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Abstract: We prove that each action of a compact matrix quantum group on a
compact quantum space can be decomposed into irreducible representations of the
group. We give the formula for the corresponding multiplicities in the case of the
quotient quantum spaces. We describe the subgroups and the quotient spaces of
quantum 577(2) and SO(3) groups.

0. Introduction

Quantum groups have been already applied in various areas of physics, like confor-
mal field theory and exactly solvable models in statistical mechanics. It is especially
interesting that they could possibly describe symmetries of (quantum) space-time in
a future quantum gravity. In the same time, the nature and properties of quantum
groups are still under investigation. The local description of quantum groups is given
in terms of quantum universal enveloping algebras (cf. e.g. [Dr, J]). In the global
description we investigate the functions on quantum groups (cf. e.g. [W2, RTF]). A
deep insight in that global structure is given by the topological approach developed
in the series of papers of S.L. Woronowicz [W1-W6]. We use that approach in the
present paper.

The classical 517(2) and SO(3) groups play an important role in description
of spherically symmetric, stationary problems in physics. Also their subgroups are
important in description of various physical systems. The description of quantum
SU(2) groups was given in [W2]. Their quantum homogeneous spaces, quantum
2-spheres, were investigated in [PI, P2, P5] (cf. also [VS2]). However, the general
theory of quantum subgroups and quantum homogeneous spaces was only touched
there. In the present paper we want to treat that subject in more detail. We also
provide more examples.

In Sect. 1 we investigate the general theory of the (right) actions of (compact
matrix) quantum groups on (compact) quantum spaces. In Sect. 2 and 3 the theory
is illustrated on the example of quantum SU(2) and SO(3) groups. We classify
their subgroups and describe the corresponding quotient spaces. Provided examples
of finite quantum groups can have an application in the theory of pseudogroups of
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Ocneanu. In the course of the paper we substantiate some statements made in [PI]
and [P5]. The results of the paper were partially contained in [P3] and partially
announced in [P4].

Throughout the paper we use the terminology and results of [W2, W3]. All
considered C*-algebras and C*-homomorphisms are unital. The symbol ~ denotes
a C*-isomorphism. If M is a subset of a C*-algebra A then < M > denotes the
closure of span M. Let us recall (cf. [Wl]) that (compact) quantum spaces X
are abstract objects which are in bijective correspondence with C*-algebras C(X).
In particular, if X is a usual (compact Hausdorff) space then C(X) has the usual
meaning of C*-algebra of continuous functions on X. Each commutative C*-algebra
can be obtained in that way (up to a C*-isomorphism).

We use the Pauli matrices

0 1
1 0

σv =
0 -i
1 0

1 0
0 -1

We sum over repeated indices which are not taken in brackets (Einstein's conven-
tion). For x G R ,E(x) denotes the integer part of λ".

1. Symmetries of Quantum Spaces

In this section we define the notion of subgroup of (compact matrix) quantum
group. We also provide the basic notions concerning the actions of quantum groups
on (compact) quantum spaces. We prove that each such action can be decomposed
into irreducible representations of the quantum group. We give the formula for the
corresponding multiplicities in the case of quotient quantum spaces.

Let us recall

Definition 1.1 ([W3, W7]). G = ( A , u ) is called a (compact matrix) quantum group
if A φ{0} is a C*-algebra, u — (ui/ )fί ^l is an N x N matrix with entries belonging

to A and
1. A is the smallest C*-algebra containing all matrix elements of u.
2. There exists a C*-algebra homomorphism Φ : A —> A ®A such that

Φ(w*/)=Σ>,<g>w,/ M = l , 2 , . . . , # . (1)
r=l

3. u and ιιτ — (t/// c)f / = 1 are invertible.

In particular, each compact group of matrices G C GL(N,C) is a quantum group
[W3]. Then A = C(G) and u corresponds to the fundamental representation of
G : ιijj(g) = Qij £ C, g £ G,ij = 1 , . . . , 7 V . Each quantum group with commutative
A is of that kind (up to a C*-isomorphism). We use the notation A — C(G) for any
quantum group. We say [W3] that vr is a (smooth nondegenerate) representation of
G if i t ' is an invertible M x M matrix with entries in A and

N

Φ(mι) - Σ>W,r Θ w,v, /c, / - 1,2,.. .,M ,
r=l

for some M E N . We denote M = dimit '. It is easy to see (cf. [W3]) that w7 is
also invertible and therefore the iv-image of G is a quantum group:
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Proposition 1.2. Let w be a representation of a quantum group, M - dimiv. Then

is also a quantum group.

Note. Let C*({w// : ij = 1,...,M}) =A Then quantum groups (^,w) and C/4,w)
have the same Φ and can be identified.

The unital * -algebra generated by all matrix elements of u is denoted by ##.
Tensor product (φ), direct sum (Θ), equivalence (~) and irreducibility of repre-
sentations of G are defined as for usual matrices (cf. [W3]). In particular, repre-
sentations w, w' are equivalent if dimw = dimv/ and there exists S G GL(dimw, C)
such that w = Sw'S~l. Each representation is equivalent to a representation which
is unitary (as matrix). Let {uτ}τ^ be the set of all nonequivalent irreducible unitary

representations of G. We denote by UQ the trivial representation (0 G G, dimι/° = 1
and u°n = I). Set dτ = άimuτ. Due to [W3, Prop. 4.7], the matrix elements of all

uτ,τ G G give a linear basis of j/. The Haar measure h is the state on C(G) which

is equal to 1 on I and 0 on other matrix elements of ι/τ, τ G G. It is invariant, i.e.
(id 0 h)Φ(x) = (A 0 id)Φ(x) = h(x)I,x G C(G) [W3, Th. 4.2]. According to (5.10)
and (5.15) of [W3], there exist matrices Fα, α G G, such that

We set x*m — (7>F(α)) u^m *(F(χ))ιcs,p*m(x) = h(xy

smx) for x G C(G),α G G, s,m =

l , . . . , d χ . Then p*OT are continuous linear functionals on C(G) and p*m(w'n) =

δχβδsιδmn, β G G, l,n — 1,2,.. .,dβ. Hence,

(the action of both sides on all uτ

ab is the same). We put P*m = (id 0 p*m)ΦG,p
y =

py

ss G C(GX (Einstein's convention!). Then

PlmC(G) C spanK : ' = 1,2,...,^} , (3)

(cf. [W3, eq. 5.37]). In particular ρ° = h. The basic notion of this section is given
by

Definition 1.3. We say that a quantum group H = (B,v) is a (compact) sub-
group of a quantum group G = (A,u) if ά\mv = άimu and there exists a C*-
homomorphism ΘHG '• A —> B such that ΘHG(UΪJ) = VjjJJ = 1,2,.. .,dinm

Notice that ΘHG must be a C*-epimorphism.
Let H C G be two compact groups of matrices. The conditions of Def. 1.3 are

then satisfied by ΘHG — *'*, where i : H —> G is the natural embedding. Conversely,
let G be a compact group of matrices. Then each subgroup in the sense of Def. 1.3
is also a compact subgroup in the usual sense (up to a C*-isomorphism).

