

B(ω1 + ω2) ↪→ B(ω1) ⊗ B(ω2)

bω1+ω2 �−→ pω1 ⊗ pω2

By Theorem 5, B(ω1 + ω2) is connected and is generated by bω1+ω2 . The crystal
B(ω1 + ω2) is pictured and its character is computed in Plate D.

6 Alcove Walks for Affine Flag Varieties

6.1 The Affine Kac–Moody Group G

The most visible form of the loop group is G = G̊(C((ε))), where C((ε)) is the field
of formal power series in a variable ε and G̊ is a reductive algebraic group. The
favourite example is when

when G̊ = GLn and the loop group is G = GLn(C((ε))),

the group of n × n invertible matrices with entries in C((ε)). A slightly more
extended, and extremely powerful, point of view is to let G be the Kac–Moody
group whose Lie algebra is the affine Lie algebra g of Sect. 2.1, so that G is a central
extension of a semidirect product (where the semidirect product comes from the
action of C

× on G̊(C((ε)) by “loop rotations”)

{1} → C
× → G → G̊(C((ε))) � C

× → {1} so that G = exp(g). (29)
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In this section we wish to work with G via generators and relations. Fortunately,
presentations ofG arewell established in thework of Steinberg [41] and Tits [42] and
others (see [38, Sect. 3] for a survey). More specifically, up to an extra (commutative)
torus T ∼= (C×)k for some k, the group G is generated by subgroups isomorphic to
SL2(C), the images of homomorphisms

ϕi : SL2(C) −→ G(
1 c
0 1

)
→−� xαi(c)(

1 0
c 1

)
→−� x−αi(c)(

d 0
0 d−1

)
→−� hα∨

i
(d)(

c 1
−1 0

)
→−� yi(c)

for each vertex
i

of the affine Dynkin diagram.

(30)
For each α ∈ R̊+ there is a homomorphism ϕα : SL2(C((ε))) → G and we let

xα( f ) = ϕα

(

1 f
0 1

)

and x−α( f ) = ϕα

(

1 0
f 1

)

for f ∈ C((ε)). (31)

For each z ∈ W ad fix a reduced word z = s j1 · · · s jr , define

nz = y j1(0) · · · y jr (0) and define x±α+rδ(c) = x±α(cεr ) for α ∈ R̊+ and r ∈ Z.

(32)
In the following sections, for simplicity, we will work only with the loop group

G = G̊(C((ε))) rather than the full affine Kac–Moody group as in (29). We shall
also use a slightly more general setting where C is replaced by an arbitrary field k

so that, in Proposition 4, we may let k = Fq be the finite field with q elements.

6.2 The Affine Flag Varieties G/I+, G/I0 and G/I−

Let k be a field. Define subgroups of G̊(k) by

“unipotent upper triangular matrices” U+(k) = 〈xα(c) | α ∈ R̊+, c ∈ k〉,
“diagonal matrices” H(k×) = 〈hα∨

i
(c) | i ∈ {1, . . . , n}, c ∈ k

×〉,
“unipotent lower triangular matrices” U−(k) = 〈x−α(c) | α ∈ R̊+, c ∈ k}〉.

Let
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F = k((ε)), which has o = k[[ε]] and o× = {p ∈ k[[ε]] | p(0) �= 0},
or let F = k[ε, ε−1], which has o = k[ε] and o× = k

×.

Define subgroups of G = G̊(F) by

U−(F) = 〈x−α+kδ(c) | c ∈ k,α ∈ R̊+, k ∈ Z〉 and H(o×) = 〈hα∨
i
(c) | c ∈ o×〉.

Let g(0) denote g evaluated at ε = 0 and let g(∞) denote g evaluated at ε−1 =
0. Following, for example, [37, Lect. 11 Theorem (B)] and [27, Sect. 11], define
subgroups of G(F) by

(positive Iwahori) I+ = {g ∈ G | g(0) exists and g(0) ∈ U+(k)H(k×)},
(level 0 Iwahori) I 0 = U−(F)H(o×),

(negative Iwahori) I− = {g ∈ G | g(∞) exists and g(∞) ∈ U−(k)H(k×)},

Then

G/I+ is the positive level (thin) affine flag variety,

G/I 0 is the level 0 (semi-infinite) affine flag variety,

G/I− is the negative level (thick) affine flag variety.

These are studied with the aid of the decompositions (relax notation and write z I+
for nz I+)

G =
⊔

x∈W ad

I+x I+, G =
⊔

y∈W ad

I 0y I+, G =
⊔

z∈W ad

I−z I+,

6.3 Labeling Points of I+w I+, I+w I+ ∩ I0v I+ and
I+w I+ ∩ I−z I+

Recall the bijection between elements ofW ad and alcoves given in (6) and note that if
v ∈ W ad and i ∈ {0, . . . , n} then the hyperplane separating the alcoves corresponding
to v and siv is

hvα∨
i = {x + �0 | x ∈ a∗

R
and 〈x + �0, vα∨

i 〉 = 0}.

A blue labeled step of type i is
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c

vα∨
i

v vsi with vsi v. Let Φ+

⎛
⎜⎝

c

vα∨
i

v vsi

⎞
⎟⎠ = yi(c),

where yi (c) is as in (30). A blue labeled walk of type �w = (i1, . . . , i�) is a sequence
(p1, . . . , p�)where pk is a blue labeled step of type ik and which begins at the alcove
1.
A red labeled step of type i is

c

vα∨
i

v vsi

c ∈ k

or
0

−vα∨
i

v vsi
or

v vsi

c−1

−vα∨
i

c ∈ k
×

where vsi v.

With notations as in (32), let

Φ0

⎛
⎜⎝ v vsi

c

vα∨
i

⎞
⎟⎠ = xvαi(c), Φ0

⎛
⎜⎜⎝ v vsi

0

−vα∨
i

⎞
⎟⎟⎠ = x−vαi(0), Φ0

⎛
⎜⎜⎝ v vsi

c−1

vα∨
i

⎞
⎟⎟⎠ = x−vαi(c

−1).

A red labeled walk of type �w = (i1, . . . , i�) is a sequence (p1, . . . , p�) where pk is
a red labeled step of type ik and which begins at the alcove 1.
A green labeled step of type i is

c

vα∨
i

v vsi

c ∈ k

or
0

vα∨
i

v vsi

or
c−1

vα∨
i

v vsi

c ∈ k
×

where vsi v.

Let

Φ−

⎛
⎜⎝

c

vα∨
i

vvsi

⎞
⎟⎠ = xvαi(c), Φ−

⎛
⎜⎝

0

−vα∨
i

v vsi

⎞
⎟⎠ = x−vαi(0), Φ−

⎛
⎜⎜⎝

c−1

−vα∨
i

v vsi

⎞
⎟⎟⎠ = x−vαi(c

−1).

A green labeled walk of type �w = (i1, . . . , i�) is a sequence (p1, . . . , p�) where pk
is a green labeled step of type ik and which begins at the alcove 1.
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Theorem 6 Let v,w ∈ W ad and fix a reduced expression w = si1 . . . si� for w. The
maps �+

�w , �
0
�w,v

, �−
�w,v

are bijections.

�+
�w :

{

blue labeled paths of type
�w = (i1, . . . , i�)

}

∼−→ (I+w I+)/I+

(p1, . . . , p�) �−→ �+(p1) . . . �+(p�)I+

�0
�w,v

:
{

red labeled paths of type
�w = (i1, . . . , i�) ending in v

}

∼−→ (I 0v I+ ∩ I+w I+)/I+

(p1, . . . , p�) �−→ �0(p1) . . . �0(p�)nv I+

�−
�w,v

:
{

green labeled paths of type
�w = (i1, . . . , i�) ending in v

}

∼−→ (I−v I+ ∩ I+w I+)/I+

(p1, . . . , p�) �−→ �−(p1) . . . �−(p�)nv I+

The proof of Theorem 6 is by induction on the length ofw following [38, Theorem
4.1 and §7] where (a) and (b) are proved. The induction step can be formulated as
the following proposition.

Proposition 2 Let v,w ∈ W ad and fix a reduced expression �w = si1 . . . si� for w.
Let j ∈ {0, . . . , n} and c ∈ C. If ws j w then assume that the reduced word for w

is chosen with i� = j . Let

c̃ ∈ C and b̃1 ∈ I+ be the unique elements such that b1y j (c) = y j (c̃)b̃1.

(a) Let p = (p1, . . . , p�) be a blue labeled path of type (i1, . . . , i�) and let�
+
�w(p) =

yi1(c1) . . . yi� (c�). Then

(yi1 (c1) · · · yi� (c�)b1)(y j (c)b2)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yi1 (c1) · · · yi� (c�)y j (c̃)b̃1b2, if w ws j ,

yi1 (c1) · · · yi�−1 (c�−1)yi� (c� − c̃−1)hα∨
1
(c̃)xαi�

(−c̃−1)b̃1b2, if ws j w and c̃ �= 0,

yi1 (c1) · · · yi�−1 (c�−1)hα∨
i�
(−1)xαi�

(c)b̃1b2, if ws j w and c̃ = 0,

(b) Let p = (p1, . . . , p�) be a red labeled path of type (i1, . . . , i�) ending in v and
let �0

�w,v
(p) = xγ1(c1) · · · xγ�

(c�)nv I+ where the notation is as in (32). Then

(xγ1 (c1) · · · xγ�
(c�)nvb1)(y j (c)b2)

=

⎧

⎪

⎨

⎪

⎩

xγ1 (c1) · · · xγ�
(c�)xvα j (±c̃)nvs j b̃1b2. if w ws j ,

xγ1 (c1) · · · xγ�
(c�)x−vα j (c̃

−1)nvxα j (−c̃)hα∨
j
(c̃)b̃1b2, if ws j w and c̃ �= 0,

xγ1 (c1) · · · xγ�
(c�)x−vα j (0)nvs j b̃1b2, if ws j w and c̃ = 0,

(c) Let p = (p1, . . . , p�) be a green labeled path of type (i1, . . . , i�) ending in v

and let�−
�w,v

(p) = xγ1(c1) · · · xγ�
(c�)nv I+ where the notation is as in (32). Then
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(xγ1 (c1) · · · xγ�
(c�)nvb1)(y j (c)b2)

=

⎧

⎪

⎨

⎪

⎩

xγ1 (c1) · · · xγ�
(c�)xvα j (±c̃)nvs j b̃1b2. if w ws j ,

xγ1 (c1) · · · xγ�
(c�)x−vα j (c̃

−1)nvxα j (−c̃)hα∨
j
(c̃)b̃1b2, if ws j w and c̃ �= 0,

xγ1 (c1) · · · xγ�
(c�)x−vα j (0)nvs j b̃1b2, if ws j w and c̃ = 0,

6.4 Actions of the Affine Hecke Algebra

The affine flag representation is

C(G/I+) = C-span
{

y �w(�c)I+ | w ∈ W ad, �c = (c1, . . . , c�) ∈ C
�(w)
}

,

where, for a fixed reduced word w = si1 · · · si�

y �w(�c) = yi1(c1) · · · yi� (c�)I
+ =

∑

g∈yi1 (c1)···yi� (c�)I+
g (a formal sum).

Let
C(I+\G/I+) = C-span{Tw | w ∈ W ad}, where Tw = I+w I+,

C(I 0\G/I+) = C-span{Xw | w ∈ W ad}, where Xw = I 0w I+,

C(I−\G/I+) = C-span{Lw | w ∈ W ad}, where Lw = I−w I+,

The affine Hecke algebra is hI+(G/I+) = C-span{Tw | w ∈ W },

where Tw = I+nw I
+ =

∑

x∈I+nw I+
x (a formal sum).

The formal sums allow us to view all of these elements as elements of the group
algebra of G, where infinite formal sums are allowed (to do this precisely one should
use Haar measure and a convolution product). Proposition 3 computes the (right)
action of hI+(G/I+) on C(G/I+), and Proposition 4 computes the (right) action of
hI+(G/I+) on C(I+\G/I+) on C(I 0\G/I+), and on C(I−\G/I+). Proposition 3
follows from Proposition 2(a) by summing over c and Proposition 4 follows from
Proposition 2 by summing over the appropriate double cosets. We use the convention
that the normalization (Haar measure) is such that I+ · I+ = I+.

Proposition 3 Let w ∈ W ad, let �w = si1 · · · si� be a reduced word for w and let
j ∈ {0, . . . , n}. Assume that if ws j w then i� = j and let

y−→
ws j (�c) = yi1(c1) · · · yi�−1(c�−1) and y �w(�c) = yi1(c1) · · · yi� (c�) = y−→

ws j (�c)y j (c�).

Then
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y �w(�c)I+ · Ts j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yi1 (c1) · · · yi�−1 (c�−1)I
+ +

∑

c̃∈k×
yi1 (c1) · · · yi� (c� − c̃−1)I+, if ws j w,

∑

c̃∈k

yi1 (c1) · · · yi� (c�)y j (c̃)I
+, if w ws j .

Proposition 4 Let k = Fq the finite field with q elements. Let w ∈ W ad and j ∈
{0, . . . , n}. Then

TwTs j =
{

Tws j , if w ws j ,

(q − 1)Tw + qTws j . if ws j w,
LwTs j =

{

Lws j , if w ws j ,

qLws j + (q − 1)Lw, if ws j w,

and XwTsj =
{

Xws j , if w ws j ,

qXws j + (q − 1)Xw, if ws j w.
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Stable Bases of the Springer Resolution
and Representation Theory

Changjian Su and Changlong Zhong

Abstract In this expository note, we review the recent developments about Maulik
and Okounkov’s stable bases for the Springer resolution T ∗(G/B). In the cohomol-
ogy case, we compute the action of the graded affine Hecke algebra on the stable
basis, which is used to obtain the localization formulae. We further identify the sta-
ble bases with the Chern–Schwartz–MacPherson classes of the Schubert cells. This
relation is used to prove the positivity conjecture of Aluffi and Mihalcea. For the
K theory stable basis, we first compute the action of the affine Hecke algebra on it,
which is used to deduce the localization formulae via root polynomial method. Simi-
lar as the cohomology case, they are also identified with the motivic Chern classes of
the Schubert cells. This identification is used to prove the Bump–Nakasuji–Naruse
conjecture about the unramified principal series of the Langlands dual group over
non-Archimedean local fields. In the end, we study the wall R-matrices, which relate
stable bases for different alcoves. As an application, we give a categorification of the
stable bases via the localization of Lie algebras over positive characteristic fields.

Keywords Flag variety · Springer resolution · Stable bases · Hecke algebra

1 Introduction

Schubert calculus studies the cohomology and K-theory of the (partial) flag varieties
B. In this note, we study certain basis elements of Maulik and Okounkov, called the
stable basis, in the equivariant cohomology and K-theory of the cotangent bundle
T ∗B (the Springer resolution). Pulling back to the zero section B, the stable basis
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becomes some natural classes in the equivariant cohomology and K-theory of the
flag varieties (see Sects. 2.5 and 4.2).

Maulik and Okounkov introduced the stable basis in their study of quantum coho-
mology of quiver varieties [31]. Later, Okounkov and his collaborators introduced
K-theory and elliptic cohomology versions of these bases [1, 34, 37]. They turn out
to be very useful both in enumerative geometry and geometric representation theory
[35, 36].

The Maulik–Okounkov stable bases are constructed for a class of varieties called
symplectic resolutions [26]. We will focus on the Springer resolution, which is one
of the classical examples of symplectic resolutions. Both the cohomological and K-
theoretic stable bases for the Springer resolution are related to standard objects for
certain representation categories.

In the cohomology case, the stable basis elements are just some rational combi-
nation of the conormal bundles of the Schubert cells, which were shown to coincide
with characteristic cycles of certain D-modules on the flag variety. Via the local-
ization theorem of Beilinson and Bernstein [6], these D-modules correspond to the
Vermamodules of the Lie algebra. Furthermore, the action of the convolution algebra
of the Steinberg variety [21], which is isomorphic to the graded affine Hecke algebra
[29], is computed under the stable basis [43]. From this, the first author deduced
the localization formula for the stable basis, which is a direct generalizaiton of the
well-known AJS/Billey formula [13] for the localization of Schubert classes in the
equivariant cohomology of flag varieties. The restriction formulae also play a crucial
role in determining the quantum connection of the cotangent bundle of partial flag
varieties [43].

On the other hand, the graded affine Hecke algebra also appears in the work of
Aluffi and Mihalcea [2] about the Chern–Schwartz–MacPherson (CSM) classes [30,
41, 42] of Schubert cells. Comparing the actions, we identify the pullbacks of the
stable bases with the CSM classes [3] (see also [40]). The effectivity of the charac-
teristic cycles of D-modules enables the authors in [3] to prove the non-equivariant
positivity conjecture of Aluffi and Mihalcea [2] for CSM classes of the Schubert
cells.

TheK-theoretic case is similar, butwith richer structure. By the famous theoremof
Kazhdan, Lusztig and Ginzburg [21, 23, 27], the affine Hecke algebra is isomorphic
to the convolution algebra of the equivariantK-theory of the Steinberg variety. Hence,
the affine Hecke algebra acts on the equivariant K-theory of T ∗B. This action on the
stable basis is computed in [44]. It roughly says that the stable basis is the standard
basis for the regular representation of the finite Hecke algebra. With this action, we
can compute the localization of the stable basis via the root polynomial method.

The K-theretic generalization of the CSM classes are motivic Chern classes
defined by Brasselet, Schürmann and Yokura [14]. Pulling back the K-theory stable
bases to the zero section, we get the motivic Chern classes of the Schubert cells [4,
22]. By definition, the motivic Chern classes enjoy good functorial properties. These
facts enable the authors in [4] to use Schubert calculus to prove some conjectures of
Bump, Nakasuji and Naruse [17, 32] about unramified principal series of the p-adic
Langland dual group.
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Recall that the affine Hecke algebra can be realized either as the equivariant
K-group of the Steinberg variety, or as the double Iwahori-invariant functions on
the p-adic Langland dual group [21, Introduction], [7]. The bridge connecting the
Schubert calculus over complex numbers and the representation theory of the p-adic
Langland dual group is the shadow of these two geometric realizations. To be more
precise, the (specialized) equivariant K-theory of the flag variety and the Iwahori-
invariants of an unramified principal series of the p-adic group are two geometric
realizations of the regular representation of the finite Hecke algebra. Identifying
these two regular representations, the stable basis (or the motivic Chern classes of
the Schubert cells) gets identified with the standard basis on the p-adic side, while
the fixed point basis maps to the Casselman basis [18]. With this isomorphism, we
give an equivariant K-theory interpretation of Macdonald’s formula for the spherical
function [18] and the Casselman–Shalika formula [19] for the spherical Whittaker
function in [44].

The stable basis is also related to representations of Lie algebras over a field of
positive characteristic, via the localization theorem of Bezrukavnikov, Mirković and
Rumynin [9, 10],which generalizes the famous localization theoremofBeilinson and
Bernstein [6] over the complex numbers. This is achieved as follows. The definition
of the K-theory stable basis depends on a choice of the alcove. Changing alcoves
defines the so-called wall R-matrices [37]. We first recall these wall R-matrices
for the Springer resolution, which are computed in [45]. The formulae can be nicely
packed using theHecke algebra actions. It turns out thewall R-matrices coincidewith
the monodromy matrices of the quantum connection. Bezrukavnikov and Okounkov
conjecture that for general symplectic resolutions X , the monodromy representation
is isomorphic to the representation coming from derived equivalences [11, 35]. The
Springer resolution case is established by Braverman, Maulik and Okounkov in [16].
Thus, the wall R-matrices is also related to the derived equivalences. Finally, we give
a categorification of the stable basis via the affine braid group action, constructed
by Bezrukavnikov and Riche, on the derived category of coherent sheaves on the
Springer resolution [12, 38]. Moreover, the categorified stable bases are identified
with the Verma modules for the Lie algebras over positive characteristic fields under
the localization equivalence.

This note is structured as follows. In Sect. 2, we review the following aspects
of the cohomological stable basis: the action of the affine graded Hecke algebra,
restriction formula, and identificationwith the Chern–Schwartz–MacPherson classes
of the Schubert cells and characteristic cycles of holonomic D-modules on the flag
variety. The rest of the note is devoted to the study of the K theory stable basis.
In Sect. 3, we introduce the K theory stable basis, compute the action of the affine
Hecke algebra on it, and obtain the restriction formula. In Sect. 4, the K theory stable
bases are identified with the motivic Chern classes of the Schubert cells. In Sect. 5,
we further relate the stable basis to the Casselman basis in the Iwahori invariants of
an unramified principal series of the Langlands dual group over a non-Archimedean
local field, and use it to prove conjectures of Bump, Nakasuji and Naruse. Finally,
in Sects. 6 and 7, we review the wall crossing matrix and the categorification of the
stable bases.
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2 Cohomological Stable Basis

In this section,wefirst recall the definition of the stable basis ofMaulik andOkounkov
[31]. Then we compute the action of the graded Hecke algebra on the stable basis,
which will have two applications: the localization formulae and the identification of
the stable bases with the Chern–Schwartz–MacPherson classes of the Schubert cells.
We further relate the stable bases to characteristic cycles ofD-modules, which plays
an important role in proving the positivity conjecture of Aluffi and Mihalcea.

2.1 Notations

Let G be a complex, semisimple, simply connected linear algebraic group with a
Borel subgroup B and a maximal torus A. Let B− be the opposite Borel subgroup.
Let � (resp. �∨) be the group of characters (resp. cocharacters) of A. Let R+ denote
the roots in B. Let g (resp. h) be the Lie algebra of G (resp. A). Let ρ be the half-sum
of the positive roots. Let C± ⊂ h be the dominant/anti-dominant Weyl chamber in
h. Let B = G/B be the variety of all Borel subgroups of G. Denote by T ∗B (resp.
TB) the cotangent (tangent) bundle. The cotangent bundle T ∗B is a resolution of
the nilpotent coneN ⊂ g, which is the so-called Springer resolution. The group C

∗
acts on T ∗B by z · (B ′, x) = (B ′, z−2x) for any z ∈ C

∗, (B ′, x) ∈ T ∗B. Let −� be
the LieC

∗-weight of the cotangent fiber. Let T = A × C
∗. Then H∗

T (pt) = C[h][�],
where C[h] denotes the functions on h. For any λ ∈ �, let Lλ = G ×B Cλ be the
line bundle on B. Pulling back to T ∗B, we get a line bundle on T ∗B, which is still
denoted by Lλ. Let W be the Weyl group, and let ≤ denote the Bruhat order on
W . The A-fixed points in T ∗B are indexed by the Weyl group W . For each w ∈ W ,
the corresponding fixed point is wB ∈ B ⊂ T ∗B. Let ιw : wB ↪→ T ∗B denote the
embedding. For any γ ∈ H∗

T (T ∗B), let γ|w = ι∗wγ ∈ H∗
T (wB) = H∗

T (pt).

2.2 Definition of the Cohomological Stable Basis

The definition of the stable basis depends on a choice of a Weyl chamber C in hR.
Pick one parameter σ : C

∗ → A, such that dσ ∈ C. Recall the attracting set of the
torus fixed point wB ∈ T ∗B

AttrC(w) = {x ∈ T ∗B|lim
z→0

σ(z) · x = wB}.

A partial order on W is defined as

v 	C w if AttrC(w) ∩ vB �= ∅.
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The order determined by the dominant chamber (resp. anti-dominant chamber) is the
usual Bruhat order (resp., the opposite Bruhat order). The full attracting set is

FAttrC(w) = ∪v	Cw AttrC(v).

For each w ∈ W , let εw = eA(T ∗wBB) ∈ H∗
A(pt) = C[h], the A-equivariant Euler

class of the A-vector space T ∗wBB. That is, εw is the product of A-weights in the
vector space T ∗wBB. Let Nw = TwB(T ∗B). The chamber C gives a decomposition of
the tangent bundle

Nw = Nw,+ ⊕ Nw,−

into A-weights which are positive and negative when paired with σ, respectively.
Let e(Nw,−) ∈ H∗

T (pt) denote the T -equivariant Euler class, that is, the product of
T -weights in the T -equivariant vector space Nw,−. Since T = A × C

∗, H∗
T (pt) =

H∗
A(pt)[�]. If we specialize the equivariant parameter � to zero, the T -equivariant

Euler class e(Nw,−) ∈ H∗
T (pt) equals awεw, where aw ∈ {1,−1}. See Example 2.3.

Recall the fixed point set (T ∗B)A is a discrete set indexed by the Weyl group W .
Hence, H∗

T ((T ∗B)A) = �w∈W H∗
T (pt). Let 1w denote the unit element in the w-th

copy H∗
T (pt). The cohomological stable basis is defined as follows.

Theorem 2.1 ([31, Theorem 3.3.4]) There exists a unique map of H∗
T (pt)-modules

stabC : H∗
T ((T ∗B)A) → H∗

T (T ∗B)

satisfying the following properties. For any w ∈ W, denote stabC(w) = stabC(1w).
Then

(1) (Support) supp stabC(w) ⊂ FAttrC(w),
(2) (Normalization) stabC(w)|w = awe(N−,w),
(3) (Degree) stabC(w)|v is divisible by �, for any v ≺C w.

Remark 2.2 (1) The map is defined by a Lagrangian correspondence between
(T ∗B)A × T ∗B, hence mapping middle degree to middle degree. Therefore,
the last condition is equivalent to

degA stabC(w)|v < degA stabC(v)|v.

Here, for any polynomial f ∈ HT (pt) = C[h][�] = Sym(h∗)[�], degA f
denotes the degree of f in the h∗-variables.

(2) By the first and second conditions above, {stabC(w)|w ∈ W } is a basis for
the localized equivariant cohomology H∗

T (T ∗B)loc := H∗
T (T ∗B)⊗HT (pt) Frac

HT (pt). It is the so-called stable basis.
(3) By [31, Theorem 4.4.1], the stable bases for opposite chambers are dual bases.

That is,
〈stabC(v), stab−C(w)〉 = (−1)dimG/Bδv,w,
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where the non-degenerate pairing 〈−,−〉 on H∗
T (T ∗B) is defined via localization

as follows

〈γ1, γ2〉 :=
∑

w

γ1|w · γ2|w
e(Nw)

∈ Frac H∗
T (pt).

Let stab+(w) = stabC+(w) and stab−(w) = stabC−(w).

Example 2.3 Let G = SL(2, C), B be the upper triangular matrices, and α be the
simple root. In this case, the flag variety B = P

1, the identity element 1 ∈ W cor-
responds to the fixed point 0 := [1 : 0] ∈ P

1, and sα ∈ W corresponds to the other
fixed point∞ := [0 : 1] ∈ P

1. The torus T = A × C
∗ weights of the vector spaces

are as follows

weight(T0P
1) = −α, weight(T ∗0 P

1) = α− �,

and
weight(T∞P

1) = α, weight(T ∗∞P
1) = −α− �.

Let us pick the positive Weyl chamber C+ so that α takes non-negative values
on it. Then AttrC+(0) = T ∗0 P

1, and AttrC+(∞) = P
1 \ {0}. Hence, 0 ≺C+ ∞. The

Euler classes are ε0 = eA(T ∗0 P
1) = α, e(N0,−) = −α, ε∞ = eA(T ∗∞P

1) = −α, and
e(N∞,−) = −α− �. Therefore, a1 = −1 and asα = 1. By the support and normal-
ization conditions, we get

stab+(0) = −[T ∗0 P
1], and stab+(∞) = [P1] + c[T ∗0 P

1],

where c ∈ H∗
T (pt). Restricting stabC+(∞) to the smaller fixed point 0, we get

stab+(∞)|0 = (−�+ α)+ c(−α).

By the degree condition, the above is divisible by �. Hence, c = 1. So

stab+(0) = −[T ∗0 P
1], stab+(∞) = [P1] + [T ∗0 P

1]. (1)

Similarly, for the negative chamber C−, we have

stab−(0) = [T ∗∞P
1] + [P1], stab−(∞) = −[T ∗∞P

1]. (2)

2.3 The Graded Affine Hecke Algebra Action

The graded affine Hecke algebraH� is generated by the elements xλ of degree 1 for
λ ∈ h∗, si ∈ W of degree 0 and a central element � of degree 1 such that
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(1) xλ+μ = xλ + xμ for any λ,μ ∈ h∗;
(2) xλxμ = xμxλ for any λ,μ ∈ h∗;
(3) The si ’s generated the Weyl group inside H�;
(4) For any simple root αi and λ ∈ h∗, we have

si xλ − xsiλsi = �(λ,α∨i ).

According to [29], there is a natural algebra isomorphism

H� � HG×C
∗

∗ (Z),

where Z = T ∗B ×N T ∗B is the Steinberg variety, HG×C
∗

∗ (Z) is the G × C
∗-

equivariant Borel–Moore homology of Z , and it is endowed with the convolution
algebra structure [21]. The isomorphism is constructed as follows. Recall that for
any λ ∈ �, we have the line bundle Lλ ∈ PicA×C∗(T ∗B). Then the above isomor-
phism sends xλ to the push-forward of the first Chern class c1(Lλ) under the diagonal
embedding T ∗B ↪→ Z . The image of a simple reflection sα in theWeyl group is con-
structed as follows. Let Pα denote the corresponding minimal parabolic subgroup
containing B. Let Pα = G/Pα and Yα = B ×Pα

B ⊂ B × B. The conormal bundle
T ∗Yα

(B × B) is denoted by T ∗Yα
, which is a smooth closedG × C

∗-invariant subvariety
of Z . Then sα − 1 is sent to the cohomology class [T ∗Yα

] ∈ HG×C
∗

∗ (Z).
Via this isomorphism, H� acts on H∗

T (T ∗B) by convolution [21, Chap.2]. Let π
denote this action. The action on the stable basis is given by

Theorem 2.4 ([43, Lemma 3.2]) For any w ∈ W and simple root α,

π(sα)(stab±(w)) = − stab±(wsα).

2.4 The Restriction Formula

One important corollary of the above theorem is the restriction formula for the stable
basis.

Theorem 2.5 ([43, Theorem 1.1]) Let y = s1s2 · · · sl be a reduced expression for
y ∈ W. Then

stab−(w)|y = (−1)l(y)
∏

α∈R+\R(y)

(α− �)
∑

1≤i1<i2<···<ik≤l
w=si1 si2 ...sik

�
l−k

k∏

j=1
βi j , (3)

where si is the simple reflection associated to a simple root αi , βi = s1 · · · si−1αi ,
R+ is the set of positive roots, and R(y) = {βi |1 ≤ i ≤ l}. Furthermore, the sum in
Eq. (3) does not depend on the reduced expression for y.
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From this formula, we can recover the AJS/Billey formula [13]

[B−wB/B]|y =
∑

1≤i1<i2<···<ik≤l
w=si1 si2 ...sik reduced

βi1 · · ·βik ,

via the following limit formula ([43, Theorem 4.8])

[B−wB/B]|y = (−1)�(w) lim
�→∞

stab−(w)|y
(−�)dim B−wB/B

.

Example 2.6 Let us consider the case G = SL(3, C), y = s1s2s1 and w = s1. Then
stab−(w)|y = (−1)3�2(α1 + α2), and [B−wB/B]|y = α1 + α2. It is obvious that
the above limit formula holds.

We can also compute restriction formula for stab−(w) for all w ∈ S3 (following
notations in Sect. 3.4, with α1+2 = α1 + α2, α̃ = α− �, i j i = si s j si , ect):

stab−(121) = −α1α2α1+2 f121,
stab−(12) = −�α1α1+2 f121 + α1α1+2α̃2 f12,

stab−(21) = −�α2α1+2 f121 + α2α1+2α̃1 f21,

stab−(1) = −�
2α1+2 f121 + �α1α̃2 f12 + �α1+2α̃1 f21 − α1α̃2α̃1+2 f1,

stab−(2) = −�
2α1+2 f121 + �α2α̃1 f21 + �α1+2α̃2 f12 − α2α̃1α̃1+2 f2,

stab−(e) = −(�3 + �α1α2) f121 + �
2α̃2 f12 + �

2α̃1 f21 − �α̃2α̃1+2 f1 − �α̃1α̃1+2 f2 + α̃1α̃2α̃1+2 fe.

In the above formulae, the restriction stab−(w)|y is given by the coefficient of fy in
the identity of stab−(w).

2.5 Relation with Chern–Schwartz–MacPherson (CSM)
Classes

Let us first recall the definition of Chern–Schwartz–MacPherson classes. For any
algebraic variety Y over C, let F(Y ) denote the group of constructible func-
tions on Y . If f : Y → X is a proper morphism, we can define a pushforward
f∗ : F(Y ) → F(X) by setting f∗(1W )(p) = χ( f −1(p) ∩W ), where W ⊂ Y is a
locally closed subvariety, 1W is the characteristic function ofW , p ∈ X , and χ is the
topological Euler characteristic. According to a conjecture attributed to Deligne and
Grothendieck, there is a unique natural transformation c∗ : F → H∗ from the functor
F of constructible functions on a complex algebraic variety to the homology functor,
such that if X is smooth then c∗(1X ) = c(T X) ∩ [X ], where c(T X) is the total Chern
class. The naturality of c∗ means that it commutes with proper pushforward. This
conjecture was proved by MacPherson [30]. The class c∗(1X ) for possibly singular
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X was shown to coincide with a class defined earlier byM.-H. Schwartz [41, 42]. For
any constructible subset W ⊂ X , we call the class cSM(W ) := c∗(1W ) ∈ H∗(X) the
Chern–Schwartz–MacPherson (CSM) class of W in X . The theory of CSM classes
was later extended to the equivariant setting by Ohmoto [33].

In this section, we identity the equivariant homology H A∗ (B) with the equiv-
airant cohomology H∗

A(B) via the Poincaré duality. Let X (w)◦ = BwB/B ⊂ B and
Y (w)◦ = B−wB/B be the Schubert cells in B. Let X (w) = X (w)◦ be the Schubert
variety. A similar formula to that given in Theorem 2.4 was also obtained by Aluffi
andMihalcea for the CSMclasses for the Schubert cells cSM(X (w)◦) [2]. Comparing
these formulae, it is easy to get the following relation between the stable bases and
the CSM classes [3, Corollary 1.2] and [40].

Theorem 2.7 Let i : B ↪→ T ∗B be the inclusion. For any w ∈ W,

i∗(stab+(w))|�=1 = (−1)dimG/BcSM(X (w)◦) ∈ H∗
A(B),

and
i∗(stab−(w))|�=1 = (−1)dimG/BcSM(Y (w)◦) ∈ H∗

A(B).

Example 2.8 Let us consider the case G = SL(2, C). We follow the notations
in Example 2.3. By definition, cSM(X (id)◦) = [X (id)] = [0], and cSM(X (sα)◦) =
cSM(X (sα))− cSM(X (id)) = c(TP

1)− [0] = [P1] + [∞]. Let us check

i∗(stab+(sα))|�=1 = −cSM(X (sα)◦) ∈ H∗
A(B). (4)

By localization, it suffices to check the equality after restricting both sides to the fixed
points. For the fixed point 0, i∗(stab+(sα))|0,�=1 = −1, and cSM(X (sα)◦)|0 = 1. For
the fixed point ∞, i∗(stab+(sα))|∞,�=1 = −1− α, and cSM(X (sα)◦)|∞ = 1+ α.
Thus, Eq. (4) holds.

The equivariant cohomology of the flag variety B has a natural basis, namely, the
Schubert basis {[X (w)]|w ∈ W }. Thus we can expand the CSM classes in terms of
this basis

cSM(X (w)◦) =
∑

u

c(w, u)[X (u)] ∈ H∗
A(B),

where c(w, u) ∈ H∗
A(pt). It is conjectured by Aluffi and Mihalcea that [2]

c(w, u) ∈ Z≥0[α|α > 0].

The non-equivariant case of this conjecture is proved in [3], in which the relation
between the stable basis and the characteristic cycles of holonomic DB-modules
plays an important role.
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2.6 Characteristic Cycles of D-modules

Forw ∈ W , let Mw be the Verma module of highest weight−wρ− ρ, a module over
the universal enveloping algebra U (g). Let Mw denote the holonomic DB-module

Mw = DB ⊗U (g) Mw.

The image of this regular holonomic DB-module under the Riemann–Hilbert corre-
spondence is the constructible complex CX (w)◦ [�(w)] [6, 15, 24]. The characteristic
cycle Char(Mw) ofMw is a linear combination of the conormal bundles of the Schu-
bert cells. The relation with the stable basis is given by the following formula. It is
claimed in [31, Remark 3.5.3], and later proved in [3, Lemma 6.5].

Theorem 2.9 For any w ∈ W,

stab+(w) = (−1)dimG/B−�(w)[Char(Mw)] ∈ H∗
T (T ∗B).

3 K-Theoretic Stable Bases and the Affine Hecke Algebra
Action

From now on, we focus on the K theory stable basis. In this section, we introduce
the definitions and compute the action of the affine Hecke algebras on the K theory
stable bases. As an application, we compute the restriction formula of stable bases
by using the root polynomial method.

3.1 Notations Continued

Wewill follow the notations in Sect. 2. Let us introduce more notations. Let Hα∨,n =
{λ ∈ h∗

R
|(λ,α∨) = n} be the hyperplanes determined by the coroot α∨ and integers

n. The union of the hyperplanes is a closed subset of h∗
R
, whose complement has

connected components called alcoves. The fundamental alcove is∇+ = {λ ∈ h∗
R
|0 <

〈λ,α∨〉 < 1, for any positive coroot α∨}. Denote ∇− = −∇+.
In the remaining parts of this note, we will consider the equivariant K-theory, a

good introduction of which can be found in [21]. If a group H acts on an algebraic
variety X , then the H -equivariant K-theory of X , which is denoted by KH (X),
is defined to be the Grothendieck group of the H -equivariant coherent sheaves
on X . Namely, KH (X) := K 0(CohH (X)). By definition, KH (X) is a module over
KH (pt) = K 0(Rep(H)).

Recall the group C
∗ acts on T ∗B by z · (B ′, x) = (B ′, z−2x) for any z ∈ C

∗,
(B ′, x) ∈ T ∗B. Let q−1 be the C

∗-character of the cotangent fiber under this
action, i.e., q = e�. Therefore, the C

∗-equivariant K-group of a point is KC∗(pt) =
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K 0(Rep(C∗)) = Z[q1/2, q−1/2]. RecallT = A × C
∗.Denote S = KT (pt) = Z[q1/2,

q−1/2][�]. We consider the T -equivariant K-theory of T ∗B. Recall ιw denotes the
inclusion of the fixed point wB into T ∗B. For any F ∈ KT (T ∗B), let F |w denote
ι∗wF ∈ KT (pt). By localization theorem [21, Chapter 5], the localized K-group
KT (T ∗B)loc := KT (T ∗B)⊗KT (pt) Frac KT (pt) has a fixed point basis {ιw∗1|w ∈
W }.

The non-degenerate pairing on KT (T ∗B) can be defined using localization as
follows

〈F ,G〉 =
∑

w∈W

F |wG|w∧• Tw(T ∗B)
=

∑

w∈W

F |wG|w∏
α>0(1− ewα)(1− qe−wα)

, F ,G ∈ KT (T ∗B).

Here for each T -space V ,
∧• V = ∑

k≥0(−1)k
∧k V ∨ = ∏

(1− e−α) ∈ KT (pt),
where the product runs through all T -weights in V , counted with multiplicities.

3.2 Definition of the Stable Basis

The definition of the K theory stable basis depends on choices of a chamber, an
alcove and a polarization.

A polarization T 1/2 is a solution of the following equation

T 1/2 + q−1(T 1/2)∨ = T (T ∗B) in KT (T ∗B).

Denote T 1/2
opp = q−1(T 1/2)∨. We will frequently focus on the two mutually opposite

polarizations: TB and T ∗B. Recall Nw = TwB(T ∗B) is the normal bundle at w, and
the chamber C determines a decomposition Nw = Nw,+ ⊕ Nw,− according to the
sign of A-weights with respect to the chamber C. Let N 1/2

w = Nw ∩ (T 1/2|w), and
similarly define N 1/2

w,+ and N 1/2
w,−. It follows that the square root (

det Nw,−
det N 1/2

w

)1/2 exists in
KT (T ∗B).

For any Laurent polynomial f = ∑
μ∈� fμeμ ∈ KT (pt), with fμ ∈ Z[q1/2,

q−1/2], eμ ∈ KA(pt), define the A-degree of f to be the Newton polygon

degA f = Convex hull ({μ| fμ �= 0}) ⊂ �⊗ R.

Let 1w denote the unit in the w-th copy of KT (pt) in KT ((T ∗B)A). We can now
recall the definition of the K-theory stable basis.

Theorem 3.1 [34] For any chamber C, polarization T 1/2, and alcove ∇, there is a
unique map of KT (pt)-modules (called the stable envelope):

stabC,T 1/2,∇ : KT ((T ∗B)A) → KT (T ∗B),

satisfying the following properties. Denote stabC,T 1/2,∇
w = stabC,T 1/2,∇(1w). Then
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(1) (Support) supp(stabC,T 1/2,∇
w ) ⊂ FAttrC(w).

(2) (Normalization) stabC,T 1/2,∇
w |w = (−1)rank N 1/2

w,+
(
det Nw,−
det N 1/2

w

)1/2
OAttrC(w)|w.

(3) (Degree) degA(stab
C,T 1/2,∇
w |v) ⊂ degA(stab

C,T 1/2,∇
v |v)+ vλ− wλ for any v ≺C

w,λ ∈ ∇.
Note that the degree condition depends on the alcove ∇ only, not on a particular
λ ∈ ∇. On the other hand, the normalization does not depend on the alcove.

Denote
stab+w = stabC+,TB,∇−

w , stab−w = stabC−,T ∗B,∇+
w .

We list some basic properties of stable bases [37, Proposition 1] and [44, Lemma
2.2]:

(1) The duality: 〈stabC,T 1/2,∇
w , stab

−C,T 1/2
opp ,−∇

v 〉 = δv,w ∈ KT (T ∗B).
(2) stab+w |w = q−�(w)/2 ∏

β>0,wβ<0(q − ewβ)
∏

β>0,wβ>0(1− ewβ).
(3) stab−w |w = q�(w)/2 ∏

β>0,wβ<0(1− e−wβ)
∏

β>0,wβ>0(1− qe−wβ).

See Example 3.5 for restrictions of stab−w for all w ∈ S3.

Example 3.2 Let us consider the case G = SL(2, C). We follow the notations in
Example 2.3. The dual Cartan h∗

R
= Rα is one dimensional. The alcoves are ∇n :=

( nα
2 , (n+1)α

2 ), where n ∈ Z. The stable basis are given by the following formulae. We
refer the readers to [44, Example 1.4] for more details.

For the negative chamber, the cotangent polarization and the fundamental alcove
∇0, we have

stab−id = stabC−,T ∗P1,∇0
id = [OP1 ] + qeα[OT ∗∞P1 ], and stab−sα = stabC−,T ∗P1,∇0

sα = −q 1
2 eα[OT ∗∞P1 ].

For a general alcove ∇n ,

stabC−,T ∗P1,∇n
w = e−

n
2 wαL n

2 α ⊗ stab−w,

where w = id or sα.
For the opposite choices,

stab+id = [OT ∗0 P1 ], and stab+sα = −q− 1
2 e−α[OP1 ] +

(
−q 1

2 e−2α + (q−
1
2 − q

1
2 )e−α

)
[OT ∗0 P1 ].

3.3 The Action of the Affine Hecke Algebra

This section can be thought of as a K-theoretic generalization of the results in
Sect. 2.3. Recall the affine Hecke algebra H is a free Z[q, q−1] module with basis
{Tweλ|w ∈ W,λ ∈ �}, such that
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• For any λ,μ ∈ �, eλeμ = eλ+μ.
• For any simple root α, (Tsα + 1)(Tsα − q) = 0.
• For any w, y ∈ W , such that �(wy) = �(w)+ �(y), TwTy = Twy .

• For any simple root α and λ ∈ �,

Tsαe
λ − esαλTsα = (1− q)

esαλ − eλ

1− e−α
.

Let H(W ) denote the finite Hecke algebra, the subalgebra of H generated by the
T ′ws. Recall the famous theorem of Kazhdan–Lusztig [27] and Ginzburg [21]

H � KG×C∗(Z), (5)

where Z = T ∗B ×N T ∗B is the Steinberg variety, and the right hand side is endowed
with the convolution algebra structure [21, Chap. 5]. The isomorphism is constructed
as follows. We use the notations in Sect. 2.3. Let πi : T ∗Yα

→ T ∗B be the two projec-
tions. Let O� be the structure sheaf of the diagonal �(T ∗B) ⊂ T ∗B × T ∗B. Then
the isomorphism in (5) sends the simple generator Tsα ∈ H(W ) to−[O�] − π∗2Lα ∈
KG×C∗(Z) and eλ ∈ Z[�] to O�(λ) [38, Proposition 6.1.5].

