EQUIVARIANT CHERN CHARACTER

Paul Baum

Warsaw, 9 May 2006

A C* algebra (or a Banach algebra) with unit $\mathbf{1}_A$

Grothendieck group of finitely
$$K_0(A) := \text{generated (left) projective} A\text{-modules}$$

$$n=1,2,3,\ldots$$

$$M_n(A)=\{n\times n \text{ matrices } [a_{ij}]:a_{ij}\in A\}$$

 $M_n(A)$ is a C* algebra (or a Banach algebra) with unit

$$egin{pmatrix} 1_A & 0 & \dots & 0 \ 0 & 1_A & \dots & 0 \ \dots & \dots & \dots & \dots \ 0 & 0 & \dots & 1_A \end{pmatrix}$$

$$j = 1, 2, 3, \dots$$

$$GL(1, A) \subset GL(2, A) \subset GL(3, A) \subset \dots$$

$$\operatorname{GL}(A) := \bigcup_{n=1}^{\infty} \operatorname{GL}(n, A)$$

 $\operatorname{GL}(A)$ is topologized by the direct limit topology i.e. $U\subset\operatorname{GL}(A)$ is open iff $U\cap\operatorname{GL}(n,A)$ is open in $\operatorname{GL}(n,A)$ for all $n=1,2,3,\ldots$

$$\mathsf{K}_{j}(A) := \pi_{j-1}(\mathsf{GL}(A))$$

Bott periodicity

$$\Omega^2 \operatorname{GL}(A) \sim \operatorname{GL}(A)$$

$$K_j(A) \simeq K_{j+2}(A), \quad j = 1, 2, 3, \dots$$

$$\mathsf{K}_0(A), \quad \mathsf{K}_1(A)$$

 $X^+ = X \cup \{p_\infty\}$ one point compactification of X

$$C_0(X) = \{\alpha \colon X^+ \to \mathbb{C} : \alpha \text{ is continuous } \alpha(p_\infty) = 0\}$$

 $C_0(X)$ is a C*-algebra

$$x \in X^+, \ \alpha, \beta \in C_0(X), \ \lambda \in \mathbb{C}$$

$$(\alpha + \beta)x = \alpha x + \beta x$$

$$(\alpha \beta)x = (\alpha x)(\beta x)$$

$$(\lambda \alpha)x = \lambda(\alpha x)$$

$$\|\alpha\| = \sup_{x \in X^+} |\alpha(x)|$$

$$\alpha^* x = \overline{\alpha x}$$

 ${\it X}$ loacally compact Hausdorff topological space

 $X^+ = X \cup \{p_\infty\}$ one point compactification of X

$$\mathsf{K}_0(C_0(X)) = \ker \left(\begin{array}{c} \mathsf{K}^0(X^+) \to \mathsf{K}^0(p_\infty) = \mathbb{Z} \\ E \mapsto \dim_{\mathbb{C}}(E_{p_\infty} \end{array} \right)$$

 $E \mathbb{C}$ vector bundle on X^+

 $K_*(C_0(X))$ is Atiyah-Hirzerbruch K-theory

This is topological K-theory with compact supports

Atiyah-Hirzerbruch notation for this K-theory is $K^*(X)$

$$\mathsf{K}_{j}(C_{0}(X)) = \mathsf{K}^{j}(X)$$

X compact Hausdorff \Longrightarrow

$$\mathsf{K}_0(C_0(X)) = \mathsf{K}^0(X) = \begin{tabular}{l} \mathsf{Grothendieck} \ \mathsf{group} \ \mathsf{of} \ \mathbb{C} \ \mathsf{vector} \ \mathsf{bundles} \ \mathsf{on} \ X \ \end{tabular}$$

Chern character

X locally compact Hausdorff topological space

ch:
$$\mathsf{K}_{j}(C_{0}(X)) \to \bigoplus_{l} \mathsf{H}_{c}^{j+2l}(X;\mathbb{Q}), \quad j = 0, 1$$

$$\mathbb{Q} \otimes_{\mathbb{Z}} \mathsf{K}_{j}(C_{0}(X)) \xrightarrow{\cong} \bigoplus_{l} \mathsf{H}_{c}^{j+2l}(X;\mathbb{Q})$$

