「 discrete (countable) group
$M C^{\infty}$-manifold, $\partial M=\emptyset$

WHAT IS AN EQUIVARIANT INDEX?

Paul Baum

Warsaw, 8 May 2006
$\Gamma \times M \rightarrow M$ smooth, proper, co-compact action of Γ on M
"smooth" $=$ each $\gamma \in \Gamma$ acts on M by diffeomorphisms
" proper" $=$ if Δ is any compact subset of M, then $\{\gamma \in \Gamma: \Delta \cap \gamma \Delta \neq \emptyset\}$ is finite
"co-compact" = the quotient space M / Γ is compact

REMARKS

1. If $p \in M$, then $\{\gamma \in \Gamma: \gamma p=p\}$ is a finite subgroup of Γ
2. M / Γ is a compact orbifold
3. M is compact $\Longleftrightarrow \Gamma$ is finite
$\Gamma \times M \rightarrow M$ smooth, proper, co-compact action of Γ on M

Let D be a 「-equivariant elliptic differential operator (or $\psi \mathrm{DO}$) on M

What is the (equivariant) index of D ?

$$
\operatorname{Index}_{\Gamma}(D)=?
$$

EXAMPLE

$$
\begin{aligned}
M & =\mathbb{R} \\
\Gamma & =\mathbb{Z} \\
\mathbb{Z} \times \mathbb{R} & \rightarrow \mathbb{R} \\
(n, t) & \mapsto n+t \\
D & =-i \frac{d}{d x} \\
C_{c}^{\infty}(\mathbb{R}) & \subset L^{2}(\mathbb{R})
\end{aligned}
$$

$-i \frac{d}{d x}$ is an unbounded operator on the Hilbert space $L^{2}(\mathbb{R})$

$$
-i \frac{d}{d x}: C_{c}^{\infty}(\mathbb{R}) \rightarrow C_{c}^{\infty}(\mathbb{R}) \subset L^{2}(\mathbb{R})
$$

$-i \frac{d}{d x}$ is essentially self-adjoint i.e.

$$
-i \frac{d}{d x}: C_{c}^{\infty}(\mathbb{R}) \rightarrow C_{c}^{\infty}(\mathbb{R}) \subset L^{2}(\mathbb{R})
$$

has a unique self-adjoint extension
What is the (equivariant) index of $-i \frac{d}{d x}$?

$$
\operatorname{Index}_{\mathbb{Z}}\left(-i \frac{d}{d x}\right)=?
$$

H a Hilbert space

An unbounded operator on H is a pair (\mathcal{D}, T) such that

1. \mathcal{D} is a vector subspace of H
2. \mathcal{D} is dense in H
3. $T: \mathcal{D} \rightarrow H$ is a \mathbb{C}-linear map
4. (\mathcal{D}, T) is closable (i.e. the closure of graph T in $H \oplus H$ is the graph of a \mathbb{C}-linear map

$$
P(\overline{\operatorname{graph} T}) \rightarrow H
$$

where $P: H \oplus H \rightarrow H, P(u, v)=u)$
(\mathcal{D}, T) is symmetric \Longleftrightarrow

$$
\langle T u, v\rangle=\langle u, T v\rangle \quad \forall u, v \in \mathcal{D}
$$

CAUTION

symmetric \neq self-adjoint symmetric \Longleftarrow self-adjoint

If (\mathcal{D}, T) is an unbounded operator on H, then

$$
\mathcal{D}\left(T^{*}\right):=\left\{\begin{array}{ll}
v \mapsto\langle u, T v\rangle \text { extends } \\
u \in H: & \text { from } \mathcal{D} \text { to } H \\
\text { to be bounded } \\
\text { linear functional }
\end{array}\right\}
$$