According to Def. 1.3, SqU(N),q G(0,l] (see [W4]) is a subgroup of SqU(N +
1) (we use the identification of the note after Prop. 1.2 for the representation w =
uφu° of SqU(N), cf. Eq. (1.7) of [NYM]).
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The second main notion of the paper is introduced as follows.

Definition 1.4. Let X be a quantum space and G be a quantum group. We say
that a C*-homomorphism Γ : C(X) —> C(X) <8> C(G) is an action of G on X if

b) ((I ® y)Γx : x e C(X\ ye C(G)) = C(X) <8> C(G).

Remark 1. This definition is more restrictive than that used in [PI]. Nevertheless,
Thm. 1 and Thm. 2 of [PI] remain true if we use instead Def. 1.4 (cf. Corollary
1.6).

Remark 2. In the classical case (i.e. if X is a usual compact Hausdorff space and G
a compact group of matrices), Def. 1.4 means that Γ = σ*, where σ : X x G —> X
is a right continuous action of G on X in the usual sense (including the condition
σ(jt,e) =x for x e X).

Let X be a quantum space and G be a quantum group. Let us fix a C*-
homomorphism Γ : C(X) -» C(ΛΓ) ® C(G). We say that a vector subspace £F C
C(X) corresponds to a representation v of G if there exists a basis ei,...^ in W
such that dimt; = d and Γe^ = ew <8) %£,£ — 1,2,.. .c/. It occurs that if Γ is an ac-
tion of G on A" then C(X) can be decomposed into vector subspaces corresponding
to irreducible representations of G:

Theorem 1.5. Let Γ be an action of a quantum group G on a quantum space X.
We denote E* = (id ® ρα)Γ, W* = E*C(X) C C(X) for a e G (see (4)). Then

2) F<7r eαcΛ α G G ί/zerβ exists a set 7α α«J vector subspaces W^ i G 7α,
a) ^α - Θί€/β ̂  .
b) fFαί corresponds to u* for each i G 7α .
3) Tsαc/z t ec/or subspace V C C(^) corresponding to u* is contained in W%
4) The cardinal number of 7α doesn't depend on the choice of {fFα/}/e/α

denoted by c% and called the multiplicity of u* in the spectrum of Γ.

Proof 1)2) Set^ = (id 0 p*m)Γ : C(X) — ̂ C(^),αG G, 5 , / w = 1,2,... ,rfα. Us-
ing condition a) of Def. 1.4 and (2), we get

EZJE* = [id ® (p«m ® p§ )ΦC]Γ = ̂ ,̂ (̂ 4 . (5 )

By virtue of (x*m : α e G,s,m = \,...,dx) = C(G) and condition b) of Def. 1.4, we
obtain

(EZHx:aeG,s,m=l,...,da,x€C(X)} 1
? ( Ό )

: j € C(G),x

Let fΓ αί = £(*fXί)Cp ). Using (5) and (6), we get

C(X) = 0 W»* . (7)

But E* = Efs9 hence

dx

(8)



Symmetries of Quantum Spaces 5

which proves 1). Let {eαπ}/E/α be a basis of £Fαl. We set eais — E^ exn,s =
l , . . . , ί/ α , i G 7α. In virtue of (5), {eαw}/e/α is a basis of W™'. Putting J f α /=
span{eα/s : s = l,...,ί/α} and using (8), we get 2a). Using condition a) of Def.
1.4 and (3), we get

Γe^ = ΓE^ew = Γ(id 0 p^^Γe^

- [id ® Pa

(s}(s}]Γe*ls G C(X) 0 span{ι£ : j = ! , . . .,</«} .

Therefore Γe^s = x^^j <S> ujs for some xΛiSj^G C(G)J = 1,2,. . . ,rf α . Acting on

both sides by (ά/0pj^),& = 1,2, . . . ,£/ α , we obtain JS^e^ = Jtα/s*, hence x^ =

£a/yb ^aw = <?(aχ/ ® W/ s» 5 = 1 , 2 , . . . , rfa, Z G 7a. It pΓOVCS b).

3)4) Let βj ,β2, . . . ,e</ a form a basis of V C C(JQ such that Γes = βy 0 UjS9 s =
l,...,dα . We get T^βi = er,r = l,...,dα . Thus er — £(

α

r)(r)er G JFαr C JFα, which
proves 3). Moreover, we see that each decomposition of type 2a) can be obtained
as in proof of 2). Therefore the cardinal number of 7α is equal to dim^Fαl for each

choice of {fFα/}/e/α Π.

Corollary 1.6. Let X be a quantum space, G be a quantum group and Γ : C(X) —>
C^Y") 0 C(G) be a C*-homomorphism. Then Γ is an action of G on X iff there
exist sets Jα, α G G, and linearly independent and linearly dense elements eαmy , α G

G,m G yα, 7 = 1,...,ί/α, /« C(AΓ) 5McA ίAύίί Γe^mj = ey_ms 0 M^ . In that case #Jα =
cα ί/ on^ o/ ?Aβ^^ values is finite.

Proof. " = >̂ " is contained in Theorem 1.5. Conversely, let such elements eamj- be
given. Then condition a) of Def. 1.4 is satisfied (it suffices to check it on βαmy), while

the condition b) follows from eαm£ Θ w = {7 0 [w(wαΓ)^.1]}Γe(α)my , where w G

C(G),α G G,m G Λ,A: - l ,2, . . . , r f α . Moreover (see the proof of Th. 1.5), W«s =
(e^ms : m G Λ)>Cα = dim(eαml : m G Jα), which proves the last statement. D.

Now we shall find the numbers cα for the quotient spaces. Let 77 be a subgroup
of a quantum group G. The quotient space 77\G is defined by

C(77\G) = {x G C(G) : (ΘHG 0 zW)ΦG;t = 7 0x}

(cf. [PI, Sect. 6]). Similarly as in [PI, Sect. 6] we get that EH\G = (hH 0 id)(θHG 0
zW)ΦG is a completely bounded projection from C(G) onto C(77\G). Moreover,
(Efj\G 0 id)ΦQ = ΦoEH\G. Thus we can define

A/\G - ΦG|C(//X(?) : Q77\G) —> C(77\G) 0 C(G) .

Let α G G. The representation ΘHG(^) of the group 77 can be decomposed into
a direct sum of irreducible representations among which the trivial one appears with
a multiplicity which we denote by nα. Taking a suitable form of wα we get

ί7 for z = 7 , z = 1,2,...,nα,

otherwise.
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Therefore EH\Gu^j = w*y. for 1 g m rg rcα and EH\Gu^j = 0 for «α < m ^ c/α,y =

1,..., fi?α, α G G. Hence, eαwj = M^ , m = 1,..., «α,y — 1> ? <^α> α G G, have the same

properties as in Corollary 1.6 with Jα = {l, . . . ,w α }. We obtain

Theorem 1.7. L<?ί H be a subgroup of a quantum group G. Then ΓH\G =
ΦG) G) : C(H\G) —> C(H\G) 0 C(G) w ΛΛ αcrww o/ G <w //\G. Moreover,

cα = «α (fήe multiplicity of the trivial representation (/) /« the decomposition of
®HG(U*} into irreducible components).

