A C* algebra (or a Banach algebra)
with unit 1_{A}

Warsaw, 9 May 2006

EQUIVARIANT CHERN CHARACTER

Paul Baum

$$
\mathrm{K}_{0}(A):=\begin{aligned}
& \text { Grothendieck group of finitely } \\
& \\
& \\
& A \text {-modules }
\end{aligned}
$$

$$
n=1,2,3, \ldots
$$

$$
M_{n}(A)=\left\{n \times n \text { matrices }\left[a_{i j}\right]: a_{i j} \in A\right\}
$$

$M_{n}(A)$ is a C* algebra (or a Banach algebra) with unit

$$
\left(\begin{array}{cccc}
1_{A} & 0 & \ldots & 0 \\
0 & 1_{A} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1_{A}
\end{array}\right)
$$

$$
\begin{array}{cc}
j=1,2,3, \ldots \\
A) \subset \mathrm{GL}(2, A) \subset \mathrm{GL}(3, A) \subset \ldots & \mathrm{K}_{j}(A):=\pi_{j-1}(\mathrm{GL}(A)) \\
\mathrm{GL}(A):=\bigcup_{n=1}^{\infty} \mathrm{GL}(n, A) & \Omega^{2} \mathrm{GL}(A) \sim \mathrm{GL}(A)
\end{array}
$$

$\mathrm{GL}(A)$ is topologized by the direct limit topology i.e. $U \subset \mathrm{GL}(A)$ is open iff $U \cap \mathrm{GL}(n, A)$ is open in $\mathrm{GL}(n, A)$ for all $n=1,2,3, \ldots$

$$
\mathrm{K}_{j}(A) \simeq \mathrm{K}_{j+2}(A), \quad j=1,2,3, \ldots
$$

$\mathrm{K}_{0}(A), \quad \mathrm{K}_{1}(A)$
X locally compact Hausdorff topological space

$$
\begin{aligned}
& X^{+}=X \cup\left\{p_{\infty}\right\} \text { one point compactification of } \\
& X
\end{aligned}
$$

$C_{0}(X)=\left\{\alpha: X^{+} \rightarrow \mathbb{C}: \alpha\right.$ is continuous $\left.\alpha\left(p_{\infty}\right)=0\right\}$
$C_{0}(X)$ is a C *-algebra
$x \in X^{+}, \alpha, \beta \in C_{0}(X), \lambda \in \mathbb{C}$

$$
\begin{aligned}
(\alpha+\beta) x & =\alpha x+\beta x \\
(\alpha \beta) x & =(\alpha x)(\beta x) \\
(\lambda \alpha) x & =\lambda(\alpha x) \\
\|\alpha\| & =\sup _{x \in X^{+}}|\alpha(x)| \\
\alpha^{*} x & =\overline{\alpha x}
\end{aligned}
$$

X loacally compact Hausdorff topological space
$X^{+}=X \cup\left\{p_{\infty}\right\}$ one point compactification of
X X
$\mathrm{K}_{0}\left(C_{0}(X)\right)=\operatorname{ker}\binom{\mathrm{K}^{0}\left(X^{+}\right) \rightarrow \mathrm{K}^{0}\left(p_{\infty}\right)=\mathbb{Z}}{E \mapsto \operatorname{dim}_{\mathbb{C}}\left(E_{p_{\infty}}\right.}$
$E \mathbb{C}$ vector bundle on X^{+}
X locally compact Hausdorff topological space
$\mathrm{K}_{*}\left(C_{0}(X)\right)$ is Atiyah-Hirzerbruch K-theory

This is topological K-theory with compact supports

Atiyah-Hirzerbruch notation for this K-theory is $\mathrm{K}^{*}(X)$

$$
\mathrm{K}_{j}\left(C_{0}(X)\right)=\mathrm{K}^{j}(X)
$$

X compact Hausdorff \Longrightarrow
$\mathrm{K}_{0}\left(C_{0}(X)\right)=\mathrm{K}^{0}(X)=\begin{aligned} & \text { Grothendieck group of } \\ & \mathbb{C} \text { vector bundles on } X\end{aligned}$