For $u \in \mathcal{D}\left(T^{*}\right)$ and $v \in H,\langle u, T v\rangle=\left\langle T^{*} u, v\right\rangle$

$$
T^{*}: \mathcal{D}\left(T^{*}\right) \rightarrow H
$$

(\mathcal{D}, T) is selfadjoint if $(\mathcal{D}, T)=\left(\mathcal{D}\left(T^{*}\right), T^{*}\right)$

$$
C_{c}^{\infty}(\mathbb{R}) \subset L^{2}(\mathbb{R})
$$

$\left(C_{c}^{\infty}(\mathbb{R}),-i \frac{d}{d x}\right)$ has a unique self-adjoint exten-$\operatorname{sion}\left(\mathcal{D},-i \frac{d}{d x}\right)$

$$
\begin{gathered}
\mathcal{D}=\left\{u \in L^{2}(\mathbb{R}): \begin{array}{l}
-i \frac{d}{d x} \text { in the distribution } \\
\text { sense is in } L^{2}(\mathbb{R})
\end{array}\right\} \\
=\left\{u \in L^{2}(\mathbb{R}): x \widehat{u} \in L^{2}(\mathbb{R})\right\} \\
\widehat{u}=\text { the Fourier transform of } u
\end{gathered}
$$

$$
x: \mathbb{R} \rightarrow \mathbb{R}, \quad x(t)=t \quad \forall t \in \mathbb{R}
$$

Fix $\theta \in[0,1]$

$$
\begin{gathered}
C_{\theta}^{\infty}([0,1]):=\left\{u \in C^{\infty}([0,1]): u(1)=e^{2 \pi i \theta} u(0)\right\} \\
L^{2}([0,1]) \supset C_{\theta}^{\infty}([0,1]) \supset C_{\theta}^{\infty}((0,1))
\end{gathered}
$$

$$
e^{2 \pi i(n+\theta) x}, \quad n=0, \pm 1, \pm 2, \ldots
$$

is an orthonormal basis for $L^{2}([0,1])$

$$
\begin{gathered}
e^{2 \pi i(n+\theta) x} \in C_{\theta}^{\infty}([0,1]) \\
-i \frac{d}{d x} e^{2 \pi i(n+\theta) x}=2 \pi(n+\theta) e^{2 \pi i(n+\theta) x}
\end{gathered}
$$

$$
e^{2 \pi i(n+\theta) x}, \quad n=0, \pm 1, \pm 2, \ldots
$$

is an orthonormal basis for $L^{2}([0,1])$ consisting of eigen-vectors of the operator $-i \frac{d}{d x}$

The eigen-values are $2 \pi(n+\theta), n=0, \pm 1, \pm 2, \ldots$

Set

$$
\begin{aligned}
& \mathcal{D}_{\theta}:=\left\{\sum_{n=-\infty}^{\infty} \lambda_{n} e^{2 \pi i(n+\theta) x} \in L^{2}([0,1]):\right. \\
& \left.\sum_{n=-\infty}^{\infty} 2 \pi(n+\theta) \lambda_{n} e^{2 \pi i(n+\theta) x} \in L^{2}([0,1])\right\}
\end{aligned}
$$

$$
L^{2}([0,1]) \supset \mathcal{D}_{\theta} \supset C_{\theta}^{\infty}([0,1]) \supset C^{\infty}((0,1))
$$

($\mathcal{D}_{\theta},-i \frac{d}{d x}$) is an unbounded self-adjoint operator on $L^{2}([0,1])$

For $\theta=0$ and $\theta=1$ we have the same unbounded self-adjoint operator

Except for this, the unbounded self-adjoint operators $\left(\mathcal{D}_{\theta},-i \frac{d}{d x}\right)$ are all distinct

Spectrum of $\left(\mathcal{D}_{\theta},-i \frac{d}{d x}\right)$ is $\{2 \pi(n+\theta): n=$ $0, \pm 1, \pm 2, \ldots\}$.

We shall now convert ($\mathcal{D}_{\theta},-i \frac{d}{d x}$) to a bounded operator on $L^{2}([0,1])$

Functional calculus. Apply the function $\frac{x}{\sqrt{1+x^{2}}}$ to $\left(\mathcal{D}_{\theta},-i \frac{d}{d x}\right)$ to obtain $T_{\theta}: L^{2}([0,1]) \rightarrow L^{2}([0,1])$.

Spectrum of T_{θ} is

$$
\begin{gathered}
\frac{x}{\sqrt{1+x^{2}}}\left(\operatorname{sp}\left(\mathcal{D}_{\theta},-i \frac{d}{d x}\right)\right) \cup\{-1,1\} \\
=\frac{2 \pi(n+\theta)}{\sqrt{1+(2 \pi(n+\theta))^{2}}} \cup\{-1,1\} \\
T_{\theta}\left(e^{2 \pi i(n+\theta) x}\right)=\frac{2 \pi(n+\theta)}{\sqrt{1+(2 \pi(n+\theta))^{2}}} e^{2 \pi i(n+\theta) x} \\
n=0, \pm 1, \pm 2, \ldots
\end{gathered}
$$

$\theta \mapsto T_{\theta}$ is a loop of bounded self-adjoint oper-
ators on $L^{2}([0,1])$.