Definition 1.8. All the pairs (H\G,ΓH\G) obtained in the above way (and the
pairs isomorphic to them) are called quotient. Let Γ be an action of a quantum
group G on a quantum space X. We say that a pair (X9Γ) is embeddable if
C(T)φ{0} and there exists a faithful C*-homomorphism ψ : C(X) —> C(G) such
that ΦGψ = (ψ 0 id)Γ (cf. [VS2]). We say that (X,Γ) is homogeneous if c0 = 1.

Remark 3. In the classical case C(H\G) is the commutative C*-algebra of functions
which are constant on the orbits Hg(g G G) of the subgroup H of G. Let π be the
continuous projection π : G —> H\G. Then π* identifies that C*-algebra with the
C*-algebra of continuous functions on the usual quotient space H\G. Then Γ is
identified with σ*, where σ is the usual right continuous action of G on H\G.

Remark 4. In the classical case (X,Γ) is homogeneous iff JΓΦ0 is homogeneous
w.r.t. the action σ of the group G (see Remark 2).

Proof Let x G C(X). Then x G WQ iff Γx = x Θ 7 iff x ( p g ) = x(p\ peX.g^G
iff x is constant on the orbits pG of G.

<=: If ^ΓΦ0 is homogeneous then /?G = G, ί^Ό = C/,CQ = 1.
=>: Xή=9 since c0 — 1 > 0. Assume ad absurdum that X is not homoge-

neous. Then there exist p, p' G X such that // 0 pG. By the Urysohn lemma there
exists / G C(X) such that 0 ^ / ^ \J\pG = 0,/(//) = 1. Let A: = (W 0 A)Γ/.

Then k = EQfeW° = CL But t(p) = ^f(pg)dg = 0, t(^) = f G f ( p f g ) d g >
0. This contradiction proves the homogeneity of X. D.

A relation among the above notions is given by

Proposition 1.9. Let Γ be an action of a quantum group G on a quantum space
X. Then

a) (X9Γ) is quotient => (X,Γ) is embeddable => (X,Γ) is homogeneous.
b) In the classical case (X9Γ) is quotient ^=> (X9Γ) is embeddable <=> (X9Γ) is
homogeneous.

Proof a) The first implication holds for ψ = id : C(H\G) —> C(G). Let now
(X,Γ) be embeddable, x G C(X\Γx = x 07. Then ΦG\l/(x) = ψ(x) 0/. Acting
on both sides by id 0 hG we get ψ(x) = hG(ψ(x))I G CI,x G C/. Thus JF0 = C/,
c0 = l.
b) In this case each homogeneous space is (up to a homeomorphism) quotient,
which proves the implications opposite to that of a). D.

Remark 5. Examples of non-compact quantum homogeneous spaces are given by
[W8].
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2. Subgroups and Quotient Spaces of Quantum SU(2) Groups

In this section we classify the subgroups of quantum groups SUq(2),q G [—1,1]\{0}.
The corresponding quotient spaces are described (for q G (—1,1)\{0}).

First, let us recall that compact subgroups of 5(9(3) are given by

a) 50(3),
b) 5(9(2)n (all rotations around the axis given by n),
c) DO(2)n (the elements of 5(9(2)n and all rotations through angle π around axes
perpendicular to n),
d) C"m,n (rotations through angles ^k9k — 0,1,... ,ra - 1, around the axis given by
n), m = 1,2,...,
e) Dm^φ (the elements of Cm?n and rotations through angle π around m axes in
plane σn perpendicular to n, with equal angles between neighbouring axes, where φ
denotes the angle in σn between the projection of e3 on σn (we take ei instead of
€3 if n = ±63) and the first axis in the anti-clockwise direction), m = 2,3,...,0 ^
Φ < m
f) TΛfφ (the symmetries of regular tetrahedron with one of vertices in the direction
of n, where φ is now measured towards a projection of an edge starting in this
vertex), 0 g φ < y,
g) Onφ (the symmetries of regular octahedron with n,φ defined as in f)), 0 ^

Φ< f,
h) Λ i φ (the symmetries of regular icosahedron with n,φ defined as in f)), 0 r§

Φ<'Ύ>
where n is a unit vector. We have two opposite choices of n for any subgroup in
b)-f) (in the case of f) the change of sign of n corresponds to the inversion of
the tetrahedron) and many choices of n corresponding to the vertices of the solid
for any subgroup in f)-h) (thus we have 8 choices for f); φ is unique for a given
n, but can depend on its choice); moreover C\ does not depend on n, D2 depends
only on the set of three perpendicular axes; other subgroups are distinct.

Let β : 5(7(2) —» SO(3) be the standard continuous two-folded covering:
[β(g)]w = gwg~\ where g e 517(2), w = xσx + yσy + zσz ~ (jc,y,z) G R3. The
compact subgroups H C 5(7(2) fall into two classes:

1) —I £ H. Then β(H) can not contain Cm?n for any even m. We must have
β(H) = Cmp for some odd m. Then we have exactly one such subgroup H =
(Zm)n = {R2k : k = 0,1,. . . ,m — 1}, where R is any generator of the cyclic group
β~l(Cm,n) (the choice of R is irrelevant, opposite choices of n give the same sub-
group, for m = 1 n is irrelevant, other subgroups are distinct).
2) -/ <E H. Then all distinct possibilities are given by H = β~l (W), where W is
any compact subgroup of 5(9(3).

Quantum SU(2) groups [W2] are defined as SUq(2) = (A,u), q G [-1,1]\{0},
where A is the universal C*-algebra generated by two elements α, 7 satisfying

α*α + 7*7 = /, αα* + g27*7 = /, 7*7 = 77*
αy = gyα, <ry* = g7*α

and

" ~~ 7, α"
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For q = 1 we get the usual SU(2) group. According to [W2, Sect. 5], all nonequiv-
alent irreducible representations of SUq(2) can be chosen as {dα}α<EN/2? dimd% =
2α -f 1, d^φdβ ~ <ήα-0| θ d|α_β|+ι Θ ... θ dΆ+β. We can put d\/2 = u. The classi-
fication of subgroups of SUq (2\q G (—1,1)\{0}, is given by

Theorem 2.1. SUq(2),q G [-1,1]\{0}, has the following subgroups:

b) £7(1) - (c(Sl\ I Q ^ I j where Sl = {eίφ : φ G R} and z G C(Sl) is given

_ f ' ΓZ ( Λ ) > o 1\ _{ 2πίk/n

C(ZΛ) w ί/^^flf 63; z(n)(e2π^Π) - e2πik/n, n = 1,2, . . . .