Chern character

X locally compact Hausdorff topological space

$$
\text { ch: } \mathrm{K}_{j}\left(C_{0}(X)\right) \rightarrow \bigoplus_{l} \mathrm{H}_{c}^{j+2 l}(X ; \mathbb{Q}), \quad j=0,1
$$

$$
\mathbb{Q} \otimes_{\mathbb{Z}} \mathrm{K}_{j}\left(C_{0}(X)\right) \stackrel{\cong}{\Longrightarrow} \bigoplus_{l} \mathrm{H}_{c}^{j+2 l}(X ; \mathbb{Q})
$$

- Čech cohomology
- Alexander Spanier cohomology
(with compact supports)
X locally compact Hausdorff topological space
Γ discrete (countable) group
$\Gamma \times X \rightarrow X$ continuous action of Γ on X
$C_{r}^{*}(\Gamma, X)=C_{0}(X) \rtimes_{r} \Gamma$ is the reduced crossedproduct C^{*}-algebra for the action of Γ on X

Definition of $C_{r}^{*}(\Gamma, X)$
Extend the given action $\Gamma \times X \rightarrow X$ to $\Gamma \times X^{+} \rightarrow$ X^{+}by

$$
\gamma p_{\infty}=p_{\infty} \quad \forall \gamma \in \Gamma
$$

Γ then acts on $C_{0}(X)$ by C^{*} algebra automorphisms $\Gamma \times C_{0}(X) \rightarrow C_{0}(X)$

$$
(\gamma f) x=f\left(\gamma^{-1} x\right) \quad f \in C_{0}(X), \gamma \in \Gamma, x \in X
$$

Form the purely algebraic crossed-product algebra $C_{0}(X) \rtimes_{\text {alg }} \Gamma$
$C_{0}(X) \rtimes_{\mathrm{alg}} \Gamma=\left\{\begin{array}{l}\text { finite formal sums } \sum_{\gamma \in\ulcorner } f_{\gamma}[\gamma]: \\ f_{\gamma} \in C_{0}(X)\end{array}\right\}$
$\left(\sum_{\gamma \in \Gamma} f_{\gamma}[\gamma]\right)+\left(\sum_{\gamma \in \Gamma} h_{\gamma}[\gamma]\right)=\sum_{\gamma \in \Gamma}\left(f_{\gamma}+h_{\gamma}\right)[\gamma]$
$\lambda\left(\sum_{\gamma \in \Gamma} f_{\gamma}[\gamma]\right)=\sum_{\gamma \in \Gamma}\left(\lambda f_{\gamma}\right)[\gamma] \quad \lambda \in \mathbb{C}$
$(f[\gamma])(h[g])=(f)(\gamma h)[\gamma g] \quad \gamma, g \in \Gamma, f, h \in C_{0}(X)$

Complete $C_{0}(X) \rtimes_{\text {alg }}$ to obtain $C_{r}^{*}(\Gamma, X)$

$$
l^{2}(\Gamma)=\left\{u: \Gamma \rightarrow \mathbb{C}: \sum_{\gamma \in \Gamma} \overline{u(\gamma)} u(\gamma)<\infty\right\}
$$

$l^{2}(\Gamma)$ is a Hilbert space

$$
\begin{gathered}
(u+v) \gamma=u \gamma+v \gamma \\
(\lambda u) \gamma=\lambda(u \gamma) \\
\langle u, v\rangle=\sum_{\gamma \in G a} \overline{u(\gamma)} v(\gamma)
\end{gathered}
$$