By convolution, KG×C∗(Z) acts on KT (T ∗B) [21, Chap.5]. Since the kernel defin-
ing Tα is not symmetric, the left and right convolution actions are different. Following
[44], we use Tα (resp. T ′α) to denote the left (resp. right) convolution action of Tα.
From [44, Lemma 3.4], these two operators are adjoint to each other:

〈Tα(F),G〉 = 〈F , T ′α(G)〉, ∀F ,G ∈ KT (T ∗B).

One of the main results in [44] is the computation of the affine Hecke algebra
action on the stable bases. More precisely, we have

Theorem 3.3 ([44, Proposition 3.3, Theorem 3.5]) Let α be a simple root. Then

Tα(stab−w) =
{

(q − 1) stab−w +q1/2 stab−wsα , if wsα < w;
q1/2 stab−wsα , if wsα > w.

(6)

T ′α(stab+w) =
{

(q − 1) stab+w +q1/2 stab+wsα , if wsα < w;
q1/2 stab+wsα , if wsα > w.

(7)

In particular,

stab−w = q
�(w0w)

2 T−1w0w
(stab−w0

), and stab+w = q−
�(w)

2 T ′w−1(stab+id).

In the proof of this theorem, an elementary but essential method called rigidity was
used. Its simplest form says the following. If p(z) ∈ C[z±1], then

p(z) is bounded as z±1 →∞ ⇐⇒ p(z) is a constant.
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More applications of this method can be found in the survey by Okounkov [34]. As
a immediate corollary, we obtain recursive formulas for localizations of stable bases
[44, Proposition 3.6]. This plays an important role in the identification between the
stable basis and motivic Chern classes of Schubert cells (see Sect. 4), which was
used to prove some conjectures of Bump, Nakasuji and Naruse in representations of
p-adic Langlands dual groups in [4] (see Sect. 5).

3.4 Root Polynomials and Restriction Formulas

Since localization is such a powerful tool in calculations, it is important to study the
localization of the stable basis. The cohomology casewas done in [43] (see Sect. 2.4).
For the K-theoretic case, we use the root polynomial method. The notations defining
root polynomials are very technical, so here we just introduce a simplified version
without explanation. Please see [44, Sects. 5, 6] for details. For simplicity, denote
S = Z[q1/2, q−1/2][�] and Q = Frac(S). Let Q∗

W = Hom(W, Q), which is the set
of all functions from the setW to the set Q. Q∗

W is a Q-module with basis fw defined
by fw(v) = δw,v , and it is also a commutative ring with product fw fv = δw,v fv .
Indeed Q∗

W
∼= Q ⊗S KT (T ∗B), and one can view stab±w inside Q∗

W . For example,

stab±w =
∑

v∈W
stab±w |v fv, stab±w |v ∈ S ⊂ Q.

We now introduce the root polynomials. For each w = si1 · · · sil , denote β j =
si1 · · · si j−1α j , and define the root polynomials as

Rw =
l∏

j=1
hi j (β j ), where hi (β) = τsi −

q − 1

x−β
and xβ = 1− e−β .

Here {τw|w ∈ W } are some formal symbols, generating the finite Hecke algebra
H(W ), andwe assume that they commutewith the x-variables (sowe can forget about
the Bernstein relation). See Example 3.5 below. Because of that, when expressing
Rw = ∑

v≤w Kv,wτv, Kv,w ∈ Q, the coefficients Kv,w can be computed easily. To
relate with localization formula of the stable basis, we have

Theorem 3.4 ([44, Theorem 6.3, 6.5]) For any w ∈ W, we have

stab−w = q�(w)/2
∑

v≥w

∏

α>0,v−1α<0

(1− eα)
∏

α>0,v−1α>0

(1− qe−α)Kw,v fv ∈ KT (T ∗B).

Note that similar formula can be obtained for stab+w by using the operators T ′v , but it
is a bit more complicated, and was not included in [44].
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Example 3.5 We consider the case of SL3, in which case there are two simple roots
α1,α2 and W = S3. Let w = s1s2 with β1 = α1,β2 = α1 + α2. Then

Rw = h1(α1)h2(α1 + α2) = (τs1 −
q − 1

x−α1

)(τs2 −
q − 1

x−α1−α2

)

= τs1s2 −
q − 1

x−α1

τs2 −
q − 1

x−α1−α2

τs1 +
(q − 1)2

x−α1x−α1−α2

.

For instance, we have

stab−s1 |s1s2 =q�(s1)/2
∏

α>0,s2s1α<0

(1− eα)
∏

α>0,s2s1α>0

(1− qe−α)Ks1,s1s2

=q1/2(1− eα1)(1− eα1+α2)(1− qe−α2)(− q − 1

1− eα1+α2
)

=− q1/2(q − 1)(1− eα1)(1− qe−α2).

Similarly, we can get restriction formula for all stable basis withw ∈ S3 (with i j i :=
si s j si , xα = 1− e−α, x̂α = 1− qe−α, x±i± j = x±αi±α j , and x̂±i± j = x̂±αi±α j ):

q−3/2 stab−121 = x−1x−2x−1−2 f121,
q−1 stab−12 = x−1x−1−2 x̂2 f12 − (q − 1)x−1x−1−2 f121,
q−1 stab−21 = x−2x−1−2 x̂1 f21 − (q − 1)x−2x−1−2 f121,

q−1/2 stab−1 = x̂2 x̂1+2x−1 f1 − (q − 1)x̂2x−1 f12 − (q − 1)x̂1x−1−2 f21 + (q − 1)2x−1−2 f121,
q−1/2 stab−2 = x̂1 x̂1+2x−2 f2 − (q − 1)x̂1x−2 f21 − (q − 1)x̂2x−1−2 f12 + (q − 1)2x−1−2 f121,

stab−e = x̂1 x̂2 x̂1+2 fe − (q − 1)x̂2 x̂1+2 f1 − (q − 1)x̂1 x̂1+2 f2 + (q − 1)2 x̂2 f12,

+ (q − 1)2 x̂1 f21 − [(q − 1)3 + q(q − 1)x−1x−2] f121.

4 Motivic Chern Classes of the Schubert Cells

In this section, as another application of the relationship between the affine Hecke
algebra and the stable bases, we relate the stable bases to motivic Chern classes for
the Schubert cells [4, 22].

4.1 Definition of Motivic Chern Classes

The motivic Chern classes are K-theoretic generalizations of the Chern–Schwartz–
MacPherson classes (see Sect. 2.5). Let us first recall the definition of the motivic
Chern classes, following [4, 14, 22]. Recall A is the maximal torus in G. For any
quasi-projective complex smooth A-variety X , let GA

0 (var/X) be the free abelian
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group generated by the isomorphism classes of algebraic morphisms [ f : Z → X ]
where Z is a quasi-projective A-variety and f is an A-equivariant morphismmodulo
the usual additivity relations

[ f : Z → X ] = [ f : U → X ] + [ f : Z \U → X ]

for U ⊂ Z an open A-invariant subvariety. Then there exists a unique natural trans-
formation

MCy : GA
0 (var/X) → KA(X)[y],

satisfying the following properties:

• It is functorial with respect to A-equivariant proper morphisms of smooth, quasi-
projective varieties.

• It satisfies the following normalization condition

MCy([idX : X → X ]) = λy(T
∗X) :=

∑
yi [∧i T ∗X ] ∈ KA(X)[y].

Here y is a formal variable. The existence in the non-equivariant case was proved in
[14]. The equivariant case is established in [4, 22].

4.2 Motivic Chern Classes of the Schubert Cells

Recall X (w)◦ = BwB/B ⊂ B and Y (w)◦ = B−wB/B ⊂ B are the Schubert cells
in B, where B− is the opposite Borel group. Recall the Serre duality functor on X

D(F) = RHom(F ,ω•B),

whereF ∈ KA(B) andω•B = L2ρ[dimB] is the dualizing complex ofB. We extend it
to KA(B)[y, y−1] by sending y to y−1. Let i : B ↪→ T ∗B be the inclusion. Then the
relation between the motivic Chern classes and the stable bases is following, which
is a K-theoretic generalization of Theorem 2.7.

Theorem 4.1 ([4]) For any w ∈ W, we have

q−
�(w)

2 D(i∗ stab+w) = MC−q−1([X (w)◦ ↪→ B]) ∈ KA(B)[q, q−1],

and

q
�(w)

2 −dimBi∗(stab−w)⊗ [ω•X ] = MC−q−1([Y (w)◦ ↪→ B]) ∈ KA(B)[q, q−1].

Example 4.2 Let G = SL(2, C). We follow the notations in Example2.3. By defi-
nition,



Stable Bases of the Springer Resolution and Representation Theory 211

MCy([Y (sα)◦ ↪→ P
1]) = [O∞],

and

MCy([Y (id)◦ ↪→ P
1]) = MCy([idB : P

1 → P
1])− MCy([Y (sα)◦ ↪→ P

1]) = 1+ y[T ∗P1] − [O∞].

Let us check the second equation in Theorem 4.1 for w = id. It suffices to check the
equality after restricting to the fixed points. From Example 3.2, we have

stab−id = [OP1] + qeα[OT ∗∞P1].

Therefore,

(
q−1i∗(stab−id)⊗ [ω•X ]

) |0 = q−1(1− qe−α)(−eα) = 1− q−1eα,

and
(
q−1i∗(stab−id )⊗ [ω•X ]

)
|∞ = q−1(1− qeα + qeα(1− e−α))(−e−α) = (1− q−1)e−α.

On the other hand,

MC−q−1([Y (id)◦ ↪→ P
1])|0 = 1− q−1eα,

and

MC−q−1([Y (id)◦ ↪→ P
1])|∞ = 1− q−1e−α − (1− e−α) = (1− q−1)e−α.

Thus, the second equation in Theorem 4.1 holds for w = id. The other cases can be
checked similarly.

It will be proved in [5] that

(−q)− dimBi∗(gr(iw!QH
Y (w)◦))⊗ [ω•X ] = MC−q−1([Y (w)◦ ↪→ X ]),

where iw : Y (w)◦ ↪→ B is the inclusion, Q
H
Y (w)◦ is the A-equivariant shifted mixed

Hodge module on Y (w)◦, and gr(iw!QH
Y (w)◦) is the associated A × C

∗-equivariant
sheaf on the cotangent bundle of B [46, Sect. 2]. Since i∗ is an isomorphism, we get

q
�(w)

2 stab−w = (−1)dimBgr(iw!QH
Y (w)◦).

This is the K-theoretic analogue of Theorem 2.9.
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5 Unramified Principal Series of p-adic Langlands Dual
Group

The relation between stable basis and motivic Chern classes is used in [4] to prove
some conjectures of Bump, Nakasuji and Naruse [17, 32] about unramified principal
series of the p-adic Langlands dual group. In the proof, we need to first build a
relation between the stable basis (or motivic Chern classes of Schubert cells) and
unramified principal series. This is explained in this section.

5.1 The Two Bases in Iwahori-Invariants of an Unramified
Principal Series Representation

Let F be a finite extension of Qp.1 LetOF be the ring of integers, with a uniformizer
� ∈ OF , and residue field Fq . Let Ǧ be the split reductive group over F , which is
the Langlands dual group of G. Let Ǎ ⊂ B̌ be the corresponding dual maximal torus
and Borel subgorup. Let I be the Iwahori subgroup.

Let τ be an unramified character of Ǎ, i.e., complex characters of Ǎ(F) which

are trivial on Ǎ(OF ). Recall the principal series representation I (τ ) := IndǦ(F)

B̌(F)
(τ ) is

the induced representation, which consists of locally constant functions f on Ǧ(F)

such that f (bg) = τ (b)δ1/2(b) f (g), b ∈ B̌(F), where δ(b) = ∏
α>0 |α∨(b)|F is the

modulus function on the Borel subgroup.
It is well known that the affine Hecke algebra in Sect. 3.3 can also be realized as

H = Cc[I\Ǧ(F)/I ],

which is the so-called Iwahori–Hecke algebra. The algebra structure on the latter
space is induced by convolution. Again by convolution, the Iwahori–Hecke algebra
H acts from the right on the Iwahori-invariants I (τ )I .

We say an unramified character τ is regular if the stabilizerWτ in the Weyl group
is trivial. In this case, the space HomǦ(F)(I (τ ), I (w−1τ )) is one-dimensional. It is
spanned by the following intertwining operator Aτ

w:

Aτ
w( f )(g) :=

∫

Ňw

f (wng)dn,

where Ňw = Ň (F) ∩ w−1 Ň−(F)w with Ň (resp. Ň−) being the unipotent radical
of the Borel subgroup B̌ (resp. B̌−).

There are two bases of I (τ )I . The first basis {ϕτ
w|w ∈ W }, which is called the

standard basis, is induced by the following decomposition

1The result also holds for F = Fq ((t)).
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Ǧ(F) = �w∈W B̌(F)w I.

That is, ϕτ
w is characterized by the following conditions:

(1) ϕτ
w is supported on B̌(F)w I ;

(2) ϕτ
w(bwg) = τ (b)δ1/2(b) for any b ∈ B̌(F), g ∈ I .

The other basis { f τ
w |w ∈ W }, which is the so-called Casselman’s basis [18], is char-

acterized by
Aτ

v( f
τ
w)(1) = δv,w.

These bases played an important role in the computation of the Macdonald spher-
ical function [18] and the Casselman–Shalika formula for the spherical Whittaker
function [19].

5.2 The Comparison

Since τ is an unramified character of Ǎ, it is equivalent to a point τ ∈ A. Therefore,
we can evaluate the base ring KA(pt) at τ ∈ A. We let Cτ denote this evaluation
representation of KT (pt) = KA×C∗(pt). For any F ∈ KA×C∗(T ∗B), let F−ρ denote
F ⊗ L(−ρ).

Now we can state the relation between these bases. The following theorem is a
shadow of the two geometric realizations of the affine Hecke algebra

KG×C∗(Z) � H � Cc[I\Ǧ(F)/I ].

We refer the readers to [44, Sects. 8.2 and 8.3] for a more precise statement of the
following theorem.

Theorem 5.1 ([44, Theorem 8.4]) There is a unique isomorphism of right H-
modules

� : KA×C∗(T ∗B)⊗KA×C∗ (pt) Cτ → I (τ )I ,

such that the equivariant parameter q is mapped to the cardinality of the residue
field Fq and

q�(w)

∏
β>0,wβ>0(1− ewβ)

∏
β>0,wβ<0(q − ewβ)

(ιw∗1)−ρ #→ f τ
w,

(stab−w)−ρ #→ q−�(w)/2ϕτ
w.

As applications of this theorem, in [44], we showed that the leftWeyl group action on
theK-theory side corresponds to the suitably normalized intertwiners on the represen-
tation theory side [44, Corollary 8.6], and provided some K-theoretic interpretations



214 C. Su and C. Zhong

of Macdonald’s formula [18] [44, Theorem 8.8] and the Casselman-Shalika formula
[19] [44, Theorem 8.11].

It is an interesting question to study the transition matrix between the two bases
in I (τ )I . Define the following transition matrix coefficients mu,w by

∑

w≥u
ϕw =

∑

w∈W
mu,w fw.

For instance, the following special case

mid,w =
∏

α>0,w−1α<0

1− q−1eα(τ )

1− eα(τ )

is the Gindikin-Karpelevich formula.
The authors of [4] used Theorems 5.1, 4.1 and some functorial properties for the

motivic Chern classes to prove the following conjectures of Bump, Nakasuji and
Naruse [17, 32].

Theorem 5.2 ([4]) For any u ≤ w ∈ W,

(1)

mu,w =
∏

α>0,u≤sαw<w

1− q−1eα(τ )

1− eα(τ )
,

if and only if the Schubert variety Y (u) is smooth at the torus fixed point ew.
(2) As a rational function of τ ∈ A, the product

∏

α>0,u≤sαw<w

(1− eα)mu,w

has no poles on the maximal torus A.

6 Wall Crossings for the Stable Bases

Note that the definition of the stable bases depend on the alcoves in h∗
R
. Stable bases

for different alcoves are related by the so-called wall R-matrices[37]. In this section,
we study the wall R-matrices for the Springer resolution, which will be used for the
categorification in the next section. The main reference for these two sections is [45].



Stable Bases of the Springer Resolution and Representation Theory 215

6.1 Wall Crossing Matrix

By uniqueness of the stable basis, it is immediate to see that for any μ ∈ �,

stabC,T 1/2,∇+μ
y = e−yμLμ ⊗ stabC,T 1/2,∇

y . (8)

Because of this property, instead of crossing all the walls on Hα∨,n , it is enough to
just cross the walls on the 0 hyperplanes Hα∨,0. From now on, let ∇1, ∇2 be two
alcoves sharing a wall on Hα∨,0, and (λ1,α

∨) > 0 for any λ1 ∈ ∇1.
Another useful fact is [37, Theorem 1]:

stabC,T 1/2,∇2
y =

{
stabC,T 1/2,∇1

y + f ∇2←∇1
y stabC,T 1/2,∇1

ysα , if ysα ≺C y;
stabC,T 1/2,∇1

y , if ysα %C y,

where f ∇2←∇1
y ∈ KT (pt).

Then we have

Theorem 6.1 ([45]) For any y ∈ W, we have

stabC,TB,∇2
y =

{
stabC,TB,∇1

y +(q1/2 − q−1/2) stabC,TB,∇1
y , if ysα ≺C y;

stabC,TB,∇1
y , if ysα %C y.

stab−C,T ∗B,∇2
y =

{
stab−C,T ∗B,∇1

y +(q1/2 − q−1/2) stab−C,T ∗B,∇1
y , if ysα %C y;

stab−C,T ∗B,∇1
y , if ysα ≺C y.

This theorem is firstly proved when α is a simple root, by computing the action of
Tα and T ′α on the stable basis stabC,TB,∇

y and stab−C,T ∗B,∇
y for any alcove ∇. That is,

we use rigidity to obtain a general version of Theorem 3.3. For the non-simple root
case, we use the following equality [4] to reduce to the simple root case

w(stabC,TB,∇
y ) = stabwC,TB,∇

wy , (9)

where theLHSof the equation abovedenotes the left actionofw ∈ W on stabC,TB,∇
y ∈

KT (T ∗B).

6.2 Wall Crossing and Affine Hecke Algebra Actions

Combining Theorems3.3 and 6.1, we get the following general formulae, which
show that the wall crossing matrices and the affine Hecke algebra action (see Sect. 3)
are compatible.
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Theorem 6.2 ([45]) For any x, y ∈ W, we have

stabC−,T ∗B,x∇+
y = q−1/2x Tx (stabC−,T ∗B,∇+

yx ); (10)

stabC+,TB,x∇−
y = q1/2

x (T ′x−1)
−1(stabC+,TB,∇−

yx ). (11)

Therefore, Theorem 3.3, Eqs. (8) and (11) determine all the stable basis stabC+,TB,∇
y

for the dominant Weyl chamber C+. The stable basis for the other chambers can be
computed by Eq. (9). Thus all the stable basis element stabC,TB,∇

y can be calculated.
For general symplectic resolutions, Bezrukavnikov and Okounkov [11, 35] con-

jecture that the representation coming from the derived equivalence is isomorphic to
themonodromy representation coming from quantum cohomology. Themonodromy
matrices of the quantum connection of T ∗B is computed in [16, 20]. The above the-
orem shows that the monodromy matrices coincide with the wall R-matrices for the
K stable bases. The relation to derived equivalences is explained in the next section.

7 Categorification and Localization in Positive
Characteristic

In this final section,we give a categorification of the stable bases, and study its relation
with representation of g over positive characteristic fields under the localization
equivalence of Bezrukavnikov, Mirković and Rumynin [9, 10].

7.1 Categorification of the Stable Basis via Affine Braid
Group Action

Let Baff (resp. B ′aff ) be the affine braid group (resp. the extended affine braid group)
with generators s̃α,α ∈ Iaff .

Let GZ be a split Z-form of the complex algebraic group G and AZ ⊂ BZ ⊂ GZ

be the maximal torus and a Borel subgroup, respectively. Let TZ = AZ ×Z (Gm)Z.
Bezrukavnikov and Riche constructed an extended affine braid group action on
Db

TZ
(T ∗BZ) := Db CohTZ(T ∗BZ) [12, 38], denoted by JR

w̃ , w̃ ∈ B ′aff (here R denotes
the right action). Inspired by Theorem 6.2, we give the following definition.

Definition 7.1 Let λ ∈ �Q be regular. We define stabZ

λ(y) ∈ Db
TZ

(T ∗BZ), y ∈ W
as follows:

stabZ

λ0
(id) = L−ρ ⊗OT ∗idBZ

, λ0 ∈ ∇−,

stabZ

λ0
(y) = JR

ỹ stab
Z

λ0
(id), λ0 ∈ ∇−,

stabZ

λ(y) = (JR
x̃ )−1stabZ

λ0
(yx), y, x ∈ W, xλ0 = λ,λ0 ∈ ∇−,

stabZ

λ(y) = e−yμ JR
μ stab

Z

λ1
(y), y ∈ W,μ+ λ1 = λ,μ ∈ Q,λ1 ∈ W∇−.
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As an immediate corollary of Theorems3.3, 6.2, Eq. (8) and [12, Theorem 1.3.1,
Proposition 1.4.3, Theorem 1.6.1], we have the following theorem, which gives a
categorification of the stable basis.

Theorem 7.2 [45]Applying the derived tensor−⊗L
Z

C to stabZ

λ(w) ∈ Db
TZ

(T ∗BZ),
and taking the class in the Grothendieck group, we get L−ρ ⊗ stabC+,TB,∇

w ∈ KT

(T ∗B), where ∇ is the alcove containing λ.

7.2 Verma Modules in Positive Characteristic

In this section, we briefly sketch the relation between the K-theory stable bases
and Verma modules for Lie algebras over positive characteristic fields. We refer the
readers to [45, Sect. 9] for the details.

We consider the level-p configuration of ρ-shifted affine hyperplanes, that is,
H p

α∨,n = {μ ∈ �Q|〈α∨,μ+ ρ〉 = np}. Let A0 be the fundamental alcove, i.e., it
contains (ε− 1)ρ for small ε > 0. Let W act on � via the level-p dot action,
w : μ #→ w • μ = w(μ+ ρ)− ρ.

Let k be an algebraically closed field of characteristic p, and p is greater than
the Coxeter number. For any k-variety X , let X (1) be the Frobenius twist. Let U (gk)
be the universal enveloping algebra of gk with the Frobenius center O(g

∗(1)
k ) and

the Harish-Chandra centerO(h∗k/(W, •)). Let λ ∈ h∗k be regular (i.e., does not lie on
any hyperplane H p

α∨,n) and integral (i.e., belongs to the image of the derivative d :
� → h∗k ). LetU (gk)

λ be the quotient ofU (gk) by the central ideal corresponding to
W • λ ∈ h∗k/(W, •). LetModχ(U (gk)

λ) be the category of finitely generatedU (gk)
λ-

modules on which the Frobenius center O(g
∗(1)
k ) acts by the generalized character

χ ∈ g
∗(1)
k .

Let Dλ be the ring of Lλ-twisted differential operators on B, and Db(Cohχ Dλ)

be the full subcategory of coherent Dλ-modules that are set-theoretically supported
on B(1)

χ as a coherent sheaf on T ∗B(1)
k , where B(1)

χ is the Springer fiber. Then the
global section functor R�Dλ,χ : Db(Cohχ Dλ) → Db(Modχ U (gk)

λ) is an equiva-
lence according to [10, Theorem 3.2], whose inverse is denoted by Lλ0 . Let T ∗B(1)∧

χ

be the completion of T ∗B(1) atB(1)
χ . Then for all integralλ ∈ h∗, theAzumaya algebra

Dλ splits on T ∗B(1)∧
χ [10, Theorem 5.1.1]. In particular, there is aMorita equivalence

CohB(1)
χ

(T ∗B(1)) ∼= Cohχ Dλ.

The equivalence above depends on the choice of a splitting bundle of Dλ [10,
Remark 5.2.2]. As has been done in [8, 12], for λ0 ∈ A0, we normalize the choice of
the splitting bundle by [9, Remark 1.3.5]. In this section, we denote this splitting bun-
dle by E s . That is, EndT ∗B(1)∧

χ
(E s) ∼= Dλ0 |T ∗B(1)∧

χ
. This bundle fixes the equivalence

CohB(1)
χ

(T ∗B(1)) ∼= Cohχ Dλ0 . Composing this equivalence with Lλ0 , we have
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γλ0
χ : Db Modχ(U (gk)

λ0) ∼= Db CohB(1)
χ

(T ∗B(1)), (12)

which is also referred to as the localization equivalence.
Let U (gk)

λ0
χ be the completion of U (gk)

λ0 at the central character χ ∈ N (1)
k .

Then, EndT ∗B(1)∧
χ

(E s) ∼= U (gk)
λ0
χ . The localization functor γλ0

χ can then be written as
⊗U (gk )

λ0
χ
E s .We also have the completed version of the equivalence [12,Remark 2.5.5]

γλ0
χ : Db Mod(U (gk)

λ0
χ ) ∼= Db Coh(T ∗B(1)∧

χ ).

From now on we consider the case χ = 0. In this case, we abbreviate γλ0
χ simply

as γλ0 , and the twisted Springer fiber B(1)
χ is the zero section B(1) ⊆ T ∗B(1).

The bundle E s on T ∗B(1)∧
0 has a natural Tk-equivariant structure [8, § 5.2.4], where

Tk = Ak × (Gm)k .Taking the ring of endomorphisms, we get a Tk-action onU (gk)
λ0
0

compatible with that on N (1). In particular, the (Gm)k ⊆ Tk-action provides a non-
negative grading on U (gk)

λ0
0 , referred to as the Koszul grading. The localization

equivalences above can be made into equivalences of equivariant categories. Let
Modgr0 (U (gk)

λ0 , Ak) be the category of finite-dimensional Koszul-graded modules
of U (gk)

λ0
0 , which are endowed with compatible actions of the subgroup Ak ⊆ Gk .

The compatibility is in the sense that the action of Ak differentiates to the action of
the subalgebra hk ⊆ gk . Then, we have [8, Theorem 1.6.7]

γλ0 : Db Modgr0 (U (gk)
λ0 , Ak) ∼= Db

Tk CohB(1)
k

(T ∗B(1)
k ),

and the completed version

γλ0 : Db Modgr(U (gk)
λ0
0 , Ak) ∼= Db

Tk Coh(T
∗B(1)∧

0 ).

By the functor of taking finite vectors, we get [8, Theorem 5.1.1]

γλ0 : Db Modgr(Aλ0 , Ak) ∼= Db
Tk Coh(T

∗B(1)
k ).

Here Aλ0 is an ON (1) -algebra endowed with a compatible Ak × (Gm)k-action, and
it has the property that (Aλ0)∧0 ∼= U (gk)

λ0
0 . Using the correspondence given by taking

completion and takingfinite vectors,wewill freely pass betweenModgr(U (gk)
λ0
0 , Ak)

and Modgr(Aλ0 , Ak); similarly for Db
Tk
Coh(T ∗B(1)∧

0 ) and Db
Tk
Coh(T ∗B(1)

k ).
For any λ in the W ′

aff -orbit of λ0, we can define the localization functor

γλ : Db Modgr(Aλ0 , Ak) ∼= Db
Tk Coh(T

∗B(1)
k ).

by precomposing with the affine braid group action functors [45, Sect. 9.3].
For the Lie algebra bk , recall the Verma module Zb(λ) := U (g)⊗U (b) kλ. Then

we have
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Theorem 7.3 ([45]) Let k be an algebraically closed field of characteristic p, and
p is greater than the Coxeter number. Assume λ to be regular and integral, then in
Db

Tk
(T ∗B(1)

k ), we have isomorphisms

eρstabk− λ+ρ
p

(y) ∼= γλZb(y • λ+ 2ρ),

where stabk− λ+ρ
p

(y) = stabZ

− λ+ρ
p

(y)⊗L
Z
k.

To prove this theorem, one needs to use the affine braid group action onModχ U (gk)
λ

constructed in [9], which iteratively produces all the Verma modules [25], and also
its compatibility with the localization equivalences γλ. Together with the iterative
definition of stabk

Z
(y), the theorem follows.
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Characteristic Classes of Orbit
Stratifications, the Axiomatic Approach

László M. Fehér, Richárd Rimányi, and Andrzej Weber

Abstract Consider a complex algebraic group G acting on a smooth variety M
with finitely many orbits, and let � be an orbit. The following three invariants
of � ⊂ M can be characterized axiomatically: (1) the equivariant fundamental
class [�, M] ∈ H∗

G(M), (2) the equivariant Chern–Schwartz–MacPherson class
csm(�, M) ∈ H∗

G(M), and (3) the equivariant motivic Chern class mC(�, M) ∈
KG(M)[y]. The axioms forChern–Schwartz–MacPherson andmotivicChern classes
are motivated by the axioms for cohomological and K-theoretic stable envelopes of
Okounkov and his coauthors. For M a flag variety and � a Schubert cell—an orbit
of the Borel group acting—this implies that CSM and MC classes coincide with the
weight functions studied by Rimányi–Tarasov–Varchenko. In this paper we review
the general theory and illustrate it with examples.

Keywords Equivariant characteristic classes · Chern–Schwartz–MacPherson
class · Motivic Chern class · Schubert classes · Axiomatic characterisation

1 Introduction

An effective way of studying the subvariety X of a smooth complex variety M is
assigning a characteristic class to X ⊂ M , living in the cohomology or K-theory of
the ambient space M . When M is a G-representation and X is invariant, then the
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characteristic class can be considered in the richer G-equivariant cohomology or
K-theory of M .

In this paper we consider three flavors of characteristic classes: the fundamental
class (in cohomology), the Chern–Schwartz–MacPherson (CSM) class (in cohomol-
ogy) and themotivic Chern class (MC class) in K-theory. These characteristic classes
encode fine geometric and enumerative properties of X ⊂ M , and their theory over-
laps with the recent advances relating geometry with quantum integrable systems.

We will be concerned with the following situation: a complex algebraic group G
acts on a smooth variety M with finitely many orbits, and we want to find the char-
acteristic classes listed above associated to the orbits or their closures. This situation
is frequent in Schubert calculus and other branches of enumerative geometry. By the
nature how characteristic classes are defined, such calculation assumes resolutions of
the singularities of the orbit closures. Themainmessage of the theoremswe review in
Sects. 2, 3, 4, is that such a resolution calculation can be replaced with an axiomatic
approach for all three types of classes mentioned above. For the fundamental class
this fact has been known for two decades [16, 29], but for the other two mentioned
classes this is a very recent development stemming from the notion of Okounkov’s
stable envelopes [23, 27].

As an application of the axiomatic approach the characteristic classes of ordinary
and matrix Schubert cells can be computed (in type A, for arbitrary partial flag
manifolds)—we present the formulas in Sect. 5. For the motivic Chern class one
of the axioms concerns convex geometry, namely the containment of one convex
polytope in another one. Throughout our expositionwe try to illustrate this fascinating
connection between complex geometry and the theory of convex polytopes with 2-
and 3-dimensional pictures.

It is a classical fact that characteristic classes of geometrically relevant varieties
often exhibit positivity (or alternating sign) properties. Having computed lots of
examples of equivariant motivic Chern classes, we observe these properties for the
motivic Chern class as well. In Sect. 6 we collect three different positivity conjectures
onMCclasses of Schubert cells. One of these conjectures is aK-theoretic counterpart
of properties of CSM classes studied by Aluffi–Mihalcea–Schürmann–Su [2, 3].
Another one of our conjectures is a newphenomenon for characteristic classes: not the
sign of some coefficients are conjectured, but rather that the coefficient polynomials
are log-concave, cf. [21].

We finish the paper with studying the characteristic classes of varieties in the
source and in the target of aGITmap.The fundamental class of an invariant subvariety
and the fundamental class of its image under the GIT map are essentially the same
(more precisely, one lives in a quotient ring, and the other one is a representative of it).
A familiar fact illustrating this phenomenon is that the fundamental class of both the
matrix Schubert varieties and the ordinary Schubert varieties are the Schur functions.
However, for the CSM and the MC classes the situation is different: these classes
before and after the GIT map are not the same (or rather, one does not represent the
other). Yet, there is direct relation between them, which we prove in Sect. 8.

The goal of most of this paper is to review and illustrate concepts, although in
Sect. 4.4 we complement a proof of [19] with an alternative argument. The mathe-
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matical novelties are the conjectures in Sect. 6, the careful treatment of the pull-back
property of motivic Segre classes in Sect. 8.1, and its consequence, Theorem 8.12
which relates motivic Segre classes of varieties in the source and in the target of a
GIT quotient.

2 Fundamental Class in Equivariant Cohomology

By equivariant cohomology we will mean Borel’s version, developed in [8]. Our
general reference is [9].

Suppose a complex algebraic group G acts on the smooth complex algebraic
variety M . Suppose also that the action has finitely many orbits, and letO be the set
of orbits. For an orbit � ∈ O let G� denote the stabilizer subgroup of a point in �.
Then additively we have

H∗
G(M; Q) �

⊕

�∈O
H∗−2 codim(�)

G (�; Q).

Thedecompositionholds because each cohomologygroupH∗
G(�; Q) � H∗(BG�; Q)

is concentrated in even degrees. Suppose further that the normal bundle ν� of each
orbit � has nonzero equivariant Euler class

e(ν�) �= 0 ∈ H∗
G(�; Q). (1)

Then a class in H∗
G(M; Q) is determined by the restrictions to orbits, cf. [6, Sect.

9]. The topic of this paper is that certain characteristic classes associated with orbits
are determined by less information: they are determined by some properties of their
restrictions to the orbits.

Example 2.1 For M = C, G = C∗ with the natural action on C. We have the short
exact sequence

0 −→ H∗−2
C∗ ({0}, Q) −→ H∗

C∗(C; Q) −→ H∗
C∗(C∗; Q) −→ 0.

‖ t · ‖ evt=0 ‖
Q[ t ] Q[ t ] Q

In this example the restriction to {0} is obviously an isomorphism. In general, when
M is an equivariantly formal space (see [20]) and G is a torus, then the restriction to
the fixed point set is a monomorphism.

The most natural characteristic class associated to an orbit � is the fundamental
class of its closure, which we will denote by [�] = [�, M] ∈ H∗

G(M, Q). In an
appropriate sense, it is the Poincaré dual of the homology fundamental class of �.
Such classes are studied in Schubert calculus under the name of Schubert classes, in
singularity theory under the name of Thom polynomials, and in the theory of quivers
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under the name of quiver polynomials. Here is an axiomatic characterization of the
equivariant fundamental class, which leads to an effective method to calculate them.

Theorem 2.2 ([16, 29]) Suppose M has finitely many G-orbits and (1) holds.
Then the equivariant fundamental classes of orbit closures are determined by the
conditions:

(i) (support condition) the class [�] is supported on �;
(ii) (normalization condition) [�]|� = e(ν�);
(iii) (degree condition) deg([�]) = 2 codim(�).

We obtain an equivalent system of conditions if we replace condition (i) with any of
the following two:

(iv) (homogeneous equations, ver1) [�]|� = 0, if � �⊂ �,
(v) (homogeneous equations, ver2) [�]|� = 0, if codim(�) ≤ codim(�), � �= �.

We also obtain an equivalent system of conditions if we replace condition (iii) with

(vi) (modified degree condition) deg([�])|� < deg([�])|� for � �= �.

�

The advantage of (iv) or (v) over (i) is that they are local conditions, and hence
explicitly computable. The modified degree condition is only added to illustrate the
similarity with analogous characterizations of other characteristic classes in Sects. 3,
4.

Example 2.3 LetG = GL2(C) × GL3(C) act on the vector space Hom(C2, C3) via
(A, B) · X = BX A−1. The orbits of this action are�i = {X : dim(ker(X)) = i} for
i = 0, 1, 2. The fundamental class [�1] is a homogeneous degree 2 polynomial in
Z[a1, a2, b1, b2, b3]S2×S3 (where deg ai = deg bi = 1). The constraints put on this
polynomial by the conditions of Theorem 2.2 are φ0([�1]) = 0 (condition (v)) and
φ1([�1]) = (b2 − a2)(b3 − a2) (condition (ii)), where φ0 is the “restriction to �0”
map, namely a1 
→ t1, a2 
→ t2, b1 
→ t1, b2 
→ t2, b3 
→ b3, and φ1 is the “restric-
tion to �1” map, namely a1 
→ t1, a2 
→ a2, b1 
→ t1, b2 
→ b2, b3 
→ b3. Calcula-
tion shows that the only solution to these two constraints is [�1] = A2

1 − A2 + B2 −
A1B1, where Ai ’s (Bi ’s) are the elementary symmetric polynomials of the ai ’s (bi ’s).

More details on this calculation as well as on analogous calculations for ‘similar’
representations (e.g. Dynkin quivers, �2Cn , S2Cn) can be found e.g. in [15–17].
However, these fundamental classes can also be computed by other methods (reso-
lutions, degenerations). The real power of Theorem 2.2 is that it is applicable even in
situations where deeper geometric information such as resolutions or degenerations
are not known—e.g. contact singularities, matroid representations spaces, see [14,
29].
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3 Chern–Schwartz–MacPherson Classes of Orbits

Another cohomological characteristic class associated with an invariant subset X of
M is the Chern–Schwartz–MacPherson (CSM) class csm(X, M) ∈ H∗

G(M; Q), see
e.g. [2, 22, 25, 39] for foundational literature and [18] for the version we consider.
The CSM class is an inhomogeneous class, whose lowest degree component equals
the fundamental class [X , M].

In general CSM classes are defined for (equivariant) constructible functions on
M . Here we will only consider CSM classes of locally closed invariant smooth
subvarieties of M (corresponding to the indicator functions of such varieties).

According to Aluffi [1] the CSM classes can be calculated along the following
lines: one finds Y a partial completion of X which maps properly to M and such that
Y \ X is a smooth divisor with simple normal crossings D = ⋃m

i=1 Di . That is, we
have a diagram

X ′

�

Y

f

X M

where f is a proper map. Then

csm(X, M) = f∗

⎛

⎝c(TY ) −
∑

i

c(TDi ) +
∑

i< j

c(TDi∩Dj ) − · · ·
⎞

⎠ . (2)

In our situation, this method demanding knowledge about a resolution, can be
replaced with an axiomatic characterization.

For an orbit � ⊂ M let x� ∈ �, and let G� be the stabilizer subgroup of x�.
Denote T� = Tx�

�, and ν� = Tx�
M − T� as G�-representations. By the degree of

an inhomogeneous cohomology class a = a0 + a1 + · · · + ad with ai ∈ Hi
G(�) and

ad �= 0 we mean d.

Theorem 3.1 ([18, 34]) Suppose M has finitely many G-orbits and (1) holds. Then
the equivariant CSM classes of the orbits are determined by the conditions:

(i’) (divisibility condition) for any � the restriction csm(�, M)|� is divisible by
c(T�) in H∗

G(�; Q);
(ii’) (normalization condition) csm(�, M)|� = e(ν�)c(T�);
(iii’) (smallness condition) deg(csm(�, M)|�) < deg(csm(�, M)|�) for � �= �.

�

Example 3.2 Continuing Example 2.3, let us calculate csm(�1). It is an
inhomogeneous polynomial in Z[a1, a2, b1, b2, b3]S2×S3 . The constraints put on this
polynomial by the conditions of Theorem 3.1 are φ0(csm(�1)) = 0, φ1(csm(�1)) =
(b2 − a2)(b3 − a2)(1 + b2 − t1)(1 + b3 − t1)(1 + t1 − a2), anddeg(φ2(csm(�1))) <
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6.
Here φ1, φ2 are as in Example 2.3, and φ3 is the “restriction to �2” map which
turns out to be the identity map. Calculation shows that the unique solution to these
constraints is (see notations in Example 2.3)

csm(�1) = (A1 − A2 + B2 − A1B1) + (−A31 + 2A21B1 − A1B
2
1 − A1B2 + B1B1 − B3)+

· · · + (−3A1A
2
2 + · · · + 2B2B3).

Details on such calculations, other examples of interpolation calculations of CSM
classes, as well as more conceptual ways of presenting the long CSM polynomials
are in [18, 28].

4 Characteristic Classes in Equivariant K-Theory

4.1 The Motivic Chern Class

We consider the topological equivariant K-theory constructed by Segal [36] or
Thomason’s algebraic K-theory, see [13, Sect. 5]. It is compatible with the K-theory
built from locally free sheaves for algebraic varieties. As before we have a decom-
position

KG(M) �
⊕

�∈O
KG(�)

and KG(�) is isomorphic with the representation ring R(G�).
The analogue of the Euler class of a vector bundle E in K-theory is provided by

the λ-operation

eK (E) = λ−1(E
∗) = 1 − E∗ + �2E∗ − �3E∗ + · · · .

It has the property that for any submanifold ι : N ↪→ M and an element β ∈ KG(N )

over N we have
ι∗ι∗(β) = eK (νN ) · β .

The total Chern class in K-theory is defined by

cKG (E) = λy(E
∗) = 1 + yE∗ + y2�2E∗ + y3�3E∗ + · · · ∈ KG(M)[y] .

Note that, both in cohomology and K-theory, the total Chern class can be interpreted
as the Euler class of the bundle E which is equivariant with respect to G × C∗,
where C∗ acts on the base trivially, but acts on the bundle by scalar multiplication.
Identifying KG×C∗(M) with KG(M)[h, h−1] and setting y = −h−1 we obtain
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cKG (E) = eKG×C∗(E) .

We will drop the subscript G in the notation, as we do for cohomological Chern
classes.

Our next characteristic class defined for a locally closed subvariety X in the smooth
ambient space M is the motivic Chern class (MC class) mC(X, M) ∈ KG(M)[y],
see [10]. In fact this class is defined more generally for maps X → M but we will
not need this generality here. The G-equivariant MC class

mC(X, M) ∈ KG(M)[y]

is a straightforward generalization, see details in [4, 19].
Anaturalmethod to calculate themotivicChern class of a locally closed subvariety

X ⊂ M is through the K-theoretic analogue

mC(X, M) = f∗

⎛

⎝cK (TY ) −
∑

i

cK (TDi ) +
∑

i< j

cK (TDi∩Dj ) − · · ·
⎞

⎠ (3)

of the formula (2).

4.2 Axiomatic Characterization of MC Classes

In certain situations the resolution method (3) can be replaced with an axiomatic
characterization, which we will now explain in several steps.

Theorem 4.1 ([19, Corollary 4.5, Lemma 5.1]) Suppose M has finitely many G-
orbits. Then the equivariant MC classes of the orbits satisfy the conditions:

(i”) (support condition) the class mC(�, M) is supported on �;
(ii”) (normalization condition) mC(�, M)|� = eK (ν�)cK (T�);
(iii”) (smallness condition)N (mC(�, M)|�) ⊆ N (mC(�, M)|�) [see explanation

below];
(iv”) (the divisibility condition) for any � the restriction mC(�, M)|� is divisible

by cK (T�) in KG(�)[y].
�

In fact, the local condition (iv”) implies the condition (i”), and it also implies the
obvious condition

(v”) mC(�, M)|� = 0 if � �⊂ �.

The K-theoretic version of the condition (1) follows from (iii’).
Let us give a precise formulation of the smallness condition (iii”). The classes

mC(�, M)|� and mC(�, M)|� belong to KG(�)[y] = R(G�)[y]. Restrict these
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classes to the representation ring R(T�)[y], where T� is a maximal torus of G�.
For a chosen isomorphism T� = (C∗)r we have R(T�)[y] = Z[α±1

1 , . . . ,α±1
r , y]

where αi are the K-theoretic Chern roots corresponding to the factors of (C∗)r . The
Newton polygon of β = ∑

I aI (y)z
I ∈ R(T�)[y] (multiindex notation) is

N (β) = convex hull {I ∈ Rr : aI (y) �= 0},

in particular, for this notion the parameter y is considered a constant, not a variable.
The definition of N depends on the chosen isomorphism between R(T�)[y] and
Z[z±1

1 , . . . , z±1
r , y]. Different such choices result in linearly equivalent convex poly-

gons. The smallness condition compares two such Newton polygons, of course the
same isomorphism need to be chosen for the two sides.

Example 4.2 If M = C, G = C∗ with the natural action on C we have a short exact
sequence

0 −→ KC∗({0}) −→ KC∗(C) −→ KC∗(C∗) −→ 0
‖ (1−ξ−1)· ‖ evξ=1 ‖

Z[ξ, ξ−1] Z[ξ, ξ−1] Z

In this example the restriction to {0} is an isomorphism. We have

mC(C∗, C) = (1 + y)ξ−1 , mC({0}, C) = 1 − ξ−1

and
N (mC(C∗, C))|0 = {−1} , N (mC({0}, C))|0 = [−1, 0].

Example 4.3 Consider the standard action of G = SL2(C) on C2. Then we have

N (mC(C2 \ {0}, C2))|0 = N (mC({0}, C2))|0 = [−1, 1] .

Examples 4.2, 4.3 show that the inclusion ofNewton polygons in (iii”)mayormay
not be strict. However for an interesting class of actions the inclusion is necessarily
strict.