For g G (— 1,1)\{0} the above list contains all subgroups of SUq(2) (up to
C* -isomorphisms, without repetitions).

Proof, a) is obvious.
b) Compact group of matrices Sl corresponds to the quantum group (C(Sl),z).

By Prop. 1.2 (for w = z θz), U (I) is also a quantum group. The elements α = z
and y = 0 satisfy (9), hence θu(\)suq(2) exists, ί/(l) is a subgroup of SUq(2).

c) can be proved analogously.

We shall prove the last statement. Let H = (B, υ) be a subgroup of SUq (2), g G
(-1,1)\{0). Then

where α,y satisfy (9). Moreover, ,δ = C*(α,y). A detailed analysis of relations (9)
shows (cf. [W2, VS1]) that (up to a C* -isomorphism of the C*-algebra B)

1 ) α = α0 0 /c(zi), 7 = 7o 0 C/, or
2) α = £7,7 = 0,

where αo, 7o E B(Hoo), HQQ is a Hubert space with an orthonormal basis /o,/ι, . ,

α0 /w = (1 - ^2m)1/2 /m_ι, 7o fm - qm fm (/-i - 0), m = 0, 1, . . . ,

U G C(A) is given by £7 ' (elφ) = el(ί> for elφ G zl and Δ is a nonempty compact
subset of Sλ .

In the case of 1 ) we define the unitary operator Dc G B(H00 ) by Dcfk —
eickfk,k = 0, 1,2, . . . ,c G R. Using Φ//7 = γ 0 α -f ά* 0 7 we get

(Dc* 0 zW 0 Dc 0 id)ΦHy(D* 0 zW 0 Dc 0 W)* - e~icΦHy .

Therefore

Sp(ΦH7) = e'icSp(ΦHγ). (10)

But Φ//α and Φ//7ΦO also satisfy (9), hence they are (up to a C* -isomorphism)
such as in 1) for some A' '. By virtue of (10), A' = e~ic Δf for all ceR,A' = Sl.
Since Sp(ΦHj) C Spy, A' C A, A = Sl . We can identify H with SUq(2).

In the case of 2) Φ//α = α Θ α. Therefore

J Zl = 5/?(α 0 α) = SpΦH& C Spoi = A .

We get Zl = S1 or A = Zn, n = 1,2, . . .. Hence, H is such as in b) or c).
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These subgroups are distinct since the corresponding C*-algebras are non-
isomorphic.

Remark L In the case of q = l,SUq (2) = 5(7(2) = β~l (50(3)) ,

(7(1)- J " * > °

β2πik/n9 0

Q e—2πιk/n

which is (Z,7)e3 f°r odd « and β~l(Cn/2^3) for even n.
Now we shall classify the subgroups of G — SU-\ (2). Some related facts were

already given in [Z]. Here we proceed in a little bit more complete way. First,
analysing the set Sp(A) of unitary equivalence classes of nondegenerate irreducible
representations of the C*-algebra A (cf. [W2, Remark after Th. A2.3]) we get

Proposition 2.2. Let q =—I. There exists the surjection τ : 5(7(2)—>Sp(A)
such that

1) [τ (w)] (α) - aσx, [τ (w)] (y) - cσv for
2) [τ (w)] (α) - a, [τ (w)] (y) - 0 for c = 0,
3) [τ(w)](α) - 0, [τ(w)](7) = c for a = 0,

where /
a, ( i i )

We denote πw = τ(w) α/tί/ πz = ΘU'ez^v /OΓ ^^ Z C 5ί7(2).

Remark 2. Let π G Sp(A). If dimπ = 1 then τ~ ! (π) consists of 1 element (case
2) or 3) above). If dimπ = 2 then τ"1 (π) consists of four elements of 5(7(2)
which give equivalent irreducible representations. These elements can be obtained
one from another by change of sign of a or/ and c.

Let S C Sp(A). We set

S= \πeSp(A) :\\π(x)\\ ^ \\ φ p(x) \\ for allx G ̂  I

(cf. [Dix, Sect. 3.1]). Clearly S C 5, 5 = S. Denoting Zs = τ~] (S) and by Z the
closure of a subset Z c 5(7(2) we have

Proposition 2.3.
zs = z^

Proof. "D": If w G Z$ then there exists a sequence Z^ 3 w/? — > w. It is easy to
check that

|| πn, (x) || ̂  sup || πw/l (x) || ̂  || φ p W ||, ^ 6 >4 ,
n pes

hence πu. G 5, w G Z^.
ς'C": If w G Z^ then πvv G 5, || πw(x) II ̂  suPzez5 II M*) II for ali ^ G ^4. Let us

first consider the case where αcφO (see (11)). Setting

* = 87 - [(α2 - «2)*(α2 - a2) + (y2 - c2)*(γ2 - c2)} ,
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we get sup z€zs 1 1 π z ( x ) \\= 8 =|| nw(x) ||. Hence, there exists a sequence zn G Zs
such that || πZn(x) || — » 8. One can prove that (maybe replacing zn by z'n with
τ(z,7) = τ(z,')) z/7 — » w, w G Zs. The other cases can be dealt with in the same
manner (for c = 0 we set x — 41 - (α - α)*(α - a) - 7*7, for α = 0 we set x =
4/-(;<-c)*(7-c)-α*α). Q

Let us introduce a new (non-associative) product * in 517(2). We set x * j; —
x y for all jc ? <y G 5(7(2) except of the case

0, -Λ /O, -c'

c, o y ' -v~ \/, o

when jc * v = — x 7. We say that Z c 517(2) is τ -conformable if Z = Zs for some
5 C 5p^. The subsets and subgroups of 5_ι U (2) are characterized by

Proposition 2.4. (cf. Sect. 2.3 of [Z])

1. Let Z be compact, τ -conformable subset 0/5(7(2). TTzew πz : A — > π z ( A )
is a C* -epimorphisin. In that way we obtain all C* -epimorphisms from A (up to
C* -isomorphisms of the image, without repetitions.)

2. Let Z be a compact, τ-confonnable subset of 5(7(2) such that Z * Z c
Z. Then Gz — (τcz(A\(πz(uij )^j^l} is a subgroup 0/5_ι (7(2). In that way we
obtain all subgroups of S-\U (2) (up to C* -isomorphisms, without repetitions).

Proof. 1. Each C*-epimorphism from A has (up to a C* -isomorphism of the
image) the form (Bp^s P f°r some 5 C S p ( A ) (A is separable). It is clear that
II Θp€sP( f l) HI Θpes P ( f l ) l l for anY S cSp(A) and a £ A. Moreover, if

II θ/>es P(β) 11 = 11 θper P(β) II for some 5 - 5, Γ = f and any α G ̂  then 5 = Γ

(since 5 C f , Γ c 5). Passing to the subsets of 5£/(2) and using Prop. 2.3, we
get our statement.