$\mathcal{L}^{2}\left(l^{2}(\Gamma)\right)$ is the C^{*}-algebra of all bounded operators $T: l^{2}(\Gamma) \rightarrow l^{2}(\Gamma)$ with operator norm

$$
\|T\|=\sup _{\langle u, u\rangle=1}\left(\langle T u, T u\rangle^{\frac{1}{2}}\right)
$$

$$
\mathrm{ch}: \mathrm{K}_{j}\left(C_{r}^{*}(\Gamma, X)\right) \rightarrow ?
$$

Γ finite \Longrightarrow
$\mathrm{K}_{*}\left(C_{r}^{*}(\Gamma, X)\right)$ is Atiyah-Segal equivariant K-theory, denoted $\mathrm{K}_{\Gamma}^{*}(X)$
Theorem 1 (Slominska). 「 finite

$$
\begin{aligned}
\mathrm{ch}: \mathrm{K}_{j}^{\Gamma}(X) & \rightarrow \bigoplus_{l} \mathrm{H}_{c}^{j+2 l}(\widehat{X} / \Gamma ; \mathbb{C}) \\
\mathrm{K}_{j}^{\Gamma}(X) \otimes \mathbb{Z} \mathbb{C} & \cong \bigoplus_{l} \mathrm{H}_{c}^{j+2 l}(\widehat{X} / \Gamma ; \mathbb{C})
\end{aligned}
$$

If Γ is not finite, then $\mathrm{K}_{j}\left(C_{r}^{*}(\Gamma, X)\right)$ can be viewed as the natural extension of Atiyah-Segal equivariant K-theory to the case when Γ is not finite

$$
\mathrm{ch}: \mathrm{K}_{j}\left(C_{r}^{*}(\Gamma, X)\right) \rightarrow \text { ? }
$$

$M C^{\infty}$ manifold, $\partial M=\emptyset$

「 discrete (countable) group
$\Gamma \times M \rightarrow M$ smooth action of Γ on M
"smooth" $=$ each $\gamma \in \Gamma$ acts by a diffeomorphism
$C_{r}^{*}(\Gamma, M)=C_{0}(M) \rtimes_{r} \Gamma$ is the reduced crossedproduct C* algebra for the action of Γ on $C_{0}(M)$

Theorem 2 (J. Raven). If BC for Γ with coefficient algebra $C_{0}(M)$ is true, then there is a Chern character

$$
\mathrm{ch}: \mathrm{K}_{j}\left(C_{r}^{*}(\Gamma, M)\right) \rightarrow \bigoplus_{l} \mathrm{H}_{j+2 l}\left(\Gamma ; \Omega_{c}^{*}(\widehat{M})\right), j=0,1
$$

and
$\mathrm{K}_{j}\left(C_{r}^{*}(\Gamma, M)\right) \otimes_{\mathbb{Z}} \mathbb{C} \xlongequal{\cong} \bigoplus_{l} \mathrm{H}_{j+2 l}\left(\Gamma ; \Omega_{c}^{*}(\widehat{M})\right)$

$$
\mathrm{ch}: \mathrm{K}_{j}\left(C_{r}^{*}(\Gamma, M)\right) \rightarrow ?
$$

\widehat{M}
$\gamma \in \Gamma, M^{\gamma}:=\{p \in M: \gamma p=p\}$
If $\operatorname{order}(\gamma)=\infty$, then M^{γ} can be anything e.g. M^{γ} can be a Cantor set

Lemma 3. If $\operatorname{order}(\gamma)<\infty$, then M^{γ} is a C^{∞} submanifold of M.