Property 4.4 (cf. [19, Definition 4.4])We say that the action is positive, if for each
orbit �, x ∈ � there exists a one dimensional torus C∗ ↪→ Gx which acts on the
normal space (ν�)x with positive weights.

Note that Property 4.4 implies that 0 is a vertex of theNewton polygonN (eK (ν�))

because eK (ν�)x = ∏codim(�)
i=1 (1 − χ−1

i ), where χi are the weights of T� acting on
(ν�)x . In particular eK (ν�) �= 0. Let “+” denote the Minkowski sum of polygons.

Theorem 4.5 ([19, Theorem 5.3]) Suppose that the action of G on M has Property
4.4. Then the inclusion in (iii”) is strict. Moreover, for any pair of different orbits
�,� we have

(vi”) N (mC(�, M)|�) ⊆ N (eK (ν�) − 1) + N (cK (T�)) � N (mC(�, M)|�).
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A reformulation of condition (vi”) is that N (mC(�, M)|�) is contained
in N (mC(�, M)|�) in such a way that the origin is a vertex of N (mC(�, M)|�),
but it is not contained in N (mC(�, M)|�).

Additionally assuming that the stabilizers G� are connected guarantees that an
element β ∈ KT(M) is determined by the restrictions to orbits, and we obtain

Theorem 4.6 ([19, Theorem 5.5]) If the action of G on M has finitely many orbits,
it is positive, and the stabilizers are connected, then the conditions (ii’), (iv”), (vi”)
determine mC(�, M) uniquely.

Example 4.7 The Borel subgroup Bn of GLn(C) acts on the full flag variety Fl(4)
with finitely many orbits. The Newton polygon containment (ie. smallness condition
(iii”)) for two of the orbits,� = �({3},{4},{1},{2}) and� = �({3},{4},{2},{1}), is illustrated
below. For more details about the orbits of this action, their combinatorial codes,
and their MC classes see Sect. 7. The description of the Borel-equivariant K-theory
of flag varieties can be found in [13, Sect. 6] or in [38]. The figure below illustrates
(Newton polygons of) the twoMC classes, restricted to KBn (�)[y] = KT�

(pt)[y]. It
turns out thatT� = (C∗)4 and hence the two Newton polygons live inR4. Moreover,
both Newton polygons turn out to be contained in a 3-dimensional subspace (sum of
coordinates= 0). Hence the picture shows 3-dimensional convex polytopes.

In blue—Newton polygon of eK (ν�) = λ−1(ν
∗
�).

Arrow in red—cotangent weight T ∗
�.

In solid violet—Newton polygon of mC(� ∩ S�), where S� is a slice to �.
Edges in violet—Newton polygon of mC(�).

Remark 4.8 Our smallness conditions (iii”) and (vi”) are motivated by the analo-
gous smallness condition forK-theoretic stable envelopes invented byOkounkov, see
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[27, (9.1.10)]. There is, however, a difference. In Okounkov’s smallness condition
the strictness of the inclusion of Newton polygons is guaranteed by the fact that the
small Newton polygon can be shifted slightly within the large Newton polygon, see
the first picture below. In fact, in the terminology of [27], the inclusion holds for
an open set (interior of an alcove) of “fractional shifts”. However, such a “wiggle
room” for the inclusions does not necessarily exist for MC classes, see the sec-
ond and third pictures below. The second picture illustrates the smallness condition
(iii”) (or (vi”)) for the standard representation GL2(C) on C2 with � = C2 − {0},
� = {0}. The third picture illustrates smallness condition (iii”) (or (vi”)) for the
natural GL2(C) × GL2(C)-representation on Hom(C2, C2) (a.k.a. A2 quiver rep-
resentation with dimension vector (2, 2)) with � = {rank 1 maps} and, � = {0}.

4.3 The Key Idea of the Proof of Theorem 4.1

At the heart of the arguments proving the statements of Sect. 4.2 is showing that
conditions (iii”) and (vi”) hold. The crucial step in the proof is the special case
when � is a point. To test an inclusion of Newton polygons it is enough to restrict
an action to each one dimensional torus T0 = C∗ ↪→ T, with KT0(pt) = Z[ξ, ξ−1].
The argument reduces to examining the limit

lim
ξ→∞

mC(�, M)�

eK (ν�)
. (4)

We prove that the limit is equal to

χy(� ∩ M−
�) ,

where M−
� is the Białynicki-Birula minus-cell associated to �, (see [7] or [12, Sect.

4.1])
M−

� = {x ∈ M | lim
t→∞ t x ∈ �} , (5)



Characteristic Classes OF Orbit Stratifications, the Axiomatic Approach 233

and χy is the Hirzebruch χy-genus. The proof of this statement in full generality is
given in [41] and in the particular cases needed in the proof of Theorem 4.6 in [19,
Theorem 5.3].

Since the limit (4) is finite the degree of the denominator is at least the degree of
the numerator. This observation leads to the proof of (iii”). Moreover, if the action
is positive then the limit is equal to χy(∅) = 0, thus the degree of the denominator
must be strictly larger than the degree of the numerator. This observation leads to the
proof of (vi”).

4.4 Strict Inclusion for Homogeneous Singularities

In this section we give a rigorous alternative argument proving the containment
property (iii”) of Newton polygons of mC classes. We believe that it sheds more
light on this intriguing connection between algebraic and convex geometry.

SupposeT = C∗ acts on a vector spaceM = Cn via scalarmultiplication. Let� ⊂
Cn be an invariant subvariety, where 0 /∈ �. Denote by Z ⊂ Pn the projectivization
of �. We have a diagram

�′

�

C̃n

p

q
Pn−1

ι

Z

� Cn

where C̃n is the blow-up of Cn at 0 and ι : Pn−1 → C̃n is the inclusion of the special
fiber, �′ = q−1(Z) \ ι(Z). Let h = [O(1)] ∈ K (Pn−1). Then

mC(�′, C̃n)|Pn−1

λ−1(ν
∗
Pn−1/C̃n )

=
(
1 + yξ−1h

1 − ξ−1h
− 1

)
mC(Z , Pn−1) = (1 + y)ξ−1h

1 − ξ−1h
mC(Z , Pn−1) .

Applying the localization formula for the map p we obtain

mC(�, Cn)

eK (Cn)
= p∗

(
(1 + y)ξ−1h

1 − ξ−1h
mC(Z , Pn−1)

)
. (6)

Let u = h−1 − 1 ∈ K (Pn−1). Note that un = 0. We have the expansion

(1 + y)ξ−1h

1 − ξ−1h
= (1 + y)ξ−1

1 + u − ξ−1
= (1 + y)ξ−1

(1 − ξ−1)(1 + u
1−ξ−1 )

= (1 + y)ξ−1

1 − ξ−1

(
1 − u

1 − ξ−1
+ · · · + (−1)n−1 un−1

(1 − ξ−1)n−1

)
.

The expression under the push-forward p∗ in (6) is of the form
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1

(1 − ξ−1)n
P(u, ξ−1, y) .

The polynomial P is of degree at most n in ξ−1, at most n − 1 in u and it is divisible
by (y + 1)ξ−1. We have1 p∗(uk) = 1 for k < n. After the push-forward we obtain

mC(�, Cn)

eK (Cn)
= Q(ξ−1, y)

(1 − ξ−1)n
,

with the polynomial Q(ξ−1, y) = P(1, ξ−1, y) again divisible by (y + 1)ξ−1 and of
degree at most n in ξ−1.

Remark 4.9 The argument above shows that mC(�, Cn) is divisible by (y + 1). In
a similar way this divisibility can be proven for any quasihomogenous subvariety.
Such variety can be presented as a quotient (by a finite group) of homogeneous one.
Application of the Lefschetz–Riemann–Roch formula [11, Theorem 5.1] gives an
explicit formula for mC(�, Cn).

4.5 An Example: Quadratic Cone—limits with Different
Choices of 1-Parameter Subgroup

This example is based on the computations made in [24]. Let� ⊂ C4 be the open set
given by the inequality z1z2 − z3z4 �= 0. This is an open orbit of the natural action
of C∗ × O(4, C) on C4.

On the other hand, identifying C4 with 2 × 2 matrices

(
z1 z3
z4 z2

)
the set � is equal

to the set of nondegenerate matrices. Its motivic Chern class was computed in [19,
Sect. 8].

Denote the basis characters of the torus T = (C∗)3 by α, β, γ. Suppose T acts
on C4 with characters

αβ , α/β , αγ , α/γ .

The action preserves the variety�. The action has a unique fixed point at 0.We study
� ∩ (C4)−{0}, the Białynicki-Birula minus-cell (defined by (5)) intersected with the
orbit, depending on the choice of the one parameter subgroup. We apply the formula
[24, Formula 3] for n = 4, which allows us to compute the motivic Chern class of
�:

mC(�, C4) = (1 + y)2
(

1

α4 y
2 +

(
β

α3 + γ

α3 + 1

α3β
+ 1

α3γ
− 1

α2 − 1

α4

)
y + 1

α2

)
.

1Since uk = [OPn−1−k ] ∈ K (Pn−1) thus p∗(uk) = χ(Pn−1−k;O) = 1.
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Below we present a sample of choices of one parameter subgroups and computed
limits of motivic Chern classes:

(α, β, γ) Minus–cell (C4){0}− Inequality � ∩ (C4){0}− limit of
mC(�∩(C4)

−
{0})0

eK (ν0)

(ξ, 1, 1) {0} 0 �= 0 ∅ 0

(ξ−1, 1, 1) C
4 z1z2 − z3z4 �= 0

cone complement

[C4] − [C∗][P1]2 − [0]
y4 + (y + 1)(1 − y)2 − 1

(ξ−1, ξ2, 1) z1 = 0 z3z4 �= 0 C × (C∗)2 −y(y + 1)2

5 Flag Manifolds and Quiver Representation Spaces

After fixing some combinatorial codes we will define two related geometric objects:
a flag variety and a quiver representation space, together with the description of the
Borel orbits in these spaces. Then we will present formulas for the motivic Chern
classes of the orbits.

5.1 Combinatorial Codes

Let n, N be non-negative integers, and let μ = (μ1, . . . ,μN ) ∈ NN with
∑N

i=1 μi =
n. Denote μ(i) = ∑i

j=1 μ j .
Let Iμ denote the collection of N -tuples (I1, . . . , IN ) with I j ⊂ {1, . . . , n}, Ii ∩

I j = ∅ unless i = j , |Ii | = μi . For I ∈ Iμ we will use the following notation: I ( j) =
∪ j
i=1 Ii = {i ( j)1 < · · · < i ( j)

μ( j)}.
For I ∈ Iμ define �(I ) = |{(a, b) ∈ {1, . . . , n}2 : a > b, a ∈ I j , b ∈ Ik, j < k}|.

5.2 Flag Variety

Let Flμ denote the partial flag variety parameterizing chains of subspaces V• =
(0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ VN−1 ⊂ VN = Cn) with dim(Vi ) = μ(i). Consider the natu-
ral action of the Borel subgroup Bn ⊂ GLn(C) on Flμ. Let F i be the tautological
bundle over Flμ whose fiber over the point (V•) is Vi . Let the Bn-equivariant K-
theoretic Chern roots of F i be α(i)

j , for i = 1, . . . , N , j = 1, . . . ,μ(i), that is, in

KBn (Flμ) we have
∑μ(i)

j=1 α(i)
j = F i . Then we have

KBn (Flμ)[y] = Z[(α(i)
j )±1, y]Sμ(1) ×···×Sμ(N−1) /(certain ideal). (7)



236 L. M. Fehér et al.

Here the symmetric group Sμ(k) permutes the variables α(k)
1 , . . . ,α(k)

μ(k) .

Definition 5.1 For I ∈ Iμ define the Schubert cell

�I = {
(Vi ) ∈ Flμ : dim(Vp ∩ C

q
last ) = #{i ∈ I (p) : i > n − q},∀p, q} ⊂ Flμ,

where C
q
last is the span of the last q standard basis vectors in Cn . Its codimension in

Flμ is �(I ).

5.3 Quiver Representation Space

Consider Repμ = ⊕N−1
j=1 Hom(Cμ( j)

, Cμ( j+1)
) with the action of

GL×Bn =
N−1∏

i=1

GLμ(i) (C) × Bn

given by

(gi , . . . , gN ) · (a j ) j=1,...,N−1 = (g j+1 ◦ a j ◦ g−1
j ) j=1,...,N−1.

For i = 1, . . . , N let F i be the tautological rank μ(i) bundle over the classifying
space of the i’th component of GL×Bn . Let α(i)

j be the K-theoretic Chern roots of
F i , for i = 1, . . . , N , j = 1, . . . ,μ(i). Then we have

KGL×Bn (Repμ)[y] = Z[(α(i)
j )±1, y]Sμ(1) ×···×Sμ(N−1) . (8)

Notice that the K-theory algebra in (7) is a quotient of the K-theory algebra in (8).

Definition 5.2 For I ∈ Iμ define the matrix Schubert cell M�I ⊂ Repμ by

M�I = {(ai ) ∈ Repμ : ai is injective ∀i,
dim((aN−1 ◦ . . . ◦ ap)(C

μ(p)
) ∩ C

q
last ) = #{i ∈ I (p) : i > n − q},∀p, q},

where C
q
last is the span of the last q standard basis vectors in Cn . Its codimension in

Repμ is �(I ).

Remark 5.3 Of course we have that Flμ = Repμ �GL as a GIT quotient space.
Namely, let Repssμ be the subset consisting only injective maps. Then the natural map

Repssμ → Flμ, (ai ) 
→ ((aN−1 ◦ . . . ◦ ap)(C
μ(p)

))p
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is a topological quotient by GL, in fact Repssμ → Flμ is a principal bundle, cf. [42].
Under this map, we have M�I maps to �I . This correspondence between Flμ and
Repμ will be used in Sect. 8.

5.4 Weight Functions

In this section we define some explicit functions that will be used in naming the
equivariant motivic Chern classes of Schubert and matrix Schubert cells. For more
details on these functions see e.g. [31–33] or references therein.

For I ∈ Iμ, j = 1, . . . , N − 1, a = 1, . . . ,μ( j), b = 1, . . . ,μ( j+1) define

ψI, j,a,b(ξ) =

⎧
⎪⎨

⎪⎩

1 − ξ if i ( j+1)
b < i ( j)a

(1 + y)ξ if i ( j+1)
b = i ( j)a

1 + yξ if i ( j+1)
b > i ( j)a .

Define the weight function

WI = SymSμ(1) ×···×Sμ(N−1)
UI

where

UI =
N−1∏

j=1

μ( j)∏

a=1

μ( j+1)∏

b=1

ψI, j,a,b(α
( j)
a /α

( j+1)
b ) ·

N−1∏

j=1

∏

1≤a<b≤μ( j)

1 + yα( j)
b /α

( j)
a

1 − α
( j)
b /α

( j)
a

.

Here the symmetrizing operator is defined by

SymSμ(1) ×···×Sμ(N−1)
UI =

∑

σ∈Sμ(1) ×···×Sμ(N−1)

UI (σ(α( j)
a ))

where the j th component of σ (an element of Sμ( j) ) permutes the α( j) variables. For

cμ =
N−1∏

j=1

μ( j)∏

a=1

μ( j)∏

b=1

(1 + yα( j)
b /α( j)

a ), c′
μ =

N−1∏

j=1

μ( j+1)∏

a=1

μ( j)∏

b=1

(1 + yα( j)
b /α( j+1)

a )

define the modified weight functions

W̃I = WI /cμ, ŴI = WI /c
′
μ.

Observe that W̃I , ŴI are not Laurent polynomials, but rather ratios of two such.
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Weight functions were defined by Tarasov and Varchenko in relation with hyper-
geometric solutions to qKZ differential equations, see e.g. [37].

5.5 Motivic Chern Classes of Schubert Cells Given by Weight
Functions

Theorem 5.4 For the motivic Chern classes of matrix Schubert and ordinary Schu-
bert cells we have

mC(M�I ,Repμ) = WI ∈ KGL×Bn (Repμ)[y], (9)

mC(�I ,Flμ) = [W̃I ] ∈ KBn (Flμ)[y]. (10)

First let us comment on the two statements of the theorem.Aswe saw in (8) the ring
KGL×Bn (Repμ)[y] is a Laurent polynomial ring, and claim (9) states which Laurent
polynomial is the sought MC class. However, the ring KGL×Bn (Flμ)[y] is a quotient
ring of that Laurent polynomial ring, cf. (7), hence (10) only names a representative
of the sought MC class. Moreover, the function W̃I is a rational function, so the
equality (10) is meant in the following sense: the restriction to each torus fixed of
the two sides of (10) are the same—in particular the fix point restrictions of W̃I are
Laurent polynomials.

Remark 5.5 If we define the motivic Segre class of X ⊂ M by

mS(X, M) = mC(X, M)/cK (T M),

then we can rephrase Theorem 5.4 in the more symmetric form

mS(M�I ,Repμ) = ŴI , mS(�I ,Flμ) = [ŴI ].

This is due to the fact that cKGL×Bn
(T Repμ) = c′

μ, and [cKBn
(T Flμ)] = c′

μ/cμ. That
is, cμ is the K-theoretic total Chern class of the fibers of the GIT quotient map of
Remark 5.3.

Now let us review different strategies that can be used to prove Theorem 5.4—
some of them already present in the literature. One can

(a) prove (9) by resolution of singularities;
(b) prove (9) by the interpolation Theorem 4.6;
(c) prove (10) by resolution of singularities;
(d) prove (10) by the interpolation Theorem 4.6;
(e) prove that (9) implies (10) via Remark 5.5.

Carrying out (b) and/or (d) has the advantage of not having to construct a resolution
with normal crossing divisors. Carrying out (a) and/or (c) has the advantage of not
having to prove the sophisticated Newton polygon properties of the weight functions.
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Historically, first the Newton polygon properties of weight functions were proved
(in the context of K-theoretic stable envelopes), see [33, Sect. 3.5]. Those proofs
are complicated algebraic arguments that were unknown before even by the experts
of weight functions. Nevertheless, those arguments provide a complete proof of
Theorem 5.4, see details in [19].

It is remarkable that resolutions for M�I , �I can be constructed from which
the motivic Chern classes are calculated easily. More importantly, for well chosen
resolutions the formulas obtained for mC(M�I ,Repμ), mC(�I ,Flμ) are exactly
the defining formulas of weight functions. As a result, such an argument reproves
Theorem 5.4, and through that, the Newton polygon properties of weight functions
without calculation. In hindsight, such an argument would be a more natural proof
of Theorem 5.4. Since formally proving Theorem 5.4 is not needed anymore (as we
mentioned above, [33, Sect. 3.5] provides a proof) we will not present a proof based
on resolution of singularities in detail. Also, such an argument based on resolution
is implicitly present in [30] and an analogous argument is explicitly presented in
the elliptic setting in [35]. As a final remark let us mention our appreciation of
the creativity of those who defined weight functions without seeing the resolution
calculation for mC(M�I ,Repμ) and mC(�I ,Flμ)!

The implication (e) is not formally needed to complete the proof of Theorem
5.4. Yet, we find it important enough, that we include the proof of the general such
statement (namely motivic Chern classes before vs after GIT quotient) in Sect. 8.

6 MC Classes of Schubert Cells in Full Flag Manifolds:
Positivity and Log-Concavity

Characteristic classes of singularities often display positivity properties. Motivic
Chern classes are not exceptions: in this section we present three conjectures on the
signs (and concavity) of coefficients of MC classes in certain expansions.

6.1 Positivity

For μ = (1, 1, . . . , 1) (n times) the space Flμ is the full flag variety, let us rename it to
Fl(n). Recall the presentation of its equivariantK-theory algebra from (7). For brevity
let us rename the “last” set of variables, the “equivariant variables” to τi := α(n)

i .
The traditional geometric basis of KBn (Fl(n))[y] consists of the classes of the

structure sheaves of the Schubert varieties (the closures of the Schubert cells). For
w = (w(1), . . . , w(n)) ∈ Sn let [w] denote the class of the structure sheaf of the
closure of �({w(1)},{w(2)},...,{w(n)}). Also, set mC[w] = mC(�({w(1)},{w(2)},...,{w(n)})).
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Our Theorem 5.4 can be used to expand the MC classes of orbits in the traditional
basis of structure sheaves of Schubert varieties. For n = 3 we obtain the following
expansions.

mC[1, 2, 3] =
(

τ21
τ23

y3 +
(

τ21
τ2τ3

+ τ1
τ3

+ τ2τ1
τ23

)
y2 +

(
τ1
τ2

+ τ1
τ3

+ τ2
τ3

)
y + 1

)
[1, 2, 3]

−
((

τ21
τ2τ3

+ τ21
τ23

)
y3 +

(
τ21

τ2τ3
+ τ1

τ2
+ 2τ1

τ3
+ τ2τ1

τ23

)
y2 +

(
τ1
τ2

+ τ1
τ3

+ τ2
τ3

+ 1
)
y + 1

)
[1, 3, 2]

−
((

τ21
τ23

+ τ2τ1
τ23

)
y3 +

(
τ21

τ2τ3
+ 2τ1

τ3
+ τ2τ1

τ23
+ τ2

τ3

)
y2 +

(
τ1
τ2

+ τ1
τ3

+ τ2
τ3

+ 1
)
y + 1

)
[2, 1, 3]

+
((

τ21
τ2τ3

+ τ21
τ23

+ τ1
τ3

+ τ2τ1
τ23

+ τ2
τ3

)
y3 +

(
τ21

τ2τ3
+ τ1

τ2
+ 3τ1

τ3
+ τ2τ1

τ23
+ 2τ2

τ3
+ 1

)
y2

+
(

τ1
τ2

+ τ1
τ3

+ τ2
τ3

+ 2
)
y + 1

)
[2, 3, 1]

+
((

τ21
τ2τ3

+ τ21
τ23

+ τ1
τ2

+ τ1
τ3

+ τ2τ1
τ23

)
y3 +

(
τ21

τ2τ3
+ 2τ1

τ2
+ 3τ1

τ3
+ τ2τ1

τ23
+ τ2

τ3
+ 1

)
y2

+
(

τ1
τ2

+ τ1
τ3

+ τ2
τ3

+ 2
)
y + 1

)
[3, 1, 2]

−
((

τ21
τ2τ3

+ τ21
τ23

+ τ1
τ2

+ 2τ1
τ3

+ τ2τ1
τ23

+ τ2
τ3

+ 1

)
y3 +

(
τ21

τ2τ3
+ 2τ1

τ2
+ 3τ1

τ3
+ τ2τ1

τ23
+ 2τ2

τ3
+ 2

)
y2

+
(

τ1
τ2

+ τ1
τ3

+ τ2
τ3

+ 2
)
y + 1

)
[3, 2, 1].

mC[1, 3, 2] =
(

τ21
τ2τ3

y2 +
(

τ1
τ2

+ τ1
τ3

)
y + 1

)
[1, 3, 2]

−
((

τ21
τ2τ3

+ τ1
τ3

+ τ2
τ3

)
y2 +

(
τ1
τ2

+ τ1
τ3

+ τ2
τ3

+ 1
)
y + 1

)
[2, 3, 1]

−
((

τ21
τ2τ3

+ τ1
τ2

)
y2 +

(
τ1
τ2

+ τ1
τ3

+ 1
)
y + 1

)
[3, 1, 2]

+
((

τ21
τ2τ3

+ τ1
τ2

+ τ1
τ3

+ τ2
τ3

+ 1

)
y2 +

(
τ1
τ2

+ τ1
τ3

+ τ2
τ3

+ 2
)
y + 1

)
[3, 2, 1].

mC[2, 1, 3] =
(

τ1τ2
τ23

y2 +
(

τ1
τ3

+ τ2
τ3

)
y + 1

)
[2, 1, 3]

−
((

τ2
τ3

+ τ1τ2
τ23

)
y2 +

(
τ1
τ3

+ τ2
τ3

+ 1
)
y + 1

)
[2, 3, 1]

−
((

τ1
τ2

+ τ1
τ3

+ τ2τ1
τ23

)
y2 +

(
τ1
τ2

+ τ1
τ3

+ τ2
τ3

+ 1
)
y + 1

)
[3, 1, 2]

+
((

τ1
τ2

+ τ1
τ3

+ τ2τ1
τ23

+ τ2
τ3

+ 1

)
y2 +

(
τ1
τ2

+ τ1
τ3

+ τ2
τ3

+ 2
)
y + 1

)
[3, 2, 1].

mC[2, 3, 1] =
(

τ2
τ3
y + 1

)
[2, 3, 1]

−
((

τ2
τ3

+ 1
)
y + 1

)
[3, 2, 1].

mC[3, 1, 2] =
(

τ1
τ2
y + 1

)
[3, 1, 2]

−
((

τ1
τ2

+ 1
)
y + 1

)
[3, 2, 1].

mC[3, 2, 1] = [3, 2, 1].
The following conjecture can be verified in the formulas above, and we also

verified it for larger flag varieties (n ≤ 5).

Conjecture 6.1 Let p, w ∈ Sn . The coefficient of [w] in the expansion of mC[p] is
a Laurent polynomial in τ1, . . . , τn, y whose terms have sign (−1)�(p)−�(w).

We have been informed by the authors of [4] that they also observed the sign
behavior described in Conjecture 6.1.
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6.2 Log Concavity

To illustrate a new feature of the coefficients of the [w]-expansions, let us make the
substitution τi = 1 (∀i), that is, consider the non-equivariant motivic Chern classes
of the Schubert cells. For n = 4 and for the open cell we obtain

mC[1, 2, 3, 4] = (y + 1)6 [1, 2, 3, 4]
− (y + 1)5(2y + 1) [1, 2, 4, 3]
− (y + 1)5(2y + 1) [1, 3, 2, 4]
− (y + 1)5(2y + 1) [2, 1, 3, 4]
+ (y + 1)4(5y2 + 4y + 1) [1, 3, 4, 2]
+ (y + 1)4(5y2 + 4y + 1) [1, 4, 2, 3]
+ (y + 1)4(2y + 1)2 [2, 1, 4, 3]
+ (y + 1)4(5y2 + 4y + 1) [2, 3, 1, 4]
+ (y + 1)4(5y2 + 4y + 1) [3, 1, 2, 4]
− (y + 1)3(8y3 + 11y2 + 5y + 1) [1, 4, 3, 2]
− (y + 1)3(14y3 + 14y2 + 6y + 1) [2, 3, 4, 1]
− (y + 1)3(13y3 + 13y2 + 6y + 1) [2, 4, 1, 3]
− (y + 1)3(2y + 1)(6y2 + 4y + 1) [3, 1, 4, 2]
− (y + 1)3(8y3 + 11y2 + 5y + 1) [3, 2, 1, 4]
− (y + 1)3(14y3 + 14y2 + 6y + 1) [4, 1, 2, 3]
+ (y + 1)2(24y4 + 36y3 + 21y2 + 7y + 1) [2, 4, 3, 1]
+ (y + 1)2(23y4 + 35y3 + 22y2 + 7y + 1) [3, 2, 4, 1]
+ (y + 1)2(3y + 1)(10y3 + 10y2 + 4y + 1) [3, 4, 1, 2]
+ (y + 1)2(23y4 + 35y3 + 22y2 + 7y + 1) [4, 1, 3, 2]
+ (y + 1)2(24y4 + 36y3 + 21y2 + 7y + 1) [4, 2, 1, 3]
− (y + 1)(44y5 + 85y4 + 66y3 + 29y2 + 8y + 1) [3, 4, 2, 1]
− (y + 1)(49y5 + 91y4 + 69y3 + 30y2 + 8y + 1) [4, 2, 3, 1]
− (y + 1)(44y5 + 85y4 + 66y3 + 29y2 + 8y + 1) [4, 3, 1, 2]
+ (64y6 + 163y5 + 169y4 + 98y3 + 37y2 + 9y + 1) [4, 3, 2, 1]

In the expression above the permutations are ordered primary by length, secondary
by lexicographical order.

The coefficient of [5, 4, 3, 2, 1] in mC [1, 2, 3, 4, 5] is

1+ 14y + 92y2 + 377y3 + 1120y4 + 2630y5 + 4972y6 + 7148y7 + 7024y8 + 4063y9 + 1024y10.

Definition 6.2 Thepolynomial
∑d

k=0 ak y
k is said to be log-concave ifa2k ≥ ak−1ak+1

for 0 < k < d. It is strictly log-concave if the equality is strict.

See Huh’s survey article [21] for the role of log-concavity in geometry and com-
binatorics.

Conjecture 6.3 The coefficients in the [w]-expansion of the non-equivariant mC[p]
classes are strictly log-concave.

We checked Conjecture 6.3 for n ≤ 6.
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6.3 Positivity in New Variables

There is another kind of positivity which does not follow from the conjectured prop-
erties above. Namely, let us substitute τi

τi+1
= si + 1 and y = −1 − δ. For example

mC[4, 3, 1, 2] = (1 + y τ1
τ2

)[4, 3, 1, 2] − y[4, 3, 2, 1]
= − (s1 + δ(1 + s1))[4, 3, 1, 2] + (1 + δ)[4, 3, 2, 1] .

The coefficient of [4, 3, 2, 1] in mC[1, 4, 3, 2] in the new variables equals
(1 + s1)3(1 + s2)2(1 + s3)+
δ(9 + 17s1 + 12s21 + 3s31 + 14s2 + 28s1s2 + 22s21s2 + 6s31s2 + 6s22 + 12s1s22 +

10s21s
2
2 + 3s31s

2
2 + 8s3 + 15s1s3 + 11s21s3 + 3s31s3 + 13s2s3 + 26s1s2s3 + 21s21s2s3 +

6s31s2s3 + 6s22s3 + 12s1s22s3 + 10s21s
2
2s3 + 3s31s

2
2s3)+

δ2(21 + 28s1 + 15s21 + 3s31 + 26s2 + 40s1s2 + 26s21s2 + 6s31s2 + 9s22 + 15s1s22 +
11s21s

2
2 + 3s31s

2
2 + 16s3 + 22s1s3 + 13s21s3 + 3s31s3 + 22s2s3+35s1s2s3+24s21s2s3 +

6s31s2s3 + 9s22s3 + 15s1s22s3 + 11s21s
2
2s3 + 3s31s

2
2s3)+

δ3(14 + 14s1 + 6s21 + s31 + 14s2 + 18s1s2 + 10s21s2 + 2s31s2 + 4s22 + 6s1s22 +
4s21s

2
2 + s31s

2
2 + 9s3 + 10s1s3 + 5s21s3 + s31s3 + 11s2s3 + 15s1s2s3 + 9s21s2s3 +

2s31s2s3 + 4s22s3 + 6s1s22s3 + 4s21s
2
2s3 + s31s

2
2s3).

Conjecture 6.4 The coefficients of the si , δ-monomials in the [w]-expansion of the
mC[p] classes have sign (−1)�(w). Note that here the sign depends only on the length
the permutation w, not on the length of p, as it was in Conjecture 6.1.

Remark 6.5 The positivity properties of Sects. 6.1 and 6.3 imply positivity proper-
ties of the restrictions of MC classes to fixed points. These “local” positivity proper-
ties are another instances of the positivity in the δ-variables discussed in [40, Sect.
15]. It is implied by the Conjecture 6.4 and [5].

7 Local Picture

To illustrate the pretty convex geometric objects encoded bymotivic Chern classes in
this sectionwepresent somepictures. Consider Fl(3) and its six Schubert cells param-
eterized by permutations. According to Theorem 5.4 the six fixed point restrictions of
these classes satisfy some strict containment properties. Below we present the New-
ton polygons (and some related weights) of the six fixed point restrictions (rows) of
the six Schubert cells (columns). The Newton polygons live in the τ1 + τ2 + τ3 = 0
plane of R3 (with coordinates τi ), hence instead of 3D pictures we only draw the
mentioned plane.
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In blue—Newton polygon of eK (ν�) = λ−1(ν
∗
�).

In red—cotangent weights of T ∗
�.

In violet—Newton polygon of mC(� ∩ S�), where S� is a slice to the orbit.
Edges in violet—Newton polygon of mC(�).

8 Transversality and GIT Quotients

Both CSM and MC classes have their Segre version (cf. Remark 5.5): for example
for the K-theory case we have

mS( f : Z → M) := mC( f )/λy(T
∗M).
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8.1 Transversality and Motivic Segre Class

Motivic Segre classes behave well for transversal pull-back, for a fine notion of
transversality. To formulate this notion let us recall the definition of themotivic Chern
class given in [19]. Consider the case of mC( f )where f : U → M is an inclusion of
smooth varieties, but the inclusion is not necessarily closed (or equivalently, proper).

Definition 8.1 A proper normal crossing extension (PNC) of f : U → M is a mor-
phism f̄ : Y → M and an inclusion j : U ↪→ Y such that

(1) f = f̄ ◦ j ,
(2) Y is smooth
(3) f̄ is proper
(4) The exceptional divisor D := Y \ j (U ) = ⋃s

i=1 Di is a simple normal crossing
divisor (i.e. the Di ’s are smooth hypersurfaces in transversal position).

If f is G-equivariant for some group G acting on U and M , then we require all
maps to be G-equivariant in the definition.

Remark 8.2 Notice that if f is injective then f̄ : Y → M is a resolution of the
closure of f (U ).

We can use the existence of proper normal crossing extensions to define the (G-
equivariant) motivic Chern class:

Definition 8.3 Suppose that f : U → M is a map of smooth G-varieties and let
f̄ : Y → M be a proper normal crossing extension of f . For I ⊂ s = {1, 2, . . . , s}
let DI = ⋂

i∈I Di , f I = f̄ |DI , in particular f∅ = f̄ . Then

mC( f ) :=
∑

I⊂s

(−1)|I | f I∗λy(T
∗DI ) . (11)

It is explained in [19] that this is a good definition: independent of the PNCchosen.

Definition 8.4 Let N be a smooth variety. Then g : N → M is motivically transver-
sal 2 to f : U → M if there is a PNC f̄ : Y → M for f such that g is transversal to
all the DI ’s.

Theorem 8.5 If g : N → M is motivically transversal to f : U → M then

mS( f̃ ) = g∗ mS( f ),

where f̃ : Ũ → N is the map in the pull-back diagram

2This idea appeared already in an early version of [26].
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Ũ
f̃

N

g

U
f

M.

The proof is a straightforward consequence of the fact that a motivically transversal
pull-back of a PNC is PNC. We can extend the notion to non-smooth varieties Z
requiring the existence of a stratification of Z such that g is motivically transversal
to the restrictions of f to these strata.

Being motivically transversal is a very restrictive condition. However it holds in
some special situations:

Proposition 8.6 Let U, M be smooth and a connected group G is acting on M.
Assume that f : U → M is transversal to all G-orbits. Then f is motivically
transversal to all G-invariant subvarieties of M.

The proof is simple and can be found in the proof of Lemma 5.1 in [19].

8.2 G-equivariant Motivic Segre Class as a Universal Motivic
Segre Class for Degeneracy Loci

Now we prove a statement (Corollary 8.8) expressing the fact that the G-equivariant
motivic Segre class is a universal formula for motivic Chern classes of degeneracy
loci. The analogous statement for the Segre version of the CSM class was proved
in [26]. In K-theory the proof is simpler because reference to classifying spaces and
maps can be avoided. Suppose that πP : P → M is a principal G-bundle over the
smooth M and A is a smooth G-variety. Then we can define a map

a : KG(A) → K (P ×G A) (12)

by association: For any G-vector bundle E over A the associated bundle P ×G E is
a vector bundle over P ×G A.

In the rest of the paper we will use the notation mS(A, B) for mS( f : A → B)
when the map f is clear from the context. The diagrams

P

πP G−principal

G � (i : Y ⊂ A) P ×G Y

πY

iP
P ×G A

πA

M M

will be useful when reading the proof of the next Proposition.
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Proposition 8.7 Let Y ⊂ A be G-invariant. Then

mS(P ×G Y, P ×G A) = a
(
mSG(Y, A)

)
.

Proof To calculate the left hand side we need to calculate λy(T ∗P ×G A) first. For
the tangent space we have

T (P ×G A) = π∗
A(T M) ⊕ (P ×G T A),

where πA : P ×G A → M is the projection. Consequently

λy(T
∗(P ×G A)) = π∗

Aλy(T
∗M) · a(λG

y (T ∗A)).

Assume first that Y is a closed submanifold of A. To ease the notation we will use
the λ(M) = λy(T ∗M) abbreviation. Then

mS(P ×G Y, P ×G A) = i P∗ λ(P ×G Y )

λ(P ×G A)
= i∗

(
π∗
Yλ(M)a(λG(Y )

)

π∗
Aλ(M)a(λG(A))

,

where πY : P ×G Y → M is the projection and i : Y → A, iP : P ×G Y → P ×G

A are the inclusions. Then noticing that πY = πA ◦ iP and applying the adjunction
formula we arrive at the right hand side.

For general Y we can use Definition 8.3 to reduce the calculation to the smooth
case. �

Corollary 8.8 Suppose that σ : M → P ×G A is a section motivically transversal
to P ×G Y . Then

mS(Y (σ), M) = σ∗a
(
mSG(Y, A)

)
, (13)

where Y (σ) = σ−1(P ×G Y ) is the Y -locus of the section σ.
If A is a vector space thenσ∗ can be identifiedwith the identitymap K (P ×G A) �

K (P/G) = K (M).

8.3 GIT Quotients

With the applications in mind we use the following simple version of GIT quotient:
Let V be aG-vector space for a connected algebraic groupG and assume that P ⊂ V
is an open G-invariant subset such that π : P → P/G is a principal G-bundle over
the smoothM := P/G. (Wewant P to be a rightG-space sowe define pg := g−1 p.)

To state the main theorem we first introduce the K-theoretic Kirwan map κ :
KG(V ) → K (M) as the composition of the pull back K (P ×G V ) → K (M) via
the zero section and the association map KG(V ) → K (P ×G V ) given in Equation
(12) (cf. the RHS of (13)). Notice again that this definition is simpler than the
cohomological analogue.
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Theorem 8.9 Let V be a G-vector space and assume that P ⊂ V is an open G-
invariant subset such that π : P → P/G is a principal G-bundle over the smooth
M := P/G. Let Y ⊂ M. Then

mS(Y, M) = κ(mSG(π−1(Y ), V )).

To prove this theorem we apply Corollary 8.8 to the universal section: The inclu-
sion j : P → V is obviously G-equivariant therefore induces a section σ j : M →
P ×G V . In other words σ j (m) = [p, p] for any p with π(p) = m.

Example 8.10 For V = Hom(Ck, Cn)with the G = GLk(C)-action we can choose
P := �0(Ck, Cn), the set of injective maps, so P/G = Grk(Cn). Then P ×G V
is the vector bundle Hom(γk, Cn) for the tautological subbundle γk and σ j is the
section expressing the fact that γk is a subbundle of the trivial bundle of rank n.
More generally see Remark 5.3.

The reason we call σ j universal is the following simple observation: For any
Y ⊂ M the π−1(Y )-locus of σ j is Y . Therefore Theorem 8.9 is a consequence of the
following:

Proposition 8.11 The universal section σ j is motivically transversal to P ×G

π−1(Y ) for any Y ⊂ M.

In fact we can replace π−1(Y ) with any G-invariant (algebraic) subset Z ⊂ V .

Proof The statement is local so it is enough to study the restriction of σ j to an open
subset of M over which P ×G V is trivial. A local trivialization can be obtained by a
ϕ : W → P local section of P which is transversal to the fibers i.e. to the G-orbits.
In this local trivialization the section σ j |W is the graph of the map jϕ : W → V ,
therefore σ j is motivically transversal to P ×G Z if ϕ is motivically transversal to
Z ⊂ V , which is implied by Proposition 8.6. �

With the same argument we can obtain an equivariant version of Theorem 8.9:

Theorem 8.12 Let V be a G × H-vector space and assume that P ⊂ V is an open
G × H-invariant subset such that π : P → P/G is a principal G-bundle over the
smooth M := P/G. Let Y ⊂ M be H-invariant. Then

mSH (Y, M) = κH (mSG×H (π−1(Y ), V )),

where κH is the equivariant Kirwanmap: the composition of the pull back KH (P ×G

V ) → KH (M) via the zero section and the associationmap KG×H (V ) → KH (P ×G

V ).

As a consequence we proved argument (e) in Sect. 5.4 (cf. Remark 5.3): the
calculation of motivic Chern classes of matrix Schubert cells leads directly to the
calculation of motivic Chern classes of ordinary Schubert cells. The formulas for
motivic Chern classes are modified by the respective total Chern classes of the ambi-
ent spaces, while the formulas for the motivic Segre classes are identical (cf. Remark
5.5).
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A Survey of Recent Developments
on Hessenberg Varieties

Hiraku Abe and Tatsuya Horiguchi

Abstract This article surveys recent developments onHessenberg varieties, empha-
sizing some of the rich connections of their cohomology and combinatorics. In partic-
ular, wewill see how hyperplane arrangements, representations of symmetric groups,
and Stanley’s chromatic symmetric functions are related to the cohomology rings of
Hessenberg varieties. We also include several other topics on Hessenberg varieties
to cover recent developments.

Keywords Hessenberg varieties · Flag varieties · Cohomology · Hyperplane
arrangements · Representations of symmetric groups · Chromatic symmetric
functions.

1 Introduction

Hessenberg varieties are subvarieties of the full flag variety which was introduced
by F. De Mari, C. Procesi, and M. A. Shayman [21, 22] around 1990. They provide
a relatively new research subject, and similarly to Schubert varieties it has been
found that geometry, combinatorics, and representation theory interact nicely on
Hessenberg varieties. Let X be a complex n × n matrix considered as a linear map
X : Cn → C

n and h : {1, 2, . . . , n} → {1, 2, . . . , n} a Hessenberg function, i.e. a
non-decreasing function satisfyingh( j) ≥ j for 1 ≤ j ≤ n. TheHessenbergvariety
(in type An−1) associated to X and h is defined as follows:
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Hess(X, h) := {V• ∈ Fl(Cn)|XVj ⊆ Vh( j) for all 1 ≤ j ≤ n},

where Fl(Cn) is the flag variety of Cn consisting of sequences V• = (V1 ⊂ V2 ⊂
· · · ⊂ Vn = C

n) of linear subspaces of Cn with dim Vi = i for 1 ≤ i ≤ n. Particular
examples include the full flag variety itself, Springer fibres, the Peterson variety, and
the permutohedral variety.

Over the past 20years, plentiful developments of Hessenberg varieties has been
made. For example, it has been discovered that hyperplane arrangements and rep-
resentations of symmetric groups appear when we deal with the cohomology rings
of Hessenberg varieties. Also, these representations are determined by Stanley’s
chromatic symmetric functions of certain graphs, and is related with the Stanley-
Stembridge conjecture in graph theory.

This article is a survey of recent developments on Hessenberg varieties, and it is
intended to stimulate future research. We keep our explanations concise and include
concrete examples so as to make the important ideas accessible, especially for young
mathematicians (e.g. graduate students, postdoctoral fellows, and so on). We also
include several other topics on Hessenberg varieties to cover recent developments.
For simplicity, we explain most of the results in type A, but we make comments for
results which hold in arbitrary Lie type.

2 Background and Notations

In this section, we recall some background, and establish some notations for the rest
of the document.

2.1 Definitions and Basic Properties

Let n be a positive integer, and we use the notation [n] := {1, 2, . . . , n} throughout
this document. A function h : [n] → [n] is a Hessenberg function if it satisfies the
following two conditions:

(i) h(1) ≤ h(2) ≤ · · · ≤ h(n),
(ii) h( j) ≥ j for all j ∈ [n].
Note that h(n) = n by definition. We frequently write a Hessenberg function by
listing its values in a sequence, i.e. h = (h(1), h(2), . . . , h(n)). We may identify a
Hessenberg function h with a configuration of (shaded) boxes on a square grid of
size n × n which consists of boxes in the i-th row and the j-th column satisfying
i ≤ h( j) for i, j ∈ [n], as we illustrate in the following example.

Example 2.1 Let n = 5. The Hessenberg function h = (3, 3, 4, 5, 5) corresponds
to the configuration of the shaded boxes drawn in Fig. 1.
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Fig. 1 The configuration
corresponding to
h = (3, 3, 4, 5, 5)

In particular, this identification implies that the set of Hessenberg functions and
the set of Dyck paths are in one-to-one correspondence. That is, the number of
Hessenberg functions is the Catalan number:

#{h : [n] → [n] : Hessenberg functions} = 1

n + 1

(
2n

n

)
.

There is a natural partial order ⊂ on Hessenberg functions defined as follows. For
any two Hessenberg functions h and h′, we define h ⊂ h′ by

h ⊂ h′ ⇐⇒ h( j) ≤ h′( j) ∀ j ∈ [n].

We use the symbol ⊂ for this order since it corresponds to the inclusion of the
configurations of boxes under the above visualization of Hessenberg functions.