This loop $\theta \mapsto T_{\theta}$ should be viewed as giving the index of

$$
\left(\mathcal{D},-i \frac{d}{d x}\right) \quad-i \frac{d}{d x}: \mathcal{D} \rightarrow L^{2}(\mathbb{R})
$$

WHY?

Let T be a Fredholm operator on H

$$
\operatorname{Index}(T):=\operatorname{dim}_{\mathbb{C}}(\operatorname{ker} T)-\operatorname{dim}_{\mathbb{C}}(\operatorname{coker} T)
$$

$\mathcal{L}(H):=\{$ bounded operators $T: H \rightarrow H\}$ $\mathcal{F}(H):=\{T \in \mathcal{L}(H): T$ is Fredholm $\}$
$\mathcal{F}(H)$ is topologized by the operator norm topology

$$
\begin{aligned}
\pi_{0}(\mathcal{F}(H)) & =\mathbb{Z} \\
T & \mapsto \operatorname{Index}(T)
\end{aligned}
$$

$S, T \in \mathcal{F}(H)$ are in the same connected component of $\mathcal{F}(H) \Longleftrightarrow \operatorname{Index}(T)=$ Index S
$\mathcal{F}(H)$ is a classifying space for \mathbf{K}^{0}
$\mathrm{K}^{0}=$ Atiyah-Hirzerbruch K-theory

Let X be any compact Hausdorff topological space

$$
\mathrm{K}^{0}(X):=\begin{aligned}
& \text { Grothendieck group of } \\
& \mathbb{C} \text {-vector bundles on } X
\end{aligned}
$$

Notation: X, Y topological spaces

$$
\begin{gathered}
{[X, Y]=\left\{\begin{array}{l}
\text { Homotopy classes of continuous } \\
\text { maps } f: X \rightarrow Y
\end{array}\right\}} \\
=\{\text { Continuous maps } f: X \rightarrow Y\} / \sim \\
\sim=\text { homotopy }
\end{gathered}
$$

Theorem 1 (Atiyah, Janich). Let X be any compact Hausdorff topological space. Then

$$
K^{0}(X)=[X, \mathcal{F}(H)]
$$

$T \in \mathcal{L}(H)$

$$
\mathcal{F}_{\text {s.a. }}(H):=\left\{T \in \mathcal{L}(H): \begin{array}{l}
T \text { is Fredholm } \\
\text { and selfadjoint }
\end{array}\right\}
$$

$\mathcal{F}_{\text {s.a. }}(H)$ has three connected components

$$
\mathcal{F}_{\text {s.a. }}(H)=\mathcal{F}_{\text {s.a. }}^{-}(H) \cup \mathcal{F}_{\text {s.a. }}(H)^{\#} \cup \mathcal{F}_{\text {s.a. }}^{+}(H)
$$

Essential spectrum

$$
\begin{gathered}
\mathcal{L}^{\text {inv }}(H):=\left\{T \in \mathcal{L}(H): \begin{array}{l}
\exists S \in \mathcal{L}(H) \text { with } \\
S T=T S=I d
\end{array}\right\} \\
I d(v)=v \quad \forall v \in H \\
\mathcal{L}(H) \supset \mathcal{F}(H) \supset \mathcal{L}^{\text {inv }}(H)
\end{gathered}
$$

$\operatorname{Spectrum}(T):=\left\{\lambda \in \mathbb{C}:(\lambda I d-T) \notin \mathcal{L}^{\text {inv }}(H)\right\}$
Essential spectrum $(T):=\{\lambda \in \mathbb{C}:(\lambda I d-T) \notin \mathcal{F}(H)$

$$
\text { Essential spectrum }(T) \subset \text { Spectrum }(T)
$$

$$
T \in \mathcal{F}(H) \Longleftrightarrow 0 \notin \text { Essential spectrum }(T)
$$

$$
\begin{aligned}
& \mathcal{F}_{\text {s.a. }}^{-}=\left\{T \in \mathcal{F}_{\text {s.a. }}(H): \begin{array}{l}
\text { Essential spectrum }(T) \\
\subset(-\infty, 0)
\end{array}\right\} \\
& \mathcal{F}_{\text {s.a. }}^{+}=\left\{T \in \mathcal{F}_{\text {s.a. }}(H): \begin{array}{l}
\text { Essential spectrum }(T) \\
\subset(0, \infty)
\end{array}\right\}
\end{aligned}
$$