Proof. $\operatorname{order}(\gamma)<\infty \Longrightarrow$ The subgroup J of Γ generated by γ is a finite (cyclic) group \Longrightarrow
Can choose on M a C^{∞} Riemannian metric which is J-invariant. Then γ acts by an isometry and M^{γ} is a totally geodesic C^{∞} submanifold of M.

$$
\begin{gathered}
\widehat{M}:=\coprod_{\substack{\gamma \in\ulcorner \\
\operatorname{order}(\gamma)<\infty}} M^{\gamma} \\
=\{(\gamma, p) \in \Gamma \times M: \gamma p=p\}
\end{gathered}
$$

\widehat{M} is a C^{∞} manifold
$\Omega_{c}^{*}(\widehat{M})=$ the de Rham complex of \mathbb{C}-valued compactly supported C^{∞} differential forms on \widehat{M}

$$
0 \rightarrow \Omega_{c}^{0}(\widehat{M}) \xrightarrow{d} \Omega_{c}^{1}(\widehat{M}) \xrightarrow{d} \ldots \xrightarrow{d} \Omega_{c}^{n}(\widehat{M}) \rightarrow 0
$$

$\Gamma \times \widehat{M} \rightarrow \widehat{M}$ smooth action of Γ on \widehat{M}

$$
g(\gamma, p)=\left(g \gamma g^{-1}, g p\right), g \in \Gamma,(\gamma, p) \in \widehat{M}
$$

$$
\Gamma \times \Omega_{c}^{*}(\widehat{M}) \rightarrow \Omega_{c}^{*}(\widehat{M})
$$

$\Omega_{c}^{*}(\widehat{M})$ is a complex of Γ-modules
$\mathrm{H}_{l}\left(\Gamma ; \Omega_{c}^{*}(\widehat{M})\right)$ is the l-th cohomology of Γ with coefficients $\Omega_{c}^{*}(\widehat{M})$
$\mathbb{C}[\Gamma]$
$\mathbb{C}[]$ is the purely algebraic group algebra $\mathbb{C}[\Gamma]:=\left\{\right.$ Finite formal sums $\left.\sum_{\gamma \in \Gamma} \lambda_{\gamma}[\gamma]: \lambda_{\gamma} \in \mathbb{C}\right\}$

Algebra homomorphism $\varepsilon: \mathbb{C}[\Gamma] \rightarrow \mathbb{C}$

$$
\varepsilon\left(\sum_{\gamma \in \Gamma} \lambda_{\gamma}[\gamma]\right)=\sum_{\gamma \in \Gamma} \lambda_{\gamma}
$$

A (left) Γ-module is a \mathbb{C} vector space V with a given group homomorphism $\Gamma \rightarrow \mathrm{GL}_{\mathbb{C}}(V)$

Equivalently a (left) Γ-module is a unital (left) $\mathbb{C}[\Gamma]$-module
V 「-module
$\mathrm{H}_{l}(\Gamma ; V)=l$-th cohomology of Γ with coefficients $V, l=0,1,2,3, \ldots$

$$
\begin{gathered}
\mathrm{H}_{l}(\Gamma ; V):=\operatorname{Tor}_{\mathbb{C}[\Gamma]}^{l}(\mathbb{C}, V) \\
0 \leftarrow V \stackrel{\partial}{\leftarrow} \mathbb{C}[\Gamma] \otimes_{\mathbb{C}} V \stackrel{\partial}{\leftarrow} \mathbb{C}[\Gamma] \otimes_{\mathbb{C}} \mathbb{C}[\Gamma] \otimes_{\mathbb{C}} \stackrel{\partial}{\leftarrow} \\
\partial\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n} \otimes v\right)= \\
\varepsilon\left(a_{0}\right) a_{1} \otimes \cdots \otimes a_{n} \otimes v \\
+\sum_{j=0}^{n-1}(-1)^{j+1} a_{0} \otimes \cdots \otimes a_{j-1} \otimes a_{j} a_{j+1} \otimes a_{j+2} \otimes \cdots \otimes a_{n} \otimes v \\
+(-1)^{n+1} a_{0} \otimes \cdots \otimes a_{n-1} \otimes a_{n} v \\
a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}[\Gamma], v \in V
\end{gathered}
$$