- Čech cohomology
- Alexander Spanier cohomology

(with compact supports)

Γ discrete (countable) group

 $\Gamma \times X \to X$ continuous action of Γ on X

 $C_r^*(\Gamma, X) = C_0(X) \rtimes_r \Gamma$ is the reduced crossed-product C*-algebra for the action of Γ on X

Definition of $C_r^*(\Gamma, X)$

Extend the given action $\Gamma \times X \to X$ to $\Gamma \times X^+ \to X^+$ by

$$\gamma p_{\infty} = p_{\infty} \quad \forall \gamma \in \Gamma$$

 Γ then acts on $C_0(X)$ by C* algebra automorphisms $\Gamma \times C_0(X) \to C_0(X)$

$$(\gamma f)x = f(\gamma^{-1}x) \quad f \in C_0(X), \ \gamma \in \Gamma, \ x \in X$$

Form the purely algebraic crossed-product algebra $C_0(X) \rtimes_{\operatorname{alg}} \Gamma$

$$C_0(X) \rtimes_{\operatorname{alg}} \Gamma = \left\{ \begin{array}{l} \text{finite formal sums } \sum_{\gamma \in \Gamma} f_{\gamma}[\gamma] : \\ f_{\gamma} \in C_0(X) \end{array} \right\}$$

$$\left(\sum_{\gamma \in \Gamma} f_{\gamma}[\gamma]\right) + \left(\sum_{\gamma \in \Gamma} h_{\gamma}[\gamma]\right) = \sum_{\gamma \in \Gamma} (f_{\gamma} + h_{\gamma})[\gamma]$$

$$\lambda\left(\sum_{\gamma\in\Gamma}f_{\gamma}[\gamma]\right)=\sum_{\gamma\in\Gamma}(\lambda f_{\gamma})[\gamma]\quad \lambda\in\mathbb{C}$$

$$(f[\gamma])(h[g]) = (f)(\gamma h)[\gamma g] \quad \gamma, g \in \Gamma, f, h \in C_0(X)$$

Complete $C_0(X) \rtimes_{\mathsf{alg}}$ to obtain $C_r^*(\Gamma, X)$

$$l^{2}(\Gamma) = \{u \colon \Gamma \to \mathbb{C} : \sum_{\gamma \in \Gamma} \overline{u(\gamma)} u(\gamma) < \infty\}$$

 $l^2(\Gamma)$ is a Hilbert space

$$(u+v)\gamma = u\gamma + v\gamma$$
$$(\lambda u)\gamma = \lambda(u\gamma)$$
$$\langle u, v \rangle = \sum_{\gamma \in Ga} \overline{u(\gamma)}v(\gamma)$$

 $\mathcal{L}^2(l^2(\Gamma))$ is the C*-algebra of all bounded operators $T\colon l^2(\Gamma)\to l^2(\Gamma)$ with operator norm

$$||T|| = \sup_{\langle u, u \rangle = 1} (\langle Tu, Tu \rangle^{\frac{1}{2}})$$

Each $x \in X$ determines a homomorphism of algebras

$$\tau_x \colon C_0(X) \rtimes_{\mathsf{alg}} \Gamma \to \mathcal{L}(l^2\Gamma)$$
$$(\tau_x(f[\gamma])u)(g) = f(gx)u(\gamma^{-1}g)$$
$$u \in l^2(\Gamma), \ x \in X, \ \gamma, g \in \Gamma, \ f \in C_0(X)$$

 $C_r^*(\Gamma, X)$ is the completion of $C_0(X) \rtimes_{\mathsf{alg}} \Gamma$ in the norm

$$\left\| \sum_{\gamma \in \Gamma} f_{\gamma}[\gamma] \right\| = \sup_{x \in X} \left\| \tau_x \left(\sum_{\gamma \in \Gamma} f_{\gamma}[\gamma] \right) \right\|$$

ch:
$$\mathsf{K}_{j}(C_{r}^{*}(\Gamma,X)) \rightarrow ?$$

 Γ finite \Longrightarrow

 $\mathsf{K}_*(C^*_r(\Gamma,X))$ is Atiyah-Segal equivariant K-theory, denoted $\mathsf{K}^*_\Gamma(X)$