The (full) flag variety Fl(Cn) of Cn is the collection of nested linear subspaces
V• = (V1 ⊂ V2 ⊂ · · · ⊂ Vn = C

n) with dim Vi = i for i ∈ [n]. For an n × n matrix
X considered as a linearmap X : Cn → C

n and aHessenberg function h : [n] → [n],
the Hessenberg variety1 (in type An−1) associated with X and h is defined as

Hess(X, h) = {V• ∈ Fl(Cn)|XVj ⊂ Vh( j) for all j ∈ [n]} (2.1)

References [21, 22]. If X is the zero matrix or h = (n, n, . . . , n), then it is clear
that Hess(X, h) = Fl(Cn) is the flag variety itself from the definition (2.1). If X
is nilpotent and h = id = (1, 2, . . . , n), then Hess(X, h) is called a Springer fiber
which plays an important role in the geometric representation theory of the symmetric
group Sn [64, 65].

Remark 2.2 The definition (2.1) can be rephrased in terms of the adjoint represen-
tation of GL(n,C). See [21] for the definition in arbitrary Lie type. Also, Goresky-
Kottwitz-MacPherson [33, Sect. 2] considered more general Hessenberg varieties
which are defined for arbitrary representations of reductive algebraic groups (cf.
Chen-Vilonen-Xue [18, Sect. 2]).

1For the origin of the name Hessenberg varieties, see [22].
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As a general picture of Hessenberg varieties, we remark the following two prop-
erties. Suppose that one considers Hessenberg varieties for a fixed matrix X . Then,
Hessenberg varieties preserves the inclusions:

h ⊂ h′ ⇒ Hess(X, h) ⊂ Hess(X, h′). (2.2)

Also, if g ∈ GL(n,C), then we have an isomorphism

Hess(X, h) ∼= Hess(gXg−1, h)

by sending V• to gV•. This implies that wemay assume that X is in a Jordan canonical
form.

J. Tymoczko lays the foundation for the study of Hessenberg varieties as follows:

Theorem 2.3 ([72]) Every Hessenberg variety Hess(X, h) is paved by affines.2

In particular, the integral cohomology group of Hess(X, h) is torsion-free, and the
odd-degree cohomology groups vanish.

Remark 2.4 This generalizes the work of Spaltenstein [63] for the Springer fibers
and De Mari-Procesi-Shayman [21] for the regular semisimple Hessenberg varieties
(which we will define below). For generalizations to arbitrary Lie type, see Precup
[52] (cf. Tymoczko [73], De Mari-Procesi-Shayman [21], and De Concini-Lusztig-
Procesi [20]).

By Theorem 2.3 we may denote the Poincaré polynomial of Hess(X, h) by

Poin(Hess(X, h), q) :=
m∑
i=0

dim H 2i (Hess(X, h);Q) qi (2.3)

where m := dimC Hess(X, h) and the variable q stands for the grading with
deg(q) = 2.

In this survey, we will focus on so-called regular nilpotent Hessenberg varieties
and regular semisimple Hessenberg varieties which are particularly well-studied.
As we will see in Sects. 3 and 4, their cohomology rings has an interesting relation
between each other, and these are relatedwith other research areas such as hyperplane
arrangements, representation theory, and graph theory.

2.2 Regular Nilpotent Hessenberg Varieties

Let N a regular nilpotent matrix of size n × n, i.e. a nilpotent matrix with a single
Jordan block. In Jordan canonical form, it is given by

2A paving by affines means a “(complex) cellular decomposition” in algebraic geometry. See [72,
Definition 2.1] for the details.
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Fig. 2 Decomposition of h
into h(1) and h(2)

h

h(j) = j →

↓
j

h(1) =

h(2) =

N =

⎛
⎜⎜⎜⎜⎜⎝

0 1
0 1

. . .
. . .

0 1
0

⎞
⎟⎟⎟⎟⎟⎠

.

For a Hessenberg function h : [n] → [n], Hess(N , h) is called a regular nilpotent
Hessenberg variety. We have the following two main examples for this class of
Hessenberg varieties. For h = (n, n, . . . , n), Hess(N , h) is the flag variety Fl(Cn)

itself. For h = (2, 3, 4, . . . , n, n), i.e. h( j) = j + 1 for 1 ≤ j < n, Hess(N , h) is
called the Peterson variety which is related to the quantum cohomology of partial
flag varieties (cf. [14, 49, 56]). Here, h = (n, n, . . . , n) is the maximum Hessenberg
function, and we may think that h = (2, 3, 4, . . . , n, n) gives the minimum one in
the following sense.

If we have h( j) = j for some j < n, then the Hessenberg function h can be
decomposed into two Hessenberg functions h(1) and h(2) of smaller sizes defined as
follows:

h(1) :=(h(1), h(2), . . . , h( j)),

h(2) :=(h( j + 1) − j, h( j + 2) − j, . . . , h(n) − j).

Then, Hess(N , h) is decomposed as the product of regular nilpotent Hessenberg vari-
eties associated with h(1) : [ j] → [ j] and h(2) : [n − j] → [n − j] of smaller sizes
[24, Theorem 4.5]. In this sense, the condition h( j) ≥ j + 1 for any j < n is essen-
tial, and for such Hessenberg functions, h = (2, 3, 4, . . . , n, n) is the minimum one.
Hence, from (2.2), we may regard regular nilpotent Hessenberg varieties Hess(N , h)

as a (discrete) family of subvarieties of Fl(Cn) connecting the Peterson variety and
the flag variety itself (Fig. 2).

In the following theorem, we summarize some basic properties of Hess(N , h).
For this purpose, let us prepare some notations. Given a Hessenberg function h, we
denote by Shn the subset of the n-th symmetric group Sn defined as

Shn := {w ∈ Sn|w−1(w( j) − 1) ≤ h( j) for all j ∈ [n]}, (2.4)
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wherewe take by conventionw−1(w( j) − 1) = 0wheneverw( j) − 1 = 0. The con-
dition forw ∈ Shn in (2.4) is exactly the condition that the permutation flag3 associated
with w belongs to Hess(N , h), and this condition is equivalent to the condition that
the Schubert cell X◦

w intersects with Hess(N , h) [73]. That is, we have

w ∈ Shn ⇐⇒ X◦
w ∩ Hess(N , h) �= ∅.

Here, the dimension of the Schubert cell X◦
w is equal to �(w), which is the length

of w. It is known from [73] that the dimension of the intersection X◦
w ∩ Hess(N , h)

is equal to

�h(w) := #{( j, i)|1 ≤ j < i ≤ n, w( j) > w(i), i ≤ h( j)}, (2.5)

and that the intersections X◦
w ∩ Hess(N , h) form a paving by affines of Hess(N , h).

Combining the works of D. Anderson, E. Insko, B. Kostant, E. Sommers, J.
Tymoczko, and A. Yong, we now give some basic properties of Hess(N , h).

Theorem 2.5 ([12, 47, 49, 62, 73]) Let Hess(N , h) be a regular nilpotent Hessen-
berg variety. Then the following hold.

(1) Hess(N , h) is irreducible, and it is singular in general.
(2) The (complex) dimension of Hess(N , h) is equal to

∑n
j=1(h( j) − j).

(3) The Poincaré polynomial (2.3) for X = N has the following two types of expres-
sions:

Poin(Hess(N , h), q) =
∑
w∈Shn

q�h(w) (2.6)

=
n∏
j=1

(1 + q + q2 + · · · + qh( j)− j ) (2.7)

For generalizations of Theorem 2.5 to arbitrary Lie type, see [10, 52, 53, 57, 62,
73].

Note that the (complex) dimension of Hess(N , h) given in Theorem 2.5 (2) is
equal to the number of boxes in which lie strictly below the diagonal under the
identification of a Hessenberg function h and a configuration of boxes.

Example 2.6 Leth = (3, 3, 4, 5, 5). Thenwehave that dimC Hess(N , h) = 5,which
is the number of boxes which lie strictly below the diagonal (Fig. 3).

Example 2.7 Let h = (2, 3, 3). Then Sh3 = {123, 213, 132, 321} where we use the
standard one-line notationw = w(1) w(2) · · · w(n) for permutations in Sn through-
out this document. In particular, we have geometrically that

3For w ∈ Sn , the associated permutation flag V• is given by Vi := spanC{ew(1), . . . , ew(i)} where
{e1, . . . , en} is the standard basis of Cn .



A Survey of Recent Developments on Hessenberg Varieties 257

Fig. 3 Boxes which lie
strictly below the diagonal

Hess(N , h) ∩ X◦
w = ∅ ⇐⇒ w = 312, 231.

Since �h(123) = 0, �h(213) = �h(132) = 1, �h(321) = 2 for each permutation in
Sh3 , we have

Poin(Hess(N , h), q) = 1 + 2q + q2 = (1 + q)2. (2.8)

2.3 Regular Semisimple Hessenberg Varieties

Let S be a regular semisimple matrix of size n × n. In Jordan canonical form, it is
given by

S =

⎛
⎜⎜⎜⎝
c1

c2
. . .

cn

⎞
⎟⎟⎟⎠

where c1, c2 . . . , cn are mutually distinct complex numbers. For a Hessenberg func-
tion h : [n] → [n], Hess(S, h) is called a regular semisimple Hessenberg variety.
It is known that the topology of Hess(S, h) is independent of the choices of the (dis-
tinct) eigenvalues,4 and hence one may think that the topology of Hess(S, h) only
depends on h. Based on this fact, we have the following two main examples for this
class of Hessenberg varieties. For h = (n, n, . . . , n), Hess(S, h) is the flag variety
Fl(Cn) itself. For h = (2, 3, 4, . . . , n, n), Hess(S, h) is called the permutohedral
variety which is the toric variety associated with the fan consisting of the collection
of Weyl chambers of the root system of type An−1 [21, Theorem 11]. Similarly to
the case for Hess(N , h) in Sect. 2.2, the Hessenberg function h = (2, 3, 4, . . . , n, n)

gives the minimum for this class of Hessenberg varieties as well in the following
sense.

If we have h( j) = j for some j < n, it is known that Hess(S, h) is not connected
but equidimensional. In fact, all the connected components are isomorphic, and each
component is decomposed as the product of regular semisimple Hessenberg varieties

4For regular semisimple matrices S and S′, the associated Hessenberg varieties Hess(S, h) and
Hess(S′, h) with a same Hessenberg function h are diffeomorphic.
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of smaller sizes as in Sect. 2.2. See [70] for detail description of the connected com-
ponents. Hence the condition h( j) ≥ j + 1 for any j < n is essential, and we may
regard regular semisimple Hessenberg varieties Hess(S, h) as a (discrete) family of
subvarieties of the flag variety connecting the permutohedral variety and the flag vari-
ety itself. De Mari-Procesi-Shayman proved the following properties of Hess(S, h)

(for arbitrary Lie type).

Theorem 2.8 ([21]) Let Hess(S, h) be a regular semisimple Hessenberg variety.
Then the following hold.

(1) Hess(S, h) is smooth, and it is connected if and only if h( j) ≥ j + 1 for all
j < n.

(2) The (complex) dimension of Hess(S, h) is equal to
∑n

j=1(h( j) − j).
(3) The Poincaré polynomial (2.3) for X = S has the following expression:

Poin(Hess(S, h), q) =
∑
w∈Sn

q�h(w)

where �h(w) is defined in (2.5).

From Theorem 2.5 (2) and Theorem 2.8 (2), we see that

dimC Hess(N , h) = dimC Hess(S, h) =
n∑
j=1

(h( j) − j).

Unlike the situation for Hess(N , h), any regular semisimple Hessenberg variety
Hess(S, h) intersects with all the Schubert cells X◦

w. It is known that the dimension
of the intersection X◦

w ∩ Hess(S, h) is equal to �h(w) given in (2.5), and that all of
the intersections X◦

w ∩ Hess(S, h) form a paving by affines of Hess(S, h).

Example 2.9 Letn = 3andh = (2, 3, 3). Since�h(123) = 0,�h(213) = �h(132) =
�h(231) = �h(312) = 1, �h(321) = 2 for each permutation in S3, the Poincaré poly-
nomial of Hess(S, h) is given by

Poin(Hess(S, h), q) = 1 + 4q + q2.

3 Cohomology

In this section, we explain the structures of the cohomology rings of Hessenberg
varieties, focusing on regular nilpotent Hessenberg varieties Hess(N , h) in Sect. 3.1
and regular semisimple Hessenberg varieties Hess(S, h) in Sect. 3.2. We will also
see that these two cohomology rings have an interesting relation in Sect. 3.3.
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3.1 Cohomology Rings of Regular Nilpotent Hessenberg
Varieties

The cohomology ring of a regular nilpotent Hessenberg variety Hess(N , h) has been
studied from various viewpoints (e.g. [6, 10, 15, 23, 29, 36, 41, 43, 45, 50]).

In this section we explain an explicit presentation of the cohomology ring of a
regular nilpotent Hessenberg variety given by [6] due to M. Harada, M. Masuda,
and the authors. We also discuss a relation between this presentation and Schubert
polynomials along [42].

We first recall an explicit presentation of the cohomology ring of the flag variety
Fl(Cn). Let Ei be the i-th tautological vector bundle over Fl(Cn); namely, Ei is the
subbundle of the trivial vector bundle Fl(Cn) × C

n over Fl(Cn) whose fiber over a
point V• = (V1 ⊂ · · · ⊂ Vn = C

n) ∈ Fl(Cn) is exactly Vi . We denote the negative
of the first Chern class of the quotient line bundle Ei/Ei−1 by x̄i , i.e.

x̄i := −c1(Ei/Ei−1) ∈ H 2(Fl(Cn);Q). (3.1)

We will also use the same symbol x̄i for its restrictions to the cohomology of Hes-
senberg varieties by abuse of notation. It is known that there is a ring isomorphism

H∗(Fl(Cn);Q) ∼= Q[x1, . . . , xn]/(e1, . . . , en) (3.2)

which sends xi to x̄i where ei is the elementary symmetric polynomial of degree i in
the variables x1, . . . , xn (cf. [30, p161, Proposition 3]).

In order to describe the cohomology ring of a regular nilpotent Hessenberg variety
Hess(N , h), we define polynomials fi, j for 1 ≤ j ≤ i ≤ n as follows:

fi, j :=
j∑

k=1

( i∏
�= j+1

(xk − x�)
)
xk . (3.3)

Here, we take by convention
∏i

�= j+1(xk − x�) = 1 whenever i = j . Note that this
definition does not involve n.

Theorem 3.1 ([6]) The restriction map

H∗(Fl(Cn);Q) → H∗(Hess(N , h);Q)

is surjective, and there is a ring isomorphism

H∗(Hess(N , h);Q) ∼= Q[x1, . . . , xn]/( fh(1),1, fh(2),2, . . . , fh(n),n) (3.4)

which sends xi to x̄i = −c1(Ei/Ei−1)|Hess(N ,h).
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f3,1 f3,2 f3,3

f2,1 f2,2

f1,1 f1,1 = x1, f2,2 = x1 + x2, f3,3 = x1 + x2 + x3,

f2,1 = (x1 − x2)x1, f3,2 = (x1 − x3)x1 + (x2 − x3)x2,

f3,1 = (x1 − x2)(x1 − x3)x1.f3,1 f3,2 f3,3

f2,1 f2,2

f1,1

f3,1 f3,2 f3,3

f2,1 f2,2

f1,1

Fig. 4 The polynomials fi, j for 1 ≤ i ≤ j ≤ 3

Remark 3.2 The presentation (3.4) does not hold for the integral coefficients. See
[7, Remark 3].

From the presentation (3.4), we can see that the cohomology ring H∗(Hess(N , h);
Q) is a complete intersection since the number of generators of the polynomial ring
Q[x1, . . . , xn] is equal to the number of generators of the ideal ( fh(1),1, . . . , fh(n),n).
This implies the following corollary.

Corollary 3.3 ([6]) H∗(Hess(N , h);Q) is a Poincaré duality algebra.

Note that a regular nilpotent Hessenberg variety is singular in general, but its
cohomology is a Poincaré duality algebra. For arbitrary Lie type, the restriction map
is surjective and Corollary 3.3 holds [10] (Fig. 4).

Example 3.4 Let n = 3. We first assign polynomials fi, j to each box below the
diagonal line.

If we take h = (3, 3, 3), then we obtain from Theorem 3.1 an explicit presentation
of the flag variety Hess(N , h) = Fl(C3):

H∗(Hess(N , h);Q) ∼= Q[x1, x2, x3]/( f3,1, f3,2, f3,3), (3.5)

where the polynomials f3,1, f3,2, f3,3 in this presentation are obtained by taking the
bottom one in each column (See Fig. 5). It is straightforward to verify that the ideals
in (3.2) (with n = 3) and (3.5) are the same. If we take h′ = (2, 3, 3), then we also
obtain an explicit presentation of the Peterson variety Hess(N , h′) in Fl(C3):

H∗(Hess(N , h′);Q) ∼= Q[x1, x2, x3]/( f2,1, f3,2, f3,3). (3.6)

One may notice that the polynomial f3,1 in (3.5) is replaced by f2,1 in (3.6) when
we changed the Hessenberg function from h to h′. More specifically, the polynomial
f2,1 does not vanish in H∗(Hess(N , h)), but it does vanish in H∗(Hess(N , h′)). This
polynomial f2,1 has the following expression as a linear combination of Schubert
polynomials Sw (w ∈ Sn):

f2,1 = x21 − x1x2 = S312 − S231 (3.7)
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Fig. 5 The bottom fi, j ’s for
h = (3, 3, 3) and
h′ = (2, 3, 3)

h = (3, 3, 3) h′ = (2, 3, 3)

Fig. 6 The pictures of h and
h′

i-th row →

↓j-th column

h h′

since S312 = x21 and S231 = x1x2. As seen in Example 2.7, we also have

Hess(N , h′) ∩ X◦
w = ∅ ⇐⇒ w = 312, 231.

These permutations w = 312, 231 are exactly the ones that appeared in (3.7).

In general, we have a similar interpretation of the presentation (3.4) in
Theorem3.1 by considering a smallerHessenberg varietyHess(N , h) ⊃ Hess(N , h′)
of codimension 1, as suggested by the above example (Fig. 6).

The unique difference in the generators of the ideal appearing in the presentation
(3.4) for H∗(Hess(N , h);Q) and H∗(Hess(N , h′);Q) is the polynomial fi−1, j . The
second author showed that this polynomial can be written as an alternating sum of
Schubert polynomials Sw where the set of permutations w appearing in this sum
coincides with the set of minimal length permutations w in Sn satisfying

Hess(N , h) ∩ X◦
w �= ∅ and Hess(N , h′) ∩ X◦

w = ∅.

See [42] for details.

3.2 The Cohomology Rings of Regular Semisimple
Hessenberg Varieties

Let Hess(S, h) be a regular semisimple Hessenberg variety. One of the most interest-
ing feature of Hess(S, h) is the Sn-representation on its cohomology H∗(Hess(S, h);
C) constructed by J. Tymoczko [74]. She first constructed an Sn-representation on
a torus equivariant cohomology H∗

T (Hess(S, h);C) via a combinatorial description
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called the GKM-presentation, and she showed that this representation descends to
the ordinary cohomology H∗(Hess(S, h);C). An alternative geometric construction
via a monodromy action of the fundamental group of the space of regular semisim-
ple matrices is explained in Brosnan-Chow [16]. Following the construction [74],
N. Teff started to analyze this Sn-representation in [70, 71], and Shareshian-Wachs
[59, 60] announced a beautiful conjecture on this representation using chromatic
quasisymmetric functions. In this manuscript, we explain this representation along
the construction due to Tymoczko.

Let T ⊂ GL(n,C) be the maximal torus consisting of diagonal elements of
GL(n,C). The flag variety Flag(Cn) has a natural action of GL(n,C), and hence
the torus T acts on Flag(Cn) via its restriction. This T -action preserves the regular
semisimple Hessenberg variety Hess(S, h) since all the elements of T commute with
the diagonal matrix S. It is known that Hess(S, h) contains all the T -fixed points of
the flag variety Flag(Cn) [21, Proposition 3] so that Hess(S, h)T = Flag(Cn)T ∼= Sn.
Here, the last bijection corresponds w ∈ Sn and the permutation flag associated
with w.

Let H∗
T (Hess(S, h);C) be the T -equivariant cohomology of Hess(S, h). Recall-

ing that Hess(S, h) has no odd-degree cohomology from Theorem 2.3, we can
apply localization techniques for T -equivariant cohomology which we refer [32,
74] for details. As a conclusion, we obtain the so-called GKM presentation of
H∗

T (Hess(S, h);C) as a subring of a direct sum of polynomial rings
⊕

w∈Sn
C[t1, . . . , tn].
Proposition 3.5 ([74, Proposition 4.7]) The equivariant cohomology
H∗

T (Hess(S, h);C) is isomorphic (as rings) to

⎧⎨
⎩α ∈

⊕
w∈Sn

C[t1, . . . , tn]
∣∣∣∣ α(w) − α(w′) is divisible by tw(i) − tw( j)

ifw′ = w( j i) for some j < i with i ≤ h( j)

⎫⎬
⎭ (3.8)

where α(w) is the w-component of α and ( j i) ∈ Sn is the transposition of j and i .

We can visualize elements of the subring appearing in (3.8) in terms of the so-
called GKM graph whose vertex set is Sn and there is an edge between vertices
w,w′ ∈ Sn if there exists 1 ≤ j < i ≤ nwith i ≤ h( j) satisfyingw′ = w( j i). Addi-
tionally, we equip such an edgewith the data of the polynomial±(tw(i) − tw( j)) (up to
sign) arising in (3.8). This labeled graph is called the GKM graph of Hess(S, h),
and we denote it by �(h). In this language, the condition in (3.8) says that the col-
lection of polynomials (α(w))w∈Sn satisfies the following: if w and w′ are connected
in �(h) by an edge labeled by tw(i) − tw( j), then the difference of the polynomials
assigned for w and w′ must be divisible by the label.

Example 3.6 Let n = 3. For h = (3, 3, 3) and h′ = (2, 3, 3), the corresponding
GKM graphs are depicted in Fig. 7, where we use the one-line notation for each
vertex.
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Fig. 9 Some elements of H∗
T (Hess(S, h′))

For example, one can verify that the tuples of polynomials in Fig. 8 are elements
of H∗

T (Hess(S, h);C) = H∗
T (Fl(C3);C) (and hence of H∗

T (Hess(S, h′);C)).
We use the symbols x̄1, x̄2, x̄3 by abuse of notation (cf. (3.1)) because of the

reason which we will explain soon later (See Example 3.7 below). Also, the
elements ȳ1, ȳ2, ȳ3 given by the tuples of polynomials in Fig. 9 are elements of
H∗

T (Hess(S, h′);C) but not of H∗
T (Hess(S, h);C) = H∗

T (Fl(C3);C).

In what follows, we identify H∗
T (Hess(S, h);C) and the presentation (3.8), and

we do not distinguish them. For each i = 1, . . . , n, it is clear that a collection (ti )w∈Sn
lies in (3.8). For simplicity, we also write this element as ti by abuse of notation. Then
the theory of T -equivariant cohomology also shows that there is a ring isomorphism

H∗(Hess(S, h);C) ∼= H∗
T (Hess(S, h);C)/(t1, . . . , tn). (3.9)

This means that one can study the ordinary cohomology ring H∗(Hess(S, h);C)

from the equivariant cohomology ring H∗
T (Hess(S, h);C).

We now describe the Sn-action on H∗
T (Hess(S, h);C) constructed by Tymoczko

[74]. For v ∈ Sn and α = (α(w)) ∈ ⊕
w∈Sn C[t1, . . . , tn], we define an element v · α

by the formula
(v · α)(w) := v · α(v−1w) for all w ∈ Sn (3.10)
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where v · f (t1, . . . , tn) = f (tv(1), . . . , tv(n)) for f (t1, . . . , tn) ∈ C[t1, . . . , tn] in the
right-hand side. This Sn-action preserves the subset (3.8), and hence it defines an
Sn-action on the equivariant cohomology H∗

T (Hess(S, h);C) by Proposition 3.5.
Since we have v · ti = tv(i) for the classes ti = (ti )w∈Sn defined above, the Sn-
action on H∗

T (Hess(S, h);C) induces an Sn-action on the ordinary cohomology
H∗(Hess(S, h);C) via (3.9). By construction this Sn-representation preserves the
cup product of H∗(Hess(S, h);C).

Example 3.7 Let n = 3 and h = (3, 3, 3). For x̄1, x̄2, x̄3 ∈ H 2
T (Hess(S, h);C) =

H 2
T (Fl(C3);C) given in Fig. 8, one can easily verify from the definition (3.10) that

they are invariant under the S3-action;

w · x̄i = x̄i (1 ≤ i ≤ 3)

for any w ∈ S3. Under the isomorphism (3.9), it follows that these equivariant coho-
mology classes corresponds to x̄i = −c1(Ei/Ei−1) ∈ H 2(Fl(C3);Q) introduced in
(3.1) which gives a justification for our notation. From (3.2) (or (3.5)), this means
that the S3-representation on H∗(Fl(C3);C) is trivial, and the same claim holds for
the case H∗(Fl(Cn);C) in general [74, Proposition 4.4].

Example 3.8 Letn = 3andh = (2, 3, 3). For ȳ1, ȳ2, ȳ3 ∈ H 2
T (Hess(S, h);C)given

in Fig. 9, one can also verify that these classes are naturally permuted by the S3-action;

w · ȳi = ȳw(i) (1 ≤ i ≤ 3)

for any w ∈ S3 from the definition (3.10).

Compared to the situation for Hess(N , h) (e.g. Theorem 3.1), the restriction
map H∗(Flag(Cn);C) → H∗(Hess(S, h);C) is not surjective in general. Hence,
to describe the ring H∗(Hess(S, h);C) in terms of ring generators and relations
among them, we need to find some cohomology classes of Hess(S, h) which do
not come from H∗(Flag(Cn);C) by restriction. However, since we have a surjection
H∗

T (Hess(S, h);C) → H∗(Hess(S, h);C) by (3.9), the graphical presentation of the
equivariant cohomology ring H∗

T (Hess(S, h);C) can be used to seek those classes
as we saw in Example 3.6. For the case h = (h(1), n, . . . , n), M. Masuda and the
authors showed that we can explicitly describe the integral cohomology ring in terms
of ring generators and their relations by this approach. See [8] for details. For the case
h = (2, 3, 4, . . . , n, n), the cohomology ring H∗(Hess(S, h);C) is well-understood
since Hess(S, h) is a non-singular projective toric variety in this case [1, 48, 55].
However, the ring structure of H∗(Hess(S, h);C) for generalh is notwell-understood
at this moment.

Example 3.9 Let n = 3 and h = (2, 3, 3). Recall from Fig. 9 that we have three
classes ȳ1, ȳ2, ȳ3 in the equivariant cohomology H 2

T (Hess(S, h);C). We also denote
by the same symbol ȳi ∈ H 2(Hess(S, h);C) the image of ȳi under the isomorphism
(3.9) by abuse of notation. Then the presentation of H∗(Hess(S, h);C) due to [8] is
given by
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H∗(Hess(S, h);C) ∼= C[x1, x2, x3, y1, y2, y3]/J, (3.11)

where xi and yi correspond to x̄i = −c1(Ei/Ei−1)|Hess(S,h) and ȳi respectively, and
the ideal J is generated by

yk yk ′ for 1 ≤ k �= k ′ ≤ 3,

x1yk for 1 ≤ k ≤ 3,

x3yk + x2x3 for 1 ≤ k ≤ 3,

y1 + y2 + y3 − (x1 − x2),

x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3.

Also, the S3-action on H∗(Hess(S, h);C) is given by w · xi = xi and w · yi = yw(i)

for i = 1, 2, 3 and w ∈ S3, and the irreducible decomposition as S3-representation
is given by

H∗(Hess(S, h);C) ∼= S(3) ⊕ (
(S(3))⊕2 ⊕ S(2,1)

)
q ⊕ S(3) q2, (3.12)

where Sλ for a partition λ of 3 is the irreducible representation of S3 corresponding
to λ (cf. [30]), and q is a formal symbol standing for the cohomology grading with
deg(q) = 2. Note that S(3) is the trivial representation. In particular, this recovers the
Poincaré polynomial of Hess(S, h) in Example 2.9.

3.3 Regular Nilpotent Versus Regular Semisimple

In the last two sections, we have described the cohomology of regular nilpo-
tent Hessenberg varieties Hess(N , h) and regular semisimple Hessenberg varieties
Hess(S, h), and we saw that the latter cohomology H∗(Hess(S, h);C) admits the
Sn-representation constructed by Tymoczko. Since this representation preserves the
cup product, the invariant subgroup H∗(Hess(S, h);C)Sn in fact forms a subring
of H∗(Hess(S, h);C). M. Harada, M. Masuda, and the authors [6] showed that the
Sn-representation provides a connection between the topology of Hess(N , h) and
Hess(S, h) as follows.

Theorem 3.10 ([6]) Let Hess(N , h) and Hess(S, h) be a regular nilpotent Hessen-
berg variety and a regular semisimple Hessenberg variety, respectively. Then, there
is a ring isomorphism

H∗(Hess(N , h);C) ∼= H∗(Hess(S, h);C)Sn

which sends x̄i = −c1(Ei/Ei−1)|Hess(N ,h) to x̄i = −c1(Ei/Ei−1)|Hess(S,h).
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For the case h = (n, n, . . . , n), we haveHess(N , h) = Hess(S, h) = Fl(Cn), and
the isomorphism in Theorem 3.10 is obvious since the Sn-representation on the coho-
mology is trivial in this case (See Example 3.7). For the case h = (2, 3, 4, . . . , n, n),
explicit presentations for the rings H∗(Hess(N , h);C) and H∗(Hess(S, h);C)Sn

were given in [29, 36] and [48] respectively, and those presentations are in fact
identical although it was not mentioned. In this case, it means that the cohomology
ring of the Peterson variety is isomorphic to the Sn-invariant subring of the cohomol-
ogy of the permutohedral variety. See the work of P. Brosnan and T. Chow [16])for
the geometry behind this phenomenon. We also note that Theorem 3.10 holds for
arbitrary Lie type [10].

Example 3.11 Let n = 3 and h = (2, 3, 3). Then from (2.8) and (3.12), it is clear
that we have the following equalities for dimension;

dim H 2k(Hess(N , h);C) = dim H 2k(Hess(S, h);C)S3

for all k. However, Theorem 3.10 states more; these are isomorphic as (graded) rings.
For this case h = (2, 3, 3), one can directly construct this isomorphism by using the
ring presentations (3.6) and (3.11) (see [8, Remark 4.8.]).

4 Combinatorics

In this section,we explain combinatorial objectswhich are related toHessenberg vari-
eties. More specifically, we will see how hyperplane arrangements arise to describe
the structure of the cohomology rings H∗(Hess(N , h);R) of regular nilpotent Hes-
senberg varieties and how Stanley’s chromatic symmetric function of graphs deter-
mines the Sn-representation on the cohomology rings H∗(Hess(S, h);C) of regular
semisimple Hessenberg varieties.

4.1 Hyperplane Arrangements

In this section we explain a connection between Hessenberg varieties and hyper-
plane arrangements established in [10]. Originally, E. Sommers and J. Tymoczko
pointed out that Hessenberg varieties are related to hyperplane arrangements, and
they conjectured that the Ponicaré polynomial of a regular nilpotent Hessenberg vari-
ety Hess(N , h) can be described in terms of certain hyperplane arrangement [62].
This conjecture was verified for some Lie types by Sommers-Tymoczko, G. Röhrle,
A. Schauenburg [57, 62]). After this, an explicit presentation of the cohomology
ring of Hess(N , h) was provided by M. Harada, M. Masuda, and the authors [6].
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Fig. 10 The Weyl
arrangement for n = 3
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x1 − x2 = 0
x2 − x3 = 0

x1 − x3 = 0
� A(3,3,3) :h =

Fig. 11 The ideal
arrangement associated with
h = (2, 3, 3)
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x1 − x2 = 0
x2 − x3 = 0

� A(2,3,3) :h =

Motivated by all these works, T. Abe, M. Masuda, S. Murai, T. Sato, and the second
author proved that the cohomology ring of a regular nilpotent Hessenberg variety is
isomorphic to a ring coming from those hyperplane arrangements [10]. By taking
Hilbert series of both sides of this isomorphism, one sees that the conjecture of Som-
mers and Tymoczko is true. For general reference about hyperplane arrangements,
see [51] (Figs. 10 and 11).

Let V be a real vector space of finite dimension. A (central) hyperplane arrange-
ment A in V is a finite set of linear hyperplanes in V . As we see in the following
example, Hessenberg functions naturally determine hyperplane arrangements.

Example 4.1 Let V = {(x1, . . . , xn) ∈ R
n|x1 + · · · + xn = 0}, and consider hyper-

planes in V given by Hi, j = {x j − xi = 0} for 1 ≤ j < i ≤ n. For each Hessenberg
function h : [n] → [n], the set

Ah := {Hi, j |1 ≤ j < i ≤ h( j)}

is called an ideal arrangement associated with h. In particular, if h = (n, n, . . . , n),
then Ah is called the Weyl arrangement (of type An−1).

Let R = Sym(V ∗) be the symmetric algebra of V ∗, where V ∗ is the dual space
of V . We regardR as an algebra of polynomial functions on V . A map θ : R → R
is an R-derivation if it satisfies

(1) θ is R-linear,
(2) θ( f · g) = θ( f ) · g + f · θ(g) for all f, g ∈ R.

We denote the module of R-derivations θ : R → R by DerR. If one chooses a
linear coordinate system x1, . . . , xm on V , i.e., x1, . . . , xm is a basis for V ∗, then
the R-module DerR can be expressed as

⊕m
i=1 R ∂

∂xi
where ∂

∂xi
denotes the partial

derivative with respect to xi .
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Fig. 12 A basis of the
logarithmic derivation
module of the hyperplane
arrangement {x = 0} in R2
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Let A be a hyperplane arrangement in V . For each H ∈ A, let αH ∈ V ∗ be the
defining linear form of H so that H = ker(αH ). The logarithmic derivationmodule
D(A) of A is anR-module defined by

D(A) := {θ ∈ DerR|θ(αH ) ∈ RαH for all H ∈ A}.

Geometrically, this consists of polynomial vector fields on V tangent to A.

Example 4.2 LetV = R
2 and H = {x = 0} a hyperplane.Weconsider a hyperplane

arrangement A = {H}. An element θ ∈ DerR can be written as

θ = f
∂

∂x
+ g

∂

∂y

for some f, g ∈ R = R[x, y]. Since we can take αH = x , we have θ(αH ) = θ(x) =
f . Hence, θ belongs to the logarithmic derivation module D(A) if and only if f is
divisible by x . From this, it is straightforward to see that D(A) is free module over
R[x, y] with a basis x ∂

∂x and ∂
∂y . Hence, D(A) consists of polynomial vector fields

on R2 tangent to A, as desired (Fig. 12).

In Example 4.2, we saw that the logarithmic derivation module D(A) is a freeR-
module. However, the logarithmic derivation module D(A) of a hyperplane arrange-
mentA is not free in general (cf. [51, Example 4.34]). A hyperplane arrangementA
is a free arrangement if its logarithmic derivation module D(A) is a free module
over R. Note that if A is a free arrangement in V , then D(A) has a basis consist-
ing of m homogeneous elements where m := dim V (cf. [51, Proposition 4.18]).
Here, a nonzero element θ ∈ DerR = R ⊗ V is homogeneous if θ = ∑�

k=1 fk ⊗ vk
( fk ∈ R, vk ∈ V ) and all non-zero fk’s are homogeneous polynomials of the same
degree.

We now explain the connection with the cohomology rings of regular nilpotent
Hessenberg varieties. Let h be aHessenberg function andAh the ideal arrangement in
V = {(x1, . . . , xn) ∈ R

n|x1 + · · · + xn = 0} given in Example 4.1. First, it is known
to be free (for arbitrary Lie type) by T. Abe, M. Barakat, M. Cuntz, T. Hoge, and H.
Terao.

Theorem 4.3 ([9]) Any ideal arrangement Ah is free.
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Wenext define an ideal ofR from the logarithmic derivationmodule D(Ah) as fol-
lows. Let Q be an Sn-invariant non-degenerate quadratic form on V , which is unique
up to a non-zero scalar multiple. We may take Q = x21 + · · · + x2n ∈ Sym2(V ∗)Sn .
We define an ideal a(h) of R by

a(h) := {θ(Q) ∈ R|θ ∈ D(Ah)}.

T. Abe, M. Masuda, S. Murai, T. Sato, and the second author proved the following.

Theorem 4.4 ([10]) There is a ring isomorphism

H∗(Hess(N , h);R) ∼= R/a(h)

which sends xi to x̄i = −c1(Ei/Ei−1)|Hess(N ,h) of (3.1).

In arbitrary Lie type, Theorem 4.4 is proved in [10]. It is known that the Poincaré
polynomial of Hess(N , h) has a summation formula such as (2.6) [52]. On the other
hand, the Hilbert series of the quotient ring R/a(h) has a product formula such
as (2.7). Theorem 4.4 gives an affirmative answer to a conjecture of Sommers and
Tymoczko in [62] which states that these formulas are equal.

Remark 4.5 The quotient ring in the right-hand side ofTheorem4.4 is an example of
Solomon-Terao algebras studied in [28] and [11],where [28] consideredmore general
hypersurface singularities. The Solomon-Terao algebra ST (A, η) is defined by a
hyperplane arrangementA and a homogeneous polynomial η. Motivated by the work
of L. Solomon and H. Terao in [61], it is proved in [11] that ST (A, η) for a generic η

is a complete intersection if and only if the hyperplane arrangementA is free. In [28]
the same equivalence is proved more generally for hypersurface singularities which
are holonomic in the sense of K. Saito [58, (3.8)]. This generalization was obtained
independently and published slightly earlier.

Theorem 4.4 also tells us that if we can find an explicit R-basis of D(A), then
we obtain an explicit presentation of the cohomology ring of Hess(N , h). In fact, we
can recover the presentation (3.4) as follows. First, we recall a well-known criterion
for bases of logarithmic derivation modules.

Theorem 4.6 (Saito’s criterion, [58], see also [51]) LetA be a hyperplane arrange-
ment in V and let θ1, . . . , θm ∈ D(A) be homogeneous derivations. Then θ1, . . . , θm
form an R-basis of D(A) if and only if θ1, . . . , θm are R-independent and∑m

i=1 deg θi = |A|.
To recover the presentation (3.4) by Saito’s criterion, we define derivations ψi, j

for 1 ≤ j ≤ i ≤ n on the ambient vector space V = {(x1, . . . , xn) ∈ R
n|x1 + · · · +

xn = 0} of ideal arrangements as follows:

ψi, j :=
j∑

k=1

⎛
⎝ i∏

�= j+1

(xk − x�)

⎞
⎠

(
∂

∂xk
− 1

n
∂

)
∈ DerR
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where ∂ := ∂
∂x1

+ · · · + ∂
∂xn

and we take by convention
∏i

�= j+1(xk − x�) = 1 when-

ever i = j . Note that ∂
∂xk

is not an element of DerR but ( ∂
∂xk

− 1
n ∂) is, since R =

R[x1, . . . , xn]/(x1 + · · · + xn). Using Theorem 4.6, one can verify that {ψh( j), j |1 ≤
j ≤ n − 1} form an R-basis of D(Ah) [10, Proposition 10.3]. Since ψi, j (Q) =
ψi, j (x21 + · · · + x2n ) = 2 fi, j in R, we recover the presentation (3.4) from
Theorem 4.4.

Abe, Barakat, Cuntz, Hoge, and Terao in [9] gave a theoreticalmethod to construct
a basis of D(Ah) over R for arbitrary Lie type by classification-free proof. For a
construction of an explicit basis for each Lie type, Barakat, Cuntz, andHoge provided
ones for types E and F by computer when the work of [9] was in progress. Also,
Terao and Abe worked for types A and B, respectively. In [10], an explicit basis was
constructed for types A, B,C,G. Motivated by this, Enokizono, Nagaoka, Tsuchiya,
and the second author in [26] introduced and studieduniformbases for the logarithmic
derivation modules of the ideal arrangements. In particular, from Theorem 4.4 which
is valid for all Lie types, we obtained explicit presentations of the cohomology rings
of regular nilpotent Hessenberg varieties in all Lie types.

4.2 Chromatic Symmetric Functions in Graph Theory

In Sect. 3.2, we explained the representation of Sn on the cohomology ring
H∗(Hess(S, h);C) of regular semisimple Hessenberg varieties constructed by J.
Tymoczko. Recall that there is a natural correspondence between representations of
Sn and symmetric functions of degree n (cf. [30, Sect. 7]). In this section, we describe
the symmetric function corresponding to the Sn-representation on H∗(Hess(S, h);C)

which was conjectured by J. Shareshian and M. Wachs [59, Conjecture 1.2], [60,
Conjecture 1.4] in terms of chromatic symmetric functions of a graph determined
by h. This conjecture is proved by P. Brosnan and T. Chow in [16] and soon after
by M. Guay-Paquet [35]. We refer [30] for notations and elementary knowledge of
symmetric functions.

Let h : [n] → [n] be a Hessenberg function and Gh a graph on the vertex set [n]
defined as follows; there is an edge between the vertices i, j ∈ [n] if j < i ≤ h( j).
Namely, if we visualize h as a configuration of boxes as in Example 2.1, we have
an edge between i and j if and only if we have a box in (i, j)-th position which is
strictly below the diagonal (cf. Fig. 3).

Example 4.7 If we take h = (n, n, . . . , n), then the graphGh is the complete graph5

on the vertex set [n]. If we take h = (2, 3, 4, . . . , n, n), then the graph Gh is the path
graph on the vertex set [n] (Fig. 13).

5A complete graph is a graph in which every pair of distinct vertices is connected by an edge.
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Fig. 13 The complete graph
on the vertex set [3]

� � �

1 2 3
� G(3,3,3) :h =

For a graph G = (V, E) on the vertex set V = [n], Shareshian-Wachs [59, 60]
introduced the chromatic quasisymmetric function XG(x, q) of G as

XG(x, q) =
∑

κ

( n∏
i=1

xκ(i)
)
qasc(κ), (4.1)

where the summation runs over all proper colorings6 κ : [n] → N = {1, 2, 3, . . .} of
G and asc(κ) := |{( j, i) ∈ E | j < i, κ( j) < κ(i)}| is the number of ascents of κ .
Here, the variable q stands for the grading, and this is a graded version of Stanley’s
chromatic symmetric function XG(x) of G [67]. In general, XG(x, q) is quasisym-
metric in x-variables but may not be symmetric. However, for our graph Gh , it is
known that XGh (x, q) is in fact symmetric [60, Theorem 4.5]. In [60, Theroem 6.3],
the Schur basis expansion of XGh (x, q) is determined in terms of combinatorics,
where the non-graded version was originally obtained by V. Gasharov [31].

Example 4.8 Let n = 3 and h = (2, 3, 3). Then, one can verify that

XGh (x, q) = s(1,1,1)(x) + (
2s(1,1,1)(x) + s(2,1)(x)

)
q + s(1,1,1)(x) q2. (4.2)

Here, sλ(x) is the Schur function corresponding to a partition λ of 3.

The following theorem determines the Sn-representation on H∗(Hess(S, h);C) in
terms of the combinatorics of the graph Gh . This beautiful theorem was conjectured
by Shareshian-Wachs [59, Conjecture 1.2], [60, Conjecture 1.4], and it was proved
by Brosnan-Chow [16] and soon after by Guay-Paquet [35]. We denote by ch the
Frobenius character under which symmetric functions of degree n corresponds to
representations of Sn .

Theorem 4.9 ([16, 35]) Let Hess(S, h) be a regular semisimple Hessenberg vari-
ety. Then,

ωXGh (x, q) =
m∑

k=0

chH 2k(Hess(S, h);C) qk .

where m = dimC Hess(S, h) and ω is the involution on the ring of symmetric func-
tions in x-variables sending each Schur function sλ(x) to sλ̃(x) associated with the
transpose λ̃.

6A map κ : [n] → N is called a proper coloring of G if κ(i) �= κ( j) for all pair of vertices i and j
which are connected by an edge.
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For the case h = (n, n, . . . , n), recall from Sect. 3.2 that the Sn-representation on
H∗(Hess(S, h);C) = H∗(Fl(Cn);C) is trivial, and it is straightforward to see that
XGh (x, q) = en(x)

∑
κ q

asc(κ) in this casewhere the latter sum is equal to the Poincaré
polynomial of Fl(Cn). Since the complete symmetric function hn(x) = ω(en(x))
corresponds to the 1-dimensional trivial representation, the equality in Theorem 4.9
holds in this case. For the case h = (2, 3, 4, . . . , n, n), both of XGh (x, q) and the
Sn-representation on H∗(Hess(S, h);C) were well-studied in [55, 66, 69], and the
equality was known. See [60, Sect. 1] for details. The proof of Theorem 4.9 given
by Brosnan-Chow is geometric in the sense that they used the theory of monodromy
actions, whereas Guay-Paquet provided a combinatorial proof using the theory of
Hopf algebras.