$$
\begin{gathered}
0 \leftarrow \underbrace{V \stackrel{\partial}{\mathbb{C}}[\Gamma] \otimes_{\mathbb{C}} V}_{\varepsilon(a) v-a v \leftarrow a \otimes v} \stackrel{\partial}{\leftarrow} \mathbb{C}[\Gamma] \otimes_{\mathbb{C}} \mathbb{C}[\Gamma] \otimes_{\mathbb{C}} \stackrel{\partial}{\leftarrow} \\
a \in \mathbb{C}[\Gamma], v \in V, \gamma \in \Gamma \\
\mathrm{H}_{0}(\Gamma ; V)=V /(\varepsilon(a) v-a v) \\
=V /(v-\gamma v) \\
=V_{\Gamma}
\end{gathered}
$$

V_{Γ} is the Γ-coinvariants

$$
V^{\ulcorner }:=\{v \in V: \gamma v=v \forall \gamma \in V\}
$$

$$
V^{\ulcorner } \text {is the } \Gamma \text {-invariants }
$$

$\mathrm{H}_{l}(\Gamma ; V)$ is the l-th derived functor of

$$
V \mapsto V_{\Gamma}
$$

Let

$$
\psi=\left\{0 \xrightarrow{d} V^{0} \xrightarrow{d} V^{1} \xrightarrow{d} \ldots\right\}
$$

be a complex of (left) 「-modules

To define $\mathrm{H}_{l}(\Gamma ; \Psi), l \in \mathbb{Z}$ form (first quadrant bicomplex) $\left\{A^{i, j}\right\}$

$$
A^{i, j}:=\underbrace{\mathbb{C}[\Gamma] \otimes \mathbb{C}[\Gamma] \otimes \ldots \otimes \mathbb{C}[\Gamma]}_{i} \otimes V^{j}
$$

Totalize this bicomplex $\left\{A^{i, j}\right\}$ by setting

$$
D_{l}:=\bigoplus_{i-j=l} A^{i, j} \quad l \in \mathbb{Z}
$$

$$
D_{*}=\left\{\ldots D_{-1} \leftarrow D_{0} \leftarrow D_{1} \leftarrow \ldots\right\}
$$

D_{*} is a complex of \mathbb{C} vector spaces

$$
\mathrm{H}_{l}(\Gamma ; \psi):=\mathrm{H}_{l}\left(D_{*}\right)
$$

$$
\mathrm{H}_{l}\left(\Gamma ; \Omega_{c}^{*}(\widehat{M})\right), \quad l \in \mathbb{Z}
$$

Two extreme cases

1. The acton of Γ on M is proper
2. $M=*$

Ad. 1.
"proper" $=$ The map $\Gamma \times M \rightarrow M \times M,(\gamma, p) \mapsto$ ($\gamma p, p$) is proper (i.e. the preimage of any compact set in $M \times M$ is compact)

Equivalently, if $\Delta \subset M$ is any compact subset of M, then $\{\gamma \in \Gamma: \Delta \cap \gamma \Delta \neq \emptyset\}$ is finite
action of Γ on M is smooth and proper \Longrightarrow
M / Γ is an orbifold
action of Γ on M is smooth and proper \Longrightarrow
action of Γ on \widehat{M} is smooth and proper \Longrightarrow
\widehat{M} / Γ is an orbifold

When the action of Γ is smooth and proper, $\mathrm{H}_{*}\left(\Gamma ; \Omega_{c}^{*}(\widehat{M})\right)=$?