Theorem 1 (Slominska). Γ finite

ch:
$$\mathsf{K}_{j}^{\mathsf{\Gamma}}(X) \to \bigoplus_{l} \mathsf{H}_{c}^{j+2l}(\widehat{X}/\mathsf{\Gamma};\mathbb{C})$$

$$\mathsf{K}_{j}^{\mathsf{\Gamma}}(X) \otimes_{\mathbb{Z}} \mathbb{C} \xrightarrow{\cong} \bigoplus_{l} \mathsf{H}_{c}^{j+2l}(\widehat{X}/\mathsf{\Gamma};\mathbb{C})$$

If Γ is not finite, then $\mathsf{K}_j(C^*_r(\Gamma,X))$ can be viewed as the natural extension of Atiyah-Segal equivariant K-theory to the case when Γ is not finite

ch:
$$\mathsf{K}_{j}(C_{r}^{*}(\Gamma,X)) \rightarrow ?$$

 $M C^{\infty}$ manifold, $\partial M = \emptyset$

Γ discrete (countable) group

 $\Gamma \times M \to M$ smooth action of Γ on M

"smooth" = each $\gamma \in \Gamma$ acts by a diffeomorphism

 $C_r^*(\Gamma, M) = C_0(M) \rtimes_r \Gamma$ is the reduced crossed-product C* algebra for the action of Γ on $C_0(M)$

ch: $K_i(C_r^*(\Gamma, M)) \rightarrow ?$

Theorem 2 (J. Raven). If BC for Γ with coefficient algebra $C_0(M)$ is true, then there is a Chern character

ch:
$$\mathsf{K}_j(C^*_r(\Gamma,M)) \to \bigoplus_l \mathsf{H}_{j+2l}(\Gamma;\Omega^*_c(\widehat{M})), \ j=0,1$$
 and

$$\mathsf{K}_{j}(C_{r}^{*}(\Gamma, M)) \otimes_{\mathbb{Z}} \mathbb{C} \xrightarrow{\cong} \bigoplus_{l} \mathsf{H}_{j+2l}(\Gamma; \Omega_{c}^{*}(\widehat{M}))$$

 \widehat{M}

$$\gamma \in \Gamma$$
, $M^{\gamma} := \{ p \in M : \gamma p = p \}$

If $\operatorname{order}(\gamma) = \infty$, then M^{γ} can be anything e.g. M^{γ} can be a Cantor set **Lemma 3.** If $\operatorname{order}(\gamma) < \infty$, then M^{γ} is a C^{∞} submanifold of M.

Proof. $\operatorname{order}(\gamma) < \infty \implies \operatorname{The subgroup} J$ of Γ generated by γ is a finite (cyclic) group \implies

Can choose on M a C^{∞} Riemannian metric which is J-invariant. Then γ acts by an isometry and M^{γ} is a totally geodesic C^{∞} submanifold of M.

$$\begin{split} \widehat{M} := & \coprod_{\substack{\gamma \in \Gamma \\ \text{order}(\gamma) < \infty}} M^{\gamma} \\ = \{ (\gamma, p) \in \Gamma \times M : \gamma p = p \} \end{split}$$

 \widehat{M} is a C^{∞} manifold

 $\Omega_c^*(\widehat{M})=$ the de Rham complex of $\mathbb{C}\text{-valued}$ compactly supported C^∞ differential forms on \widehat{M}

$$0 \to \Omega_c^0(\widehat{M}) \xrightarrow{d} \Omega_c^1(\widehat{M}) \xrightarrow{d} \dots \xrightarrow{d} \Omega_c^n(\widehat{M}) \to 0$$