$\mathcal{F}_{\text {s.a. }}^{\# .}=\left\{\begin{array}{l}T \in \mathcal{F}_{\text {s.a. }}(H): \\ \quad \text { Essential spectrum }(T) \cap(-\infty, 0) \neq \emptyset \\ \quad \text { Essential } \operatorname{spectrum}(T) \cap(0, \infty) \neq \emptyset\end{array}\right\}$
$\mathcal{F}_{\text {s.a. }}^{\#}(H)$ is a classifying space for \mathbb{K}^{1}
$\mathrm{K}^{1}=$ Atiyah-Hirzerbruch K-theory

Let X be any compact Hausdorff topological space

$$
\mathrm{K}^{1}(X):=\lim _{n \rightarrow \infty}[X, \mathrm{GL}(n, \mathbb{C})]
$$

Theorem 2 (Atiyah, Singer). Let X be any compact Hausdorff topological space. Then

$$
\mathrm{K}^{1}(X)=\left[X, \mathcal{F}_{\mathrm{s} \text {.a. }}^{\#}(H)\right]
$$

Bott periodicity

$$
\begin{gathered}
\Omega \mathcal{F}(H) \sim \mathcal{F}_{\text {s.a. }}^{\#}(H) \\
\Omega \mathcal{F}_{\text {s.a. }}^{\# \#}(H) \sim \mathcal{F}(H) \\
\pi_{j}(\mathcal{F}(H))= \begin{cases}\mathbb{Z} & j \text { even } \\
0 & j \text { odd }\end{cases} \\
\pi_{j}\left(\mathcal{F}_{\text {s.a. }}^{\# \#}(H)\right)= \begin{cases}0 & j \text { even } \\
\mathbb{Z} & j \text { odd }\end{cases}
\end{gathered}
$$

EXAMPLE

$$
\begin{aligned}
&-i \frac{d}{d x}: \mathcal{D} \rightarrow L^{2}(\mathbb{R}) \\
& \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R} \\
&(n, t) \mapsto n+t \\
& \mathbb{S}^{1} \rightarrow \mathcal{F}_{\mathrm{S.a.}}^{\#}\left(L^{2}([0,1])\right) \\
& e^{2 \pi i \theta} \mapsto T_{\theta}
\end{aligned}
$$

This loop is the generator of

$$
\pi_{1}\left(\mathcal{F}_{\text {s.a. }}^{\# \#}\left(L^{2}([0,1])\right)\right)=\mathbb{Z}=\mathrm{K}^{1}\left(\mathbb{S}^{1}\right)
$$

\mathbb{S}^{1} is the Pontrjagin dual of \mathbb{Z}
$\Gamma \times M \rightarrow M$ smooth proper co-compact action of Γ on M
D 「-equivariant elliptic differential (or $\psi \mathrm{DO}$) operator on M

Assume:

1. Γ is abelian
2. D is essenitally self-adjoint

Let Δ be a fundamental domain for the action of Γ on M

Each $\varphi \in \hat{\Gamma}$ determines a boundary condition for $\left.D\right|_{\Delta}$

Using this boundary condition, construct a bounded self-adjoint operator T_{φ}

$$
\begin{gathered}
\hat{\Gamma} \rightarrow \mathcal{F}_{\text {s.a. }}^{\# \#}(H) \\
\varphi \mapsto T_{\varphi} \\
\operatorname{Index}_{\Gamma}(D) \in \mathrm{K}^{1}(\hat{\Gamma})
\end{gathered}
$$

Remark: $\hat{\Gamma}$ is viewed here as a compact Hausdorff topological space. The group structure of $\hat{\Gamma}$ is not being used.