Answer: When the action of Γ on M is smooth and proper

$$
\mathrm{H}_{*}\left(\Gamma ; \Omega_{c}^{*}(\widehat{M})\right)=\mathrm{H}_{c}^{*}(\widehat{M} / \Gamma ; \mathbb{C})
$$

Why ? action of Γ on M is smooth and proper \Longrightarrow
$\mathrm{H}_{j}\left(\Gamma ; \Omega_{c}^{r}(\widehat{M})\right)=0$ for $j>0, r=0,1,2 \Longrightarrow$
$\mathrm{H}_{j}\left(\Gamma ; \Omega_{c}^{r}(\widehat{M})\right)$ is the homology of
$0 \rightarrow\left(\Omega_{c}^{0}(\widehat{M})\right)_{\Gamma} \xrightarrow{d}\left(\Omega_{c}^{1}(\widehat{M})\right)_{\Gamma} \xrightarrow{d}\left(\Omega_{c}^{2}(\widehat{M})\right)_{\Gamma} \xrightarrow{d} \ldots$

Moriyoshi's lemma
Γ (countable) discrete group
$W C^{\infty}$ manifold
$\Gamma \times W \rightarrow W$ smooth proper action of Γ on W
$\omega \in \Omega_{c}^{*}(W)$ smooth compactly supported \mathbb{C} valued differential form on W

Notation: For $\gamma \in \Gamma, \gamma_{*} \omega$ denotes ω translated by γ

Terminology: A closed set $\Delta \subset W$ is Γ-compact if $\gamma \Delta=\Delta$ for all $\gamma \in \Gamma$ and Δ / Γ is compact

Consider the map

$$
\begin{gathered}
\eta: \Omega_{c}^{*}(W) \rightarrow\left[\Omega_{\ulcorner- \text {compact }}^{*}(W)\right]^{\ulcorner } \\
\eta(\omega)=\sum_{\gamma \in \Gamma} \gamma_{* \omega}
\end{gathered}
$$

For all $g \in \Gamma \eta\left(g_{*} \omega\right)=\eta(\omega)$, so η factors through $\left[\Omega_{c}^{*}(W)\right]^{\ulcorner }$

Lemma 4.

$$
\left[\Omega_{c}^{*}(W)\right]_{\ulcorner } \xlongequal{\cong}\left[\Omega_{\ulcorner- \text {compact }}^{*}(W)\right]^{\ulcorner }
$$

Lemma 5.

$$
\mathrm{H}_{*}\left(\left[\Omega_{\Gamma-\operatorname{compact}}^{*}(W)\right]^{\ulcorner }\right)=\mathrm{H}_{c}^{*}(W /\ulcorner; \mathbb{C})
$$

Proof. this is a slight extension of the de Rham theorem i.e.

$$
\begin{gathered}
0 \rightarrow\left[\Omega_{\Gamma \text {-compact }}^{0}(W)\right]^{\ulcorner } \rightarrow\left[\Omega_{\Gamma \text {-compact }}^{1}(W)\right]^{\ulcorner } \\
\rightarrow\left[\Omega_{\Gamma-\text { compact }}^{2}(W)\right]^{\ulcorner } \rightarrow \ldots
\end{gathered}
$$

is a resolution of the constant sheaf on W / Γ.

Corollary 6. If the action of Γ on M is smooth and proper then

$$
\mathrm{H}_{*}\left(\Gamma ; \Omega_{c}^{*}(\widehat{M})\right)=\mathrm{H}_{c}^{*}(\widehat{M} / \Gamma ; \mathbb{C})
$$

Corollary 7. (Since BC for Γ with coefficient algebra $C_{0}(M)$ is true when the action of Γ is proper) The Chern character

$$
\mathrm{ch}: \mathrm{K}_{j}\left(C_{r}^{*}(\Gamma, M)\right) \rightarrow \bigoplus_{l} \mathrm{H}_{c}^{j+2 l}(\widehat{M} / \Gamma ; \mathbb{C})
$$

exists.
$M=*$
Let $S \Gamma=\{\gamma \in \Gamma: \operatorname{order}(\gamma)<\infty\}$

$$
\begin{gathered}
\widehat{*}=S \Gamma \\
\Omega_{c}^{r}(\widehat{*})=0 \text { for } r>0 \\
\Omega_{c}^{0}(\widehat{*})=F \Gamma
\end{gathered}
$$