 $\Gamma imes \widehat{M} o \widehat{M}$ smooth action of Γ on \widehat{M} $g(\gamma,p) = (g\gamma g^{-1},gp), \ g \in \Gamma, \ (\gamma,p) \in \widehat{M}$

$$\Gamma \times \Omega_c^*(\widehat{M}) \to \Omega_c^*(\widehat{M})$$

 $\Omega^*_c(\widehat{M})$ is a complex of Γ -modules

 $\mathsf{H}_l(\Gamma;\Omega_c^*(\widehat{M}))$ is the l-th cohomology of Γ with coefficients $\Omega_c^*(\widehat{M})$

 $\mathbb{C}[\Gamma]$

 $\mathbb{C}[\Gamma]$ is the purely algebraic group algebra

$$\mathbb{C}[\Gamma] := \left\{ \text{Finite formal sums } \sum_{\gamma \in \Gamma} \lambda_{\gamma}[\gamma] : \lambda_{\gamma} \in \mathbb{C} \right\}$$

Algebra homomorphism $\varepsilon\colon \mathbb{C}[\Gamma] \to \mathbb{C}$

$$\varepsilon \left(\sum_{\gamma \in \Gamma} \lambda_{\gamma} [\gamma] \right) = \sum_{\gamma \in \Gamma} \lambda_{\gamma}$$

A (left) Γ -module is a $\mathbb C$ vector space V with a given group homomorphism $\Gamma \to \mathsf{GL}_{\mathbb C}(V)$

Equivalently a (left) Γ -module is a unital (left) $\mathbb{C}[\Gamma]$ -module

V Γ -module

 $H_l(\Gamma; V) = l$ -th cohomology of Γ with coefficients V, l = 0, 1, 2, 3, ...

$$\mathsf{H}_l(\Gamma;V) := \mathsf{Tor}^l_{\mathbb{C}[\Gamma]}(\mathbb{C},V)$$

$$0 \leftarrow V \xleftarrow{\partial} \mathbb{C}[\Gamma] \otimes_{\mathbb{C}} V \xleftarrow{\partial} \mathbb{C}[\Gamma] \otimes_{\mathbb{C}} \mathbb{C}[\Gamma] \otimes_{\mathbb{C}} \xleftarrow{\partial}$$

$$\partial(a_0 \otimes a_1 \otimes \ldots \otimes a_n \otimes v) =$$

$$\varepsilon(a_0)a_1 \otimes \cdots \otimes a_n \otimes v$$

$$+ \sum_{j=0}^{n-1} (-1)^{j+1} a_0 \otimes \cdots \otimes a_{j-1} \otimes a_j a_{j+1} \otimes a_{j+2} \otimes \cdots \otimes a_n \otimes v$$

$$+ (-1)^{n+1} a_0 \otimes \cdots \otimes a_{n-1} \otimes a_n v$$

$$a_0, a_1, \dots, a_n \in \mathbb{C}[\Gamma], \ v \in V$$

$$0 \leftarrow \underbrace{V \xleftarrow{\partial} \mathbb{C}[\Gamma] \otimes_{\mathbb{C}} V}_{\varepsilon(a)v - av \leftarrow a \otimes v} \xleftarrow{\partial} \mathbb{C}[\Gamma] \otimes_{\mathbb{C}} \mathbb{C}[\Gamma] \otimes_{\mathbb{C}} \xleftarrow{\partial}$$
$$a \in \mathbb{C}[\Gamma], \ v \in V, \ \gamma \in \Gamma$$

$$H_0(\Gamma; V) = V/(\varepsilon(a)v - av)$$
$$= V/(v - \gamma v)$$
$$= V_{\Gamma}$$

 V_{Γ} is the Γ -coinvariants

$$V^{\Gamma} := \{ v \in V : \gamma v = v \ \forall \ \gamma \in V \}$$

 V^{Γ} is the Γ -invariants

 $\mathsf{H}_l(\Gamma;V)$ is the l-th derived functor of

$$V \mapsto V_{\Gamma}$$

Let

$$\Psi = \left\{ 0 \xrightarrow{d} V^0 \xrightarrow{d} V^1 \xrightarrow{d} \ldots \right\}$$

be a complex of (left) Γ -modules

To define $H_l(\Gamma; \Psi)$, $l \in \mathbb{Z}$ form (first quadrant bicomplex) $\{A^{i,j}\}$

$$A^{i,j} := \underbrace{\mathbb{C}[\Gamma] \otimes \mathbb{C}[\Gamma] \otimes \ldots \otimes \mathbb{C}[\Gamma]}_{i} \otimes V^{j}$$