Example 4.10 Let n = 3 and h = (2, 3, 3). Then, from (3.12) and (4.2), we see that

ωXGh (x, q) = s(3)(x) + (
2s(3)(x) + s(2,1)(x)

)
q + s(3)(x) q

2

= chH0(Hess(S, h);C) + chH2(Hess(S, h);C) q + chH4(Hess(S, h);C) q2.

Theorem 4.9 is related with the Stanley-Stembridge conjecture in graph theory
as we explain in what follows. Recall that the chromatic quasisymmetric function
XG(x, q) is a graded version of Stanley’s chromatic symmetric function XG(x) [67]
which we obtain by forgetting the grading parameter q in (4.1). Given a poset P ,
we can construct its incomparability graph which has as its vertices the elements of
P and we have an edge between two vertices if they are not comparable in P . The
Stanley-Stembridge conjecture is stated as follows.

Conjecture 4.11 (Stanley-Stembridge conjecture [68, Conjecture 5.5], [67, Conjec-
ture 5.1]) Let G be the incomparability graph of a (3 + 1)-free poset. Then XG(x)
is e-positive.

Here, a poset is called (r + s)-free if the poset does not contain an induced
subposet isomorphic to the direct sum of an r element chain and an s element chain,
and a symmetric function of degree n is called e-positive if it is a non-negative sum
of elementary symmetric functions eλ(x) for partition λ of n. See [60], for more
information on Stanley-Stembridge conjecture.

Example 4.12 Take a poset on [3]={1,2,3} for which 1 < 3 is the unique compara-
ble pair. It is obviously (3+1)-free. In this case, the incomparability graph G is the
path graph given in Fig. 14. Hence, from (4.2), we see that

XG(x) = s(1,1,1)(x) + (
2s(1,1,1)(x) + s(2,1)(x)

) + s(1,1,1)(x)

= 3e(3)(x) + e(2,1)(x),

as desired since we have e(3)(x) = s(1,1,1)(x) and e(2,1)(x) = s(2,1)(x) + s(1,1,1)(x).
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Fig. 14 The path graph on
the vertex set [3]
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1 2 3
� G(2,3,3) :h =

Guay-Paquet [34] showed that, to solve the Stanley-Stembridge conjecture, it is
enough to solve it for posets which are (3 + 1)-free and (2 + 2)-free, and this is
precisely the case that the corresponding incomparability graph can be identified
with Gh for some Hessenberg function h : [n] → [n], where n is the number of the
elements of the poset, as we encountered in Example 4.12 (See [59, Sect. 4] for
details). Thus, the Stanley-Stembridge conjecture is now reduced to the following
conjecture by Theorem 4.9.

Conjecture 4.13 ([59,Conjecture 5.4], [60,Conjecture 10.4])The Sn-representation
on H∗(Hess(S, h);C) constructed by Tymoczko is a permutation representation, i.e.
a direct sum of induced representations of the trivial representation from Sλ to Sn
where Sλ = Sλ1 × · · · × Sλ�

for λ = (λ1, . . . , λ�).

Motivated by the connection to Stanely-Stembridge conjecture, M. Harada and
M. Precup verified Conjecture 4.11 for so-called abelian regular semisimple Hes-
senberg varieties, and they also derived a set of linear relations satisfied by the
multiplicities of certain permutation representations. See [39, 40] for details.

5 More Topics

5.1 Semisimple Hessenberg Varieties

E. Insko and M. Precup studied Hessenberg varieties associated with semisimple
matrices which may not be regular semisimple [44]. They determined the irreducible
components of semisimple Hessenberg varieties for h = (2, 3, 4, . . . , n, n) in arbi-
trary Lie type. They also proved that irreducible components are smooth and gave
an explicit description of their intersections.

5.2 Hessenberg Varieties for the Minimal Nilpotent Orbit

P. Crooks and the first author studied Hessenberg varieties associated with minimal
nilpotent matrices (i.e. nilpotent matrices with Jordan blocks of size 1 and a single
Jordan block of size 2). Explicit descriptions of their Poincaré polynomials and
irreducible components are described, and a certain presentation of their cohomology
rings are also provided in terms of Schubert classes. See [3] for details.
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5.3 Regular Hessenberg Varieties

An n × n matrix R is called regular if the Jordan blocks of R have distinct eigenval-
ues. For a regular matrix R, Hess(R, h) is called a regularHessenberg variety. This
class of Hessenberg varieties contains regular nilpotent Hessenberg varieties and reg-
ular semisimple Hessenberg varieties, and Hess(R, h) plays an important role in the
work of P. Brosnan and T. Chow [16] proving Shareshian-Wachs conjecture (The-
orem 4.9). They are singular varieties in general, however M. Precup proved that
the Betti numbers of Hess(R, h) are palindromic [53]. N. Fujita, H. Zeng, and the
first author proved that higher cohomology groups of their structure sheaves vanish
and that they degenerate to the regular nilpotent Hessenberg variety Hess(N , h) if
h(i) ≥ i + 1 for all 1 ≤ i ≤ n [5], which wasmotivated by the works of D. Anderson
and J. Tymoczo [12] and L. DeDieu, F. Galetto, M. Harada, and the first author [2].

5.4 Poincaré Dual of Hessenberg Varieties

In [5], the Poincaré dual of a regular Hessenberg variety Hess(R, h) in H∗(Fl(Cn))

was computed in terms of positive roots associated the Hessenberg function h, and
E. Insko, J. Tymoczko, and A. Woo gave a combinatorial formula for this class using
Schubert polynomials [46]. Also, the cohomology class [Hess(R, h)] ∈ H∗(Fl(Cn))

does not depend on a choice of a regular matrix R if h(i) ≥ i + 1 for all 1 ≤ i ≤ n
(See for details [5, 46]).

5.5 Additive Bases of the Cohomology Rings of Regular
Nilpotent Hessenberg Varieties

M. Enokizono, T. Nagaoka, A. Tsuchiya, and the second author constructed in [27]
an additive basis of the cohomology ring of a regular nilpotent Hessenberg variety
Hess(N , h). This basis is obtained by extending the Poincaré duals [Hess(N , h′)] ∈
H∗(Hess(N , h)) of smaller regular nilpotent Hessenberg varieties Hess(N , h′) with
h′ ⊂ h. In particular, all of the classes [Hess(N , h′)] ∈ H∗(Hess(N , h))with h′ ⊂ h,
are linearly independent. On the other hand, M. Harada, S. Murai, M. Precup, J.
Tymoczko, and the second author derive in [38] a filtration on the cohomology ring
H∗(Hess(N , h)) of regular nilpotent Hessenberg varieties, from which they obtain a
monomial basis for H∗(Hess(N , h)). This basis is different from the one obtained in
[27]. From the filtration they additionally obtain an inductive formula for the Poincaré
polynomials of Hess(N , h); moreover, the monomial basis has an interpretation in
terms of Schubert calculus.
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5.6 The Volume Polynomials of Hessenberg Varieties

Recall from Corollary 3.3 that the cohomology ring H∗(Hess(N , h);Q) of a regu-
lar nilpotent Hessenberg variety is a Poincaré duality algebra. In [10], T. Abe, M.
Masuda, S. Murai, T. Sato, and the second author computed the volume polyno-
mial of this ring H∗(Hess(N , h);Q), and it precisely gives the volume of a certain
embedding of any regular Hessenberg variety associated with h into a projective
space [2, 5]. M. Harada, M. Masuda, S. Park, and the second author provided a
combinatorial formula for this polynomial in terms of the volumes of certain faces
of the Gelfand-Zetlin polytope [37].

5.7 Hessenberg Varieties of Parabolic Type

J. Tymoczko and M. Precup showed that the Betti numbers of parabolic Hessenberg
varieties decompose into a combination of those of Springer fibers and Schubert
varieties associated to the parabolic [54]. As a corollary, they deduced that the Betti
numbers of some parabolic Hessenberg varieties in Lie type A are equal to those of
a specific union of Schubert varieties.

5.8 Twins for Regular Semisimple Hessenberg Varieties

Given a Hessenberg function h : [n] → [n], A. Ayzenberg and V. Buchstaber intro-
duced a smooth T -manifold Xh , where T is the maximal torus of GL(n,C) given
in Sect. 3.2. This manifold is similar to the regular semisimple Hessenberg variety
Hess(S, h) in some sense. For example, they have the same Betti numbers and their
T -equivariant cohomology rings are isomorphic as rings. See [13] for details.

5.9 Integrable Systems and Hessenberg Varieties

For a Hessenberg function h : [n] → [n], we denote by X (h) the family of Hes-
senberg varieties associated with h. Then, X (h) in fact have a structure of a vector
bundle over the flag variety Fl(Cn). For the case h = (2, 3, 4, . . . , n, n), the family
X (h) contains the Peterson variety and the permutohedral variety. In this special
case, P. Crooks and the first author showed thatX (h) admits a Poisson structure with
an open dense symplectic leaf, and that there is a completely integrable system on
X (h) which contains the Toda lattice as a sub-system [4].
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5.10 The Poset of Hessenberg Varieties

E. Drellich studied the poset of the Hessenberg varieties Hess(X, h) in Fl(Cn) for
a given n × n matrix X . She proved that if X is not a scalar multiple of the identity
matrix, then the Hessenberg functions determine distinct Hessenberg varieties. See
[25] for details.

5.11 Springer Correspondence for Symmetric Spaces

As mentioned in Remark 2.2, Hessenberg varieties can be defined in a more general
setting [33], and those Hessenberg varieties also appear in the works of T. H. Chen,
K. Vilonen, and T. Xue [17–19] on Springer correspondence for symmetric spaces.
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Stability of Bott–Samelson Classes
in Algebraic Cobordism

Thomas Hudson, Tomoo Matsumura, and Nicolas Perrin

Abstract In this paper, we construct stable Bott–Samelson classes in the projective
limit of the algebraic cobordism rings of full flag varieties, upon an initial choice of a
reduced word in a given dimension. Each stable Bott–Samelson class is represented
by a bounded formal power seriesmodulo symmetric functions in positive degree.We
make some explicit computations for those power series in the case of infinitesimal
cohomology. We also obtain a formula of the restriction of Bott–Samelson classes
to smaller flag varieties.

Keywords Schubert calculus · Cobordism · Flag variety · Bott–Samelson
resolution

1 Introduction

Let k be an algebraically closed field of characteristic 0. Let Fln be the flag variety
of complete flags in kn . It can be identified with the homogeneous space GLn(k)/B
where B is the Borel subgroup of upper triangular matrices. For each permutation
w ∈ Sn , the corresponding Schubert variety X (n)

w ⊂ Fln is defined as B−wB, the
closure of the orbits of wB by the action of the opposite Borel subgroup B−. If
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ιn : Fln → Fln+1 is the natural embedding, the cohomology fundamental classes of
these Schubert varieties have the property that ι∗n[X (n+1)

w ] = [X (n)
w ], i.e., the Schubert

classes are stable under the pullback maps. The exact analogue of this property also
holds in K -theory, in which one defines the Schubert classes as the K -theory classes
of the structure sheaves of Schubert varieties.

In this paper, we attempt to generalize the above notion of stability to Bott-
Samelson classes in algebraic cobordism. The algebraic cobordism, denoted by �∗,
was introduced by Levine–Morel in [16] and represents the universal object among
oriented cohomology theories, a family of functors which includes both the Chow
ring CH∗ and K 0[β,β−1], a graded version of the Grothendieck ring of vector bun-
dles. In recent years a lot of energy has been spent to lift results of Schubert calculus
to �∗, in the same way in which Bressler–Evens did in [1, 2] for topological cobor-
dism. The first works in this direction were those of Calmés–Petrov–Zanoulline [3]
and Hornbostel–Kiritchenko [6] who investigated the algebraic cobordism of flag
manifolds. Later, the interest shifted to Grassmann and flag bundles (cf. [4, 7–13]).
One of the main difficulties of Schubert calculus in algebraic cobordism is caused
by the fact that the fundamental classes of Schubert varieties are not well-defined in
general oriented cohomology theories. A candidate for the replacement of Schubert
classes is the family of the push-forward classes of Bott–Samelson resolutions of
Schubert varieties.

Since a Bott–Samelson variety is defined upon a choice of a reduced word, our
stability of Bott–Samelson classes depends on a particular choice of a sequence of
reducedwords. The followings are themain results in this paper: (1) For a givenBott–
Samelson variety Yn in Fln , we construct a sequence of Bott-Samelson varieties Ym

over Flm for m ≥ n such that their push-forward classes in algebraic cobordism
are stable under pullbacks, namely, the identity ι∗m[Ym+1 → Flm+1] = [Ym → Flm]
holds in �∗(Flm) for all m ≥ n; (2) For a given Bott–Samelson variety Yn over Fln ,
we find an explicit formula for the pullback ι∗n−1[Yn → Fln] of its push-forward
class in �∗(Fln−1).

The pullback maps ι∗n : �∗(Fln+1) → �∗(Fln) give rise to a projective system
of graded rings. Based on the ring presentation of �∗(Fln) obtained by Hornbostel–
Kiritchenko [6], we observe that their graded projective limit, denoted by R, is iso-
morphic to the graded ring of bounded formal power series in an infinite sequence
of variables x = (xi )i∈Z>0 with coefficients in the Lazard ring L modulo the ideal of
symmetric functions of positive degrees in x . Our stable sequence of Bott–Samelson
classes determine a class in this limit, which we call a stable Bott–Samelson class.
On each �∗(Fln) the divided difference operators commute with the pullback maps
and therefore lift to the limitR. This gives a method of computing the power series
representing stable Bott–Samelson classes, which we apply to the case of a chosen
infinitesimal cohomology theory. In particular, we obtain a formula for the power
series representing stable Bott–Samelson classes associated to dominant permuta-
tions.

In [11, 12], the first and second authors obtained determinant formula of the cobor-
dism push-forward classes of so-calledDamon–Kempf–Laksov resolutions, general-
izing the classical Damon–Kempf–Laksov determinant formula of Schubert classes.
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In [10], more explicit formula of Damon–Kempf–Laksov classes were obtained for
infinitesimal cohomology. While these resolutions only exist for Schubert varieties
associated to vexillary permutations (like for instance Grassmannian elements), their
push-forward classes are stable and so is their determinantal formula. On the other
hand, Naruse–Nakagawa [17–20] achieved, by considering a different resolution, a
stable generalization of the Hall–Littlewood type formula for Schur polynomials in
the context of topological cobordism. The differences among these stable expres-
sions, including the ones obtained in this paper, should reflect the geometric nature
of the different resolutions, each of which gives a different class in cobordism.

The paper is organized as follows. In Sect. 2, we recall basic facts about the alge-
braic cobordism ring of flag varieties and, in particular, we identify their projective
limit. In Sect. 3, we review the definition of Bott–Samelson resolutions and show
the stability of their push-forward classes in cobordism based on the choice of a
sequence of reduced words. We then focus on infinitesimal cohomology theory and
compute, using divided difference operators, the power series representing the limits
of the classes associated to dominant permutations. In Sect. 4, we prove a formula for
the product of any Bott–Samelson class with the class [Fln−1 → Fln], generalizing
the restriction formula given in Sect. 3.

2 Preliminary

Let k be an algebraic closed field of characteristic 0.

2.1 Basics on Algebraic Cobordisms

For the reader’s convenience, we will briefly recall some basic facts about algebraic
cobordism and infinitesimal theories. More details on the construction and the prop-
erties of �∗ can be found in [16], while a more comprehensive description of I ∗

n is
given in [10].

Both �∗ and I ∗
n are examples of oriented cohomology theories, a family of con-

travariant functors A∗ : Smk → R∗ from the category of smooth schemes to graded
rings, which are furthermore endowed with push-forward maps for projective mor-
phisms. Such functors are required to satisfy, together with some expected functorial
compatibilities, the projective bundle formula and the extended homotopy property.
These imply that, for every vector bundle E → X , one is able to describe the eval-
uation of A∗ on the associated projective bundle P(E) → X as well as on every
E-torsor V → X . The Chow ring CH∗ is probably the most well-known example of
oriented cohomology theory and it should be kept in mind as a first approximation
to the general concept.

As a direct consequence of the projective bundle formula one has that every
oriented cohomology theory admits a theory of Chern classes, which can be defined
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using Grothendieck’s method. These satisfy most of the expected properties, like for
instance the Whitney sum formula, however it is no longer true that the first Chern
class behaves linearly with respect to tensor product: this is a key difference with
CH∗. For a pair of line bundles L and M defined over the same base, classically one
has

cCH
1 (L ⊗ M) = cCH

1 (L) + cCH
1 (M) and cCH

1 (L∨) = −cCH
1 (L), (1)

but these equalities in general fail for cA
1 . Instead, in order to describe cA

1 (L ⊗ M), it
becomes necessary to introduce a formal group law, a power series in two variables
defined over the coefficient ring FA ∈ A∗(Spec k)[[u, v]] satisfying some require-
ments. Similarly, expressing cA

1 (L∨) in terms of cA
1 (L) requires one to consider the

formal inverse χA ∈ A∗(Spec k)[[u]]. The analogues of (1) then become

cA
1 (L ⊗ M) = FA(cA

1 (L), cA
1 (M)) and cA

1 (L∨) = χA(cA
1 (L)). (2)

It is a classical result of Lazard [15] that every formal group law (R, FR) can be
obtained from the universal one (L, FL), which is defined over a ring later named
after him. He also proved that, as a graded ring, L = ⊕

m≤0 L
m is isomorphic to a

polynomial ring in countably many variables yi , each appearing in degree −i for
i ≥ 1. In the case of a field of characteristic 0, Levine and Morel were able to prove
that the coefficient ring of algebraic cobordism is isomorphic to L and that its formal
group law F� coincides with the universal one, which from now on we will simply
denote F . The universality of �∗ does not restrict itself only to its coefficient ring,
in fact, Levine and Morel were able to prove the following theorem.

Theorem 2.1 ([16, Theorem 1.2.6]) �∗ is universal among oriented cohomology
theories on Smk. That is, for any other oriented cohomology theory A∗ there exists
a unique morphism

ϑA : �∗ → A∗

of oriented cohomology theories.

It essentially follows formally from this result that for any given formal group law
(R, FR) the functor �∗ ⊗L R is universal among the oriented cohomology theories
with R as coefficient ring and FR as associated law. This procedure can be used to
produce functors, like the infinitesimal theories I ∗

n , whose formal group laws are
far simpler than the universal one and as a consequence more suitable for explicit
computations. More precisely the projection L → Z[yn]/(y2n ), which maps yi to 0
unless i = n, gives rise to the following formal group law FIn on Z[yn]/(y2n ):

FIn (u, v) = u + v + yn · 1

dn

n∑

j=1

(
n + 1

j

)

u jvn+1− j . (3)
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Here one has dn = p, if n + 1 is a power of a prime p, and dn = 1 otherwise. In our
computations we will only consider the case n = 2, for which (3) becomes

u � v := FI2(u, v) = u + v + y2(u
2v + uv2) = (u + v)(1 + y2uv)

with the formal inverse being �u := χI2(u) = −u. For the remainder of the paper
we will write γ instead of y2.

Let us finish this overview by discussing fundamental classes, another aspect in
which a general oriented cohomology theory differs from CH∗. While in CH∗ it is
possible to associate such a class to every equi-dimensional scheme, for a general ori-
ented cohomology theory A∗ one has to restrict to schemeswhose structuremorphism
is a local complete intersection. In particular, since not all Schubert varieties satisfy
this requirement, it becomes necessary to find an alternative definition for Schubert
classes. One possible option is to choose a family of resolutions of singularities and
replace the fundamental classes of Schubert varieties with the pushforwards of the
associated resolutions.

2.2 Algebraic Cobordism of Flag Varieties and Their Limit

For any integers a, b such that a ≤ b, let [a, b] := {a, a + 1, . . . , b}. Let kZ>0 be
the infinite dimensional vector space generated by a formal basis (ei )i∈Z>0

. For each
m ∈ Z>0, let Em be the subspace of kZ>0 generated by e1, . . . , em . We set E0 = 0.
We often identify Em with km the space of column vectors.

For each n ∈ Z>0, the flag variety Fln consists of flags U• = (Ui )i∈[1,n−1] of
subspaces in En where Ui ⊂ Ui+1 and dimUi = i for each i ∈ [1, n − 1]. Note that
this impliesUn = En . For a fixed n, let U (n)

i , i ∈ [0, n] denote the tautological vector
bundles of Fln and Ei the trivial bundles of fiber Ei . In particular, U (n)

0 = 0 and
U (n)

n = En .
LetGLn(k) = GL(En) be the general linear group.We consider themaximal torus

Tn ⊂ GLn(k) given by the matrices having (ei )i∈[1,n] as a basis of eigenvectors and
the Borel subgroup Bn ⊂ GLn(k) given by the upper triangular matrices stabilizing
the flag E• = (Ei )i∈[1,n−1] in Fln . We can identify Fln with the homogeneous space
GLn(k)/Bn by associating thematrix M = (u1, . . . , un) to a flagU• where {u j } j∈[1,i]
is a basis of Ui .

There is an isomorphism of graded rings ([6, Theorem 1.1])

�∗(Fln) ∼= L[x1, . . . , xn]/Sn (4)

sending c1((U (n)
i /U (n)

i−1)
∨) to xi , where Sn is the ideal generated by the homogeneous

symmetric polynomials in x1, . . . , xn of strictly positive degree.
Let ιn : Fln ↪→ Fln+1 be the embedding induced by the canonical inclusion

En ↪→ En+1. We have ι∗nU
(n+1)
i = U (n)

i for all i ∈ [1, n] and ι∗nU
(n+1)
n+1 = En+1. As
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a consequence, under the isomorphism (4), the pullback map ι∗n : �∗(Fln+1) →
�∗(Fln) is the natural projection given by setting xn+1 = 0. For each m ∈ Z, letRm

be the projective limit of�m(Fln)with respect to ι∗n . We define the graded projective
limit of �∗(Fln) with respect to ι∗n to be R := ⊕

m∈Z
Rm .

In order to give a ring presentation ofR, we introduce the following ring of formal
power series. Let x = (xi )i∈Z>0 be a sequence of infinitely many indeterminates. Let
Z

∞ be the set of infinite sequence s = (si )i∈Z>0 of nonnegative integers such that all
but finitely many si ’s are zero. Let L[[x]](m) be the space of formal power series of
degree m ∈ Z. An element f (x) of L[[x]](m) is uniquely given as

f (x) =
∑

s∈Z∞
asx

s, as ∈ L, x s =
∞∏

i=1

xsi
i

such that |s| + deg as = m where |s| = ∑∞
i=0 si and deg as is the degree of as in L.

An element f (x) ∈ L[[x]](m) is bounded if pn( f (x)) ∈ L[x1, . . . , xn](m), where pn

is the substitution of xk = 0 for all k > n and L[x1, . . . , xn](m) is the degree m part
of L[x1, . . . , xn]. Let L[[x]](m)

bd be the set of all such bounded elements of L[[x]]m .
We set

L[[x]]bd :=
⊕

m∈Z

L[[x]](m)
bd .

This is a graded sub L-algebra of the ring L[[x]] of formal power series.

Proposition 2.2 There is an isomorphism of graded L-algebras

R ∼= L[[x]]bd/S∞

where S∞ is the ideal of L[[x]]bd generated by symmetric functions in x of strictly
positive degree.

Proof Let m ∈ Z. The projections pn : L[[x]](m)
bd → L[x1, . . . , xn](m) for n > 0

induce a surjective homomorphism

� : L[[x]](m)
bd → lim

n→∞ L[x1, . . . , xn](m)

sending f (x) to {pn( f (x))}n∈Z>0 . It is also easy to see that � is injective, and thus
an isomorphism. Moreover, pn’s induce surjections

L[[x]](m)
bd ∩ S∞ → L[x1, . . . , xn](m) ∩ Sn, n > 0,

inducing a bijection

L[[x]](m)
bd ∩ S∞ ∼= lim

n→∞
(
L[x1, . . . , xn](m) ∩ Sn

)
.

Thus we obtain the isomorphism
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⊕

m∈Z

L[[x]](m)
bd /(L[[x]](m)

bd ∩ S∞) ∼=
⊕

m∈Z

lim
n→∞ L[x1, . . . , xn](m)/(L[x1, . . . , xn](m) ∩ Sn),

which is the desired one.

Definition 2.3 An element in Ri is a sequence (αn)n∈Z>0
such that αn ∈ �i (Fln)

and ι∗n(αn+1) = αn for all n > 0. An element ofR is a finite linear combinations of
such sequences and we call it a stable class.

Remark 2.4 In order to specify an element ofRi , we only need to provide αi for all
i ≥ N for some fixed integer N . In fact, for i < N the elements αi can be obtained
from αN by applying the projections ι∗n .

2.3 Divided Difference Operators

Let Wn be the Weyl group of GLn(k). The maximal torus Tn and the Borel subgroup
Bn define a system of simple reflections s1, . . . , sn−1 ∈ Wn and we can identify
Wn with the symmetric group Sn in n letters, where each si corresponds to the
transposition of the letters i and i + 1. We denote the length of w by �(w).

For each i ∈ [1, n − 1], the divided difference operator ∂i is an operator on
�∗(Fln) defined as follows. Let Fl(i)n be the partial flag variety consisting of flags
of the form U1 ⊂ · · · ⊂ Ui−1 ⊂ Ui+1 ⊂ · · · ⊂ Un−1 with dimUk = k. Denote the
canonical projection Fln → Fl(i)n by pi . Then define ∂i := pi∗ ◦ p∗

i . It is known
from [6] that under the presentation (4), we have

∂i ( f (x)) = (id + si )
f (x)

F(xi ,χ(xi+1))
= f (x)

F(xi ,χ(xi+1))
+ si f (x)

F(xi+1,χ(xi ))
. (5)

Lemma 2.5 The pullback ι∗n : �∗(Fln+1) → �∗(Fln) commutes with ∂i for all i ∈
[1, n − 1]. In particular, this shows that ∂i can be defined in the projective limit R
and it is given by the formula (5).

Proof For each i ∈ [1, n − 1], ιn and pi form a fiber diagram

Fln ιn

pi

Fln+1

pi

Fl(i)n ιn
Fl(i)n+1,

and, since they are transverse, we have ι∗n ◦ pi∗ = pi∗ ◦ ι∗n . Thus ι∗n ◦ ∂i = ι∗n ◦ pi∗ ◦
p∗

i = pi∗ ◦ ι∗n ◦ p∗
i = pi∗ ◦ p∗

i ◦ ι∗n = ∂i ◦ ι∗n . �

For a permutation w ∈ Wn , let X̊ (n)
w = Bn · w(E•) be the Bruhat cell associated

to w in Fln , where w(E•) is the flag consisting of w(Ei ) = 〈ew(1), . . . , ew(i)〉 for
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each i ∈ [1, n − 1]. The Schubert varieties X (n)
w are the closures of the Bruhat cells:

X (n)
w := Bn · w(E•). The opposite Schubert varieties are defined via Xw

(n) = w0 ·
X (n)

w0w
, where w0 = w

(n)
0 is the longest element of Wn . As an orbit closure, we have

Xw
(n) = B−

n · w(E•) where B−
n := w0Bnw0 is the opposite Borel subgroup of lower

triangular matrices.

Remark 2.6 The fundamental class [Xw
(n)] of Xw

(n) is well-defined in the Chow
ring of Fln . Those classes are stable along pullbacks, i.e., ι∗n[Xw

(n+1)] = [Xw
(n)] in

CH∗(Fln)wherew ∈ Sn is regarded as an element of Sn+1 under the natural embed-
ding Sn ⊂ Sn+1. As it is well-known, its stable limit can be identified with the Schu-
bert polynomial of Lascoux–Schützenberger [14]. It is also worth mentioning that
the Schubert classes admit the following compatibility with divided difference oper-
ators, reflected on the definition of Schubert polynomials: for each i ∈ [1, n − 1],
we have

∂i [Xw
(n)] =

{
[Xwsi

(n) ] �(wsi ) = �(w) + 1,

0 otherwise.

2.4 Some Facts on Permutations and Reduced Words

We conclude this section by fixing notations for reduced words and showing a few
lemmas and a proposition that will be used in the rest of the paper.

We denote byW n the set ofwords in s1, . . . , sn−1: an element ofW n will bewritten
as a finite sequence si1 . . . sir , while the empty word is denoted by 1. The length of a
word w = si1 . . . sir is the number r of the letters si ’s in w and we denote it by �(w).
For a word w ∈ W n , we denote the corresponding permutation by w ∈ Wn . Let W i

n
be the subgroup of Wn generated by all simple reflections s j with j �= i and W i

n the
corresponding set of words. In particular, we can identify Wn with W n

n+1 and W n
with W n

n+1.
We denote the Bruhat order in Wn by ≤, i.e., w ≤ v if and only if every reduced

word for v contains a subword which is a reduced word for w.
We denote by c(n) the Coxeter element s1 . . . sn of Wn+1. It has a unique reduced

word c(n) = s1 . . . sn . Note that c(n)c(n−1) . . . c(1) is a reduced word for the longest
element w(n+1)

0 of Wn+1.

Lemma 2.7 If c(n)v ∈ W n+1 is a reduced word, then v is a reduced word in W n.

Proof There exists a reduced word u such that c(n)v u = w
(n+1)
0 is a reduced word

for the longest element w(n+1)
0 ∈ Wn+1. Since vu = (c(n))−1w

(n+1)
0 = w

(n)
0 , we have

vu ∈ Wn so that any reduced word of vu lies in W n and in particular v u is a reduced
word in W n . Thus v is a reduced word in W n . �

Lemma 2.8 If v ∈ W n is a reduced word, then c(n)v ∈ W n+1 is a reduced word. In

particular, if v = w
(n)
0 w for some w ∈ Wn, then c(n)v is a reduced word for w

(n+1)
0 w.
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Proof There exists a reduced word u such that v u is a reduced word for w
(n)
0 . Then

c(n)v u is a reduced word for w
(n+1)
0 . This implies that c(n)v is a reduced word. �

Proposition 2.9 Let w ∈ Wn+1 such that c := c(n) ≤ w. Every reduced word w ∈
W n+1 for w decomposes, modulo commuting relations, as w = u c v with u ∈ W 1

n+1
and v ∈ W n.

Proof In this proof, all the equalities of words are modulo commuting relations.
Since c ≤ w, the definition of the Bruhat order implies that w contains as a subword
c, the unique reduced word of c. We choose such a subword by selecting the first
occurrence of s1, the first occurrence of s2 after the chosen s1 and so on. We thus
have a decomposition

w = w1s1w2s2w3 . . . sn−1wnsnwn+1

with wi ∈ W i
n+1 for i ∈ [1, n + 1]. We have wi = vi ui for i ∈ [2, n] , where vi is a

word in the sk’s for k ∈ [1, i − 1] and ui is a word in the sk’s for k ∈ [i + 1, n]. Note
in particular that we have un = 1. Observing that vi u j = u jvi and si−1u j = u j si−1

for 2 ≤ i ≤ j ≤ n, we thus obtain

w = w1(u2u3 . . . un)(s1v2s2v3 . . . vnsn)wn+1.

For each i ∈ [2, n], we claim that the word vi does not contain si−1, i.e., it is a word
in the sk’s for 1 ≤ k ≤ i − 2. We prove the claim by induction on i . First of all, it is
easy to see that v2 is an empty word since it is a word in s1 only, and there is s1 on
the left of v2 in the reduced word w. Assume that the claim holds for i ≤ k. We have

w = w1(u2u3 . . . un)(s1s2 . . . sk)(v2v3 . . . vk)(vk+1sk+1 . . . vnsn)wn+1.

Since s1s2 . . . skv1 . . . vkvk+1 ∈ W k+1 is reduced, Lemma 2.7 implies that v1 . . .

vk+1 ∈ W k and, in particular, we find that vk+1 doesn’t contain sk . Thus the claim
holds. Now by moving all vi to the right using commuting relations, we obtain

w = w1u2u3 . . . uns1s2 . . . snv2v3 . . . vnwn+1.

Using Lemma 2.7 again, we obtain v2v3 . . . vnwn+1 ∈ W n . This proves the proposi-
tion since w1u2u3 . . . un ∈ W 1

n+1. �

3 Stable Bott–Samelson Classes

In this section, we introduce stable Bott–Samelson classes in the limitR of�∗(Fln).
We also compute some of those classes explicitly in the case of infinitesimal coho-
mology.
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3.1 The Stability of Bott–Samelson Classes

A Schubert variety is, in general, normal and Cohen-Macaulay, and has rational sin-
gularities. There exists several resolutions of singularities for it.Wewill be interested
in the so-called Bott–Samelson resolutions.

We set F (n)
i := 〈en, . . . , en+1−i 〉 and denote the trivial bundle with fiber F (n)

i by
F (n)

i .

Definition 3.1 For a reduced word v = si1 . . . sir ∈ W n , the Bott–Samelson variety
Y (n)

v is a subvariety of (Fln)
r defined as follows:

Y (n)
v =

{
(U [0]• , U [1]• , . . . , U [r ]• ) ∈ (Fln)r

∣
∣
∣ U [k−1]

i = U [k]
i ,∀k = [1, r ],∀i ∈ [1, n − 1]\{ik}

}
,

where U [0]• = F (n)• . If there is no confusion, we will sometimes write Yv for Y (n)
v .

Remark 3.2 In Definition 4.1 wewill give another equivalent construction (denoted
Xw) of the Bott–Samelson resolutions.

It is well-known (cf. [5]) that Yv is a smooth projective variety of dimension
r . Let πn : (Fln)

r → Fln be the projection to the r -th component. If w ∈ Wn and
v = w

(n)
0 w, the projection πn induces a birational map Yv → Xw, which we refer to

as a Bott–Samelson resolution of Xw ⊂ Fln .

Theorem 3.3 Let v ∈ W n be a reduced word. There is a fiber diagram

Y (n)
v ι̃n

πn

Y (n+1)
c(n)v

πn+1

Fln ιn
Fln+1,

and we have ι∗n
([

Yc(n)v → Fln+1
]) = [

Yv → Fln
]
.

Furthermore, let c[n+m] := c(n+m−1) . . . c(n+1)c(n) where c[n] = 1, then the
sequence [

Yc[n+m]v → Fln+m
]
, m ≥ 0

defines a stable class in R, which we call a stable Bott–Samelson class associated
to w and denote by BSv

w if v = w
(n)
0 w.

Proof First we note that, by definition, an element of Y (n)
v can be specified by a

sequence of subspaces (V1, . . . , Vr ) where Vk = U [k]
ik
. We show that the map ι̃n :

Y (n)
v → Y (n+1)

c(n)v
defined by

ι̃n(V1, V2, . . . , Vr ) := (F (n)
1 , . . . , F (n)

n , V1, . . . , Vr )
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gives the desired fiber diagram. If we write an element of Y (n+1)
c(n)v

as

(A[1]
• , . . . , A[n]

• , B[1]
• , . . . , B[r ]

• ),

it suffices to show that A[k]
k = F (n)

k for all k ∈ [1, n] over the image of Fln . Suppose
that B[r ]• is in the image of Fln , then B[r ]

n = En . Since i1, . . . , ir ∈ [1, n − 1], we
have A[n]

n = En = F (n)
n . We use backward induction on k with the base case being

k = n. Assume A[k+1]
k+1 = F (n)

k+1. We then have

A[k]
k ⊂ F (n+1)

k+1 ∩ A[k+1]
k+1 = F (n+1)

k+1 ∩ F (n)
k+1 = F (n)

k .

For the latter claim, we use the identity ι∗nπn+1∗ = πn∗ι̃∗n (see [16, p.144 (BM2)]).
We get

ι∗n
[
Yc(n)v → Fln+1

] = ι∗nπn+1∗(1Yc(n)v
) = πn∗ι̃∗n(1Yc(n)v

) = πn∗(1Yv
) = [Yv → Fln].

This completes the proof of the claim. �

Remark 3.4 We sometimes denote BSv
w by BSv

w(x) in order to stress that we regard
it as an element of L[x]bd/S∞ under the identification in Proposition 2.2.

The following compatibility of Bott–Samelson classes with divided difference oper-
ators was established in [6].

Lemma 3.5 For a reduced word v = si1 . . . sir ∈ W n, and k ∈ [1, n − 1], we have

∂i
[
Yv → Fln

] =
{[

Yvsi → Fln
]

if vsi is a reduced word

0 otherwise

Since, as explained in Sect. 2.2, the divided difference operators commute with the
pullbacks ι∗n , we obtain the next corollary.

Corollary 3.6 Let w ∈ Wn and set v = w
(n)
0 w. Let v be a reduced word of v. For

any i ∈ Z>0, we have

∂iBS
v
w =

{
BSvsi

wsi if �(wsi ) < �(w)

0 otherwise.

Remark 3.7 In the connective K -theoryof Fln , the class [Yv → Fln] coincideswith
the class of the opposite Schubert variety Xw, provided that v = w

(n)
0 w. Its associated

class in the projective limit is represented by the Grothendieck polynomial Gw(x)

associated to w.
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3.2 Examples in Infinitesimal Cohomology

Throughout this section we will consider infinitesimal cohomology instead of alge-
braic cobordism. In combination with Proposition 2.2, the use of this simpler theory
will allow us to perform an explicit computation of the stable Bott–Samelson classes
in terms of power series in x .

As in Sect. 2.1, the formal group law and its formal inverse for the infinitesimal
cohomology I ∗

2 are given by

FI2(x, y) = x � y = (x + y)(1 + γxy), χI2(x) = �x = −x

with γ2 = 0. We denote I ∗
2 (pt) = Z[γ]/(γ2) by I. As explained in Sect. 2.1, we have

I ∗
2 (Fln) ∼= I[x1, . . . , xn]/Sn

where Sn is the ideal generated by the homogeneous symmetric polynomials of
strictly positive degree in x1, . . . , xn . We set

RI := R ⊗L I = I[x]bd/S∞.

By specialising (5) to this particular case we obtain that onRI the divided difference
operator ∂i is given by

∂i f = f − si f

xi − xi+1
· (1 + γxi xi+1), f ∈ RI.

Remark 3.8 (1) If f is symmetric in xi and xi+1, then ∂i ( f g) = f ∂i g for all g ∈
RI.

(2) If |i − j | ≥ 2, then ∂i∂ j = ∂ j∂i .

For a reduced word v = si1 . . . sir , let ∂v := ∂ir . . . ∂i1 . Recall that c(n) = s1 . . . sn .

Lemma 3.9 For n ≥ 1, we have

∂c(n)

(
xn
1 xn−1

2 . . . xn
) = (

xn−1
1 xn−2

2 . . . xn−1
)
(1 + γe2(x1, . . . , xn+1)).

Proof First we observe that

∂k(xk(1 + γe2(x1, . . . , xk))) = 1 + γe2(x1, . . . , xk+1) (6)

which can be shown by a straightforward computation using the identities

e2(x1, . . . , xk) = e2(x1, . . . , xk−1) + xke1(x1, . . . , xk−1)

e2(x1, . . . , xk+1) = e2(xk, xk+1) + e2(x1, . . . , xk−1) + e1(x1, . . . , xk−1)e1(xk, xk+1).
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Now we prove the formula by induction on n. The case n = 1 is obvious. If n > 1,
by induction hypothesis, we have

∂n . . . ∂1
(
xn
1 xn−1

2 . . . xn
) = (xn−1

1 xn−2
2 . . . xn−1)∂n(xn(1 + e2(x1, . . . , xn))).

Thus the claim follows from Eq.6. �

Lemma 3.10 Modulo SN , we have

N−1∑

k=n+1

e2(x1, . . . , xk) = −
N−1∑

i=n+1

(i − n)xi+1e1(x1, . . . , xi ).

Proof Let us begin by recalling the following identity of elementary symmetric
polynomials

e2(x1, . . . , xN ) = e2(x1, . . . , xk) +
N−1∑

i=k

xi+1e1(x1, . . . , xi ).

Thus modulo SN , it follows that

N−1∑

k=n+1

e2(x1, . . . , xk) = −
N−1∑

k=n+1

N−1∑

i=k

xi+1e1(x1, . . . , xi ) = −
N−1∑

i=n+1

i∑

k=n+1

xi+1e1(x1, . . . , xi ).

The right hand side is the desired formula. �

For w
(n)
0 ∈ Sn the corresponding Schubert variety X

w
(n)
0

(n) in Fln is a point, and so is

the unique Bott–Samelson variety Y (n)
1 . In I ∗

2 (Fln) we have

[
Y (n)
1 → Fln

]
= xn−1

1 xn−2
2 . . . xn−1.

The stable Bott–Samelson class BS1
w

(n)
0

introduced in Theorem 3.3 is given by the
sequence [

Y (N )

c(N−1)...c(n) → Fl N

]
∈ I ∗

2 (Fl N ), N ≥ n.

By Lemmas 3.9 and 3.10, we can identify a formal power series representing this
class in the ring RI as follows.

Theorem 3.11 In RI, we have

BS1
w

(n)
0

(x) =
(

n−1∏

i=1

xn−i
i

) (

1 − γ

∞∑

i=n+1

(i − n)xi+1e1(x1, . . . , xi )

)

. (7)
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Proof In view of Lemma 3.5, we can compute the class
[
Y (N )

c(N−1)...c(n) → Fl N

]
via

divided difference operators:

[
Y (N )

c(N−1)...c(n) → Fl N

]
= ∂c(n) . . . ∂c(N−1)

[
Y (N )
1 → Fl N

]

= ∂c(n) . . . ∂c(N−1)

(
x N−1
1 x N−2

2 . . . xN−1
)
.

Consecutive applications of Lemma 3.9 give

[
Y (N )

c(N−1)...c(n) → Fl N

]
=

(
n−1∏

i=1

xn−i
i

) (

1 + γ

N−1∑

k=n+1

e2(x1, . . . , xk)

)

.

By Lemma 3.10 we can rewrite this expression (modulo SN ) as:

[
Y (N )

c(N−1)...c(n) → Fl N

]
=

(
n−1∏

i=1

xn−i
i

) (

1 − γ

N−1∑

i=n+1

(i − n)xi+1e1(x1, . . . , xi )

)

.

(8)
The right hand side of (7) is well-defined as an element of I[x]bd and it projects to
(8) for all N ≥ n. This completes the proof. �

In view of Corollary 3.6, all stable Bott–Samelson classes can be computed from (7)
by applying divided difference operators. More precisely, pick w ∈ Wn and v ∈ W n

such that v = w
(n)
0 w. Then

BSv
w = ∂vBS

1
w

(n)
0

.

Moreover, since the second factor of (7) is symmetric in x1, . . . , xn , one simply has
to identify ∂v

(
xn−1
1 xn−2

2 . . . xn−1
)
. That is,

BSv
w = Bn(x)∂v

(
xn−1
1 xn−2

2 . . . xn−1
)
,

where we denote

Bn(x) := 1 − γ

∞∑

i=n+1

(i − n)xi+1e1(x1, . . . , xi ).

Based on this, we will now obtain explicit closed formulas for the power series
representing the stable Bott–Samelson classes associated to dominant permutations.

Definition 3.12 For a permutation w ∈ Sn , consider a n × n grid with dots in the
boxes (i, w(i)). The diagram ofw is the set of boxes that remain after deleting boxes
weakly east and south of each dot. A permutationw is called dominant if its diagram
is located at the NW corner of the grid, and coincides with a Young diagram of a
partition λ = (λ1, . . . ,λr ) with λi ≤ n − i . For a given such partition λ, there is
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a unique dominant permutation wλ ∈ Sn . For example, the longest element w
(n)
0 is

dominant and its associated partition is ρ := (n − 1, n − 2, . . . , 2, 1).
Let T be the standard tableau of ρ, i.e., the fillings of the boxes of the i-th row of T

are all i . One places λ at the NW corner of ρwith its boxes shaded.We order the anti-
diagonals starting from the the inner ones to the outer ones, i.e., the i-th anti-diagonal
consists of boxes at (a, b) with a + b = n + 2 − i . Let m be the biggest number
such that the m-th anti-diagonal contains unshaded boxes. Let v(i), 1 ≤ i ≤ m be
the reduced word obtained by reading the numbers in the i-th anti-diagonal. Then
v := v(1) . . . v(m) is a reducedword of v = w

(n)
0 wλ. For each i , let x(i)

k (k = 1, . . . , ai )

be the orbits of v(i) in {x1, . . . , xn} with cardinality greater than 1.

Theorem 3.13 Let wλ ∈ Sn be the dominant permutation associated to the par-
tition λ = (λ1, . . . ,λr ). Let v := v(1) . . . v(m) be the reduced word of v = w

(n)
0 wλ

constructed in Definition 3.12. We have

BSv
wλ

= xλ1
1 . . . xλr

r

(

1 + γ

(
m∑

i=1

ai∑

k=1

e2(x
(i)
k )

))

Bn(x).