$F \Gamma=\left\{\right.$ Finite formal sums $\left.\sum_{\gamma \in S\ulcorner } \lambda_{\gamma}[\gamma]: \lambda_{\gamma} \in \mathbb{C}\right\}$
$F \Gamma$ is a Γ-module

$$
\begin{gathered}
\left(\sum_{\gamma \in S\ulcorner } \lambda_{\gamma}[\gamma]\right)+\left(\sum_{\gamma \in S\ulcorner } \mu_{\gamma}[\gamma]\right)=\sum_{\gamma \in S\ulcorner }\left(\lambda_{\gamma}+\mu_{\gamma}\right)[\gamma] \\
\lambda\left(\sum_{\gamma \in S\ulcorner } \lambda_{\gamma}[\gamma]\right)=\sum_{\gamma \in S\ulcorner } \lambda_{\gamma}[\gamma], \lambda \in \mathbb{C} \\
g\left(\sum_{\gamma \in S\ulcorner } \lambda_{\gamma}[\gamma]\right)=\sum_{\gamma \in S\ulcorner } \lambda_{\gamma}\left[g \gamma g^{-1}\right], g \in \Gamma
\end{gathered}
$$

Problem: Forget about BC and give a direct construction of the Chern character

$$
\mathrm{ch}: \mathrm{K}_{j}\left(C_{r}^{*}(\Gamma, M)\right) \rightarrow \bigoplus_{l} \mathrm{H}_{c}^{j+2 l}(\widehat{M} / \Gamma ; \mathbb{C})
$$

(Assuming action of Γ on M is smooth and proper)

Localized Chern character
W as in the Lüeck-Oliver theorem

$$
\mathrm{ch}_{(\text {local })}: \mathrm{K}_{0}\left(C_{r}^{*}(\Gamma, W)\right) \rightarrow \bigoplus \mathrm{H}^{2 l}(W / \Gamma ; \mathbb{C})
$$

is constructed as follows

Let F be a Γ-equivariant $C^{\infty} \mathbb{C}$ vector bundle on W

Choose a 「-equivariant connection D for F

Consider the Γ-equivariant differential form

$$
\begin{gathered}
\operatorname{ch}(K)=\operatorname{Tr}\left(\exp \left(\frac{K}{2 \pi i}\right)\right) \\
K=\operatorname{curvature}(D)
\end{gathered}
$$

Local Chern character

Alternate (more topological) construction of

$$
\mathrm{ch}_{(\text {local })}: \mathrm{K}_{0}\left(C_{r}^{*}(\Gamma, W)\right) \rightarrow \bigoplus \mathrm{H}^{2 l}(W / \Gamma ; \mathbb{C})
$$

W as in the Lüeck-Oliver theorem

$$
\operatorname{ch}(K) \in\left[\Omega^{*}(W)\right]^{\Gamma} \Longrightarrow
$$

ch (K) determines an element in $\bigoplus \mathrm{H}^{2 l}(W / \Gamma ; \mathbb{C})$

This is $\mathrm{ch}_{(\text {local })}(F)$

Let F be a Γ-equivariant \mathbb{C} vector bundle on W

$$
\begin{gathered}
E \Gamma \times_{\Gamma} F \\
E \Gamma \times_{\Gamma} W \\
\varphi=\text { classifying map for } E \Gamma \times_{\Gamma} F \\
\varphi: E \Gamma \times \Gamma W \rightarrow B U(r) \\
r=\text { fiber dimension of } E \Gamma \times{ }_{\Gamma} F
\end{gathered}
$$

$$
\left.\begin{array}{c}
\mathrm{ch}_{(\text {universal })} \in \prod_{l=0}^{\infty} \mathrm{H}^{2 l}(B U(r) ; \mathbb{Q}) \\
\varphi^{*}\left(\mathrm{ch}_{(\text {universal) }}\right)
\end{array}\right) \prod_{l=0}^{\infty} \mathrm{H}^{2 l}\left(E \Gamma \times_{\Gamma} W ; \mathbb{Q}\right) .
$$

$$
\mathrm{ch}: \mathrm{K}_{0}\left(C_{r}^{*}(\Gamma, M)\right) \rightarrow \bigoplus_{l} \mathrm{H}^{2 l}(\widehat{M} / \Gamma ; \mathbb{C})
$$