 $A^{i-1,j} \stackrel{\partial}{\longleftarrow} A^{i,j+1} \qquad a_0 \otimes \cdots \otimes a_{i-1} \otimes dv$ $A^{i-1,j} \stackrel{\partial}{\longleftarrow} A^{i,j}$ $\varepsilon(a_0)a_1 \otimes \cdots \otimes a_n \otimes v$ $+ \sum_{j=0}^{n-1} (-1)^{j+1} a_0 \otimes \cdots$ $a_{j-1} \otimes a_j a_{j+1} \otimes a_{j+2} \otimes \cdots \otimes a_n \otimes v$ $+ (-1)^{n+1} a_0 \otimes \cdots \otimes a_{n-1} \otimes a_n v$

Totalize this bicomplex $\{A^{i,j}\}$ by setting

$$D_l := \bigoplus_{i-j=l} A^{i,j} \quad l \in \mathbb{Z}$$

$$D_* = \{ \dots D_{-1} \leftarrow D_0 \leftarrow D_1 \leftarrow \dots \}$$

 D_* is a complex of $\mathbb C$ vector spaces

$$H_l(\Gamma; \Psi) := H_l(D_*)$$

$$\mathsf{H}_l(\Gamma; \Omega_c^*(\widehat{M})), \quad l \in \mathbb{Z}$$

Two extreme cases

1. The acton of Γ on M is proper

2.
$$M = *$$

Ad. 1.

"proper" = The map $\Gamma \times M \to M \times M$, $(\gamma, p) \mapsto (\gamma p, p)$ is proper (i.e. the preimage of any compact set in $M \times M$ is compact)

Equivalently, if $\Delta \subset M$ is any compact subset of M, then $\{\gamma \in \Gamma : \Delta \cap \gamma \Delta \neq \emptyset\}$ is finite

action of Γ on M is smooth and proper \Longrightarrow M/Γ is an orbifold action of Γ on M is smooth and proper \Longrightarrow action of Γ on \widehat{M} is smooth and proper \Longrightarrow \widehat{M}/Γ is an orbifold

When the action of Γ is smooth and proper, $H_*(\Gamma; \Omega_c^*(\widehat{M})) = ?$

Answer: When the action of Γ on M is smooth and proper

$$H_*(\Gamma; \Omega_c^*(\widehat{M})) = H_c^*(\widehat{M}/\Gamma; \mathbb{C})$$

Why ? action of Γ on M is smooth and proper \Longrightarrow

$$H_j(\Gamma; \Omega_c^r(\widehat{M})) = 0 \text{ for } j > 0, r = 0, 1, 2 \implies$$

 $\mathsf{H}_{j}(\Gamma;\Omega^{r}_{c}(\widehat{M}))$ is the homology of

$$0 \to (\Omega_c^0(\widehat{M}))_{\Gamma} \xrightarrow{d} (\Omega_c^1(\widehat{M}))_{\Gamma} \xrightarrow{d} (\Omega_c^2(\widehat{M}))_{\Gamma} \xrightarrow{d} \dots$$

Moriyoshi's lemma

Γ (countable) discrete group

 $W C^{\infty}$ manifold

 $\Gamma \times W \to W$ smooth proper action of Γ on W

 $\omega \in \Omega^*_c(W)$ smooth compactly supported $\mathbb C$ -valued differential form on W

Notation: For $\gamma \in \Gamma$, $\gamma_*\omega$ denotes ω translated by γ

Terminology: A closed set $\Delta \subset W$ is Γ -compact if $\gamma \Delta = \Delta$ for all $\gamma \in \Gamma$ and Δ/Γ is compact