Proof We prove the formula by induction on m. If m = 1, then by Lemma 3.9 we
have

∂v(1)

(
xn−1
1 xn−2

2 . . . xn−1
) = xλ1

1 . . . xλr
r

(

1 + γ

(
a1∑

k=1

e2(x
(1)
k )

))

.

Now, let m > 1. By the induction hypothesis, we have

∂v(m) . . . ∂v(1)

(
xn−1
1 xn−2

2 . . . xn−1

)
= ∂v(m)

(

x
λ′
1

1 . . . x
λ′

r
r

(

1 + γ

(
m−1∑

i=1

ai∑

k=1

e2(x
(i)
k )

)))

,

where λ′ = λ ∪ (n − m, n − m − 1, . . . , 2, 1, ). Since the unshaded boxes form a
skew shape ρ/λ, it follows that v(m) stabilizes the second factor, allowing it pass
through ∂v(m) :

∂v(m) . . . ∂v(1)

(
xn−1
1 xn−2

2 . . . xn−1

)
=

(

1 + γ

(
m−1∑

i=1

ai∑

k=1

e2(x
(i)
k )

))

· ∂v(m)

(
x

λ′
1

1 . . . x
λ′

r
r

)
.

Now the desired formula follows again from Lemma 3.9. �

Example 3.14 Consider wλ = (53124) ∈ S5 where λ = (4, 2).

1 1 1 1
2 2 2
3 3
4
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The reduced word v of v = w
(5)
0 wλ is v = (s2s3s4)(s3). We have

(∂3)(∂4∂3∂2)
(

x41 x32 x23 x4
)

= (1 + γe2([2, 5]) · ∂3

(
x41 x22 x3

)
= x41 x22

(
1 + γ(e[2,5]

2 + e[3,4]
2 )

)
.

Example 3.15 Consider wλ = (45123) ∈ S5 where λ = (3, 3).

1 1 1 1
2 2 2
3 3
4

The reduced word of v = w
(5)
0 wλ is v = (s1s3s4)(s3). We have

(∂3)(∂4∂3∂1)
(
x41 x32 x23 x4

) =
(
1 + γ(e[1,2]

2 + e[3,5]
2 )

)
∂3

(
x31 x32 x3

) = x31 x32

(
1 + γ(e[1,2]

2 + e[3,5]
2 + e[3,4]

2 )
)

.

Example 3.16 Consider wλ = (563412) ∈ S6 where λ = (4, 4, 2, 2).

1 1 1 1 1
2 2 2 2
3 3 3
4 4
5

The reduced word of v = w
(6)
0 wλ is v = s1s3s5. We have

∂5∂3∂1
(
x5
1 x4

2 x3
3 x2

4 x5
) = (x1x2)

4(x3x4)
2
(
1 + γ(e[1,2]

2 + e[3,4]
2 + e[5,6]

2 )
)

.

4 Restriction of Bott–Samelson Classes

In this section we generalise the restriction formula in Theorem 3.3 of the previous
section. Namely, we will prove a formula for the product of the cobordism class of
any Bott–Samelson resolution with the class [Fln−1 → Fln]. In order to simplify
the proof we will use another equivalent definition of Bott–Samelson resolutions.
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4.1 Bott–Samelson Resolution Revisited

In this section, we provide another construction of the Bott–Samelson variety Xw

associated to a word w by viewing it as a configuration space. This description will
be better suited for our purposes.

Definition 4.1 Let w = si1 . . . sir be a word in W n+1.

(1) For a ∈ [1, n + 1], define LOw(a), the last occurence of a in w, by

LOw(a) = sup{k ∈ [1, r ] | ik = a}.

Note that if the above set is empty, then LOw(a) = −∞.
(2) If LOw(a) = −∞, then we set VLOw(a) = 〈e1, . . . , ea〉.
(3) For k ∈ [1, r ], define w[k] = si1 . . . sik .
(4) For k ∈ [1, r ], the left and the right predecessors of k in w, denoted LPw and

RPw, are defined as:
LPw(k) := LOw[k](ik − 1),
RPw(k) := LOw[k](ik + 1).

Remark 4.2 Note that by (2) and (4) in the above definition, we have:

VLPw(k) = 〈e1, . . . , eik−1〉 if LPw(k) = −∞ and
VRPw(k) = 〈e1, . . . , eik+1〉 if RPw(k) = −∞.

Definition 4.3 Given a word w = si1 . . . sir , define the Bott–Samelson variety Xw

as follows:

Xw =
{
(Vk)k∈[1,r ] | dim Vk = ik and VLPw(k) ⊂ Vk ⊂ VRPw(k)

}
.

Define a morphism πw : Xw → Fln+1 by πw((Vk)k∈[1,r ]) = (VLOw(a))a∈[1,n]. If w is
reduced, then the map πw is a proper birational morphism from Xw onto the Schubert
variety Xw. In this reduced case, we often call Xw together with the map πw a Bott–
Samelson resolution.

Remark 4.4 There is a natural isomorphism between our two construction of the
Bott–Samelson variety Xw and Yw. It is given by (Vk)k∈[1,r ] �→ (U (k)• )k∈[1,r ] with
U (k)

a = VLOw[k](a) for all k ∈ [1, r ] and a ∈ [1, n].
Recall the following well known fact on Bott–Samelson varieties.

Lemma 4.5 The Bott–Samelson variety does not depend on the choice of a word
modulo commuting relations. More precisely, if w = v modulo commuting relations,
then there is an isomorphism fw,v : Xw → Xv such that the following diagram is
commutative:
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Xw

fw,v

πw

Xv

πv

Xw
Id

Xv.

Proof It is enough to prove this result in the case in whichw and v are obtained from
each other by a unique commuting relation. The result then follows by induction on
the number of commuting relations. Assume therefore that w = u1sasbu2 and v =
u1sbsau2 with |a − b| ≥ 2. Let ri = �(ui ) for i ∈ [1, 2] and set r = �(w) = �(v) =
r1 + r2 + 2. Define the map fw,v : Xw → Xv by fw,v((Vk)k∈[1,r ]) = (Wk)k∈[1,r ] and
fv,w((Wk)k∈[1,r ]) = (Vk)k∈[1,r ] with Wk = Vk for k /∈ {r1 + 1, r1 + 2} and Wr1+ε =
Vr1+3−ε for ε ∈ {1, 2}. These maps are inverses of each other and we only need to
check that they indeed map Xw to Xv and Xv to Xw respectively. By symmetry, we
only need to check this for fw,v .

We prove that given (Vk)k∈[1,r ] ∈ Xw, the condition WLPv(k) ⊂ Wk is satisfied for
all k. The other inclusion Wk ⊂ WRPv(k) is obtained by similar arguments. First note
that we have the following relations:

LPv(k) = LPw(k) for k,LPw(k) /∈ {r1 + 1, r1 + 2}
LPv(k) = r1 + 3 − ε for LPw(k) = r1 + ε and ε ∈ {1, 2}
LPv(r1 + ε) = LPw(r1 + 3 − ε) for ε ∈ {1, 2}

For k such that k,LPw(k) /∈ {r1 + 1, r1 + 2},wehaveWLPv(k) = WLPw(k) = VLPw(k) ⊂
Vk = Wk . For LPw(k) = r1 + ε with ε ∈ {1, 2}, note that k /∈ {r1 + 1, r1 + 2} thus
we have WLPv(k) = Wr1+3−ε = Vr1+ε = VLPw(k) ⊂ Vk = Wk . Finally, for k = r1 + ε
with ε ∈ {1, 2}, note that LPw(r1 + 3 − ε) /∈ {r1 + 1, r1 + 2} thus we have
WLPv(k) = WLPv(r1+ε) = WLPw(r1+3−ε) = VLPw(r1+3−ε) ⊂ Vr1+3−ε = Wr1+ε = Wk .
Furthermore we have:

LOw(a) = LOv(a) if LOw(a) /∈ {r1 + 1, r1 + 2}
LOw(a) = LOv(a) + 3 − ε if LOw(a) = r1 + ε for ε ∈ {1, 2},

so we easily see that we have πv ◦ fw,v = πw and πw ◦ fv,w = πv . �

4.2 Fiber Product with a Subflag

We now prove a fiber product formula for Bott–Samelson resolutions.
Define

Fn =
{

U• ∈ Fln+1 | Un = 〈e2, . . . , en+1〉 = F (n+1)
n

}
. (9)

We can easily see that Fn coincides with the opposite Schubert variety Xc in Fln+1

where c := c(n) = s1 . . . sn is the Coxeter element. Therefore, from a well-known
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fact, we have that for w ∈ Wn+1

Xw ∩ Fn �= ∅ if and only if c ≤ w. (10)

Definition 4.6 For u ∈ W 1
n+1 with u = si1 . . . sir , define c−1(u) ∈ W n

n+1 by

c−1(u) = sc−1(i1) . . . sc−1(ir ) = si1−1 . . . sir −1,

where we observe that for each k ∈ [2, n + 1] one has c−1(k) = k − 1 ∈ [1, n].
Definition 4.7 Denote by c the isomorphism c : kn+1 → kn+1 defined by c(ei ) =
ec(i) for all i ∈ [1, n + 1].
1. The map c induces an isomorphism c : Fln → Fn ⊂ Fln+1.
2. For w ∈ W n

n+1 with �(w) = r , define

c(Xw) =
{
(c(Vk))k∈[1,r ] | (Vk)k∈[1,r ] ∈ Xw

}

and c(πw) : c(Xw) → c(Xw) ⊂ c(Fln) = Fn , so that the following diagram is
commutative:

Xw
c

πw

c(Xw)

c(πw)

Xw
c

c(Xw).

Lemma 4.8 For u ∈ W 1
n+1 and v ∈ W n

n+1, define w = u c v and w′ = c−1(u)v. Let
r1 = �(u) and r2 = �(v). For � ∈ [1, n − 1], we have the following equalities:

(1) If k ≤ r1, then LOw′[k](�) = LOw[k](� + 1);
(2) If k ≥ r1 + 1 and LOv[k−r1](�) �= −∞, then LOw′[k](�) = LOw[k+n](�) − n =

LOv[k−r1](�) + r1 ≥ r1 + 1;
(3) If k ≥ r1 + 1 and LOv[k−r1](�) = −∞, then LOw′[k](�) = LOu(� + 1) =

RPw[k+n](r1 + �) ≤ r1 and LOw[k+n](�) = r1 + �.

Proof If k ≤ r1, thenw′[k] = c−1(w[k]) and the result follows.Assumenow that k ≥
r1 + 1. If LOv[k−r1](�) �= −∞, then the last occurence of � in w′[k] is obtained at a
letter of v[k − r1] so that LOwu′[k](�) = LOv[k−r1](�) + r1 = LOw[k+n](�) − n ≥
r1. If LOv[k−r1](�) = −∞, the last occurence of� inw′[k] is the last occurence of�

in c−1(u) and we get the equalities LOw′[k](�) = LOc−1(u)(�) = LOu(� + 1) ≤ r1.
On the other hand, the last occurence of � in w[k + n] is obtained as the �-th letter
in c thus LOw[k+n](�) = r1 + �. This also explains the equality LOu(� + 1) =
RPw[k+n](r1 + �). �

Corollary 4.9 For u ∈ W 1
n+1 and v ∈ W n

n+1, define w = ucv and w′ = c−1(u)v.
Let r1 = �(u) and r2 = �(v). We have the following alternatives:
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(1) If LOv(�) �= −∞, then LOw′(�) = LOw(�) − n = LOv(�) + r1 ≥ r1 + 1;
(2) IfLOv(�) = −∞, thenLOw′(�) = LOu(� + 1) = RPw(r1 + �) andLOw(�)

= r1 + �.

Proof Apply the previous lemma with k = r1 + r2. �

Corollary 4.10 For u ∈ W 1
n+1 and v ∈ W n

n+1, define w = ucv and w′ = c−1(u)v.
Let r1 = �(u) and r2 = �(v). We set LPx (−∞) = −∞ and RPx (−∞) = −∞ for
any word x.

A. We have the following formulas for LPw and LPw′:

1. If a ∈ [1, r1], then LPw′(a) = LPw(a) ≤ r1.
2. If a > r1 and LPv(a − r1) �= ∞, then LPw′(a) = LPw(a + n) − n > r1.
3. If a > r1 and LPv(a − r1) = −∞, then LPw(a + n) ∈ [r1 + 1, r1 + n] ∪ {−∞}

and LPw′(a) = RPw(LPw(a + n)) ≤ r1.

B. We have the following formulas for RPw and RPw′:

1. If a ∈ [1, r1], then RPw′(a) = RPw(a) ≤ r1.
2. If a > r1 and RPv(a − r1) �= ∞, then RPw′(a) = RPw(a + n) − n > r1.
3. If a > r1 and RPv(a − r1) = −∞, then RPw′(a) = RPw(RPw(a + n)) ≤ r1 and

RPw(a + n) ∈ [r1 + 1, r1 + n] ∪ {−∞}.
C. If k ∈ [r1 + 1, r1 + n], then LPw(k) ∈ [r1 + 1, r1 + n] ∪ {−∞} Furthermore,

for k ∈ [r1 + 1, r1 + n], we have the following formulas for LPw and RPw:

1. If RPw(k) > RPw(LPw(k)), then RPw(LPw(k)) = LPw(RPw(k)).
2. If RPw(k) < RPw(LPw(k)), then RPw(RPw(LPw(k))) = RPw(k).

Proof Write u = si1 . . . sir1
and v = sir1+n+1 . . . sir1+n+r2

so thatw = si1 . . . sir with r =
r1 + r2 + n and sir1+k = sk for k ∈ [1, n]. We have w′ = s j1 . . . s jr1+r+2 with

jk =
{

ik − 1 for k ∈ [1, r1]
ik+n for k ∈ [r1 + 1, r1 + r2].

A.1. We have LPw′(a) = LOw′[a]( ja − 1) = LOw[a](( ja − 1) + 1) = LOw[a]( ja)
= LOw[a](ia − 1) = LPw(a). By definition LPw′(a) < a ≤ r1.

A.2.WehaveLPw′(a) = LOw′[a]( ja − 1) = LOw[a+n](ia+n − 1) − n = LPw(a +
n) − n ≥ r1 + 1.

A.3.WehaveLPw′(a) = LOw′[a]( ja − 1) = RPw[a+n](r1 + ja − 1) ≤ r1 and r1 +
ja − 1 = LOw[a+n]( ja − 1). We get LPw′(a) = RPw[a+n](LOw[a+n]( ja − 1)) =
RPw[a+n](LOw[a+n](ia+n − 1)) = RPw[a+n](LPw(a + n)).

For B.1. and B.2. use the proof of A.1. and A.2 with RP in place of LP.
B.3.WehaveRPw′(a) = LOw′[a]( ja + 1) = RPw[a+n](r1 + ja + 1) ≤ r1 and r1 +

ja + 1 = LOw[a+n]( ja + 1). We get LPw′(a) = RPw[a+n](LOw[a+n]( ja + 1)) =
RPw[a+n](LOw[a+n](ia+n + 1)) = RPw[a+n](RPw(a + n)).

C. If k ∈ [r1 + 1, r1 + n], then the k-th letter of w is the (k − r1)-th letter of c
andwehaveLPw(k) = LPc(k − r1) = k − r1 − 1 for k > r1 + 1 andLPw(r1 + 1) =
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−∞. Note that, if any of the two quatities RPw(k) or RPw(LPw(k)) is finite, we have
RPw(k) �= RPw(LPw(k)).

C.1. Assume RPw(k) > RPw(LPw(k)). If k = r1 + 1, then ik = 1 and LPw(k) =
−∞ thus RPw(LPw(k)) = −∞. Furthermore, iRPw(k) = ik + 1 = 2 and since u ∈
W 1

n+1 we have LPw(RPw(k)) = LOu(2) = −∞. Assume now k > r1 + 1, then
LPw(k) = k − 1, thus RPw(LPw(k)) = RPw(k − 1) = LOu(ik−1 + 1) = LOu(ik).
We have iRPw(k) = ik + 1 thus LPw(RPw(k)) = LOw[RPw(k)](iRPw(k) − 1) =
LOw[RPw(k)](ik). Since RPw(k) < k, we have that w[RPw(k)] is a subword of u
thusLOw[RPw(k)](ik) ≤ LOu(ik) = RPw(LPw(k)).On the other hand, sinceRPw(k) >

RPw(LPw(k)),wehaveLOw[RPw(k)](ik) ≥ LOw[RPw(LPw(k))](ik) = RPw(LPw(k)). The
last equality holds since iRPw(LPw(k)) = ik .

C.2. Assume RPw(k) < RPw(LPw(k)). This implies LPw(k) �= −∞ thus
k > r1 + 1. We have RPw(k) = LOw[k](ik + 1) and RPw(RPw(LPw(k))) =
LOw[RPw(LPw(k))](ik + 1). Since RPw(LPw(k)) < k, then w[RPw(LPw(k))] is a sub-
word of w[k] thus LOw[RPw(LPw(k))](ik + 1) ≤ LOw[k](ik + 1). On the other hand,
since RPw(k) < RPw(LPw(k)), we have LOw[RPw(LPw(k))](ik + 1) ≥ LORPw[k]
(ik + 1). �

Theorem 4.11 Let w be a reduced word and w ∈ W the associated element.

(1) If w � c, then Xw ×Fln+1 Fn is empty.
(2) If w ≥ c, there exist u ∈ W 1

n+1 and v ∈ W n
n+1 such that w = u c v modulo com-

muting relations and we have an isomorphism of Fln+1-varieties Xw ×Fln+1

Fn � c(Xc−1(u)v).

Proof (1) is clear since the condition implies Xw ∩ Fn = ∅. We prove (2). By Propo-
sition 2.9, we can write w = u c v. Let �(w) = r , and �(u) = r1, �(v) = r2 so that
r = r1 + r2 + n. Since the obvious inclusion Fn ↪→ Fln+1 is a closed embedding,
we can view Xw ×Fln+1 Fn as the closed subvariety of Xw given as follows:

Xw ×Fln+1 Fn =
{
(Vk)k∈[1,r ] ∈ Xw | Vr1+n = 〈e2, . . . , en+1〉

}
.

Define the map f : Xw ×Fln+1 Fn → c(Xc−1(u)v) by f ((Vk)k∈[1,r ]) = (Ha)a∈[r1+r2]
with

Ha =
{

Va ∩ 〈e2, . . . , en+1〉 for a ∈ [1, r1]
Va+n for a ∈ [r1 + 1, r1 + r2].

Define the map g : c(Xc−1(u)v) → Xw ×Fln+1 Fn by g((Ha)a∈[r1+r2]) = (Vk)k∈[1,r ]
with

Vk =
⎧
⎨

⎩

Hk + 〈e1〉 for k ∈ [1, r1]
VRPw(k) ∩ 〈e2, . . . , en+1〉 for k ∈ [r1 + 1, r1 + n]
Hk−n for k ∈ [r1 + n + 1, r ].

Set w′ = c−1(u)v ∈ W n
n+1. Write u = si1 . . . sir1

and v = sir1+n+1 . . . sir1+n+r2
so that

w = si1 . . . sir with sir1+k = sk for k ∈ [1, n]. We have w′ = s j1 . . . s jr1+r+2 with
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jk =
{

ik − 1 for k ∈ [1, r1]
ik+n for k ∈ [r1 + 1, r1 + r2].

We first prove that these maps are well defined. We start with f . Note that if
(Vk)k∈[1,r ] ∈ Xw ×Fln+1 Fn , then

Vk ⊃ 〈e1〉 for k ∈ [1, r1]
Vk ⊂ 〈e2, . . . , en+1〉 for k ∈ [r1 + 1, r1 + r2 + n]
Vk = VRPw(k) ∩ 〈e2, . . . , en+1〉 for k ∈ [r1 + 1, r1 + n].

Indeed, since u ∈ W 1, we have LPw(k) = −∞ for any k ∈ [1, r1]with ik = 2 imply-
ing our first claim. Furthermore, since v ∈ W n+1, by the same type of arguments we
have the equality Vr1+n = 〈e2, . . . , en+1〉 proving the second claim. In particular
for k ∈ [r1 + 1, r1 + n], we have Vk ⊂ VRPw(k) ∩ 〈e2, . . . , en+1〉 and 〈e1〉 ⊂ VRPw(k).
Since dim Vk = dim VRPw(k) − 1 this proves the last equality.

We check that dim Ha = ja . For a ∈ [1, r1], we have dim Ha = dim(Va ∩
〈e2, . . . , en+1〉) = dim Va − 1 = ia − 1 = ja , where the second equality holds since
u ∈ W 1

n+1, therefore 〈e1〉 ⊂ Va . For a ∈ [r1 + 1, r1 + r2], we have dim Ha =
dim Va+n = ia+n = ja .

We now check the inclusions HLPw′ (a) ⊂ Ha ⊂ HRPw′ (a). We start with the
inclusions HLPw′ (a) ⊂ Ha . For a ∈ [1, r1], then LPw′(a) = LPw(a) ≤ r1 and
we have HLPw′ (a) = HLPw(a) = VLPw(a) ∩ 〈e2, . . . , en+1〉 ⊂ Va ∩ 〈e2, . . . , en+1〉 =
Ha . For a ∈ [r1 + 1, r1 + r2] and LPv(a − r1) �= −∞, then LPw′(a) = LPw(a +
n) − n ≥ r1 + 1 and we have HLPw′ (a) = HLPw(a+n)−n = VLPw(a+n) ⊂ Va+n = Ha .
For a ∈ [r1 + 1, r1 + r2] and LPv(a) = −∞, then LPw′(a) = RPw(LPw(a +
n)) ≤ r1 and LPw(a + n) ∈ [r1 + 1, r1 + n] ∪ {−∞}. If LPw(a + n) = −∞, then
LPw′(a) = −∞ and HLPw′ (a) = 0, so the inclusion holds. Otherwise, we have
HLPw′ (a) = HRP(LPw(a)) = VRP(LPw(a+n)) ∩ 〈e2, . . . , en+1〉 = VLPw(a+n) ⊂ Va = Ha .

We prove the inclusions Hk ⊂ HRPw′ (a). For a ∈ [1, r1], then RPw′(a) =
RPw(a) ≤ r1 and we have Ha = Va ∩ 〈e2, . . . , en+1〉 ⊂ VRPw(a) ∩ 〈e2, . . . , en+1〉 =
HRPw(a) = HRPw′ (a). For a ∈ [r1 + 1, r1 + r2] and RPv(a − r1) �= −∞, then
RPw′(a) = RPw(a + n) − n ≥ r1 + 1 and we have Ha = Va+n ⊂ VRPw(a+n) =
HRPw(a+n)−n = HRPw′ (a). For a ∈ [r1 + 1, r1 + r2] and RPv(a) = −∞, then
RPw′(a) = RPw(RPw(a + n)) ≤ r1 and RPw(a + n) ∈ [r1 + 1, r1 + n] ∪ {−∞}. If
RPw(a + n) = −∞, then RPw′(a) = −∞ and HLPw′ (a) = 〈e1, . . . , en+1〉, so the
inclusion holds. Otherwise, we have Ha = Va+n ⊂ VRPw(a+n) = VRP(RPw(a+n)) ∩
〈e2, . . . , en+1〉 = HRPw(RPw(a+n)) = HRPw′ (a).

We now prove that g is well defined. Note that for all a, we have Ha ⊂
〈e2, . . . , en+1〉. We first check the equalities dim Vk = ik for all k ∈ [1, r ]. For
k ∈ [1, r1], we have dim Vk = dim(Hk + 〈e1〉) = dim Hk + 1 = jk + 1 = ik , where
the second equality holds since Hk ⊂ 〈e2, . . . , en+1〉. For k ∈ [r1 + 1, r1 + n], we
have dim Vk = dim(VRPw(k) ∩ 〈e2, . . . , en+1〉) = dim VRPw(k) − 1 = (ik + 1) − 1 =
ik , where the second equality holds since RPw(k) ≤ r1 for k ∈ [r1 + 1, r1 + n] thus
〈e1〉 ⊂ VRPw(k). For k ∈ [r1 + n + 1, r ], we have dim Vk = dim Hk−n = jk−n = ik .
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We now check, for k ∈ [1, r ], the inclusions VLPw(k) ⊂ Vk ⊂ VRPw(k). We start
with the inclusions VLPw(k) ⊂ Vk . For k ∈ [1, r1], we have LPw(k) = LPw′(k) ≤ r1
thus VLPw(k) = VLPw′ (k) = HLPw′ (k) + 〈e1〉 ⊂ Hk + 〈e1〉 = Vk . For k ∈ [r1 + 1, r1 +
n] and RPw(k) > RPw(LPw(k)), we have RPw(LPw(k)) = LPw(RPw(k)) and
LPw(k) ∈ [r1 + 1, r1 + n] ∪ {−∞}. If LPw(k) = −∞, then VLPw(k) = 0 and the
inclusion holds. Otherwise, we have VLPw(k) = VRPw(LPw(k)) ∩ 〈e2, . . . , en+1〉 =
VLPw(RPw(k)) ∩ 〈e2, . . . , en+1〉 ⊂ VRPw(k) ∩ 〈e2, . . . , en+1〉 = Vk . For k ∈ [r1 + 1,
r1 + n] and RPw(k) < RPw(LPw(k)), we have RPw(RPw(LPw(k))) = RPw(k) ≤
r1. We have VLPw(k) = VRPw(LPw(k)) ∩ 〈e2, . . . , en+1〉 ⊂ VRPw(RPw(LPw(k))) ∩ 〈e2, . . . ,
en+1〉 ⊂ VRPw(k) ∩ 〈e2, . . . , en+1〉 = VK . For k ≥ r1 + n and LPv(k − n − r1) �=
−∞, we haveLPw(k) − n = LPw′(k − n) ≥ r1 + n + 1 thus VLPw(k) = HLPw(k)−n =
HLPw′ (k−n) ⊂ Hk−n = Vk . For k ≥ r1 + n and LPv(k − n − r1) = −∞, we have
RPw(LPw(k)) = LPw′(k − n) ≤ r1 and LPw(k) ∈ [r1 + 1, r1 + n] ∪ {−∞}. If
LPw(k) = −∞, then VLPw(k) = 0 and the inclusion holds. Otherwise, we have
VLPw(k) = VRPw(LPw(k)) ∩ 〈e2, . . . , en+1〉 = VLPw′ (k−n) ∩ 〈e2, . . . , en+1〉 = (HLPw′ (k−n)

+ 〈e1〉) ∩ 〈e2, . . . , en+1〉 = HLPw′ (k−n) ⊂ Hk−n = Vk .
We finish with the inclusions Vk ⊂ VRPw(k). For k ∈ [1, r1], we have RPw(k) =

RPw′(k) ≤ r1 thus Vk = Hk + 〈e1〉 ⊂ HRPw′ (k) + 〈e1〉 = VRPw′ (k) = VRPw(k). For k ∈
[r1 + 1, r1 + n], we have Vk = VRPw(k) ∩ 〈e2, . . . , en+1〉 ⊂ VRPw(k). For k ≥ r1 + n
and RPv(k − n − r1) �= −∞, we have RPw(k) − n = RPw′(k − n) ≥ r1 + n + 1
thus Vk = Hk−n ⊂ HRPw′ (k−n) = HRPw(k)−n = VRPw(k). For k ≥ r1 + n and RPv(k −
n − r1) = −∞, we have RPw(RPw(k)) = RPw′(k − n) ≤ r1 and RPw(k) ∈ [r1 +
1, r1 + n] ∪ {−∞}. If RPw(k) = −∞, then VLPw(k) = 〈e1, . . . , en+1〉 and the
inclusion holds. Otherwise, we have Vk = Hk−n ⊂ HRPw′ (k−n) = VRPw′ (k−n) =
VRPw(RPw(k)) But since Vk = Hk−n ⊂ 〈e2, . . . , en+1〉, we get Vk ⊂ VRPw(RPw(k)) ∩
〈e2, . . . , en+1〉 = VRPw(k) where the last equality holds since RPw(k) ∈ [r1 + 1, r1 +
n].

Now we prove that f and g are inverse to each other and that πw = πw′ ◦ c−1 ◦ f .
We first prove that g ◦ f is the identity. Write g ◦ f ((Vk)k∈[1,r ]) = (V ′

k)k∈[1,r ]
and f ((Vk)k∈[1,r ]) = (Ha)a∈[1,r1+r2]. For k ∈ [1, r1], we have V ′

k = Hk + 〈e1〉 =
(Vk ∩ 〈e2, . . . , en+1〉) + 〈e1〉. But for such k, we have 〈e1〉 ⊂ Vk , this implies
(Vk ∩ 〈e2, . . . , en+1〉) + 〈e1〉 = Vk . For k ∈ [r1 + 1, r1 + n], we proceed by induc-
tion on k and remark that RPw(k) < k. We have V ′

k = V ′
RPw(k) ∩ 〈e2, . . . , en+1〉 =

VRPw(k) ∩ 〈e2, . . . , en+1〉 = Vk . For k ≥ r1 + n + 1, we have V ′
k = Hk−n = Vk .

Next we prove that f ◦ g is the identity. Write f ◦ g((Ha)a∈[1,r1+r2]) =
(H ′

a)a∈[1,r1+r2] and g((Ha)a∈[1,r1+r2]) = (Vk)k∈[1,r ]. For a ∈ [1, r1], we have H ′
a =

Va ∩ 〈e2, . . . , en+1〉 = (Ha + 〈e1〉) ∩ 〈e2, . . . , en+1〉. But for such a, we have Ha ⊂
〈e2, . . . , en+1〉 and this implies (Ha + 〈e1〉) ∩ 〈e2, . . . , en+1〉 = Ha . For a ∈ [r1 +
1, r1 + r2], we have H ′

a = Va+n = Ha .
Finally we check that πw = πw′ ◦ c−1 ◦ f . Write f ((Vk)k∈[1,r ]) = (Ha)a∈[r1+r2],

πw((Vk)k∈[1,r ]) = (U
�

)
�∈[1,n] and πw′((Ha)a∈[1,r1+r2]) = (U ′

�
)
�∈[1,n]. We need to

prove that U
�

= U ′
�

for all � ∈ [1, n]. If LOv(�) �= −∞, we have LOw′(�) =
LOw(�) − n ≥ r1 + 1. We get U ′

�
= HLOw′ (�) = VLOw′ (�)+n = VLOw(�) = U

�
. If
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LOv(�) = −∞,wehaveLOw′(�) = LOu(� + 1) = RPw(r1 + �) ≤ r1 andLOw(�) =
r1 + �. We get U ′

�
= HLOw′ (�) = HRPw(r1+�) = VRPw(r1+�) ∩ 〈e2; . . . , en+1〉 =

Vr1+�
= VLOw(�) = U

�
. �

4.3 A Product Formula in Cobordism

As a consequence of Theorem 4.11 we prove a product formula in the algebraic
cobordism �∗(Fln+1).

Corollary 4.12 Let w be a reduced word and w ∈ W the associated element.

1. If w � c, then [Xw] · [Fn] = 0 in �∗(Fln+1).
2. If w ≥ c, there exist u ∈ W 1

n+1 and v ∈ W n
n+1 such that w = u c v modulo com-

muting relations and we have

[Xw] · [Fn] = [Xc−1(u)v].

in �∗(Fln+1).

Proof The product [Xw] · [Fn] is given by pulling back the exterior product Xw ×
Fn → Fln+1 × Fln+1 along the diagonal map � : Fln+1 → Fln+1 × Fln+1, see
[16, Remark 4.1.14]. We thus have [Xw] · [Fn] = �∗[Xw × Fn → Fln+1 × Fln+1].
Applying [16, Corollary 6.5.5.1], we get �∗[Xw × Fn → Fln+1 × Fln+1] =
[Xw ×Fln+1 Fn] in �∗(X). The result follows since [c(Xc−1(u)v)] = [Xc−1(u)v]. �

As a special case, we recover the restriction formula in Theorem 3.3 as a product
formula.

Corollary 4.13 Let w = c v be a reduced word with v ∈ W n
n+1. Then we have the

following formula in �∗(Fln+1):

[Xw] · [Fn] = [Xv].

By reversing the order of the simple reflection s1, . . . , sn (or equivalently by conju-
gating with the element w0) we also obtain the following results in �∗(Fln+1):

Proposition 4.14 Let w ∈ W n+1 be a reduced word and c′ := sn . . . s1 a Coxeter
element. Let F′

n = {U• ∈ Fln+1 | U1 = 〈en+1〉}. Then w � c′ is equivalent to Xw ∩
F′

n = ∅ and we have the following alternatives:

(1) If w � c′, then [Xw] · [F′
n] = 0 in �∗(Fln+1).

(2) If w ≥ c′, then, modulo commuting relations, we have w = u c′v with u ∈ W 1
n+1

and v ∈ W n
n+1. Furthermore, we have

[Xw] · [F′
n] = [Xc′−1(u)v]
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in �∗(Fln+1).

In particular, if w = c′v is reduced with v ∈ W 1
n+1, then we have the following for-

mula in �∗(Fln+1):
[Xw] · [F′

n] = [Xv].
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Residue Mirror Symmetry for
Grassmannians

Bumsig Kim, Jeongseok Oh, Kazushi Ueda, and Yutaka Yoshida

Abstract Motivated by recent works on localizations in A-twisted gauged linear
sigma models, we discuss a generalization of toric residue mirror symmetry to com-
plete intersections in Grassmannians.

Keywords A-twisted gauged linear sigma models · Quasimaps · Toric residue
mirror symmetry

1 Introduction

A-twisted gauged linear sigma models are 2-dimensional topological field theories
introduced by Witten [69]. An A-twisted gauged linear sigma model is specified by
a reductive algebraic group G (or its compact real form) called the gauge group, an
affine space W with a linear action of G × Gm called the matter, and an element ξ of
the dual z∗ of the center of the Lie algebra of G called the Fayet–Iliopoulos param-
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eter. The weights of the Gm-actions are called R-charges. One can also introduce a
superpotential in the theory, which is a G-invariant function on W of R-charge 2.
The correlation functions, which are quantities of primary interest, do not depend
on the potential.

An A-twisted gauged linear sigmamodel with a suitable Fayet–Iliopoulos param-
eter is expected to be equivalent to the topological sigma model whose target is the
classical vacuum subspace of the symplectic reduction W//ξG. This comes from a
stronger expectation that the low-energy limit of a gauged linear sigmamodel should
give the non-linear sigma model whose target is the symplectic reduction W//ξG.

A prototypical example is the case G = Gm and W = A
6, with the action

G × Gm � (α,β) : (z1, . . . , z5, P) �→ (αz1, . . . ,αz5,α
−5β2P) (1)

and a potential P f , which is the product of the variable P and a homogeneous
polynomial f in z1, . . . , z5 of degree 5. The symplectic reduction W//ξG for the
positive ξ gives the total space of the bundle OP4(−5). The R-charge of the P-
field indicates that the target space should be considered not as a manifold but as a
supermanifold, where the parity of the fiber is odd.

One candidate for amathematical theory ofA-twisted gauged linear sigmamodels
is symplectic vortex invariants [19, 20, 35, 59, 60, 74] and their generalizations
incorporating potentials [28, 65]. Another candidate is quasimap theory, which is an
intersection theory onmoduli spaces of maps to the quotient stacks [W/G]. A review
of the latter theory, with historical remarks and extensive references, can be found in
[21]. These two approaches should be related by Hitchin–Kobayashi correspondence
for vortices [13, 58, 68].

When the gauge group is abelian, quasimap theory as a mathematical theory of A-
twisted gauged linear sigma models goes back to [52]. The relation with the Yukawa
coupling of the mirror is formulated as toric residue mirror conjecture in [3, 4] and
proved in [11, 46, 63, 64].

Quasimap theory in the special case of projective hypersurfaces is also studied in
the insightful paper [34], where a heuristic relation with semi-infinite homologies of
loop spaces is discussed. This eventually leads to Givental’s proof [31] of classical
mirror symmetry [16] for the quintic 3-fold. This has been extended to toric complete
intersections in [32].

The correlation functions of A-twisted gauged linear sigma models in the cases
when gauge groups are not necessarily abelian are computed in [9, 24] using super-
symmetric localization of path integrals. The result is given in terms of Jeffrey–
Kirwan residues, and reproduces the results of [52] in abelian cases.

The aim of this paper is twofold. One is to give an expository account of quasimap
theory and its relation to other subjects such as instantons and integrable systems. The
other is to formulateConjecture 5,which states that the correlation function defined in
(5) in terms of residues coincides with the generating function of quasimap invariants
defined in (190), and prove it for Grassmannians in Sect. 12. This can be considered
as a generalization of toric residuemirror symmetry to Grassmannians.We also show
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in Sect. 8 that a slightly weakened version of toric residue mirror conjecture follows
from Givental’s mirror theorem. Nothing else in this paper is new.

This paper is organized as follows: In Sect. 2, we recall the description of correla-
tion functions of A-twisted gauged linear sigma models given in [9, 24]. In Sect. 3,
we recall the definition of the quasimap spaces Q(Pn−1; d). They are compactifica-
tions of the spaces of holomorphic maps of degrees d from P

1 to P
n−1, and play an

essential role in Givental’s homological geometry [33, 34]. In Sect. 4, we recall toric
residue mirror symmetry for Calabi–Yau complete intersections in projective spaces.
In Sect. 5, we discuss quasimap invariants of concave bundles. In Sect. 6, we recall
classical mirror symmetry for toric hypersurfaces proved in [32]. The exposition in
Sect. 6 follows [43] closely. In Sect. 7, we briefly recall the definition of quasimap
spaces for toric varieties due to [52]. In Sect. 8, we show that a slightly weakened ver-
sion of toric residue mirror conjecture for CY hypersurfaces follows from classical
mirror symmetry. In Sect. 9, we recall a theorem of Martin which relates integration
on a symplectic quotient by a compact Lie group to that on the quotient by a maxi-
mal torus. In Sect. 10, we recall the definition of quasimap spaces to GIT quotients,
which are called quasimap graph spaces in [22]. The quasimap spaces come with the
universal G-bundle and the canonical virtual fundamental classes, which allow us to
define numerical invariants. We formulate Conjecture 5, which states that correlation
functions of A-twisted gauged linear sigma models given in (5) are generating func-
tions of quasimap invariants. There is a natural Gm-action on the quasimap graph
space coming from the Gm-action on the domain curve. There is a distinguished
connected component of the fixed locus of this action, which is used to define the
I -function. In Sect. 11, the quasimap spaces and the I -functions for Grassmannians
are recalled from [10]. In Sect. 12, we prove Conjecture 5 for Grassmannians. For
this purpose, we introduce abelianized quasimap spaces for Grassmannians, which
allows us to relate quasimap invariants for Grassmannians with correlations function
in (5). In Sect. 13, we discuss the relation between gauged linear sigma models and
Bethe ansatz following [56]. In Sects. 14–16, we recall the relations of quasimaps
with instantons, monopoles, and vortices respectively.

2 Correlation Functions of A-Twisted Gauged Linear
Sigma Models

2.1

Let G be a reductive algebraic group of rank r , and W be a representation of G × Gm .
The center of G and its Lie algebra will be denoted by Z(G) and z. Fix a maximal
torus T of G, and let t be its Lie algebra. The set of roots, its subset of positive
roots, and the Weyl group will be denoted by �, �+, and W := N (T )/T . Let
W = ⊕N

i=1 Wi be the weight space decomposition of W with respect to the action
of T × Gm . The weight of Wi will be denoted by (ρi , ri ) ∈ t∨ ⊕ Z, and ri will be
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called the R-charge. If W admits an action of another torus H commuting with
the action of G × Gm , then one can introduce the twisted mass λ ∈ h in the theory,
which corresponds to the equivariant parameter for the H -action. The T × Gm × H -
weight of Wi will be denoted by (ρi , ri , νi ) ∈ t∨ ⊕ Z ⊕ h∨. We also introduce the
complexified Fayet–Illiopoulos parameter t ′ ∈ z∨ ⊗R C, which corresponds to the
complexified Kähler form of the symplectic quotient. Here, we save the unprimed
symbol t for the indeterminate in the generating function of quasimap invariants (see
(22), (60), (85) and (231)).

For d ∈ t and t ′ ∈ z∨, the composition of the surjection t∨ � z∨ dual to the inclu-
sion z ↪→ t and the evaluation t∨ × t → C will be denoted by t ′ · d or t ′(d).

2.2

For d ∈ t and x ∈ t, let

Zd(x) := Zvec
d (x)Zmat

d (x) (2)

be the product of

Zvec
d (x) :=

∏

α∈�+

(−1)α(d)+1α2(x) (3)

and

Zmat
d (x) :=

N∏

i=1

(ρi (x) + νi (λ))ri −ρi (d)−1. (4)

Here the superscripts ‘vec’ and ‘mat’ stands for the vector multiplet and the matter
chiral multiplet respectively. According to [9, 24], the correlation function of a W -
invariant polynomial P(x) ∈ C[t]W on a 2-sphere is given, up to sign introduced by
hand, by

〈P(x)〉GLSM = 1

|W |
∑

d∈P∨
et ′ ·d JKc(Zd(x)P(x)). (5)

Here P∨ is the coweight lattice of G and JKc is the Jeffrey–Kirwan residue defined
in [63, Sect. 2] (cf. also [15]). The cone c ⊂ z∨ is the ample cone of the GIT quotient
determined by the Fayet–Iliopoulos parameter η.
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2.3

One can introduce a variable z associated with the background value of an auxiliary
gauge field in the gravity multiplet. This corresponds to the equivariant parameter
for the Gm-action on the domain curve. This turns (2) into the product

Zd(x; z) := Zvec
d (x; z)Zmat

d (x; z) (6)

of

Zvec
d (x; z) :=

∏

α∈�+

(−1)α(d)+1α(x)α(x + dz) (7)

and

Zmat
d (x; z) :=

N∏

i=1

∏−1
l=−∞

(
ρi (x) + νi (λ) − (

l + ri
2

)
z
)

∏ρi (d)−ri
l=−∞

(
ρi (x) + νi (λ) − (

l + ri
2

)
z
) , (8)

and the correlation function of P(x) ∈ C[t]W is given by

〈P(x)〉H×Gm
GLSM = 1

|W |
∑

d∈P∨
et ′ ·d JKc(Zd(x; z)P(x)). (9)

2.4

Another quantity of interest is the effective twisted superpotential on the Coulomb
branch, or the effective potential for short. It is defined as the sum

Weff(x; t ′) := WFI(x; t ′) + Wvec(x) + Wmat(x) (10)

of the Fayet–Illiopoulos term

WFI(x; t ′) := t ′ · x, (11)

the vector multiplet term

Wvec(x) := −π
√−1

∑

α∈�+
α(x), (12)

and the matter term
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Wmat(x) := −
N∑

i=1

(ρi (x) + νi (λ)) (log (ρi (x) + νi (λ)) − 1) . (13)

3 Quasimap Spaces for Projective Spaces

3.1

Aholomorphicmap u : P1 → P
n−1 of degree d is given by a collection (ui (z1, z2))

n
i=1

of n homogeneous polynomials of degree d satisfying the following condition:

There exists no (z1, z2) ∈ A
2 \ {0} such that u(z1, z2) = 0 ∈ A

n. (14)

Two collections (ui (z1, z2))
n
i=1 and

(
u′

i (z1, z2)
)n

i=1 define the same map if and only
if there exists α ∈ Gm such that ui (z1, z2) = αu′

i (z1, z2) for all i ∈ {1, . . . , n}. It
follows that the space

M(Pn−1; d) := {
u : P1 → P

n−1
∣
∣ deg u = d

}
(15)

of holomorphic maps of degree d from P
1 to Pn−1 can be compactified to the projec-

tive space of dimension n(d + 1) − 1, whose homogeneous coordinate is given by
the coefficients

(
ai j
)

i, j
of the collection (ui (z1, z2))n

i=1 of homogeneous polynomials
of degree d;

ui (z1, z2) =
d∑

j=0

ai j z
j
1zd− j

2 , i = 1, . . . , n. (16)

This compactification is called the quasimap space and denoted by Q(Pn−1; d). An
element of the quasimap space is called a quasimap.

3.2

Apoint [z1 : z2] ∈ P
1 is a base point (or singularity) of a quasimap u if u(z1, z2) = 0.