2. Let p' ,p" G S p ( A ) . It is easy to check that (p7 eg) p")Φc is unitarily equiv-
alent to φ/)GtS- P, where Zs — Z{p'} *Z| ///|. Hence (for Z as in 1.), Z * Z C Z

iff | |(π zΘ7r z)ΦG(tf) II = II πz(a) II (f°r all α G ̂ ) iff there exists a C*-homomorphism
^ : πz(A) — > πz(/ί) <g) πz(A) such that (πz Θ πz)ΦG = ^TΓz iff ^z is a sub-
group of 5_ι (7(2) (the conditions 1,3 of Def. 1.1 for G imply the same properties
for Gz). Q

In the following we assume that Z is a compact, τ-conformable subset of 5(7(2)
such that Z * Z C Z. We shall find all such subsets. Let us set

We have two cases.

I. Z C I. For φ G R we put

Λ o

Using the definition of * we find that Z has any of the following distinct forms:

a) Z =L = β

b) Z={0Φ : φ GR}-/r 1 (^(2)e 3 )(thenG z ^ (7(1)) ,
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c) Z = {O2πk/n, K2πk/n+φ0-π/2 : fc = 0, 1, . . . ,w - 1}, where n= 1,2,...,0 ^ φQ <

~ (Z = β~l (Aί/2,e3,</>o) for n even, Z is not a group for ra odd) ,
d) Z = {O2πk/n '• k = 0, !,...« — 1}, where «=1,2, . . . , (then GZ « Zrt; Z =

β~l(Cn/2,*3) for « even, Z = (Zw)β3 for w odd).

II. Z £ Z. Then -/ G Z. Indeed, let w G Z be such that αcφO. Hence, w* =
w * * w (A: times) belongs to Z for any k = 1,2, ____ Therefore w"1 G Z (cf. the
argument in [W3, proof of Th. 1.5]). But (τ-conformability) — w G Z. We get — / =
-w * w"1 G Z. Consequently, the considered set Z must have a form Z = β~l (W),
where W is any compact subgroup of 50(3) such that goWg$l C £F (where go is
the rotation through the angle π around the axis #3) and fF <jί DO(2\3 (omitting
the last condition is equivalent with adding the cases Ia)-Ib) and the cases Ic)-Id)
with even n).

We get the following W:

a) SO(3) (then Gz « Sί/_ι (2)),
b) iSΌ(2)n with n perpendicular to e3,
c) DO(2)n with n perpendicular to 63,
d) Cm,n with n perpendicular to e3,m = 3,4,...,
e) Aw,n,o with n perpendicular to e3,m = 3,4, ... ,
e7) ^m,n,π/2m with n perpendicular to C3,w = 2,3, ... ,
f ) Γφ (the group of symmetries of regular tetrahedron freely hanging on a horizontal
edge, φ gives the angle between ei and this edge in anti-clockwise direction),
0 ^ φ < π/2,
f ; ) I', ( the group of symmetries of a regular tetrahedron with one edge in vertical

position, the opposite one in horizontal position, φ gives the angle between t\ and
this edge in anti-clockwise direction), 0 ^ φ < π,
g) Oφ (the group of symmetries of regular octahedron defined as in f)), 0 g φ < π,
g') O^φ with n= e3, 0 g φ < π/2,
h) Iφ (the group of symmetries of regular icosahedron defined as in f)), 0 ^ φ < π.

Change of sign of n does not change W in any of the cases b)-e7). Besides,
we have distinct W and distinct Z = β~l(W). Combining the above results with
Prop. 2.4, we get all non-identical subgroups of S-\U(2).

Remark 3. Let Z be a τ-conformable subset of SU(2). Then (using an argument
similar to that in [W3, proof of Lemma 4.8]) we get dimπz(^) = #Z (whether
#Z G N or #Z = oo). In particular, under assumptions of Prop. 2.4.2, dimC(Gz) =
#Z. Therefore the above classification gives us many examples of finite-dimensional
*-Hopf algebras.

Let us consider the quotient spaces H\G w.r.t. the above subgroups H of G =
SUq(2). Our aim is to compute the multiplicity cα of Jα in the spectrum of the action
of G on //\G,α G N/2. According to Thm 1.7, cα are equal to the multiplicities
«α of the trivial representation in the decomposition of 0//G(rfα) into irreducible
components. We start with

Proposition 2.5. Let G = SUq(2\q G [-1, 1]\{0}, and H be a subgroup of G de-
scribed in Thm 2.1. Consider the quotient space H\G. Then Cy_ are equal

a) c0 = l,cα = 0 for α > 0 in the case of H — SUq(2\
b) ck = 1,^+1/2 = 0, k -0,1,2,..., in the case of H = [/(!),
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c) ck=2E(^) + 1, ck+ι/2 = 0, k = 0, 1, 2, . . . , /« /Ae case of H = Zm, m even;

=2E(^)-2E(±\k = Q,\,29... , in the case of H =
Zm, m-odd.

Proof, a) θfiG(dχ) — dα,α £ N/2, which gives the trivial representation only for
α = 0 with CQ — 1.
b) θ//G(^α)-^~2 αθz-2 α + 2Θ...Θz2 α (see [PI, eq. 10]). Thus the trivial subrep-
resentation occurs only for α G N (with multiplicity 1).
c) Similarly as in b), ΘHG(^X) — \^ θ z^m* θ . . . θ z2^, hence n% is the number
of elements in the set {— 2α, — 2α -f 2, . . . , 2α}, which are divisible by m. The precise
computation gives the results as in the formulation of the proposition. D

The remaining results concerning q = ±1 will be given in Sect. 3.
In the following we shall illustrate Prop. 1.9. using the results of [PI]. Let

q G [— 1, 1]\{0}. We say that (X, Γ) is a quantum sphere if X is a quantum space,
Γ is an action of SUq(2) on X and

ck =
2) W\ generates C(X) (as C*-algebra with unity).

Note. The notion of the quantum sphere, which is used in the present paper is more
restrictive (for q G (— 1, 1)\{0}) than that in [PI]. The present notion coincides with
the assumption (for general q G [-1, 1]\{0}) and the condition (i7) of [Pl,Th. 2].

In the remaining part of the section q G (— 1, 1)\{0}. According to [Pl,Th. 2],
(X, Γ) is a quantum sphere iff (X, Γ) is isomorphic to (S2

C, σqc) for c G [0, oo].
Moreover, the constant c is unique.

In [PI] we also considered (S2

qc(n}, σqc(n)\ where c(n) = -q2n/(l + q2n)2,n =
1, 2,.... They satisfy the definition of the quantum sphere with 1) replaced by
1),7 Ck = 1 for k = 0, 1,..., n - 1, all other Q vanish (see [Pl,Eq. 13b and Eq.
14]).

Proposition 2.6 (cf. [PI, Sect. 6]). Let q G (-1, !)\{0},ce {c(l),c(2),...}U[0, oo].
Then

a) (S2

C, σqc) is quotient <=> c = c(l) or c = 0,

b) (S2

C, σ^c) is embeddable <=> c = c(\) or c G [0, oo],

c) (ιS2

c, σ^c) z' s homogeneous.