Then $\sum_{\gamma \in \Gamma} \gamma_* \omega$ makes sense and $\sum_{\gamma \in \Gamma} \gamma_* \omega$ is a Γ -invariant differential form with Γ -compact support

$$\sum_{\gamma \in \Gamma} \gamma_* \omega \in \left[\Omega^*_{\Gamma-\mathsf{compact}}(W) \right]^{\Gamma}$$

Consider the map

$$\eta: \Omega_c^*(W) \to \left[\Omega_{\Gamma-\mathsf{compact}}^*(W)\right]^\mathsf{I}$$

$$\eta(\omega) = \sum_{\gamma \in \Gamma} \gamma_* \omega$$

For all $g \in \Gamma$ $\eta(g_*\omega) = \eta(\omega)$, so η factors through $[\Omega_c^*(W)]^{\Gamma}$

$$\Omega_c^*(W) \longrightarrow \left[\Omega_{\Gamma-\text{compact}}^*(W)\right]^{\Gamma}$$
$$\left[\Omega_c^*(W)\right]_{\Gamma}$$

Lemma 4.

$$[\Omega_c^*(W)]_{\Gamma} \xrightarrow{\cong} \left[\Omega_{\Gamma-\mathsf{compact}}^*(W)\right]^{\Gamma}$$

Lemma 5.

$$H_*\left(\left[\Omega^*_{\Gamma-\mathsf{compact}}(W)\right]^{\Gamma}\right) = H_c^*(W/\Gamma; \mathbb{C})$$

Proof. this is a slight extension of the de Rham theorem i.e.

$$0 \to \left[\Omega^{0}_{\Gamma-\mathsf{compact}}(W)\right]^{\Gamma} \to \left[\Omega^{1}_{\Gamma-\mathsf{compact}}(W)\right]^{\Gamma}$$
$$\to \left[\Omega^{2}_{\Gamma-\mathsf{compact}}(W)\right]^{\Gamma} \to \dots$$

is a resolution of the constant sheaf on W/Γ .

Corollary 6. If the action of Γ on M is smooth and proper then

$$\mathsf{H}_*(\Gamma; \Omega_c^*(\widehat{M})) = \mathsf{H}_c^*(\widehat{M}/\Gamma; \mathbb{C})$$

Corollary 7. (Since BC for Γ with coefficient algebra $C_0(M)$ is true when the action of Γ is proper) The Chern character

ch:
$$\mathsf{K}_{j}(C_{r}^{*}(\Gamma, M)) \to \bigoplus_{l} \mathsf{H}_{c}^{j+2l}(\widehat{M}/\Gamma; \mathbb{C})$$

exists.

$$M = *$$

Let
$$S\Gamma=\{\gamma\in\Gamma: \mathrm{order}(\gamma)<\infty\}$$

$$\widehat{*}=S\Gamma$$

$$\Omega^r_c(\widehat{*})=0 \text{ for } r>0$$

$$\Omega^0_c(\widehat{*})=F\Gamma$$

 $F\Gamma = \{ \text{Finite formal sums} \sum_{\gamma \in S\Gamma} \lambda_{\gamma} [\gamma] : \lambda_{\gamma} \in \mathbb{C} \}$

 $F\Gamma$ is a Γ -module

$$\left(\sum_{\gamma \in S\Gamma} \lambda_{\gamma}[\gamma]\right) + \left(\sum_{\gamma \in S\Gamma} \mu_{\gamma}[\gamma]\right) = \sum_{\gamma \in S\Gamma} (\lambda_{\gamma} + \mu_{\gamma})[\gamma]$$

$$\lambda\left(\sum_{\gamma \in S\Gamma} \lambda_{\gamma}[\gamma]\right) = \sum_{\gamma \in S\Gamma} \lambda \lambda_{\gamma}[\gamma], \ \lambda \in \mathbb{C}$$

$$g\left(\sum_{\gamma \in S\Gamma} \lambda_{\gamma}[\gamma]\right) = \sum_{\gamma \in S\Gamma} \lambda_{\gamma}[g\gamma g^{-1}], \ g \in \Gamma$$

Problem: Forget about BC and give a direct construction of the Chern character

ch:
$$\mathsf{K}_{j}(C_{r}^{*}(\Gamma, M)) \to \bigoplus_{l} \mathsf{H}_{c}^{j+2l}(\widehat{M}/\Gamma; \mathbb{C})$$