A quasimap is a genuine map outside of the base locus. If the degree of the base
locus is d ′, then a quasimap can be considered as a genuine map of degree d − d ′.
However, it is more convenient to think of a quasimap as a morphism to the quotient
stack [An/Gm]. By definition, a morphism from P

1 to [An/Gm] is a principal Gm-
bundle P over P1 and a Gm-equivariant morphism ũ : P → A

n . It is a quasimap if
the generic point of P is mapped to the semi-stable locus An \ {0}.
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3.3

Let x ∈ H 2(Q(Pn−1; d);Z) be the ample generator of the cohomology ring of
Q(Pn−1; d) ∼= P

n(d+1)−1, so that

H∗(Q(Pn−1; d);Z) ∼= Z[x]/ (xn(d+1)
)
. (17)

Given a polynomial P(x) ∈ C[x], we set

〈P(x)〉Pn−1 :=
∞∑

d=0

qd 〈P(x)〉Pn−1,d ∈ C [[q]] , (18)

where

〈P(x)〉Pn−1,d :=
∫

Q(Pn−1;d)

P(x) (19)

is the integration over the quasimap space. It follows from

〈
xk
〉
Pn−1,d =

{
1 k = n(d + 1) − 1,

0 otherwise
(20)

that

〈
xk
〉
Pn−1 =

{
qd k = n(d + 1) − 1 for some d ∈ Z

≥0,

0 otherwise.
(21)

3.4

Ifwe setG := Gm andW := C
n with the actionG × Gm � (α,β) : (w1, . . . , wn) �→

(αw1, . . . ,αwn), then we have Zvec
d (x) = 1 and Zmat

d (x) = (
x−d−1

)n
, so that (5)

gives the same result as (21) under the identification

q = et ′
. (22)

3.5

The small quantum cohomology of Pn−1 is the free C [[q]]-module
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QH
(
P

n−1
) := H∗ (

P
n−1;C [[q]]

)
(23)

equipped with multiplication given by

xi ◦ x j :=
n∑

k=0

∞∑

d=0

qd
〈
I0,3,d

〉
(xi , x j , xk) xn−k−1. (24)

Here

〈
I0,3,d

〉
(a, b, c) :=

∫

[
M0,3(Pn−1;d)]virt

ev∗
1 a ∪ ev∗

2 b ∪ ev∗
3 c (25)

is the 3-point Gromov–Witten invariant. It is an associative commutative deformation
of the classical cohomology ring;

QH
(
P

n−1
)/

(q) ∼= H∗ (
P

n−1;C) . (26)

Since the virtual dimension of the moduli space of stable maps is given by

virt.dimMg,k(X; d) = (1 − g)(dim X − 3) + 〈c1(X), d〉 + k (27)

in general, one has

virt.dimM0,3
(
P

n−1; d
) = nd + n − 1. (28)

The 3-point Gromov–Witten invariant in (24) is non-zero only if

virt.dimM0,3
(
P

n−1; d
) = i + j + k. (29)

Since 0 ≤ i, j, k ≤ n − 1, one has (29) only if d = 0, i + j + k = n − 1 or d = 1,
i + j + k = 2n − 1. This shows that xi ◦ x j = xi+ j for i + j ≤ n − 1. Since there
is a unique line passing through two points on Pn−1 in general position, and this line
intersects a hyperplane at one point, one has x ◦ xn−1 = q. Hence the ring structure
of the quantum cohomology of Pn−1 is given by

QH
(
P

n−1
) ∼= (C [[q]]) [x]/ (xn − q

)
. (30)

We write the ring homomorphism C[x] → QH(Pn−1) sending x to x as P(x) �→
P̊(x).

Theorem 1 For any P(x) ∈ C[x], one has

〈P(x)〉Pn−1 =
∫

Pn−1
P̊(x). (31)
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Proof Since both sides of (31) are linear in P(x) ∈ C[x], it suffices to show
〈
xk
〉
Pn−1 =

∫

Pn−1
x◦k (32)

for any k ∈ N, which is obvious from (21) and (30). �

Theorem 1 is equivalent to the Vafa–Intriligator formula [42, 67]:

Corollary 2 (Vafa–Intriligator formula for projective spaces) For any P(x) ∈ C[x],
one has

∫

Pn−1
P̊(x) = 1

n

∑

λn=q

P(λ)

λn−1
, (33)

where the sum is over λ ∈ C
[[

q1/n
]]

satisfying λn = q.

Proof Since the integration over the projective space can be written by residue as

∫

Pr−1
xk = δr−1,k = Res

xkdx

xr
, (34)

one has
∫

Pn−1
P̊(x) = 〈P(x)〉Pn−1 (35)

=
∞∑

d=0

qd
∫

Q(Pn−1;d)

P(x) (36)

=
∞∑

d=0

qd Res
P(x)dx

xn(d+1)
(37)

= Res
x−n P(x)

1 − qx−n
(38)

= Res
P(x)

xn − q
(39)

= 1

n

∑

λn=q

P(λ)

λn−1
, (40)

and (33) is proved. �
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3.6

The projective space Pn−1 has a natural action of GLn , which restricts to the action of
the diagonalmaximal torus H . The equivariant cohomology is defined as the ordinary
cohomology H∗

H (Pn−1) := H∗(Pn−1
H ) of the Borel construction P

n−1
H := P

n−1 ×H

E H, where E H is the product of n copies of the total space of the tautological
bundle OP∞(−1) over BGm = P

∞. It follows that Pn−1
H is the projectivization P(E)

of the vector bundle E := ⊕n
i=1 π∗

i OP∞(−1) of rank n over (P∞)n . A standard result
on the cohomology of a projective bundle (see e.g. [37, p. 606]) shows that H∗(Pn−1

H )

is generated over H∗
H (pt) = H∗ ((P∞)n) ∼= C[λ1, . . . ,λn] by x := −c1(OP(E)(−1))

with one relation

(−x)n − c1(E)(−x)n−1 + c2(E)(−x)n−2 + · · · + (−1)ncn(E) = 0. (41)

Since ci (E) = (−1)iσi (λ1, . . . ,λn), one obtains

H∗
H (Pn−1) ∼= C[x,λ1, . . . ,λn]

/
n∏

i=1

(x − λi ) . (42)

The H -fixed locus (Pn−1)H consists of n points {pi }i=1, where pi is the point [z1 :
· · · : zn] ∈ P

n−1 with zi = 1 and z j = 0 for i �= j . Since the tautological bundle
OP(E)(−1) restricts to π∗

i OP∞(−1) on (pi )T = (P∞)n , one has

ι∗i x = λi . (43)

The push-forward

∫ H

Pn−1
: H∗

H (Pn−1) → H∗
H (pt) ∼= C[λ1, . . . ,λn] (44)

along the natural map (Pn−1)H → (pt)H
∼= B H is called the equivariant integration.

The localization theorem [2] shows

∫ H

Pn−1
P(x) =

n∑

i=1

ι∗i P(x)

EulH (Npi /Pn−1)
(45)

=
n∑

i=1

P(λi )
∏

j �=i (λi − λ j )

= Res
P(x)dx

∏n
i=1(x − λi )

for any P(x) ∈ H∗
H (Pn−1).
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3.7

The quasimap space Q(Pn−1; d) has a natural action of H × Gm given by

H × Gm � (α1, . . . ,αn,β) : (ui (z1, z2))
n
i=1 �→ (αi ui (z1,βz2))

n
i=1 . (46)

The equivariant cohomology ofQ(Pn−1; d) with respect to this torus action is given
by

H∗
H×Gm

(Q(Pn−1; d);C) ∼= C[x,λ1, . . . ,λn, z]
/⎛

⎝
n∏

i=1

d∏

j=0

(x − λi − jz)

⎞

⎠ .

(47)

The H × Gm-equivariant integration

〈−〉H×Gm

Pn−1,d : H∗
H×Gm

(Q(Pn−1; d);C) → H∗(B(H × Gm);C) (48)

is given by

〈P(x)〉H×Gm

Pn−1,d = Res
P(x)dx

∏n
i=1

∏d
j=0(x − λi − j z)

(49)

=
n∑

i=1

d∑

j=0

P(λi + jz)
∏

(k,l)�=(i, j)((λi + jz) − (λk + lz))
. (50)

The H × Gm-equivariant correlator is given by

〈P(x)〉H×Gm

Pn−1 :=
∞∑

d=0

qd 〈P(x)〉H×Gm

Pn−1,d . (51)

The H -equivariant correlator 〈P(x)〉H
Pn−1 and theGm-equivariant correlator 〈P(x)〉Gm

Pn−1

are obtained by setting z = 0 and λ = (λ1, . . . ,λn) = 0 respectively.

3.8

The fixed point of the Gm-action on Q(Pn−1; d) is the disjoint union

Q(Pn−1; d)Gm =
d∐

i=0

Q(Pn−1; d)
Gm
i (52)

of d + 1 connected components
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Q(Pn−1; d)
Gm
i := {[a1zi

1zd−i
2 , . . . , anzi

1zd−i
2 ] ∈ Q(Pn−1; d)

∣
∣ [a1, . . . , an] ∈ P

n−1
}
.

(53)

Each of these connected components is isomorphic toPn−1, and the base locus is i0 +
(d − i)∞. The connected componentQ(Pn−1; d)

Gm
0 will be denoted byQ•(Pn−1; d).

There is a natural map ev : Q•(Pn−1; d) → P
n−1 called the evaluation map, and one

has

Q(Pn−1; d)Gm ∼=
∐

d1+d2=d

Q•(Pn−1; d1) ×Pn−1 Q•(Pn−1; d2). (54)

The normal bundle of Q•(Pn−1; d) in Q(Pn−1; d) is given by OPn−1(1)⊕nd , whose
equivariant Euler class is given by

EulH×Gm
(
NQ•(Pn−1;d)/Q(Pn−1;d)

) =
n∏

i=1

d∏

l=1

(x − λi + lz) . (55)

The equivariant I -function is defined by

I H
Pn−1(t; z) := etx/z

∞∑

d=0

edt I H
d (56)

where

I H
d (z) := ev∗

(
1

EulH×Gm
(
NQ•(Pn−1;d)/Q(Pn−1;d)

)

)

(57)

= 1
∏n

i=1

∏d
l=1 (x − λi + lz)

. (58)

The non-equivariant I -function is defined similarly, and given by setting λ = 0 in
(56);

IPn−1(t; z) := etx/z
∞∑

d=0

edt

∏d
l=1 (x + lz)n

. (59)

3.9

Let
(
C
[[

et
]]) [t] be the polynomial ring in t with the ring C

[[
et
]]
of formal power

series in et as a coefficient. The equivariant I -function in (56) is an element of
H∗

H

(
P

n−1;C)⊗C

(
C
[[

et
]]) [t], and the variable t is related to the variable q appear-

ing in the correlator by
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q = et . (60)

The equivariant I -function can also be considered as a H∗
H

(
P

n−1;C)-valued analytic
function, which is multi-valued as a function of q and single-valued as a function of
t = log q.

3.10

There is aGm-equivariant evaluation map ev0 : Q(Pn−1; d) → [Cn/Gm] at the point
0 ∈ P

1. By abuse of notation, we also let x denote theGm-equivariant Euler class of
the line bundle ev∗

0(O[Cn/Gm ](1)).HereO[Cn/Gm ](1) is the line bundle [(Cn × C)/Gm]
on the quotient stack with weights ((1, . . . , 1), 1).

Let ιi : Q(Pn−1; d)
Gm
i → Q(Pn−1; d) be the inclusion of the i th connected com-

ponent (53). Since ι∗i (x) = x + iz (under the identification Q(Pn−1; d)
Gm
i = P

n−1)
and

1

EulGm

(
NQ(Pn−1;d)

Gm
i /Q(Pn−1;d)

) = Ii (z) ∪ Id−i (−z), (61)

localization with respect to the Gm-action shows that

∞∑

d=0

edτ
〈
e(t−τ )x/z〉Gm

Pn−1,d =
∞∑

d=0

edτ
d∑

i=0

∫

Q(Pn−1;d)
Gm
i

ι∗i
(
e(t−τ )x/z

)

EulGm

(
NQ(Pn−1;d)

Gm
i /Q(Pn−1;d)

)

=
∞∑

d=0

edτ
d∑

i=0

∫

Pn−1
e(t−τ )(x+iz)/z ∪ Ii (z) ∪ Id−i (−z)

=
∞∑

d=0

d∑

i=0

∫

Pn−1
etx/zeti Ii (z) ∪ e−τ x/ze(d−i)τ Id−i (−z)

=
∫

Pn−1
IPn−1(t; z) ∪ IPn−1(τ ;−z). (62)

The factorization of the H × Gm-equivariant correlator is proved similarly as

∞∑

d=0

edτ
〈
e(t−τ )x/z

〉H×Gm

Pn−1,d

=
∞∑

d=0

Res
edτ e(t−τ )x/zdx

∏n
i=1

∏d
l=0(x − λi − lz)

=
∞∑

d=0

d∑

m=0

n∑

j=1

Resx=λ j +mz
edτ e(t−τ )x/zdx

∏n
i=1

∏d
l=0(x − λi − lz)
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=
∞∑

d=0

d∑

m=0

n∑

j=1

Resx=λ j

edτ e(t−τ )x/ze(t−τ )mdx
∏n

i=1
∏d

l=0(x − λi − (l − m)z)

=
∞∑

d=0

d∑

m=0

n∑

j=1

Resx=λ j

etx/zemt
∏n

i=1
∏m

l=1(x − λi + lz)
e−τ x/ze(d−m)τ

∏n
i=1

∏d−m
l=1 (x − λi − lz)

dx
∏n

i=1(x − λi )

=
∞∑

d=0

∞∑

d ′=0

n∑

j=1

Resx=λ j

etx/zedt

∏n
i=1

∏d
l=1(x − λi + lz)

e−τ x/zed ′τ
∏n

i=1
∏d ′

l=1(x − λi − lz)

dx
∏n

i=1(x − λi )

=
∫ H

Pn−1
I H
Pn−1 (t; z) ∪ I H

Pn−1 (τ ; −z).

This can also be regarded as a purely combinatorial proof.

3.11

Let ev : M0,1(P
n−1; d) → P

n−1 be the evaluation map from the moduli space of
stablemaps of genus 0 and degree d with 1marked point, andψ be thefirstChern class
of the line bundle overM0,1(P

n−1; d)whose fiber at a stable mapϕ : (C, x) → P
n−1

is the cotangent line T ∗
x C at the marked point. The equivariant J -function [31] is a

H∗(Pn−1;C)-valued hypergeometric series given by

J H
Pn−1(t; z) := etx/z

∞∑

d=0

edt Jd (63)

where

Jd := ev∗
(

1

z(z − ψ)

)

. (64)

3.12

The graph space is defined by G(Pn−1; d) := M0,0(P
n−1 × P

1; (d, 1)). The source
of any map ϕ : C → P

n−1 × P
1 in G(Pn−1; d) has a distinguished irreducible com-

ponent C1 which maps isomorphically to P
1. Let G(Pn−1; d)0 be the open sub-

space of G(Pn−1; d) consisting of stable maps without irreducible components
mapping constantly to 0 ∈ P

1. There is a map ev0 : G(Pn−1; d)0 → P
n−1 send-

ing ϕ : C → P
n−1 × P

1 to pr1 ◦ϕ
((
pr2 ◦ϕ

)−1
(0)
)

. The fixed locus of the nat-

ural Gm-action on G(Pn−1; d)0 can be identified with M0,1(P
n−1; d). Since the

natural morphism G(Pn−1; d)0 → Q(Pn−1; d)0 is a Gm-equivariant birational mor-
phism which commutes with the evaluation maps, the push-forwards Jd and Id of
1 by ev0 : G(Pn−1; d)0 → P

n−1 and ev : Q(Pn−1; d)0 → P
n−1 are equal, and hence

IPn−1(t; z) = JPn−1(t; z).
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3.13

The effective potential (10) is given by

Weff(x; t) = t x −
n∑

i=1

(x − λi ) (log (x − λi ) − 1) . (65)

One can easily see

∂Weff

∂x
= t −

n∑

i=1

log(x − λi ), (66)

e∂x Weff = q
n∏

i=1

(x − λi )
−1, (67)

so that

〈P(x)〉H
Pn−1 = Res

P(x)dx
∏n

i=1(x − λi )(1 − e∂x Weff )
. (68)

Note that the equation

e∂x Weff = 1 (69)

gives the relation

n∏

i=1

(x − λi ) = q (70)

in the equivariant quantum cohomology of Pn−1.

4 Projective Complete Intersections

4.1

Let f1(w1, . . . , wn), . . . , fr (w1, . . . , wn) ∈ C[w1, . . . , wn] be homogeneous poly-
nomials of degrees l1, . . . , lr satisfying the Calabi–Yau condition

l1 + · · · + lr = n. (71)

Assume that f1, . . . , fr are sufficiently general so that
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Y := {[w1, . . . , wn] ∈ P
n−1

∣
∣ f1(w1, . . . , wn) = · · · = fr (w1, . . . , wn) = 0

}

(72)

is a smooth complete intersection of dimension n − r − 1, whose Poincaré dual is

v :=
r∏

i=1

(li x). (73)

Define the quasimap space Q(Y ; d) as the subset of Q(Pn−1; d) consisting of
[ϕ1(z1, z2), . . . ,ϕn(z1, z2)] satisfying

fi (ϕ1(z1, z2), . . . ,ϕn(z1, z2)) = 0 ∈ C[z1, z2] for any i ∈ {1, . . . , r}. (74)

Since fi (ϕ1(z1, z2), . . . ,ϕn(z1, z2)) ∈ C[z1, z2] is a homogeneous polynomial of
degree dli in z1 and z2, it contains dli + 1 terms, each of which is a homogeneous
polynomial of degree li in (akl)k,l . With this in mind, the Morrison–Plesser class is
defined by

�(Y ; d) :=
r∏

i=1

(li x)li d ∈ H∗(Q(Pn−1; d);Z), (75)

so that�(Y ; d) ∪ v is the Poincaré dual of [Q(Y ; d)]virt ∈ H∗(Q(Pn−1; d);Z). If we
set

〈P(x)〉Y,d :=
∫

Q(Pn−1;d)

P(x) ∪ �(Y ; d) ∪ v (76)

and

〈P(x)〉Y :=
∞∑

d=0

qd 〈P(x)〉Y,d (77)

for P(x) ∈ C[x], then we have

〈
xn−r−1

〉
Y =

∞∑

d=0

qd Res
xn−r−1�(Y, d)vdx

xn(d+1)
(78)

=
∞∑

d=0

qd Res
xn−r−1∏r

i=1(li x)li d+1dx

xn(d+1)
(79)

=
∞∑

d=0

qd
r∏

i=1

(li )
li d+1 (80)
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=
∏r

i=1 li

1 − q
∏r

i=1(li )li
. (81)

4.2

The gauged linear sigmamodel for Y is obtained from the gauged linear sigmamodel
for Pn−1 by adding r fields of G = Gm-charge −l1, . . . ,−lr and R-charge 2. One
has Zvec

d (x) = 1 and Zmat
d (x) = (

x−d−1
)n ·∏r

i=1 (−li x)li d+1 in this case, so that (5)
gives

∞∑

d=0

et ′d Res
(
x−d−1

)n
r∏

i=1

(−li x)li d+1 xn−r−1 =
∞∑

d=0

et ′d
r∏

i=1

(−li )
li d+1 (82)

=
∞∑

d=0

(−1)
∑r

i=1 li d et ′d
r∏

i=1

(li )
li d+1

(83)

=
∞∑

d=0

(
(−1)n et ′)d r∏

i=1

(li )
li d+1 ,

(84)

which coincides with (78) under the identification

q = (−1)net ′
. (85)

4.3

The mirror Y̌ of Y is a compactification of a complete intersection in Cn defined by

f̌1 := 1 − (a1 y̌1 + · · · + al1 y̌l1), (86)

f̌2 := 1 − (al1+1 y̌l1+1 + · · · + al1+l2 y̌l1+l2), (87)

... (88)

f̌r := 1 − (al1+···+li−1+1 y̌l1+···+li−1+1 + · · · + an y̌n), (89)

f̌0 := y̌1 · · · y̌n − 1. (90)
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The complex structure of Y̌ depends not on the individualai but only onα = a1 · · · an .
The Yukawa (n-2)-point function is defined by

Y(α) := (−1)(n−1)(n−2)/2

(
2π

√−1
)n−1

∫

Y̌
� ∧

(

α
∂

∂α

)n−2

�, (91)

where

� := Res

(
d y̌1 ∧ · · · ∧ d y̌n

f̌0 f̌1 · · · f̌r

)

(92)

is the holomorphic volume form on Y̌ . The computation in [5, Proposition 5.1.2]
shows

Y(α) =
∏r

i=1 li

1 − α
∏r

i=1(li )li
, (93)

which coincides with (81) under the identification q = α of variables;

Y(α) = 〈
xn−r−1

〉
Y

∣
∣
q=α

. (94)

A generalization of (94) to toric complete intersections is toric residue mirror sym-
metry conjectured in [3, 4] and proved in [11, 46, 63, 64].

5 Concave Bundles on Projective Spaces

5.1

Let l1, l2, · · · , lr be positive integers and

Y := S pecPn−1

(
S ym∗ E∨) (95)

be the total space of the vector bundle associated with the locally free sheaf

E := OPn−1(−l1) ⊕ · · · ⊕ OPn−1(−lr ) (96)

on P
n−1. Since any holomorphic map from P

1 to Y of positive degree d factors
through the zero-section P

n−1 → Y , we define the quasimap space to Y as

Q(Y ; d) := Q(Pn−1; d). (97)
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5.2

To equip Q(Y ; d) with a natural obstruction theory, we identify Q(Y ; d) with an
open substack of the mapping stack Map(P1,Y) to the quotient stack

Y := [(
A

n × A
r
)
/Gm

]
(98)

of An × A
r by the Gm-action given by

Gm � α : (x1, . . . , xn, z1, . . . , zr ) �→ (αx1, . . . ,αxn,α
−l1 z1, . . . ,α

−lr zr ). (99)

A morphism P
1 → Y consists of a line bundle L on P

1 and sections

(
(ϕi )

n
i=1, (ψ j )

r
j=1

) ∈
⎛

⎝(H 0(L))n ×
r∏

j=1

H 0
(
L⊗(−l j )

)
⎞

⎠ , (100)

whose degree is defined as the degree of L.

5.3

Recall from [8, Definition 4.4] that an obstruction theory for a Deligne–Mumford
stack X is a morphism φ : E → LX from an object E of the derived category of
quasicoherent sheaves on X satisfying

(1) hi (E) ∼= 0 for i > 0, and
(2) hi (E) is coherent for i = 0,−1

to the cotangent complex LX such that

(1) h0(φ) is an isomorphism, and
(2) h−1(φ) is an epimorphism.

It is said to be perfect if E is locally isomorphic to a two-term complex of locally
free sheaves of finite rank [8, Definition 5.1].

5.4

A perfect obstruction theory produces the virtual fundamental cycle [X ]virt in the
Chow group Avirt.dimX (X ) of degree

virt.dimX = rank h0(E) − rank h−1(E). (101)
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When X is a smooth scheme, then the cotangent complex LX is isomorphic to the
sheaf�X of Kähler differentials, and the virtual fundamental cycle is the Euler class
of h−1(E).

5.5

The derived mapping stack RMap(S, T ) from a proper scheme S to a derived Artin
stack T is a derived Artin stack (see e.g. [66, Corollary 3.3]) whose tangent complex
is given by

TRMap(S,T )
∼= Rπ∗

(
Lev∗ TT

)
, (102)

where

π : RMap(S, T ) × S → RMap(S, T ) (103)

is the first projection and

ev : RMap(S, T ) × S → T (104)

is the evaluationmorphism. It is a derived thickeningof themapping stackMap(S, T ),

and the pull-back

j∗ : j∗LRMap(S,T ) → LMap(S,T ) (105)

by the structure morphism

j : Map (S, T ) → RMap (S, T ) (106)

gives an obstruction theory on Map (S, T ).

5.6

The restriction of the natural obstruction theory forMap
(
P
1,Y

)
to the open substack

Q(Y ; d) gives an obstruction theory forQ(Y ; d)with E = j∗LRMap(P1,Y)

∣
∣
Q(Y ;d)

and
φ = j∗|Q(Y ;d).
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5.7

Since Pic (An × A
r ) is trivial, the Picard group PicY ∼= PicGm (An × A

r ) can be
identified with the group of characters of Gm , which is non-canonically isomorphic
to Z. We fix an isomorphism in such a way that

⊕∞
a=0 H 0(OY(a)) is the coordinate

ring of An , where OY(a) is the line bundle associated with a ∈ Z ∼= PicY . Since
Y is the quotient stack of An × A

r by the action of Gm , the tangent complex TY
satisfies

�∗TY ∼= Cone (OAn×Ar ⊗ Lie(Gm) → TAn×Ar ) (107)

where � : An × A
r → Y is the quotient morphism. This in turn implies that

TY ∼= Cone

(

OY → OY(1)⊕n ⊕
r⊕

i=1

OY(−li )

)

. (108)

5.8

We write the restriction of the evaluation morphism Map(P1,Y) × P
1 → Y to the

open substack Q(Y ; d) ⊂ Map(P1,Y) as

ev : Q(Y ; d) × P
1 → Y (109)

again by abuse of notation. We have

ev∗ OY(1) ∼= OQ(Y ;d)(1) � OP1(d) (110)

essentially by definition, whereOQ(Y ;d)(1) is the ample generator of the Picard group
of Q(Y ; d) ∼= P

n(d+1)−1. The dual of the natural obstruction theory is given by

φ∨ : TQ(Y ;d) → E∨ := Rπ∗ ev∗ TY . (111)

Note that (the inverse of) the isomorphism h0(φ∨) from TQ(Y ;d) to

h0(E∨) ∼= R0π∗ Cone
(
OQ(Y ;d)×P1 → (

OQ(Y ;d)(1) � OP1(d)
)⊕n

)
(112)

∼= Cone
(
OQ(Y ;d) → OQ(Y ;d)(1)

⊕n(d+1)
)

(113)

gives the Euler sequence
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0 → OQ(Y ;d) → OQ(Y ;d)(1)
⊕n(d+1) → TQ(Y ;d) → 0 (114)

on Q(Y ; d) ∼= P
n(d+1)−1. One has

h1(E∨) ∼= R1π∗

(
r⊕

i=1

OQ(Y ;d)(−li ) � OP1(−li d)

)

(115)

∼=
r⊕

i=1

OQ(Y ;d)(−li ) ⊗ H 1 (OP1(−li d)) (116)

∼=
r⊕

i=1

OQ(Y ;d)(−li )
⊕(li d−1) (117)

and hi (E∨) ∼= 0 for i �= 0, 1, so that this obstruction theory is perfect. By [8, Propo-
sition 5.6], the resulting virtual fundamental class is given by

[Q(Y ; d)]virt = [Q(Y ; d)] ∩ Eul
(
h1(E∨)

) = [Q(Y ; d)] ∩
r∏

i=1

(−li x)li d−1. (118)

5.9

When the degree is zero, the quasimap space Q(Y ; 0) is naturally isomorphic to Y
equipped with the trivial perfect obstruction theory, so that

[Q(Y ; 0)]virt = [Y ]. (119)

5.10

For any P(x) ∈ C[x], we define

〈P(x)〉Y,d :=
∫

[Q(Y ;d)]virt
P(x) (120)

and

〈P(x)〉Y :=
∞∑

d=0

qd 〈P(x)〉Y,d . (121)



Residue Mirror Symmetry for Grassmannians 329

It follows that

〈P(x)〉Y =
∞∑

d=0

qk
∫

Pn(d+1)−1
P(x)

r∏

i=1

(−li x)li d−1 (122)

=
∞∑

d=0

qk Res
P(x)

∏r
i=1(−li x)li d

xn(d+1)
∏r

i=1(−li x)
. (123)

5.11

The gauged linear sigmamodel for Y is obtained from the gauged linear sigmamodel
for Pn−1 by adding r fields of G = Gm-charge −l1, . . . ,−lr and R-charge 0. One
has Zvec

d (x) = 1 and Zmat
d (x) = (

x−d−1
)n ·∏r

i=1 (−li x)li d−1 in this case, so that (5)
gives

〈P(x)〉GLSM =
∞∑

d=0

et ′d Res
(
x−d−1

)n
r∏

i=1

(−li x)li d−1 P(x), (124)

which coincides with (123) under the identification

q = et ′
. (125)

5.12

If (l1, . . . , lr ) satisfies the Calabi–Yau condition

l1 + · · · + lr = n, (126)

then (123) gives

〈
xk
〉
Y =

⎧
⎨

⎩

1
(∏r

i=1(−li )
) (
1 − q

∏r
i=1(−li )li

) k = n + r,

0 otherwise,
(127)

which matches the Yukawa coupling of the mirror (see e.g. [47, Example 6.15]).
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6 Classical Mirror Symmetry for Toric Hypersurfaces

6.1

Let N := Z
n be a free abelian group of rank n and M := Ň := Hom(N,Z) be the

dual group. Let further (�, �̌) be a polar dual pair of reflexive polytopes in M and
N .

6.2

Recall that the fan polytope of a fan is defined as the convex hull of primitive gen-
erators of one-dimensional cones. Let (�, �̌) be a pair of smooth projective fans
whose fan polytopes are �̌ and �. The associated toric varieties will be denoted by
X := X� and X̌ := X�̌ .

6.3

The set of primitive generators of one-dimensional cones of the fan� will be denoted
by

B := {b1, . . . , bm} ⊂ N. (128)

Assume that B generates N . One has the fan sequence

0 → L → Z
m b−→ N → 0 (129)

and the divisor sequence

0 → M
b∨−→ Z

m −→ Ľ → 0, (130)

where b sends the i th coordinate vector ei ∈ Z
m to bi . Recall that

Ľ ∼= Pic(X) ∼= H 2(X;Z), Eff(X) ⊂ L ⊂ Z
m, (131)

where Eff(X) denotes the semigroup of the effective curves (see [3, Sect. 3]). We
write the group ring of M asC[M] and defineT := NGm := SpecC[M].We also set
Ť := SpecC[N], Ľ := SpecC[L], and L := SpecC[Ľ]. The fan sequence induces
the exact sequences
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1 → L
χ−→ (Gm)m → T → 1 (132)

and

1 → Ť → (Gm)m → Ľ → 1 (133)

of algebraic tori. We write the i th components of the map χ : L → (Gm)m in (132)
as χi , and the affine line A1 equipped with the action of L through χi as Ai . Then
one has

X ∼=
(

m∏

i=1

Ai

)

//θ L (134)

for a suitable choice of a character θ ∈ Ľ ∼= Hom(L,Gm). The right-hand side of
(134) denotes the GIT quotient with respect to the linearization determined by θ.

6.4

We define a graded ring S� := ⊕∞
k=0 Sk

� by

Sk
� :=

⊕

m∈M∩(k�)

C · yk
0 y

m, (135)

which is a subalgebra of the semigroup ring

C[N × M] = C[y0, y±1] := C[y0, y±1
1 , . . . , y±1

n ] (136)

of N × M. It is the anti-canonical ring of X , so that one has X ∼= Proj S� if and
only if X is Fano. The ring S� is Cohen–Macaulay with the dualizing module I� :=⊕∞

k=0 I k
� given by

I k
� :=

⊕

m∈M∩Int(k�)

C · yk
0 y

m, (137)

where Int(k�) is the interior of k�.

6.5

For α = (α1, . . . ,αm) ∈ (Gm)m (this (Gm)m can be naturally considered as the dual
torus of the big torus of X�), we define an element of the group ring C[N] by
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W̌α( y̌) :=
m∑

i=1

αi y̌
bi ∈ C[N]. (138)

An element f̌ ∈ C[N] is said to be �̌-regular if

F̌ := (F̌0, F̌1, . . . , F̌n) :=
(

y̌0 f̌ , y̌0 y̌1∂y̌1 f̌ , . . . , y̌0 y̌n∂y̌n f̌
)

(139)

is a regular sequence in S�̌. We write

(
(Gm)m

)reg :=
{
α ∈ (Gm)m

∣
∣
∣ f̌α := 1 − W̌α( y̌) is �̌-regular

}
. (140)

6.6

Let ˜̌ϕ : ˜̌Y → ((Gm)m)reg be the second projection from

˜̌
Y =

{
( y̌,α) ∈ Ť × (

(Gm)m
)reg | W̌α( y̌) = 1

}
. (141)

Assume that X is Fano. Any fiber Y̌α := ˜̌ϕ
−1

(α) is an uncompactified mirror of a
general anti-canonical hypersurface Y ⊂ X . The closure of Y̌α in X̌ is a smooth anti-
canonical Calabi–Yau hypersurface, which is the compact mirror of Y . The quotient

of the family ˜̌ϕ : ˜̌Y → ((Gm)m)reg by the free Ť-action

Ť � y̌ : ( y̌′
, (α1, . . . ,αm)

) �→
(
y̌−1 y̌′

,
(
y̌b1α1, . . . , y̌

bm αm

))
(142)

will be denoted by ϕ̌ : Y̌ → Ľ
reg, where Y̌ := ˜̌

Y/Ť and Ľ
reg := ((Gm)m)reg /Ť.

6.7

Choose an integral basis p1, . . . , pr of Ľ ∼= Pic X such that each pi is nef. This gives
the corresponding coordinate q = (q1, . . . , qr ) on Ľ. Let Ǔ ′ ⊂ Ľ

reg be a neighbor-
hood of q1 = · · · = qr = 0, and Ǔ be the universal cover of Ǔ ′.

6.8

We write the image of the Poincaré residue as
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H n−1
res (Y̌α) := Im

(
Res : H 0

(
X̌ ,�n

X̌

(
∗Y̌α

))
→ H n−1

(
Y̌α

))
. (143)

Let HB be the pull-back to Ǔ of the local system grW
n−1Rn−1ϕ̌! CY̌ on Ǔ ′, and H res

B

be the sub-system with stalks H n−1
res (Y̌α). Here grW

n−1 is the weight n − 1 piece of
Deligne’s mixed Hodge structure. The residual B-model VHS (HB,∇B,F •

B, QB) on
Ǔ consists of the locally free sheafHB := H res

B ⊗C OǓ , theGauss–Manin connection
∇B , the Hodge filtration F •

B , and the polarization Q B : HB ⊗OǓ
HB → OǓ given

by

QB(ω1,ω2) := (−1)(n−1)(n−2)/2
∫

Y̌α

ω1 ∪ ω2. (144)

6.9

On the A-model side, let

H •
amb(Y ;C) := Im(ι∗ : H •(X;C) → H •(Y ;C)) (145)

be the subspace of H •(Y ;C) coming from the cohomology classes of the ambient
toric variety, and set

U :=
{
τ = β + √−1ω ∈ H2

amb(Y ;C)

∣
∣
∣ 〈ω, d〉 � 0 for any non-zero d ∈ Eff(Y )

}
.

(146)

This open subset U is considered as a neighborhood of the large radius limit point.
Let (τi )

r
i=1 be the coordinate on H 2

amb(Y ;C) dual to the basis { pi }r
i=1 so that τ =∑r

i=1 τi pi .

6.10

The ambient A-model VHS (HA,∇A,F •
A, QA) consists ([43, Definition 6.2], cf. also

[26, Sect. 8.5]) of the locally free sheaf HA = H •
amb(Y ;C) ⊗C OU , the connection

∇A = d +
r∑

i=1

( pi◦τ ) dτi : HA → HA ⊗ �1
U , (147)

the Hodge filtration

F p
A := H≤2(n−1−p)

amb (Y ;C) ⊗C OU , (148)
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and the pairing

Q A : HA ⊗OU HA → OU , (α,β) �→ (2π
√−1)n−1

∫

Y
(−1)degα/2α ∪ β,

(149)

which is (−1)n−1-symmetric and ∇A-flat.

6.11

Let ui ∈ H 2
amb(Y ;Z) be the first Chern class of the line bundle on Y corresponding

to the one-dimensional cone R≥0 · bi ∈ � and v = u1 + · · · + um be the restriction
of the anti-canonical class of X . Denote t := ∑r

i=1 ti pi . Givental’s I -function is
defined as the series

IY (t; z) = et/z
∑

d∈Eff(X)

ed·t
∏〈d,v〉

k=−∞(v + kz)
∏m

j=1

∏0
k=−∞(u j + kz)

∏0
k=−∞(v + kz)

∏m
j=1

∏〈d,u j〉
k=−∞(u j + kz)

, (150)

which is a multi-valuedmap from Ǔ ′ (or a single-valuedmap from Ǔ ) to the classical
cohomology group H •

amb(Y ;C[z−1]). The J -function is defined by

JY (τ ; z) = LY (τ , z)−1(1), (151)

where LY (τ , z) is the fundamental solution of the quantum differential equation
defined explicitly by using the Gromov–Witten invariants as in [43, Eq. (2.3)] with
c set to 1. If we write

IY (t; z) = F(t)1 + G(t)
z

+ O(z−2), (152)

then Givental’s mirror theorem [32] states that

IY (t; z) = F(t) · JY (ς(t); z), (153)

where the mirror map ς : Ǔ → H 2
amb(Y ;C) is defined by

ς(t) = ι∗
(

G(t)
F(t)

)

. (154)

The relation between τ = ς(t) and σ = β + √−1ω is given by τ = 2π
√−1σ, so

that Im(σ) � 0 corresponds to exp(τ ) ∼ 0. The functions F(t) and G(t) satisfy the
Picard–Fuchs equations, and give periods for the B-model VHS (HB,∇B,F •

B, Q B).
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6.12

Equation (153) implies the existence of an isomorphism

MirY : ς∗(HA,∇A,F •
A, Q A)

∼−→ (HB,∇B,F •
B, Q B) (155)

of variations of polarized Hodge structures, which sends F(t)1 on the left-hand side
to

� := Res

(
1

f̌α

d y̌1
y̌1

∧ · · · ∧ d y̌n

y̌n

)

(156)

on the right-hand side. A stronger statement, which gives an isomorphism of the
�̂-integral structure on the A-side and the natural integral structure on the B-side, is
proved in [43, Theorem 6.9].

7 Quasimap Correlation Functions for Anti-canonical
Hypersurfaces in Toric Varieties

7.1

For d ∈ Eff(X) and i ∈ {1, . . . , m}, we set

ki :=
{

〈ui , d〉 〈ui , d〉 ≥ 0,

−1 〈ui , d〉 < 0.
(157)

and define the quasimap space of degree d by

Q(X; d) :=
(

m∏

i=1

A
ki +1
i

)

//θ L (158)

with (134) in mind. An argument parallel to that in Sect. 3.1 shows that Q(X; d) is
a compactification of the space of holomorphic maps P1 → X of degree d. Later in
Sect. 10.4, we will introduce the moduli spaces Q(W//G; d) of degree d quasimaps
from P

1 to more general GIT quotients W//G, and Q(X; d) here is the special case
for W = ∏m

i=1 A
ki +1
i and G = L. The first Chern class of the line bundle onQ(X; d)

associated with the character χi of Lwill also be denoted by ui by abuse of notation.
The Morrison–Plesser class is defined by
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�d := (u1 + · · · + um)〈u1+···+um ,d〉 ∏

〈ui ,d〉<0

u−〈ui ,d〉−1
i . (159)

Here, the latter part
∏

〈ui ,d〉<0 u
−〈ui ,d〉−1
i is the Euler class of h1(E∨) where E is

the canonical obstruction theory for Q(X; d) defined in Sect. 10.7. The first part
(u1 + · · · + um)〈u1+···+um ,d〉 is the Euler class of the vector bundle formed by the
obstruction spaces to being a quasimap to an anti-canonical hypersurface Y ⊂ X for
each element in Q(X; d). For a polynomial P(α1, . . . ,αm) ∈ C[α1, . . . ,αm], we
set

〈P(u1, . . . , um)〉X,Y,d :=
∫

Q(X;d)

P(u1, . . . , um)�d (160)

and

〈P(u1, . . . , um)〉X,Y :=
∑

d∈Eff(X)

αd 〈P(u1, . . . , um)〉X,Y,d ∈ Z
[[
αd : d ∈ Eff(X)

]]
,

(161)

where the completion is taken with respect to the ideal generated by Eff(X) \ {0}.
Here αd is defined by (131).

8 Toric Residue Mirror Symmetry

8.1

Let Ǧ = (Ǧ0, . . . , Ǧn) be a regular sequence in S�̌. Ifwe set IǦ := I�̌/(Ǧ0, . . . , Ǧn)

I�̌, then the graded piece I n+1
Ǧ

is one-dimensional and spanned by JǦ := det
(

y̌i∂y̌i Ǧ j

)n

i, j=0
.The toric residue [25] is themapResǦ : I n+1

�̌
→ C sending (Ǧ0, . . . ,

Ǧn)I�̌ to zero and JǦ to the normalized volume vol(�̌), i.e., n! times the Euclidean
volume of �̌. For α ∈ Ľ

reg, we define F̌α as in (139) and write Res f̌α
:= ResF̌α

.

Theorem 3 below is introduced in [3, Conjecture 4.6] and proved in [11, 63].

Theorem 3 For any homogeneous polynomial P(α1, . . . ,αm) ∈ C[α1, . . . ,αm] of
degree n, the generating function (161) gives the Laurent expansion of the toric
residue

〈P(u1, . . . , um)〉X,Y = (−1)n Res f̌α

(
y̌n+1
0 P(α1 y̌

b1 , . . . ,αm y̌bm )
)

(162)

around the large radius limit point associated with the fan �.
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Reference [3, Conjecture 4.6] is generalized to toric complete intersections in [4,
Conjecture 4.6] and proved in [46, 64].

8.2

The family ϕ : Y̌ → Ľ
reg of Calabi–Yau manifolds comes with the holomorphic

volume form

� := Res

(
1

f̌α

d y̌1
y̌1

∧ · · · ∧ d y̌n

y̌n

)

∈ H 0(HB). (163)

For a homogeneous polynomial Q(α1, . . . ,αm) ∈ Q[α1, . . . ,αm] of degree n − 1,
the Q-Yukawa (n − 1)-point function is defined in [3, Definition 9.1] by

YQ(α) := (−1)(n−1)(n−2)/2 1
(
2π

√−1
)n−1

∫

Y̌α

� ∧ Q

(

α1
∂

∂α1
, . . . ,αm

∂

∂αm

)

�,

(164)

where the differential operators α1∂/∂α1, . . . ,αm∂/∂αm act on HB by the Gauss–
Manin connection.

8.3

For Q(α1, . . . ,αm) ∈ Q[α1, . . . ,αm], we set

P(α1, . . . ,αm) := (α1 + · · · + αm)Q(α1, . . . ,αm) ∈ Q[α1, . . . ,αm]. (165)

By [3, Theorem 9.7], which is attributed to [50], one has an equality

YQ(α) = (−1)n Res f̌α

(
y̌n
0 P(α1 y̌

b1 , . . . ,αm y̌bm )
)

(166)

of the Yukawa (n − 1)-point function and the toric residue.

8.4

Assume that the unstable locus of the L-action on A
m with respect to θ has codi-

mension strictly greater than 1. Then one has H 2(X�) = Pic(X�) = PicL(Am) so
that the class pi corresponds to a one-dimensional representationC pi

of L. By abuse
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of notation, we let pi denote the Gm-equivariant Euler class of the pull-back of the
line bundle [Am × C pi

/Gm] by the evaluation map ev0 : Xd → [Am/Gm] at 0 ∈ P
1.

Denote v := ∑m
i=1 ui .

If we set

�(t, τ ; z) :=
∑

d∈Eff(X)

eτ ·d
∫

Gm

Q(X;d)

e(t−τ )/z�dv, (167)

then for any polynomial R(t1, . . . , tr ) ∈ Q[t1, . . . , tr ], one has

R

(

z
∂

∂t1
, . . . , z

∂

∂tr

)

�(t, τ ; z)
∣
∣
∣
∣
τ=t

=
∑

d∈Eff(X)

et·d
∫

Gm

Q(X;d)

R( p1, . . . , pr )�dv.

(168)

In addition, one has

�(t, τ ; z) =
∫

Y
I (t;−z) ∪ I (τ ; z), (169)

by [32, Proposition 6.2]. This is the toric hypersurface version of (62). Note that
I (t; 1) is convergent for large enough −Re t by ratio test on the series (150) without
the prefactor. By specializing to z = 1 and using the definition of QA, one obtains

�(t, τ ; 1) = QA (I (t; 1), I (τ ; 1)) . (170)

By combining (170) with (153), one obtains

�(t, τ ; 1) = QA
(
L−1(t; 1)F(t)1, L−1(τ ; 1)F(τ )1

)
. (171)

Since L is the fundamental solution for the flat connection∇B, the function�(t, τ ; 1)
is obtained by parallel-transporting F(t)1 ∈ (HB)t and F(τ )1 ∈ (HB)τ to the fiber
at the same point and taking the pairing QB at that point (the result does not depend
on the choice of the point since QB is ∇B-parallel). By sending (171) by (155), one
obtains

(2π
√−1)n−1

∫

Y
I (t;−1)I (τ ; 1) = (−1)(n−1)(n−2)/2

∫

Y̌
�t ∧ �τ . (172)

Assume that P(α1, . . . ,αm) = (α1 + · · · + αm)Q(α1, . . . ,αm) for a polynomial
Q and take R(t1, . . . , tr ) := Q(

∑r
i=1 ai,1ti , . . . ,

∑r
i=1 ai,mti ))where ai, j are integers

uniquely satisfying χ j = ∑r
i=1 ai, j pi . By differentiating (172) by R(∂t1 , . . . , ∂tr )

and setting τ = t , we obtain toric residue mirror symmetry for polynomials of the
form P(α1, . . . ,αm) = (α1 + · · · + αm)Q(α1, . . . ,αm).
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9 Martin’s Formula

9.1

Weuse the same notationsG, T ,W , and� for a reductive algebraic group, amaximal
torus, theWeyl group, and the set of roots as in Sect. 2. LetW be an affine schemewith
G-action, and fix a character θ of G. We write the line bundle on W//T associated
with α ∈ � as Lα, and set

e :=
∏

α∈�

c1(Lα) ∈ H 2|�|(W//T ;Z). (173)

We write the natural projection and inclusion as and say that ã ∈ H∗(W//T ) is a lift
of a ∈ H∗(W//G) if π∗a = ι∗ã.