Thus the implications in Prop. 1.9. a cannot be replaced by equivalences.

Proof, a) It follows from Thm. 2.1, Prop. 2.5 and the properties of quantum spheres
b) Due to [PI, Prop. 4.II] (cf. also [MNW, Corollary 3.8]), C(S*c(n}) &

π+(C(S2

qc(n^)) = B(Cl\n = 2, ?>,..., which has no characters. Therefore (S2

qc(nV
σqc(n}) is not embeddable (otherwise eψ would be a character, where e is the counit
of SUq(2)). For c — c(l) we set ψ I = I. For c G [0, oo] we set \l/(βi) = •$></!,&,/ =
-1,0,1 where (S-I,SQ,SI) equals (c1/2, 1, c1/2) for c G [0, oo) and (1,0,1) for
c — oo (due to ~s^k = Sk, aιm$ιsm — p, bιm^sιsm = λsk.k = —1,0, 1, and [P2, Eq. 5],
\j/(ei) satisfy [PI, Eq. 2]). It is easy to check the equation Φψ = (ψ ® id)σqc on the
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generators £/. The faithfulness of ψ follows from an argument similar as in the
proof of [PI, Th. l(i)=Φ(ii)].

c) is obvious.

3. Quantum SO(3) Groups

In this section we describe subgroups and quotient spaces of quantum groups
SOq(3)9 q G [-1, 1]\{0}. We treat as well the quotient spaces of SUq(2),q = ±1.

We take d\ in the form

/α*2, -(#2 + l)α*7, -qγ2\

dι =(rfι,,7)u=-ι,o,ι = 7***, /-(</ 2 +1)7*7, αy
\-qy*2> -(^2 + i)7*α, α2 /

(see [PI,Sect. 2]). According to Prop. 1.2, SOq(3)=(C*({dιtij,i, j = -1,0,1}),
d\\q £ [-1,1]\{0}, are quantum groups (cf. [PI, Remark 3 after Th. 2]). The
set of their all nonequivalent irreducible representations can be chosen as {dα}αeN
(they are generated by d\). Therefore

C(SOq(3)) = (d^mn : m, n =.-α,-α + l , . . . ,α,α G N) = C(7^\SUq(2)) . (12)

That is generated by the elements

K = 7*7, A = <x,γ, C = αy*, G = y2, L = α2 . (13)

It is easy to check that

(14)

L*L - (7 - K)(I - q~2K\ LL* - (7 - q2K)(I - q4K) ,

G*G - GG* - K2, A*A=K- K2, AA* = q2K - q4K2

C*C = K-K2, CC* = q2K - q4K2, LK = q4KL ,

GK = KG, AK = q2KA, CK = q2KC, LG = q4GL ,

LA = q2AL, AG = q2GA, CA = AC, LG* = q4G*L ,

A2 = q~lLG, A*L = q~\I - K)C, K* = K .

Proposition 3.1. Let q 6 (-1,1)\{0}. Then C(SOq(3)) is the universal C*-algebra
generated by K, A, C, G, L satisfying (14).

Proof. It follows from

Lemma 3.2. Let q G (—1,1)\{0} and K, A, C, G, L be bounded operators in a
Hilbert space H, which satisfy (14). Then there exist bounded operators α, 7 in
H which satisfy (9) and (13).

Proof. We analyse the representations of (14). D

Remark L Let q G (—1,1)\{0}. Then [Ta] (using the language of Hopf algebras)
denotes SOq(3) by SOqι(3) and gives its relationship with Oqι(3) of [RTF], [Ta].
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Proposition 3.3. (cf. [Ta], [PI, Remark 3 after Th. 2], [Z, Sect. 2.3]). Let q G
[— 1,1]\{0}. Then SOq(3) is similar to SO-q(3) : there exists a C* -isomorphism
pq : C(SOq(3)) — > C(SO-q(3)) such that

a) pq(K) = K, Pq(A) = ίA, pq(C) = iC, pq(G) = G, pq(L) = L,
b) pq(dl) = QdlQ-\ where Q = diag (1, -/,-!).

Proof. We define C*-homomorphism Tq : C(SUq(2)) — > C(SU-q(2)) ®B(C2) by
Tq(γ) = y®σy (cf. Sect. 1.1 of [Z] in the case of q = -1). Then

Γ9 : C(5O^(3)) — » CXSO-fO)) ® span{/, σj. The eigenvalues 1, -1 of σz cor-
respond to C*-homomorphisms pq, pq : C(SOq(3)) — > C(SO-q(3)). Using (13),
we get a) and an analogous formula for pq, with i replaced by — i. There-
fore p_qopq = id, pqoβ_q — id, pq is a C* -isomorphism. The property b) follows
from a). Q

Remark 2. (cf. [PI, Remark 3 after Th. 2]). Compact group of matrices SO\(3)
is the image of SU\(2) = SU(2) under p = dλ : SU(2) -> SOι(3). Since dl and
β are both three-dimensional irreducible representations of SU(2\ there exists
a matrix M G GL(3,C) such that p(x) = Mβ(x)M~l, x G SU(2). Thus SOι(3) =
MSO(3)M~l is similar to SO(3). We can take

M =
-1, -/, 0
0, 0, 1
-1, z, 0

Due to Prop. 3.3, we have also SO_ι(3) = Q~1SO\(3)Q is similar to SΌι(3).
We want to describe subgroups and quotient spaces of SOq(3\ q G [-1, 1]\{0}.

We start with

Proposition 3.4. Let H be a subgroup of G — SUq(2\ q G [— 1, 1]\{0}, such that

Z2 is a subgroup of H (see Th. 2.1. c). We set G = SOq(3)9 H = (ΘHG(C(G)\

(θHG(d\jnn))l

m#=-\)' τhen H ίs a subgroup of G,C(H) = C(Z2\H). Moreover,
C(H\G) = C(H\G) C C(G) C C(G), Γ^ό = ΓH\G and consequently cα, α G N,

/or £#?/z quotient spaces, ca, a G N -f 1/2, vanish.

Proof. It is easy to check that // is a quantum group and a subgroup of G with
φ^ m φm ^

H M\C(H)'
ΘHG = ΘHG\C(O} (15)

Using
(16)

we get
/7 Λ ,/ _ / θHGdwn for α ^ N

^z2\//β//G^«-(0 f o r α G N + 1/2.

Therefore C(Z2\/0 = ΘHGC(G) = C(H). By virtue of (16), one can obtain
C(H\G) C C(Z2\G) = C(G). Therefore, due to (15) and

C(H\G) = C(H\G) as C*-subalgebras of C(G). Using (17), we obtain ΓH\G =

ΓH\G- Hence, Corollary 1.6 gives that cα for H\G equals cα for H\G if α G N and
O i f α G N + 1 / 2 . Q
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Remark 3. Let us identify C*-isomorphic objects. The assumptions of Prop. 3.4 are
fulfilled for the following subgroups H of SUq(2):

1) SUq(2), C7(l), Z2m(m G N) for q G [-1,1]\{0}.