(Assuming action of Γ on M is smooth and proper)

The direct construction is done as follows

For simplicity, shall assume j=0 and M/Γ compact

Remark: M/Γ compact $\implies \widehat{M}/\Gamma$ compact

Theorem 8 (W. lück and R. Oliver). Let W be a C^{∞} manifold with a given smooth proper and co-compact action of Γ . Then

$$\mathsf{K}_0(C_r^*(\Gamma,W)) = \begin{subarray}{l} \textit{Grothendieck group} \\ \textit{of Γ-equivariant} \\ \mathbb{C} \textit{ vector bundles on W} \end{subarray}$$

Localized Chern character

W as in the Lüeck-Oliver theorem

$$\operatorname{ch}_{(\operatorname{local})} \colon \operatorname{K}_0(C_r^*(\Gamma, W)) \to \bigoplus \operatorname{H}^{2l}(W/\Gamma; \mathbb{C})$$
 is constructed as follows

Let F be a $\Gamma\text{-equivariant }C^\infty$ $\mathbb C$ vector bundle on W

Choose a Γ -equivariant connection D for F

Consider the Γ -equivariant differential form

$$ch(K) = Tr\left(exp\left(\frac{K}{2\pi i}\right)\right)$$
$$K = curvature(D)$$

$\mathsf{ch}(K) \in [\Omega^*(W)]^{\mathsf{\Gamma}} \implies$

 $\mathrm{ch}(K)$ determines an element in $\bigoplus \mathrm{H}^{2l}(W/\Gamma;\mathbb{C})$

This is
$$ch_{(local)}(F)$$

Local Chern character

Alternate (more topological) construction of

$$\mathsf{ch}_{\mathsf{(local)}} \colon \mathsf{K}_{\mathsf{0}}(C^*_r(\Gamma, W)) \to \bigoplus \mathsf{H}^{2l}(W/\Gamma; \mathbb{C})$$

W as in the Lüeck-Oliver theorem

Let F be a Γ -equivariant $\mathbb C$ vector bundle on W

$$E\Gamma \times_{\Gamma} F \\ \downarrow \\ E\Gamma \times_{\Gamma} W$$

 $\varphi = {\rm classifying\ map\ for\ } E\Gamma \times_{\Gamma} F$

$$\varphi \colon E\Gamma \times_{\Gamma} W \to BU(r)$$

 $r = \text{fiber dimension of } E\Gamma \times_{\Gamma} F$

$$\mathsf{ch}_{(\mathsf{universal})} \in \prod_{l=0}^{\infty} \mathsf{H}^{2l}(BU(r);\mathbb{Q})$$

$$\varphi^*(\operatorname{ch}_{(\operatorname{universal})}) \in \prod_{l=0}^{\infty} \operatorname{H}^{2l}(E\Gamma \times_{\Gamma} W; \mathbb{Q})$$

$$\mathsf{H}^*(W/\Gamma;\mathbb{Q}) \cong \mathsf{H}^*(E\Gamma \times_{\Gamma} W;\mathbb{Q})$$

$$\underbrace{\varphi^*(\operatorname{ch}_{(\operatorname{universal})})}_{\text{this is }\operatorname{ch}_{(\operatorname{local})}(F)} \in \prod_{l=0}^{\infty} \operatorname{H}^{2l}(E\Gamma \times_{\Gamma} W; \mathbb{Q})$$

ch:
$$\mathsf{K}_0(C_r^*(\Gamma, M)) \to \bigoplus_l \mathsf{H}^{2l}(\widehat{M}/\Gamma; \mathbb{C})$$

Action of Γ on M assumed to be smooth, proper, and co-compact

$$\widehat{M} = \{ (\gamma, p) \in \Gamma \times M : \gamma p = p \}$$

$$\Gamma \times \widehat{M} \to \widehat{M}$$

$$g(\gamma, p) = (g\gamma g^{-1}, gp), \quad g \in \Gamma, \ (\gamma, p) \in \widehat{M}$$