EXAMPLE

$\Gamma \times M \rightarrow M$

D

Assume:

1. Γ is abelian
2. D has no self-adjoint property

$$
\hat{\Gamma} \rightarrow \mathcal{F}(H)
$$

$\operatorname{Index}_{\Gamma}(D) \in \mathrm{K}^{0}(\hat{\Gamma})$

$$
\left\ulcorner=\mathbb{Z} \oplus \mathbb{Z}, \quad M=\mathbb{R}^{2}\right.
$$

$$
(\mathbb{Z} \oplus \mathbb{Z}) \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\left(\left(n_{1}, n_{2}\right),\left(t_{1}, t_{2}\right)\right) \mapsto\left(n_{1}+t_{1}, n_{2}+t_{2}\right)
$$

$$
D=\bar{\partial}=\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}
$$

$$
\begin{gathered}
\widehat{\mathbb{Z} \oplus \mathbb{Z}}=\mathbb{S}^{1} \times \mathbb{S}^{1} \\
\mathrm{~K}^{0}\left(\mathbb{S}^{1} \times \mathbb{S}^{1}\right)=\mathbb{Z} \oplus \mathbb{Z} \\
1 \quad L \\
1=\left(\mathbb{S}^{1} \times \mathbb{S}^{1}\right) \times \mathbb{C} \\
L=\text { Hopf line bundle } \\
\text { Index }_{\mathbb{Z} \oplus \mathbb{Z}}(\bar{\partial}) \in \mathbb{K}^{0}(\widehat{\mathbb{Z} \oplus \mathbb{Z}})=\mathrm{K}^{0}\left(\mathbb{S}^{1} \times \mathbb{S}^{1}\right) \\
\text { Index }_{\mathbb{Z} \oplus \mathbb{Z}}(\bar{\partial})=L-1
\end{gathered}
$$

Application: Dirac operato formulation of BaumConnes conjecture
Γ is a (countable) discrete group
$C_{r}^{*}(\Gamma)$ denotes the reduced C^{*}-algebra of Γ
$C_{r}^{*}(\Gamma)$ is the completion of the purely algebraic group algebra $\mathbb{C}[\Gamma]$ via the (left) regular representation of Γ
$\mathrm{K}_{j}\left(C_{r}^{*}(\Gamma)\right)$ denotes the j-th K-theory group of $C_{r}^{*}(\Gamma), j=0,1,2, \ldots$

Bott periodicity: $\mathrm{K}_{j}\left(C_{r}^{*}(\Gamma)\right) \cong \mathrm{K}_{j+2}\left(C_{r}^{*}(\Gamma)\right)$, $j=0,1,2, \ldots$

If Γ is abelian, then $\mathrm{K}_{j}\left(C_{r}^{*}(\Gamma)\right) \cong \mathrm{K}^{j}(\hat{\Gamma})$ where $K^{j}(\hat{\Gamma})$ is the Atiyah-Hirzerbruch K-theory of the Pontrjagin dual $\hat{\Gamma}$

Definition of $K_{j}^{\text {top }}, j=0,1$
Consider pairs (M, E) such that

Moral: If Γ is not abelian, then $\mathrm{K}_{j}\left(C_{r}^{*}(\Gamma)\right)$ replaces $\mathrm{K}^{j}(\hat{\Gamma})$

We shall now define an abelian group $\mathrm{K}_{j}^{\mathrm{top}}(\Gamma)$, $j=0,1$

1. M is a C^{∞}-manifold, $\partial M=\emptyset$, with a given smooth, proper co-compact action of Γ

$$
\Gamma \times M \rightarrow M
$$

2. M has a given Γ-equivariant Spin $^{\mathrm{C}}$-structure
3. E is a Γ-equivariant vector bundle on M

$$
\mathrm{K}_{0}^{\mathrm{top}}(\Gamma) \oplus \mathrm{K}_{1}^{\mathrm{top}}(\Gamma)=\{(M, E)\} / \sim
$$

Addition will be disjoint union

$$
(M, E)+\left(M, E^{\prime}\right)=\left(M \cup M^{\prime}, E \cup E^{\prime}\right)
$$

Each fiber of E is a finite dimensional vector space over \mathbb{C}

$$
\operatorname{dim}_{\mathbb{C}}\left(E_{p}\right)<\infty \quad p \in M
$$

The equivalence relation

Isomorphism (M, E) is isomorphic to $\left(M^{\prime}, E^{\prime}\right)$ iff \exists a $Г$-equivariant diffeomorphism

$$
\psi: M \rightarrow M^{\prime}
$$

preserving the Γ-equivariant Spin $^{\text {c }}$-structures on M, M^{\prime} and with

$$
\psi^{*}\left(E^{\prime}\right) \cong E
$$

Bordism (M_{0}, E_{0}) is bordant to $\left(M_{1}, E_{1}\right)$ iff \exists (W, E) such that:

1. W is a C^{∞} manifold with boundary, with a given smooth proper co-compact action of「

$$
\Gamma \times W \rightarrow W
$$

2. W has a given equivariant $\operatorname{Spin}^{\mathrm{C}}$-structure
3. E is a 「-equivariant vector bundle on W
4. $\left(\partial W,\left.E\right|_{\partial_{W}}\right) \cong\left(M_{0}, E_{0}\right) \cup\left(-M_{1}, E_{1}\right)$

Vector bundle modification

(M, E)

Let F be Γ-equivariant Spin $^{\text { }}$ vector bundle on M

Assume that

$$
\operatorname{dim}_{\mathbb{R}}\left(F_{p}\right) \equiv 0 \quad \bmod 2 \quad p \in M
$$

for every fiber F_{p} of F

$$
\begin{array}{cl}
\mathbf{1}=M \times \mathbb{R} & \gamma(p, t)=(\gamma p, t) \\
\gamma \in \Gamma & (p, t) \in \mathbf{1}
\end{array}
$$

$S(F \oplus 1):=$ unit sphere bundle of $F \oplus 1$

$$
(M, E) \sim\left(S(F \oplus 1), \beta_{+} \otimes \pi^{*} E\right)
$$

This is a fibration with even-dimensional spheres as fibers
$F \oplus 1$ is a Γ-eqivariant $\operatorname{Spin}^{〔}$ vector bundle on M with odd dimensional fibers. Let Σ be the spinor bundle for $F \oplus 1$

$$
\begin{gathered}
\mathrm{Cliff}_{\mathbb{C}}\left(F_{p} \oplus \mathbb{R}\right) \otimes \Sigma_{p} \rightarrow \Sigma_{p} \\
\pi^{*} \Sigma=\beta_{+} \oplus \beta_{-} \\
(M, E) \sim\left(S(F \oplus 1), \beta_{+} \otimes \pi^{*} E\right)
\end{gathered}
$$

$$
\{(M, E)\} / \sim=\mathrm{K}_{0}^{\mathrm{top}}(\Gamma) \oplus \mathrm{K}_{1}^{\mathrm{top}}(\Gamma)
$$

subgroup of $\{(M, E)\} / \sim$

$$
\begin{aligned}
\mathrm{K}_{j}^{\mathrm{top}}(\Gamma)= & \text { consisting of all }(M, E) \text { such that } \\
& \text { every connected component of } M \\
& \text { has dimension } \equiv j \bmod 2, j=0,1
\end{aligned}
$$

Notation: for $(M, E) D_{E}$ is the Dirac operator of M tensored with E
$F=$ spinor bundle of M
$D_{E}: C_{c}^{\infty}(M, F \otimes E) \rightarrow C_{c}^{\infty}(M, F \otimes E)$

Corollary. If $B C$ conjecture is true for Γ, then

1. Every element of $\mathrm{K}_{j}\left(C_{r}^{*}(\Gamma)\right)$ is of the form Index $\left(D_{E}\right)$ for some (M, E) (surjectivity)
2. (M, E) and (M^{\prime}, E^{\prime}) have

$$
\operatorname{Index}\left(D_{E}\right)=\operatorname{Index}\left(D_{E^{\prime}}\right)
$$

if and only if it is possible to pass from (M, E) to (M^{\prime}, E^{\prime}) by a finite sequence of the three elementary moves

- Bordism
- Direct sum - disjoint union
- Vector bundle modification
(injectivity)

Corollaries of BC

- Novikov conjecture
- Stable Gromov-Lawson-Rosenberg conjecture
- Idempotent conjecture
- Kadison-Kaplansky conjecture
- Mackey analogy
- Construction of the discrete series via Dirac induction (Parthasarathy, Atiyah-Schmid)
- Homotopy invariance of ρ-invariants (Keswani, Piazza-Schick)

Theorem.(N. Higson, G. Kasparov) If Γ is a discrete group which is amenable (or a-tmenable), then $B C$ is true for Γ.

Theorem.(I. Mineyev, G. Yu, V. Lafforgue) If Γ is a discrete group which is hyperbolic (in Gromov's sense), then BC is true for Γ.