2) β~l(W), where W is any compact subgroup of 50(3) for q — 1 (then H =
p(H) = MWM~\ i.e. H is similar to W under M, hence cα, α G N, for H\SU(2)
are the same as for W\SO(3), cα,α G N+ 1/2, vanish).

3) Gβ-\(Wγ where JF is any compact subgroup of 50(3) such that g^Wg^1 C W
for q = -I.

They are not fulfilled in the remaining cases:

1X Z 2 m + 1 ( m G N ) f o r < 7 G [ - l , l ] \ { 0 } ,
2)' (Z2w+1)n(w G N) for q = 1 ((Z2m+1))e3 - Z2w+1 for q = 1),
3)x the cases Ic)-Id) with odd n for q = — 1.

It occurs that Prop. 3.4. gives all subgroups of 50^(3) for q G (-1,1)\{0}:

Theorem 3.5. 50^(3),g £ [—1,1]\{0}, has the following subgroups:

a) 50^(3) - (C(SOq(3)\dι) = S£/~(2),

b) 50(2)-(C(51),fθ/Θz)« t/~(l),

For g G (—1,1)\{0} ί/ze above list contains all subgroups of 50^(3) (w/7 ?o C*-
isomorphisms, without repetitions).

Proof. We prove the first statement similarly as in Th. 2.1 (in order to prove the
second relations we use the fact that C*-homomorphisms ψ : C(£/(l)) —> C(t/(l))
and ψn : C(Zn) —> C(Z2w) defined by ψ(z) =z2,ψn(z(nj) — z^2n^n = 1,2,..., are

faithful). Let now H = (B9υ) be a subgroup of SOq(3), 0 < \q\ < 1. Then

-q-\q2 + \)C\ -qG-
7-(α2 + lW, AV =

-q-[(qz + l)C, L

where the elements K,A,C,G,L generate B and satisfy (14). Due to Lemma 3.2,
there exist α,y, which satisfy (9) and (13). Let us replace α by αθ(-α) and y
by yθ(-y) (it changes H only up to a C* -isomorphism). Hence, Spy — —Spy.
Moreover, we can assume that α, y have one of two forms given in the proof of
Th. 2.1. In the first case we use the equality

ΦHG = L (g) G + (1 4- ^~2)C* 0 +

Similarly as for 5t/g(2) we get SpΦHG = SpG = Sp G. Thus 5p y = Sp y, J = 51 .

We can identify H with 5(9^(3). In the second case K~A = C = G = Q, while

L = U2. But Φ//L = L <8) Z, hence 5j^Z = 51 or 5pZ =- ZΠ 5n = 1,2, . . . . We get (up
to a C* -isomorphism) the cases b) or c). These subgroups are distinct since the
corresponding C* -algebras are nonisomorphic. D.

Combining Prop. 2.5 with Prop. 3.4, one gets the values of cα, α G N, for those
subgroups.

Under similarities 50^(3) - 56>ι(3) - 50(3), compact subgroups of 50_ι(3),
50ι (3) and 50(3) are in one to one correspondence, hence cα,α G N, are the same
for quotient spaces in all three cases. Those values are given by
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Proposition 3.6. Let W be a compact subgroup of SO(3). Consider the quotient
space W\SO(3). Then c^,k G N, are equal

a) c0 = l,ck = 0 for k > 0 in the case of W = SO(3),
b) ck = 1 for k G N in the case ofW = SO(2)n,
c) Ck = 1 /or £ E 2N, c^ - 0 for k E 2N + 1 in the case of W = DO(2)n,
d) c* = 2E(k/m) + 1 zw ίΛe case of W = Cm#,
Q) <?£ = E(k/m) '+ ̂  (^ = 1 /or A: = 0 (mod. 2), <5& = 0 otherwise) in the case of
W = DmΛφ9

f) ck = E(k/6) + δjt (^ = 1 far k = 0,3,4 (mod. 6), δk = 0 otherwise) in the case
of T^φ,
g) Q =E(*/12) + ^(δΛ = 1 far k = 0,4, 6, 8, 9, 10 (mod. 12), <5* = 0 otherwise)
in the case of On>φ,
h) Q - ^(*/30) + δk (δk = lfork = Q, 6, 10, 12, 15, 16, 18, 20, 21, 22, 24, 25, 26,
27, 28 (moί/. 30), <5# = 0 otherwise) in the case of I^ψ.

Proof. Due to Th. 1.7, c# is equal to the multiplicity of the trivial representation of
W in θwso(3)dk Let χ^ = Tr(θψso(3)dk) and Jw denotes the Haar measure on W.

Then ck = (χolftϋ = /^ χjfc(w)dτv. Using the formula χ^(w) = Σ5=-/c,-/c+ι,...,/c ̂ Φ

(where φ is the angle of the rotation w), we get the above results. D.

Now we pass to the description of quotient spaces for SUq(2),q — ±1. The
cases 1), 1);, 2) of Remark 3 are already solved. The case 3) is given by

Proposition 3.7. Let W be a compact subgroup of SO(3) such that
Then
1. (cf. [Z, Sect. 2.3.]) Under similarities

c W.

SOι(3)~SO(3)

we have

(up to C*-isomorphisms).
2. The quotient spaces Gβ-ι(W}\SU-l(2)ίβ-l(W)\SU(2\Gβ-ι(W}\SO,l(3\

β~~l(W)\SOι(3),W\SO(3) have the same coefficients cα,α € N(cα,α e N+1/2
vanish for the first two quotient spaces).

Proof. 1. We denote Z = β~l(W) C SU(2). We shall prove the first similarity. One
has
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(we used the fact ( ' ~C)(ΞZ=ϊ(a' - ) G Z ) . Thus λθίsom =v \ r n ] \ c n I £oL/\\:>)
\ ' / ^ „ ' ~

®G so (3)Pι f°Γ some C*-isomorphism λ : C(Z) —> C(Gz). Therefore Gβ-\^w^

~ β~l(W\ The second similarity is given in Remark 3.
2. It follows from 1. and Prop. 3.4. D.

In the case 2)x the coefficients cα,α G N/2, for (Zj2m+ι)n\SU(2) are the same as
in Prop. 2.5 in the case of H = Z2w+ι((Z2w+ι)n are similar one to another under
unitary matrices; such similarities do not change 5(7(2)). It remains to consider the
case 3)' : the case Id) with odd n is covered by the case I)7, while the case Ic)
with odd n is solved by

Proposition 3.8. Let Z = {O2πk/n9K2πk/n+φQ-π/2 :# = 0,!,...,«- 1}, where 0 <£
ΦQ < 2π/«, n is odd Consider the quotient space Gz\SU-\(2). Then C[ — E(l/n) +

<5/>c/+ι/2 — E (^p) - £ ( f ) , where <5/ = 1 /6>r / ez ew, δ/ = 0 for I odd, / G N.