Action of Γ on M assumed to be smooth, proper, and co-compact

$$
\begin{gathered}
\widehat{M}=\{(\gamma, p) \in \Gamma \times M: \gamma p=p\} \\
\Gamma \times \widehat{M} \rightarrow \widehat{M} \\
g(\gamma, p)=\left(g \gamma g^{-1}, g p\right), \quad g \in \Gamma,(\gamma, p) \in \widehat{M}
\end{gathered}
$$

Let F be a 「-equivariant vector bundle on \widehat{M}
Define $\theta: F \rightarrow F$ for $v \in F_{(\gamma, p)}$

$$
\theta(v)=\gamma v \in F_{(\gamma, p)}
$$

F is any Γ-equivariant \mathbb{C} vector bundle on \widehat{M} θ is an automorphism of F
θ is of finite order, $\theta^{m}=I d$ for some positive integer m

$$
F=\underbrace{F_{1}}_{\zeta_{1}} \oplus \underbrace{F_{2}}_{\zeta_{2}} \oplus \ldots \oplus \underbrace{F_{t}}_{\zeta_{t}}
$$

Each $\zeta_{j} \in \mathbb{C}$ is a root of unity

$$
\begin{gathered}
\mathrm{K}_{0}\left(C_{r}^{*}(\Gamma, \widehat{M})\right) \rightarrow \bigoplus_{l} \mathrm{H}^{2 l}(\widehat{M} / \Gamma ; \mathbb{C}) \\
F \mapsto \sum_{\nu=1}^{t} \zeta_{\nu} \mathrm{Ch}_{(\text {local })}\left(F_{\nu}\right)
\end{gathered}
$$

$$
\mathrm{H}_{l}\left(\Gamma ; \Omega_{c}^{*}(\widehat{*})\right)=\mathrm{H}_{l}(\Gamma ; F \Gamma) \quad l=0,1,2, \ldots
$$

$$
\begin{gathered}
\mathrm{K}_{j}^{\Gamma}(\underline{E \Gamma}) \longrightarrow \mathrm{K}_{j}\left(C_{r}^{*}(\Gamma)\right) \\
\oplus_{l} \mathrm{H}_{l}(\Gamma ; F \Gamma) \\
\mathrm{K}_{j}^{\Gamma}(\underline{E \Gamma}) \otimes_{\mathbb{Z}} \mathbb{C} \xlongequal{\Longrightarrow} \bigoplus_{l} \mathrm{H}_{j+2 l}(\Gamma ; F \Gamma)
\end{gathered}
$$

$\Gamma \times M \rightarrow M$ smooth action

$$
\mathrm{ch}: \mathrm{K}_{j}\left(C_{r}^{*}(\Gamma, M)\right) \xrightarrow{?} \bigoplus_{l} \mathrm{H}_{j+2 l}\left(\Gamma ; \Omega_{c}^{*}(\widehat{M})\right)
$$

X locally compact Hausdorff topological space
$\Gamma \times X \rightarrow X$ continuous action

$$
\mathrm{ch}: \mathrm{K}_{j}\left(C_{r}^{*}(\Gamma, X)\right) \xrightarrow{?} \bigoplus_{l} \mathrm{H}_{j+2 l}\left(\Gamma ; C_{c}^{*}(\widehat{X})\right)
$$

Alexander-Spanier cochains
$C_{c}^{*}(\widehat{X})=$ with compact supports on \widehat{X}

$$
\widehat{X}=\{(\gamma, x) \in \Gamma \times X: \operatorname{order}(\gamma)<\infty, \gamma x=x\}
$$