Theorem 4 (Martin [48]) If ã is a lift of a, then one has

∫

W//G
a = 1

|W |
∫

W//T
ã ∪ e. (174)

9.2

LetMat(r, n) ∼= A
r×n be the space of n × r matrices,which is considered as the space

of linear maps from an r -dimensional vector space to an n-dimensional vector space.
It has a natural action of GLr , and the GIT quotient Gr(r, n) := Mat(r, n)//GLr is
the Grassmannian of r -spaces in an n-space.

9.3

When W = Mat(r, n) and G = GLr , one has

W//G ∼= Gr(r, n), (175)

W//T ∼= (Pn−1)r (176)

and

H∗(Gr(r, n)) ∼= C[σ1, . . . ,σr ]/(hn−r+1, . . . , hn), (177)



340 B. Kim et al.

H∗((Pn−1)r ) ∼= C[x1, . . . , xr ]/(xn
1 , . . . , xn

r ), (178)

where σi = σi (x1, . . . , xr ) ∈ C[x1, . . . , xr ]Sr are elementary symmetric functions
and hi = hi (x1, . . . , xr ) ∈ C[x1, . . . , xr ]Sr = C[σ1, . . . ,σr ] are complete symmet-
ric functions. Martin’s formula in this case gives

∫

Gr(r,n)

P(x1, . . . , xr ) = 1

r !
∫

(Pn−1)r

∏

i �= j

(xi − x j )P(x1, . . . , xr ) (179)

= (−1)r(r−1)/2

r !
∫

(Pn−1)r

�2 ∪ P(x1, . . . , xr ) (180)

for any P(x1, . . . , xr ) ∈ C[x1, . . . , xr ]Sr where � := ∏
1≤i< j≤r (xi − x j ).

9.4

The equivariant cohomology ring of Gr(r, n) with respect to the natural action of the
diagonal maximal abelian subgroup H ⊂ GLn is presented as

H •
H (Gr(r, n);C) ∼= C[σ1, . . . ,σr ,λ1, . . . ,λn]

/
(hn−r+1(σ,λ), . . . , hn(σ,λ)) ,

(181)

where hi is the degree 2i part of cH (S)cH (Q) −∏n
i=1(1 + λi ). Here S andQ are the

tautological bundle and the universal quotient bundle respectively, and cH (−) stands
for the H -equivariant total Chern class. Note that σi := cH

i (S) is the elementary
symmetric function of the H -equivariant Chern roots x1, . . . , xr of S, and cH

i (Q)

for i = 1, . . . , n − r are expressed in terms of σ1, . . . ,σr and λ1, . . . ,λn by the
condition h1 = · · · = hn−r = 0. Martin’s formula gives

∫ H

Gr(r,n)

P(σ1, . . . ,σr ) (182)

=
∑

1≤i1<i2<···ir ≤n

Resx=(λi1 ,...,λir ) P(σ1, . . . ,σr )
∏

i �= j

(xi − x j )
dx1 ∧ · · · ∧ dxr

∏r
i=1

∏n
j=1(xi − λ j )

.

10 Quasimap Spaces for GIT Quotients

10.1

Let G be a reductive algebraic group acting on an affine variety W and fix a character
θ of G. In this paper, we will always assume the following:
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(1) Semi-stability implies stability.
(2) The semi-stable locus W ss is smooth and non-empty.
(3) The G-action on W ss is free (however, see [17] for allowing finite non-trivial

stabilizers).
(4) The codimension of the unstable locus W \ W ss is greater than one.

The GIT quotient is defined by W//G := W ss/G, which is an open substack of
[W/G].

10.2

A map u : P1 → [W/G] to the quotient stack [W/G] is pair (P, ũ) of a principal
G-bundle P → P

1 and a G-equivariant map ũ : P → W . It is called a quasimap if
the generic point of P1 is mapped to W//G ⊂ [W/G]. A point in the inverse image
of the unstable locus will be called a base point.

10.3

For a quasimap u : P1 → [W/G] and a G-equivariant line bundle L on W , the pull-
back ũ∗L is aG-equivariant line bundle on P , which descends to a line bundle u∗L on
P
1. The degree of a quasimap u : P1 → [W/G] is the map d : PicG W → Z sending

L ∈ PicG W to deg u∗L .

10.4

An isomorphism of quasimaps u = (P, ũ) and u′ = (P ′, ũ′) is an isomorphism
ϕ : P → P ′ of principal G-bundles such that ũ = ũ′ ◦ ϕ. By [23, Theorem 7.1.6],
the moduli functor for quasimaps of degree d is representable by a Deligne–
Mumford stack, which will be denoted by Q(W//G; d). This stack is denoted by
Qmap0,0(W//G, d;P1) in [23, Sect. 7.2] and QG0+

0,0,d(W//G) in [22, Sect. 2.6]. Note
that Q(W//G) depends not only on W//G and d but also on W , G, and θ.

10.5

LetQ•(W//G; d) ⊂ Q(W//G; d) be the substack parametrizing quasimaps such that
u|P1\{0} is a constant map to W//G. This implies that 0 ∈ P

1 is a base point of length
d(θ) by [23, Lemma 7.1.2]. This stack is denoted byQ0,0+•(W//G, d)0 in [22, Sect.
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4.1]. There is a natural map ev : Q•(W//G; d) → W//G, called the evaluation map,
which sends u ∈ Q•(W//G; d) to u(∞) ∈ W//G.

10.6

There is a natural Gm-action on Q(W//G; d) coming from the standard Gm-action
on P1. As described in [22, Sect. 4.1], the fixed locus of this action is identified with
the coproduct

∐

d1+d2=d

Q•(W//G; d1) ×W//G Q•(W//G; d2) (183)

of fiber products with respect to the evaluation map.

10.7

If W has at worst lci singularity, then Q(W//G; d) has a canonical perfect obstruc-
tion theory, which allows one to define the virtual fundamental cycle. The canon-
ical perfect obstruction theory is

(
Rπ∗ ev∗ T[W/G]

)∨
, where T[W/G] is the tangent

complex of [W/G], ev : Q(W//G; d) × P
1 → [W/G] is the evaluation map, and

π : Q(W//G; d) × P
1 → Q(W//G; d) is the first projection; see Theorem 7.2.2 of

[22] or Sect. 5. The virtual fundamental cycle is an element of the Chow group of
Q(W//G; d) whose degree is given by the virtual dimension

virt.dimQ(W//G; d) = 〈d, det TW 〉 + dim W//G. (184)

10.8

Since the stackQ•(W//G; d) is the union of connected components of the fixed locus
of theGm-action, it has a perfect obstruction theory inherited fromQ(W//G; d). The
virtual push-forward

evvirt∗ (−) := PD
(
ev∗

(
(−) ∩ [Q•(W//G; d)

]virt
))

(185)

along the evaluation map ev : Q•(W//G; d) → W//G allows one to define the I -
function
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I (t; z) := e p·t/z ∑

d∈Eff(W//G)

ed·t Id (186)

by

Id := evvirt∗

⎛

⎝ 1

EulGm

(
N virt
Q•(W//G;d)/Q(W//G;d)

)

⎞

⎠ , (187)

where the denominator is theGm-equivariant Euler class of the virtual normal bundle.
Here p is a basis of H 2(W//G), and t is the coordinate of H 2(W//G) corresponding
to p.

An H -action on W commuting with the G-action induces an H -action on
Q•(W//G; d), which allows one to define the H -equivariant I -function of W//G.

10.9

There exits a G-space V with a G-equivariant closed embedding W ↪→ V . Let
u : Q(W//G; d) × P

1 → [W/G] be the universal quasimap. It consists of a principal
G-bundle P on Q(W//G; d) × P

1 and a G-equivariant morphism ũ : P → W . Let
P ′ := P|Q(W//G;d)×{pt} be the restriction of P to a fiber of the second projection
Q(W//G; d) × P

1 → P
1. We write the Chern–Weil homomorphism defined by P ′

as

CW : C[g]G → H∗ (Q(W//G; d)) . (188)

Note that C[g]G is isomorphic to C[t]W by Chevalley restriction theorem. For P ∈
C[t]W , we set

〈P〉W//G,d :=
∫

[Q(W//G;d)]virt
CW(P), (189)

〈P〉W//G :=
∑

d∈Eff(W//G)

e〈d,t〉 〈P〉W//G,d . (190)

Conjecture 5 Suppose that W ⊂ V is the zero locus of G semi-invariant polyno-
mials fi , i = 1, . . . , r . Provided with conditions in Sects.10.1 and 10.7, for any
P ∈ C[t]W , the generating function (190) of quasimap invariants coincides with the
correlation function (5) of the A-twisted gauged linear sigma model up to an overall
sign;

〈P〉GLSM = ±〈P〉W//G . (191)



344 B. Kim et al.

Here the potential of GLSM is given as a G-invariant function
∑

i fi pi of V × A
r

where pi denotes i th coordinate of Ar with R-charge 2.

10.10

By takingP ′ to be the fiber over a fixed point of the naturalGm-action on the domain
curve P1, one can define Gm-equivariant quasimap invariants 〈P〉Gm

W//G . If W has an
action of an algebraic torus H commuting with the action of G, then one can define
H × Gm-equivariant quasimap invariants 〈P〉H×Gm

W//G .

11 Quasimap Spaces for Grassmannians

11.1

The quasimap spaceQ(Gr(r, n); d) classifies pairs (P, u) of a principal GLr -bundle
P and aGLr -equivariantmap u. The choice of a principal GLr -bundle P is equivalent
to the choice of a vector bundle S of rank r , and the choice of a GLr -equivariant map
u is equivalent to the choice of a map S → O⊕n

P1 , which is a sheaf injection since the
generic point must go to the semi-stable locus (but not necessarily a morphism of
vector bundles). The choice of a sheaf injection S → O⊕n

P1 is equivalent to the choice
of a surjection O⊕n

P1 → Q, where Q is a coherent sheaf whose Hilbert polynomial
is d + (n − r)(t + 1). This is the same as the Hilbert polynomial of a locally free
sheaf of rank n − r and degree d, and one has an isomorphism

Q(Gr(r, n); d) ∼= QuotP1,d(O⊕n
P1 , n − r). (192)

11.2

It is shown in [10, Lemma 1.2] that the subspace Q•(Gr(r, n); d) of Q(Gr(r, n); d)

is decomposed into connected components as

Q•(Gr(r, n); d) =
∐

|d|=d

Q•(Gr(r, n); d), (193)

where d = (d1, . . . , dr ) runs over elements of Nr satisfying |d| := d1 + · · · + dr =
d, d1 ≤ d2 ≤ · · · ≤ dr and each connected component is isomorphic to the partial
flag manifold



Residue Mirror Symmetry for Grassmannians 345

Q•(Gr(r, n); d) ∼= Fl(m1, . . . , mk, r, n), (194)

where 1 ≤ m1 < m2 < · · · < mk = r denote the jumping indices;

0 ≤ d1 = · · · = dm1 < dm1+1 = · · · = dm+2 < · · · . (195)

Let x1, . . . , xr be the Chern roots of the dual of the universal subbundle on Gr(r, n).

We also define |x| := ∑r
i=1 xi and |d| := ∑r

i=1 di for d = (d1, . . . , dr ). The I -
function can be computed by localization as

IGr(r,n)(t; z) =
∑

d∈Nr

(−1)(r−1)|d|e(|d|+|x|/z)t Id(z) (196)

where

Id(z) =
∏

1≤i< j≤r (xi − x j + (di − d j )z)
∏

1≤i< j≤r (xi − x j )
∏r

i=1

∏n
j=1

∏di
l=1(xi + lz)

. (197)

As shown in [10, p. 109], the I -function and the J -function agrees for Gr(r, n) just
as in the case of projective spaces.

11.3

The Hori–Vafa conjecture [41] proved in [10] shows that the I -functions of (Pn−1)r

and Gr(r, n) are related by

IGr(r,n)(t; z) = e−σ1(r−1)π
√−1/z DI(Pn−1)r (t; z)

�

∣
∣
∣
∣
ti =t+(r−1)π

√−1

(198)

where

D :=
∏

1≤i< j≤r

(

z
∂

∂ti
− z

∂

∂t j

)

. (199)

11.4

As shown in [10], the equivariant I -function with respect to the natural action of
H = (Gm)n on Mat(r, n) is given by
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I H
Gr(r,n)(t; z) = etσ1/z

∑

d∈Nr

(−1)(r−1)|d|e|d|t
∏

1≤i< j≤r (xi − x j + (di − d j )z)
∏

1≤i< j≤r (xi − x j )
∏r

i=1
∏n

j=1
∏di

l=1(xi − λ j + lz)
,

(200)

and the factorization gives

∞∑

d=0

edτ
〈
e(t−τ )σ1/z

〉H×Gm

Gr(r,n),d =
∫ H

Gr(r,n)

I H
Gr(r,n)(t; z) ∪ I H

Gr(r,n)(τ ;−z). (201)

Here σ1 = ∑r
i=1 xi is the H -equivariant first Chern class of the vector bundle

S∨ = (
Mat(r, n) × C

r
)
//G (202)

on Gr(r, n), where the G-action on C
r is the defining representation.

11.5

Let V be an equivariant vector bundle on Gr(r, n) associated with a representation V
of GLr . If V is globally generated and det V ∼= ω∨

Gr(r,n), then the zero Y := s−1(0) of
a general section s ∈ H 0(V) is a smooth Calabi–Yau manifold by a generalization
of the theorem of Bertini [53, Theorem 1.10].

11.6

Let [Mat(r, n)/GLr ] be the quotient stack containing Gr(r, n) as an open substack.
The complete intersectionY ⊂ Gr(r, n) is an open substack ofY := [Z/GLr ], where
Z ⊂ Mat(r, n) is the zero of the map s̃ : Mat(r, n) → V underlying s. Indeed, Y
has a GIT quotient description Y = Z//GLr , which allows us to define Q(Y ; d)

and its virtual fundamental cycle as in Sect. 10. Let S∨
Y be the vector bundle on Y

associated with the defining representation of GLr . Any point p ∈ P
1 determines a

map evp : Q(Y ; d) → Y sending f : P1 → Y to f (p) ∈ Y , and the Chern classes

σi := ci
(
ev∗

p S∨
Y
)
, i = 1, . . . , r (203)

does not depend on the choice of p ∈ P
1. For P(σ1, . . . ,σr ) ∈ C[σ1, . . . ,σr ], we

set

〈P(σ1, . . . ,σr )〉Y,d :=
∫

[Q(Y ;d)]virt
P(σ1, . . . ,σr ) (204)
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and

〈P(σ1, . . . ,σr )〉Y :=
∞∑

d=0

edt 〈P(σ1, . . . ,σr )〉Y,d . (205)

11.7

The equivariant I -function of Y is given by

I H
Y (t; z) =

∑

d∈Nr

e(d+x/z)·t Id(t; z)
∣
∣
∣
∣
∣
ti =t+(r−1)π

√−1

, (206)

where

Id(t; z) :=
∏

δ∈�(V )

∏〈δ,d〉
l=1 (〈δ, x〉 + lz)

∏
1≤i< j≤r (xi − x j + (di − d j )z)

∏
1≤i< j≤r (xi − x j )

∏r
i=1

∏n
j=1

∏di
l=1(xi − λ j + lz)

, (207)

where �(V ) denotes the set of weights of V and 〈δ, x〉 denotes the first Chern class
associated to the weight δ (expressed in terms of the fundamental weights x1, . . . , xr

of the maximal diagonal torus of G). Localization with respect to the natural Gm-
action on Q(Gr(r, n); d) shows

〈
e(t−τ )σ1/z

〉H×Gm

Y =
∫ H

Y
I H (t; z) ∪ I H (τ ;−z) (208)

just as in (169).

12 Residue Mirror Symmetry for Grassmannians

12.1

We define the abelianized quasimap space for Gr(r, n) by

Qab(Gr(r, n); d) :=
∐

|d|=d

Qab(Gr(r, n); d), (209)

Qab(Gr(r, n); d) := Q(Pn−1; d1) × · · · × Q(Pn−1; dr ), (210)

where d runs over d = (d1, . . . , dr ) ∈ N
r such that |d| := d1 + · · · + dr = d. An

abelianized quasimap
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ϕ(z1, z2) =
(
(
ϕi1(z1, z2), . . . ,ϕin(z1, z2)

) ∈ Q(Pn−1; di )

)r

i=1

(211)

defines a genuine map of degree d if the matrix (ϕi j (z1, z2))i, j has rank r for any
(z1, z2) �= 0. For P(σ1, . . . ,σr ) ∈ C[σ1, . . . ,σr ], we set
〈P(σ1, . . . , σr )〉abGr(r,n),d := 1

r !
∫

Qab(Gr(r,n);d)

∏

i �= j

(xi − x j )P(σ1(x1, . . . , xr ), . . . ,σr (x1, . . . , xr )),

(212)

〈P(σ1, . . . , σr )〉abGr(r,n),d :=
∑

|d|=d

〈P(σ1, . . . ,σr )〉abGr(r,n),d , (213)

〈P(σ1, . . . , σr )〉abGr(r,n) :=
∞∑

d=0

(−1)(r−1)d qd 〈P(σ1, . . . , σr )〉abGr(r,n),d . (214)

12.2

If we set G := GLr and V := Mat(r, n), where G acts naturally on V and Gm

acts trivially on V , then we have Zvec
d (x) = ∏

i �= j (xi − x j ) and Zmat
d (x) =

∏r
i=1

(
x−di −1

i

)n
, so that (5) gives the same result as (212);

〈P(σ1, . . . ,σr )〉GLSM = 〈P(σ1, . . . ,σr )〉abGr(r,n) . (215)

12.3

We write the ring homomorphism C[σ1, . . . ,σr ] → QH(Gr(r, n)) sending σi ∈
C[σ1, . . . ,σr ] to σi ∈ H∗(Gr(r, n);C) ∼= C[σ1, . . . ,σr ]/(hn−r+1, . . . , hn) as
P(σ1, . . . ,σr ) �→ P̊(σ1, . . . ,σr ) just as in the case of Pn−1.

Theorem 6 For any P(σ1, . . . ,σr ) ∈ C[σ1, . . . ,σr ], one has

〈P(σ1, . . . ,σr )〉abGr(r,n) =
∫

Gr(r,n)

P̊(σ1, . . . ,σr ). (216)

Proof It follows from (34) that
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〈P(σ1, . . . ,σr )〉abGr(r,n)

= 1

r !
∞∑

d1,...,dr =0

((−1)r−1q)d1+···+dr Res
∏

i �= j

(xi − x j )P(σ1, . . . ,σr )
dx1

xn(d1+1)
1

∧ · · · ∧ dxr

xn(dr +1)
r

= 1

r ! Res
∏

i �= j

(xi − x j )P(σ1, . . . ,σr )
dx1

xn
1 + (−1)r q

∧ · · · ∧ dxr

xn
r + (−1)r q

= 1

r !nr

∑

xn
1=(−1)r−1q

· · ·
∑

xn
r =(−1)r−1q

∏

i �= j

(xi − x j )P(σ1(x1, . . . , xr ), . . . ,σr (x1, . . . , xr ))

=
∫

Gr(r,n)

P̊(σ1, . . . ,σr ),

where the last equality is the Vafa–Intriligator formula [61, Theorem 4.6]. �

12.4

Theorem 6 is related to intersection theory on the moduli space of vector bundles
on a Riemann surface through a theorem of Witten [70], which states the existence
of a ring isomorphism QH(Gr(r, n))/(q − 1)

∼−→ R(U (r))n−r,n from the quantum
cohomology of Gr(r, n) at q = 1 and the Verlinde algebra of U (r) at SU(r) level
n − r and U (1) level n.

12.5

We define the Gm-equivariant correlator of P(σ1, . . . ,σr ) ∈ C[σ1, . . . ,σr ] by

〈P(σ1, . . . ,σr )〉ab,Gm
Gr(r,n) :=

∑

d∈Nr

ed·t 〈P(σ1, . . . ,σr )〉ab,Gm
Gr(r,n),d

∣
∣
∣
∣
∣
ti =t+(r−1)π

√−1

(217)

where

〈P(σ1, . . . ,σr )〉ab,Gm
Gr(r,n),d :=

∫
Gm

Qab(Gr(r,n);d)

∏

1≤i< j≤n

(xi − x j )(x j − xi + (d j − di )z)

(218)

P(σ1(x1, . . . , xr ), . . . ,σr (x1, . . . , xr )).

Since Q((Pn−1)r ; d)Gm = ∏r
i=1 Q(Pn−1; di )

Gm under Q((Pn−1)r ; d) =∏r
i=1 Q(Pn−1; di ), we have a straightforward generalization of (62):
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∑

d∈Nr

ed·τ 〈e(t−τ )·x/z
〉Gm

(Pn−1)r ,d =
∫

(Pn−1)r

I(Pn−1)r (t; z) ∪ I(Pn−1)r (τ ;−z), (219)

By acting Dt := ∏
1≤i< j≤r

(
z∂ti − z∂t j

)
and −Dτ := ∏

1≤i< j≤r

(−z∂τi + z∂τ j

)

on both sides of (219) one obtains

∑

d∈Nr

ed·t
〈

∏

1≤i< j≤r

(
xi − x j

) ∏

1≤i< j≤r

(
(x j + d jz) − (xi + diz)

) · e(t−τ )·x/z

〉Gm

(Pn−1)r

(220)

= 〈
e(t−τ )·x/z

〉ab,Gm

Gr(r,n)
. (221)

on the left hand side and
∫

(Pn−1)r

Dt I(Pn−1)r (t; z) ∪ (−Dτ )I(Pn−1)r (τ ;−z) (222)

on the right hand side. By setting ti = t + (r − 1)π
√−1, τi = τ + (r − 1)π

√−1
and using (198), one obtains

〈
e(t−τ )σ1/z

〉ab,Gm

Gr(r,n)
= 1

r !
∫

(Pn−1)r

� ∪ IGr(r,n)(t; z) ∪ � ∪ IGr(r,n)(τ ;−z) (223)

=
∫

Gr(r,n)

IGr(r,n)(t; z) ∪ IGr(r,n)(τ ;−z),

where the last equality is Martin’s formula (182). On the other hand, localization
with respect to the natural Gm-action on the domain curve gives the factorization

〈
e(t−τ )σ1/z

〉Gm

Gr(r,n)
=
∫

Gr(r,n)

IGr(r,n)(t; z) ∪ IGr(r,n)(τ ;−z). (224)

Together with (223), this gives the equality

〈
e(t−τ )σ1/z

〉ab,Gm

Gr(r,n)
= 〈

e(t−τ )σ1/z
〉Gm

Gr(r,n)
(225)

of the abelianized correlator and the ordinary correlator.
For any P(x) ∈ C[x1, . . . , xr ]Sr , the same argument gives
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〈
P(x)e(t−τ )·x/z

〉ab,Gm

Gr(r,n)
(226)

=
∫

Gr(r,n)

(
∑

d∈Nr

P(x + dz)IGr(r,n),d(t; z)
)

∪
(
∑

d∈Nr

IGr(r,n),d(τ ;−z)

)

= 〈
P(x)e(t−τ )·x/z

〉Gm

Gr(r,n)

where ti = t + (r − 1)π
√−1 and τi = τ + (r − 1)π

√−1.By setting t = τ in (226),
one obtains

〈P(x)〉ab,Gm
Gr(r,n) = 〈P(x)〉Gm

Gr(r,n) . (227)

Together with (215), this proves Conjecture 5 for Grassmannians.

12.6

Let Y ⊂ Gr(r, n) be the zero locus of a general section of a globally-generated
vector bundle V on Gr(r, n) associated with a representation V of GLr . We define
the abelianized Gm-equivariant Morrison–Plesser class of Y by

�
ab,Gm
d (Y ; z) :=

∏

δ∈�(V )

〈δ,d〉∏

l=1

(〈δ, x〉 + lz) . (228)

For P ∈ C[σ1, . . . ,σr ], we set

〈P(σ1, . . . ,σr )〉ab,Gm
Y :=

∑

d∈Nr

q |d|
〈
P(σ1, . . . ,σr )�

ab,Gm
d (Y ; z)v

〉ab,Gm

Gr(r,n),d
, (229)

where v := ∏
δ∈�(V ) 〈δ, x〉 is theEuler class of the normal bundle ofY inGr(r, n). By

the same reasoning as in Sect. 12.5 with the insertion of the abelizanized Morrison–
Plesser class, one obtains

〈P(σ1, . . . ,σr )〉Y = (−1)|�(V )| 〈P(σ1, . . . ,σr )〉GLSM . (230)

Here, the identification between q and the Fayet–Illiopoulos parameter t ′ is given by

q = (−1)
∑

δ∈�(V )〈δ,1〉et ′
(231)

where 1 := (1, · · · , 1) ∈ N
r .
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12.7

As an example, consider the vector bundle of rank 3 on Gr(3, 5) = Mat(3, 5)//U (3)
associated with the representation of U (3) determined by the Young diagram

λ = . (232)

This vector bundle is the tensor product ∧2Q(1) of the second exterior power ∧2Q
of the universal quotient bundle Q on Gr(2, 5) ∼= Gr(3, 5) and the ample generator
O(1) of the Picard group. One can immediately see from the Young diagram that the
restriction of the representation of U (3) associated with λ to the diagonal maximal
torus T ∼= (Gm)3 is the direct sum ρ1,2,2 ⊕ ρ2,1,2 ⊕ ρ2,2,1. The associated line bundle
on the abelian quotient (P4)3 is given by O(1, 2, 2) ⊕ O(2, 1, 2) ⊕ O(2, 2, 1).

The complete intersection in Gr(3, 5) defined by ∧2Q(1) is a Calabi–Yau 3-fold
of Picard number 1, which will be denoted by Y henceforth. The Euler class of the
normal bundle of Y is

v := (x1 + 2x2 + 2x3)(2x1 + x2 + 2x3)(2x1 + 2x2 + x3), (233)

the abelianized Morrison–Plesser class is

�ab(Y ; d) := (x1 + 2x2 + 2x3)
d1+2d2+2d3 (234)

(2x1 + x2 + 2x3)
2d1+d2+2d3(2x1 + 2x2 + x3)

2d1+2d2+d3 ,

and the generating function for σ3
1 is

〈
σ3
1

〉ab

Y
= −1

6

∞∑

d1=0

∞∑

d2=0

∞∑

d3=0

qd1+d2+d3 Res(x1 + x2 + x3)
3 (235)

(x1 − x2)
2(x1 − x3)

2(x2 − x3)
2�ab(Y ; d)v

dx1

xn(d1+1)
1

∧ dx2

xn(d2+1)
2

∧ dx3

xn(d3+1)
3

= 25(1 − q)

(1 + q)(1 − 123q + q2)
. (236)

This matches the Yukawa coupling of the mirror computed by Miura [51, Sect. 5.2].

12.8

When V is a direct sum of line bundles, the mirror of Y is constructed by toric
degenerations [6, 7]. It is an interesting problem to compare the generating function
(205) with the Yukawa coupling of this mirror.
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13 Bethe/Gauge Correspondence

13.1

Let V1 and W1 be Hermitian vector spaces of dimensions r and n. The uni-
tary group U (r) acts naturally on V1 and trivially on W1, inducing an action on
T ∗ Hom(V1, W1) ∼= Hom(V1, W1) ⊕ Hom(W1, V1). The real and complex moment
maps for this action are given by

μR : Hom(W1, V1) ⊕ Hom(V1, W1) → End(V1), (i1, j1) �→
√−1

2

(
i1i

∗
1 − j∗

1 j1
)
,

(237)

μC : Hom(W1, V1) ⊕ Hom(V1, W1) → End(V1), (i1, j1) �→ i1 j1. (238)

If (i1, j1) ∈ μ−1
R

(
ζ
√−1 idV1

)
for ζ < 0, then j1 is injective. If (i1, j1) ∈ μ−1

C
(0), then

i1 descends to a map W1/ Im j1 → V1. It follows that the hyperKähler quotient is
isomorphic to T ∗ Gr(r, n);

(
ζ−1
R

(
ζ
√−1 idV1

)
∩ μ−1

C
(0)
)/

U (r) ∼= T ∗ Gr(r, n). (239)

This suggests that the gauged linear sigma model with the gauge group U (r) and the
representation V := Hom(W1, V1) ⊕ Hom(V1, W1) ⊕ End(V1) describes the quan-
tum cohomology of T ∗ Gr(r, n). Here End(V1) is the Lagrange multiplier for the
complex moment map equation, and the potential is given by

V � (i1, j1, P) �→ tr(Pi1 j1). (240)

Let H := H1 × H2 be the product of

• the diagonalmaximal torus H1 ofU (n), acting onHom(W1, V1) andHom(V1, W1)

through the natural action on W1, and trivially on End(V1), and
• the group H2 = U (1) acting trivially on Hom(W1, V1), by scalar multiplication
on Hom(V1, W1), and by inverse scalar multiplication on End(V1).

One has

Zvec
d (x) =

∏

1≤i �= j≤r

(xi − x j ), (241)

Zmat
d (x) =

n∏

j=1

r∏

i=1

(xi − λ j )
−di −1 (242)

×
n∏

j=1

r∏

i=1

(−xi + λ j − μ)−(−di )−1 (243)
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×
∏

1≤i �= j≤r

(xi − x j + μ)2−(di −d j )−1, (244)

so that the H -equivariant correlator of P ∈ C[x1, . . . , xr ]Sr is given by

〈P〉H
GLSM = 1

r !
∞∑

d1=0

· · ·
∞∑

dr =0

((−1)r−1et )d1+···+dr (245)

Res

[ ∏
1≤i �= j≤r (xi − x j )

∏
1≤i, j≤r (xi − x j + μ)(di −d j −1)

∏n
j=1

∏r
i=1(−xi + λ j − μ)di −1

∏n
j=1

∏r
i=1(xi − λ j )di +1

Pdx1 ∧ · · · ∧ dxr

]

,

where Res denotes the sum of residues at the points where xi is one of λ j for i =
1, . . . , r and j = 1, . . . , n (there are nr such points). This can formally be regarded as
an equivariant integration over the projective space of dimension

∑r
i=1(di + 1) − 1,

and it is an interesting problem to give a geometric interpretation.
The effective potential (10) of this gauged linear sigma model is given by

Weff(x; t) = WFI(x; t ′) + Wvec(x) + Wmat(x), (246)

WFI(x; t) = t (x1 + · · · + xr ), (247)

Wvec(x) = −π
√−1

∑

1≤i< j≤r

(x j − xi ) (248)

= −π
√−1

r∑

i=1

(2i − r − 1)xi ,

Wmat(x) = −
r∑

i=1

n∑

j=1

(
xi − λ j

) (
log

(
xi − λ j

)− 1
)

(249)

−
r∑

i=1

n∑

j=1

(−xi + λ j − μ
) (
log

(−xi + λ j − μ
)− 1

)

−
r∑

i=1

r∑

j=1

(
xi − x j + μ

) (
log

(
xi − x j + μ

)− 1
)
,

where λ j and μ are equivariant parameters for the actions of H1 and H2 respectively.
Note that

e∂Weff/∂xi = et · (−1)2i−r−1 ·
n∏

j=1

(xi − λ j )
−1

n∏

j=1

(−xi + λ j − μ)
∏

j �=i

x j − xi + μ

xi − x j + μ

(250)
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= et+nπ
√−1

n∏

j=1

xi − λ j + μ

xi − λ j

∏

j �=i

xi − x j − μ

xi − x j + μ
, (251)

so that the equations e∂xi Weff = 1, i = 1, . . . , r gives

n∏

j=1

xi − λ j

xi − λ j + μ
= et+nπ

√−1
∏

j �=i

xi − x j − μ

xi − x j + μ
. (252)

By taking the sum over di just as in the proof of Corollary 2, one obtains

〈P〉H
GLSM = 1

r ! Res
[

1
∏r

i=1

((
1 − e∂xi Weff

)∏n
j=1

(
xi − λ j

)) (253)

∏
1≤i �= j≤r (xi − x j )

∏
1≤i, j≤r (xi − x j + μ)

∏r
i=1

∏n
j=1(−xi + λ j − μ)

Pdx1 ∧ · · · ∧ dxr

]

where Res denotes the sum of residues at the roots of the Eqs. (252).

13.2

The Heisenberg model, also known as the homogeneous XXX 1
2
model, is the SU(2)

spin chain model with Hamiltonian

H =
n∑

i=1

Si · Si+1, (254)

where Si = (Sx
i , Sy

i , Sz
i ) = (σx

i /2,σy
i /2,σz

i /2) are halves of Pauli matrices acting
on the i th factor of the Hilbert space H := (C2)⊗n and

Si · Si+1 := Sx
i Sx

i+1 + Sy
i Sy

i+1 + Sz
i Sz

i+1. (255)

The total spin

Sz :=
n∑

i=1

Sz
i (256)

clearly commuteswith theHamiltonian, andwe restrict to the Sz-eigenspaceHr ⊂ H
with eigenvalue (−n + r)/2. We impose the quasi-periodicity condition

Sn+1 = e
√−1ϑSz

1 S1e−√−1ϑSz
1 . (257)
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Introduce variables x = (x1, . . . , xr ) related to quasi-momenta p = (p1, . . . , pr ) by

e
√−1pi = xi +

√−1
2

xi −
√−1
2

. (258)

Then H -eigenspaces inHr correspond bijectively to solutions of the Bethe equation

(
xi +

√−1
2

xi −
√−1
2

)n

= e
√−1ϑ

∏

j �=i

xi − x j + √−1

xi − x j − √−1
(259)

with eigenvalues n − 2r + 2
∑r

i=1 cos pi .The integrability comes from factorization
of many-body S-matrix into the product of the 2-body S-matrix given by

S(pi , p j ) = 1 − 2e
√−1p j + e

√−1(pi +p j ). (260)

See e.g. [62] and references therein for Bethe ansatz for the quasi-periodic Heisen-
berg model. The Bethe equation (259) coincides with (252) under λ j =

√−1
2 ,

j = 1, . . . , n, μ = −√−1, and ϑ = −√−1t + n/2. This observation and its gen-
eralizations is called Bethe/gauge correspondence [56]. The relation between clas-
sical/quantum cohomology of Grassmannians and integrable systems is studied in
[14, 36, 49, 57].

14 Quasimaps and Instantons

14.1

As explained in [29, Sect. 2.3], the moduli space of framed instantons on C ×
[C/(Z/nZ)] is isomorphic to the Nakajima quiver variety associated with the chain-
saw quiver shown in Fig. 1.

14.2

Representations of the chainsaw quiver satisfying dim Vn = 0 are in one-to-one cor-
respondence with representations of the handsaw quiver shown in Fig. 2. It is shown
in [29, Sect. 2.3] (see also [55, Sect. 3] for an exposition) that the Nakajima quiver
variety associated with the handsaw quiver is isomorphic to the parabolic Laumon
space parametrizing flags
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Fig. 1 The chainsaw quiver

Fig. 2 The handsaw quiver

0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = W ⊗C OP1 (261)

of locally free sheaves on P1 such that rank Ei = ∑
j≤i dim W j , deg Ei = − dim Vi ,

and the flag at ∞ ∈ P
1 is equal to the standard flag 0 ⊂ W1 ⊂ W1 ⊕ W2 ⊂ · · · ⊂

W1 ⊕ W2 ⊕ · · · ⊕ Wn−1 ⊂ W. This coincides with the space of based quasimaps to
partial flag varieties, i.e., quasimaps with specified value at infinity.

15 Quasimaps and Monopoles

15.1

Let G be a compact Lie group with a maximal torus H . A monopole on R3 is a pair
(A,�) of a connection A on a principal G-bundle P and a section � of P ×G g
satisfying the Bogomolny equation
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FA = ∗dA�. (262)

In order for the curvature to have a finite L2-norm, it is natural to demand that the
restriction of � to a sphere with large radius tends to a map to a fixed adjoint orbit
O ∼= G/H ∼= GC/P . The homotopy class k ∈ π2(GC/P) of the resulting map is
called the charge of the monopole.

15.2

A choice of a gauge satisfying a certain boundary condition at infinity is called a
framing of the monopole. The framed moduli space is a principal H -bundle over
the unframed moduli space. The framed moduli space has a natural hyperKähler
structure coming from the dimensional reduction of the anti-self-dual equation in
dimension 4.

15.3

Monopoles on R
3 are related to

(1) spectral curves on TP
1,

(2) Nahm’s equation

dTi

ds
= εi jk[Tj , Tk], i = 1, 2, 3 (263)

for Ti ∈ C∞((0, 2),Mat(k, k;C)), and
(3) based quasimaps from P

1 to GC/P of degree k.

(1) comes from the twistor correspondence [38, 39], and (2) comes from Nahm
transform [54]. (3) is proved for SU(2) in [27], and the general case can be found in
[44, 45] and references therein.

16 Quasimaps and Vortices

16.1

Let X be a Kähler manifold, (E, h) be a Hermitian vector bundle on X , and τ be
a positive real number. The Yang–Mills–Higgs functional sends a pair (A,φ) of a
unitary connection dA of (E, h) and a section φ of E to
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YMH (A,φ) = ‖FA‖2L2 + ‖dAφ‖2L2 + 1

4

∥
∥φ ⊗ φ∗ − τ

∥
∥2

L2 . (264)

By [12, Proposition 2.1], one has

YMH (A,φ) = 4
∥
∥F0,2

∥
∥2

L2 + 2
∥
∥
∥∂Aφ

∥
∥
∥
2

L2
+
∥
∥
∥
∥
√−1�F + 1

2
φ ⊗ φ∗ − τ

2

∥
∥
∥
∥

2

L2

(265)

+τ

∫

X

√−1 tr F ∧ ω[n−1] +
∫

X
tr F ∧ F ∧ ω[n−2].

where ω[k] := ωk/(k!) and � is the dual Lefschetz operator.

16.2

Assume that X is a projective curve, so that

deg(E) =
√−1

2π
tr F. (266)

Then (265) immediately implies the Bogomolny–Prasad–Sommerfield inequality

YMH (A,φ) ≥ 2πτ deg(E), (267)

and the equality holds if and only if the vortex equation

F0,2 = 0, (268)

∂Aφ = 0, (269)

−√−1�F = 1

2

(
φ ⊗ φ∗ − τ idE

)
(270)

is satisfied. Equations (268) and (269) are holomorphicities for E and φ, and (270)
is a generalization of the constant central curvature equation.

16.3

By taking the trace of (270) and integrating over X , one obtains

−2π deg(E) = 1

2
‖φ‖2L2 − 1

2
τ rank(E) vol(X), (271)
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so that the condition

τ ≥ 4π deg(E)

rank(E) vol(X)
(272)

is necessary for (270) to have a solution.

16.4

The slope of a holomorphic vector bundle E is defined by

μ(E) = deg(E)

rank(E)
. (273)

For a holomorphic section φ of E , we set

μ̂(E) := sup
{
μ(E ′)

∣
∣ E ′ is a reflexive subsheaf of E of rank less than E

}
,

μM (E) := max
{
μ̂(E),μ(E)

}
,

μm(E,φ) := inf

{
rank(E)μ(E) − rank(E ′)μ(E ′)

rank(E) − rank(E ′)

∣
∣
∣
∣

E ′ is a reflexive subsheaf of E such that rank E ′ < rank E andφ ∈ �(E ′)
}

.

A pair (E,φ) of a holomorphic vector bundle E and its holomorphic section φ is
said to be stable if

μM(E) < μm(E,φ). (274)

Theorem 7 ([13, Theorem 2.1.6]) Let (E,φ) be a pair of a holomorphic vector
bundle and its holomorphic section. If there exists a Hermitian metric on E satisfying
the vortex equation, then one has either of the following:

(i) (E,φ) is stable and satisfies

μM <
τ Vol(X)

4π
< μm(φ). (275)

(ii) E has a direct sum decomposition E = Eφ ⊕ E ′, φ is an element of H 0(Eφ) ⊂
H 0(E), (Eφ,φ) satisfies (i) above, and E ′ is the direct sum of stable vector
bundles of slope τ Vol(X)/4π.

Theorem 8 ([13, Theorem 3.1.1]) Let (E,φ) be a stable pair of a holomorphic
vector bundle and its holomorphic section. Then for any real number τ satisfying
(275), there exists a Hermitian metric on E satisfying (270).
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Bradlow proved these results not only for projective curves but also for compact
Kähler manifolds.

16.5

Vortex Eq. (270) admits the following generalization, which also contains Hitchin’s
self-duality equation [40] as a special case. Let Q = (Q0, Q1, s, t) be a quiver and
M = (Ma)a∈Q1 be a collection of vector bundles on X labeled by Q1. An M-twisted
Q-sheaf on X is a pair R = (

(Ev)v∈Q0
, (φa)a∈Q1

)
of a collection (Ev)v∈Q0 of vector

bundles labeled by Q0 and a collection

(φa)a∈Q1
∈
∏

a∈Q1

Hom
(
Es(a) ⊗ Ma, Et (a)

)
(276)

of morphisms labeled by Q1.
Given a collection (Ev)v∈Q0 of holomorphic vector bundles on a Kähler manifold

X , another collection (Ma)a∈Q1 of holomorphic vector bundles on X , a collection
σ = (σv)v∈Q0 of positive real numbers, and a collection τ = (τv)v∈Q0 of real numbers,
the equation

σv

√−1�Fv +
∑

t (a)=v

φa ◦ φ∗
a −

∑

s(a)=v

φ∗
a ◦ φa = τv idEv

(277)

for Hermitian metrics on (Ev)v∈Q0 is called the M-twisted quiver (σ, τ )-vortex
equation.

The (σ, τ )-degree and the (σ, τ )-slope of an M-twisted Q-sheaf R is defined by

degσ,τ (R) =
∑

v∈Q0

(σv deg Ev − τv rank Ev) , (278)

μσ,τ (R) = degσ,τ (R)
∑

v∈Q0
σv rank Ev

. (279)

A Q-sheaf is stable if one has μσ,τ (R′) < μσ,τ (R) for any proper subsheaf R′. A
Q-sheaf is polystale if it is the direct sum of stable Q-sheaf of the same slope.

Theorem 9 ([1, Theorem3.1])A Q-sheaf R with degσ,τ (R) = 0 admits a Hermitian
metric satisfying the quiver vortex Eq. (277) if and only if R is (σ, τ )-polystable. This
Hermitian metric is unique up to a multiplication by a positive constant for each
stable summand.

Quasimaps to Mat(r, n)//GLr corresponds to the case when the quiver Q =
(1 → 2) consists of two vertices and one arrow between them, M1 and M2 are
the structure sheaves, rank E1 = r , and E2 is the trivial bundle of rank n.



362 B. Kim et al.

16.6

Note that the map V → End(V ), φ �→ φ ⊗ φ∗ appearing in (270) is the moment
map for the natural action of the unitary group U (V ) on V . With this in mind, a
generalization

∗FA + μ(�) = τ idE (280)

of the vortex Eq. (270) to the case where one has a Hamiltonian action of a compact
group G on a Kähler manifold X is given in [19, 58]. Here A is a connection on
a principal G-bundle on a curve C , � is a holomorphic section of P ×G X , and
μ : X → g is the moment map. They are used to define invariants of a symplectic
manifold with a Hamiltonian group action [19, 20, 59], which are closely related to
theGromov–Witten invariants of the symplectic quotient [30, 71–74]. Reference [18]
use wall-crossing in vortex invariants to study quantum cohomology of monotone
toric varieties with minimal Chern number greater than or equal to 2.

16.7

Let X be a Kähler manifold with a Hamiltonian action of a compact connected Lie
group G. We assume that X is either compact or equivariantly convex at infinity with
a proper moment map. We fix an invariant inner product to identify g∨ with g, and
write the moment map as μ : X → g.

An affine vortex is a pair (A, u) of a connection A on the principal bundle P =
C × G and a holomorphic section u : C → P ×G X satisfying the vortex equation

∗FA + μ(u) = 0. (281)

A gauged holomorphic map to X with respect to the complex Lie group GC acting
on X is a map to the quotient stack [X/GC]. In other words, a gauged holomorphic
map from a scheme C to X is a pair (P, u) of a principal GC-bundle P over C and
a GC-equivariant holomorphic map u : P → X .

If the GC-action on X ss is free, then by [68, Theorem 1.1], there is a natural
bijection between the set of affine K -vortices with target X up to gauge equivalence
and the set of pairs gauged holomorphic maps such that u(∞) ∈ X ss. This is an open
substack of the set of quasimaps such that ∞ is not contained in the base locus.
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