Proof. Since Z C L, C(Gz) is commutative. Using Th. 1.5 of [W3], we can identify
Gz with {O2πk/n, S2nkin+φQ-π/2 :* = 0, l , . . . ,«- l }c ί/(2), where

0, β-'
e ,̂ 0

Then c\ = fGz χι(w)dw, I G N/2, where χ/ = Tr(θGzSu_l(2)dι) and Jw denotes the
Haar measure on GZ Using the formula χιχ\/2 = Xι-\/2 4- 7/+ι/2, / ^ 1/2 (it fol-

lows from d/φc/ι/2 ^ d/-ι/2 θd/+ι/2), we get χι(Oφ) = Σ^=-2/,-2/+2,...,2/β^' ' G

N/2,χ/(5φ) = (-1)7 for / G N,χ/(5^) = 0 for / G N + 1/2. An easy computation
gives the result. D.

Remark 4. (cf. [PI, Remark 3 after Th. 2]). Let (Xq^σqλp) be as in [PI, Sect. 3],
q G [— 1,1]\{0}, and e^k = —1,0,1, be the corresponding generators. Then

<V, : C(Xqip) —» C( 9̂,p) Θ C(50?(3)) C C(Xqip) ® C(SUg(2)).

We set

The C*-isomoφhism /I : C(Xqχp} —> C(Jf_^;,p) given by Λ(e-\) = —ie-\,
eQ,Λ(e\) = ie\ identifies (Xqλp,σq;.p) with (X_qλp,σ-qίp). Therefore, using [PI, Re-
mark 2 after Th. 2], we get that

a) (S±lQ,σ±\o) = (X±w\,σ±\oι) is a unique (up to an isomoφhism) quantum sphere
for q = ±\.
b) The above object and (^±^ι^2_ι^4,σ±^^(]2_}^4)J = 2,3,..., are unique (up to
an isomorphism) objects which satisfy the assumptions and the condition (i) of [PI,
Th. 1] for q = ±l.

Using Prop. 3.4, Th. 3.5 and [PI, Sect. 6], we get the following realisations for
the quotient quantum sphere (with the corresponding action of the group):

(^i-^i,^,^) = (S2

g0,σq0) « U(l)\SUq(2) = SO(2)\SOq(3) ,
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Remark 5. Here we use the terminology of [P5]. Let q G [— l,l]\{0},c G [0,oo]
(c = 0 for q = ±1). Then A of Remark 4 identifies s$ c for q with s$c for —q. Using

that identification one can check that (SΛ,σΛ,d, *) is a ( \ ) -dimensional exterior al-

gebra on SqC, invariant w.r.t. σqc iff (S^, (id 0 p^)σΛ,c/,*) is a ( \ ) -dimensional exte-

rior algebra on S2_qc, invariant w.r.t. σ_gc. The same holds if we restrict ourselves to

5ΛO Θ . . . SM for some k = 1, 2, . . . , (with suitable restrictions of all structures in SΛ,
without * or with *) instead of SΛ. That and [P5, Theorem] for q = 1 prove that [P5,
Theorem] holds also for q = - 1 (cf. the remarks at the beginning of [P5, Sect. 2]).

Remark 6, The results of the paper give a proof that the Haar measure is faithful
for all SUq(2)9 SOq(3)9 q G [-1, 1]\{0} (the proof in [PI, Sect. 4] is valid only for
SUq(2)9 q G (-1, 1)\{0}, the case of SU-\(2) follows from [Z, Sect. 2.3]). Indeed,
let G — (A,u) be a quantum group, h be the Haar measure, J — {b G A : h(b*b) —
0} be the corresponding closed two-sided ideal, π : A — » A/J be the canonical
projection and ur = (id ® π)u. Then, according to [W3, p. 656], Gr — (A/J,ur) is
a quantum subgroup of G, {π(wα)}αG£ is the set of all nonequivalent irreducible
unitary representations of Gr. Thus cα = δ^ for the quotient space Gr\G. Therefore,
for G = SUq(2) or SOg(3), our results show that Gr — G (up to a C* -isomorphism),
J = {0},/z is faithful.

Remark 7. Throughout the paper we dealt with the right actions. We say that a
C*-homomorphism Γ : C(X) — > C(G) 0 C(X) is a left action of a quantum group
G on a quantum space X if

a) (id
b) ((y Θ I)Γx : x G C(X\ y G C(G)) - C(G) ® C(X).

In that case a vector subspace W C C(JSQ corresponds to a representation t; of G
if there exists a basis e\,...,ed in £F such that d = dimi; and />£ = ^m ® em,k =
I 9 2 9 . . . d . It occurs that for G - 5C/9(2) or G - SOq(3)9q G [-1, 1]\{0}, there ex-
ists a bijective correspondence between the right and the left actions on any
quantum space X : if Γ is a right action then Γ' — (λ ® id)σΓ is a left ac-
tion (C* -isomorphisms λ : C(G) — > C(G) and σ : C(JT) 0 C(G) -> C(G) 0 C(X)
are given by x(α) = α, /l(y) — y*, σ(x ® y) = y ® x, x £ C(X\ y G C(G); one has
ΦGλ = (/0 λ)σΦG, eGλ = eG). That correspondence gives a bijective correspon-
dence between right and left quantum spheres (defined analogously as in the present
paper).

There exist matrices Si G M2/+ι(C), / = 0, 1, . . . , such that λ(df)
τ = ( S f ) ~ } d i S f .

We can take

1, 0,
= 5,= (5ι,l7)/j=_ιΛι - ( 0, -^2 + I)

0, 0,

Let us consider the right quantum spheres (Sqc9 σqc),q G [-1, !]\{0},c G [0, oo] (for
q — ±1 we have c = 0), and their generators e^ k — —1,0, 1. We denote the corre-

sponding left quantum spheres by (SqC,σ'qc). Then Sqc — S^c. Setting e'k = S^e^ one

has σ'qce'k=dιtj®e'j, k = -1,0, 1. We put af = (S~l 0 S~l)a G M9 xi(C), Z?7-

OS"1 05~1)6S, c7 = (5-1 0S-1)c52. Then

α/Γ(Z)/Γ,c/Γ,resp.) intertwines d\φd\ with d§(d\, d^ resp.).
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One can use X'qλp = Xqλp, σf

qλp, e'k, a', b', c'', instead ofXqip, σqλp, ek, a, b, c. Cf. also
[NM].

All the results of the present paper preceding this remark, [PI, Thm. 1 and Thm.
2], [P2, Thm. 1] and [P5, Thm.] remain true if we use the left actions and the left

quantum spheres (after appropriate modifications, e.g. Eq. (5) takes form E%mEfj —

[(Pi/ ® P*sm)*G Θ id]Γ = δjsδ,(β}Efm,e*is = E^e^, EG,H = (id ® hH) (id <g> ΘHG)Φσ,
for c £ [0, oo] we use the embedding ψr = λφ : ^'(£z ) — d\^s'k with s'k = SjkSj9ψ'

gives the isomorphism (S^σ'φ) « SUq(2)/U(l)9q G [-1, !]\{0},c = 0).
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