Let F be a Γ -equivariant vector bundle on \widehat{M}

Define
$$\theta \colon F \to F$$
 for $v \in F_{(\gamma,p)}$
$$\theta(v) = \gamma v \in F_{(\gamma,p)}$$

F is any Γ -equivariant $\mathbb C$ vector bundle on $\widehat M$

 θ is an automorphism of F

 θ is of finite order, $\theta^m = Id$ for some positive integer m

$$F = \underbrace{F_1}_{\zeta_1} \oplus \underbrace{F_2}_{\zeta_2} \oplus \ldots \oplus \underbrace{F_t}_{\zeta_t}$$

Each $\zeta_j \in \mathbb{C}$ is a root of unity

$$\mathsf{K}_0(C_r^*(\Gamma,\widehat{M})) \to \bigoplus_l \mathsf{H}^{2l}(\widehat{M}/\Gamma;\mathbb{C})$$

$$F \mapsto \sum_{\nu=1}^{t} \zeta_{\nu} \operatorname{ch}_{(\operatorname{local})}(F_{\nu})$$

$$\widehat{M} \xrightarrow{\rho} M$$

$$(\gamma, p) \mapsto p$$

$$\mathsf{K}_0(C_r^*(\Gamma, M)) \to \mathsf{K}_0(C_r^*(\Gamma, \widehat{M}))$$

$$E \mapsto \rho^* E$$

$$\mathsf{K}_0(C_r^*(\Gamma, \widehat{M})) \to \bigoplus_l \mathsf{H}^{2l}(\widehat{M}/\Gamma; \mathbb{C})$$

$$F \mapsto \sum_{\nu=1}^t \zeta_\nu \operatorname{ch}_{(\operatorname{local})}(F_\nu)$$

$$\operatorname{ch} \colon \mathsf{K}_0(C_r^*(\Gamma, M)) \to \bigoplus_l \mathsf{H}^{2l}(\widehat{M}/\Gamma; \mathbb{C})$$

$$\mathsf{K}_0(C_r^*(\Gamma, M)) \otimes_{\mathbb{Z}} \mathbb{C} \xrightarrow{\cong} \bigoplus_l \mathsf{H}^{2l}(\widehat{M}/\Gamma; \mathbb{C})$$

$$H_l(\Gamma; \Omega_c^*(\widehat{\ast})) = H_l(\Gamma; F\Gamma) \quad l = 0, 1, 2, \dots$$

$$\mathsf{K}_{j}^{\mathsf{\Gamma}}(\underline{E\mathsf{\Gamma}}) \longrightarrow \mathsf{K}_{j}(C_{r}^{*}(\mathsf{\Gamma}))$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\bigoplus_{l} \mathsf{H}_{l}(\mathsf{\Gamma}; F\mathsf{\Gamma})$$

$$\mathsf{K}_{j}^{\mathsf{\Gamma}}(\underline{E\mathsf{\Gamma}})\otimes_{\mathbb{Z}}\mathbb{C} \xrightarrow{\cong} \bigoplus_{l} \mathsf{H}_{j+2l}(\mathsf{\Gamma};F\mathsf{\Gamma})$$

$$\Gamma \times M \to M$$
 smooth action

ch:
$$\mathsf{K}_{j}(C_{r}^{*}(\Gamma, M)) \xrightarrow{?} \bigoplus_{l} \mathsf{H}_{j+2l}(\Gamma; \Omega_{c}^{*}(\widehat{M}))$$

$$\Gamma \times X \to X$$
 continuous action

ch:
$$\mathsf{K}_{j}(C_{r}^{*}(\Gamma,X)) \xrightarrow{?} \bigoplus_{l} \mathsf{H}_{j+2l}(\Gamma;C_{c}^{*}(\widehat{X}))$$

$$C_c^*(\widehat{X}) = \begin{array}{l} \text{Alexander-Spanier cochains} \\ \text{on } \widehat{X} \end{array}$$

$$\widehat{X} = \{(\gamma, x) \in \Gamma \times X : \operatorname{order}(\gamma) < \infty, \ \gamma x = x\}$$