An example

W. Domitrz, P. Mormul and P. Pragacz

Consider an algebraic set in the plane defined by a single equation

$$
\begin{equation*}
x^{4}-y^{3}+6 x^{2} y+6 y^{2}-2 x^{2}-9 y=0 \tag{1}
\end{equation*}
$$

This curve has two cusp-like 'return' points $P_{ \pm}=(\pm 2,-1)$ and a self-intersection point $P_{\text {self }}=(0,3)$, all of them - critical points of the polynomial on the LHS in (1). (The fourth critical point $(0,1)$ lies well off the curve.) From each of $P_{ \pm}$ there emerge a pair of branches.

The minimal regular separation exponent ν in each such pair is $3 / 2$ - it is an ordinary (simplest) cusp in singularity theory. A rabbit-from-the-hat way to see it is that the curve (1) admits a polynomial parametrization

$$
x(t)=t^{3}-3 t, \quad y(t)=t^{4}-2 t^{2} .
$$

Its Taylor expansion about $t_{0}=1$ is

$$
\begin{equation*}
\binom{t^{3}-3 t}{t^{4}-2 t^{2}}=P_{-}+(t-1)^{2}\binom{3}{4}+(t-1)^{3}\binom{1}{4}+(t-1)^{4}\binom{0}{1} \tag{2}
\end{equation*}
$$

Hence the Euclidean distance of points (2) for $t=1-\epsilon$ and $t=1+\epsilon$ is

$$
2 \sqrt{17} \epsilon^{3}+O\left(\epsilon^{4}\right)
$$

while the distances of these points to the reference point P_{-}are asymptotically equal $5 \epsilon^{2}$ when $\epsilon \rightarrow 0^{+}$. But

$$
2 \sqrt{17} \epsilon^{3}+O(\epsilon(4))=O\left(\left(5 \epsilon^{2}\right)^{3 / 2}\right)
$$

when $\epsilon \rightarrow 0^{+}$. So the minimal regular separation exponent ν is $3 / 2$.

