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Abstract. We introduce the notion of generalized bialgebra, which in-
cludes the classical notion of bialgebra (Hopf algebra) and many others.
We prove that, under some mild conditions, a connected generalized
bialgebra is completely determined by its primitive part. This structure
theorem extends the classical Poincaré-Birkhoff-Witt theorem and the
Cartier-Milnor-Moore theorem, valid for cocommutative bialgebras, to a
large class of generalized bialgebras. Technically we work in the theory
of operads which permits us to give a conceptual proof of our main the-
orem. It unifies several results, generalizing PBW and CMM, scattered
in the literature. We treat many explicit examples and suggest a few
conjectures.





Introduction

The aim of this paper is to prove that, under some simple conditions,
there is a structure theorem for generalized bialgebras.

First we introduce the notion of “generalized bialgebras”, which includes
the classical notions of bialgebras, Lie bialgebras, infinitesimal bialgebras,
dendriform bialgebras and many others. A type of generalized bialgebras is
determined by the coalgebra structure Cc, the algebra structure A and the
compatibility relations between the operations and the cooperations. For
Cc = Asc (coassociative coalgebra) and A = As (associative algebra) with
Hopf compatibility relation, we get the classical notion of bialgebra (Hopf
algebra). We make the following assumption:
(H0) the compatibility relations are distributive.
It means that any composition of an operation followed by a cooperation
can be rewritten as cooperations first and then operations. Then, we make
an assumption on the free A-algebra with respect to the bialgebra structure:
(H1) the free A-algebra A(V ) is naturally a Cc-A-bialgebra .
At this point we are able to determine a new algebra structure, denoted P,
such that the primitive part of any connected Cc-A-bialgebra is a P-algebra.
In other words we show that the A-operations which are well-defined on the
primitive part are stable by composition. Of course we get P = Lie in the
classical case. One should observe that, even when the types A and C are
described by explicit generators and relations, there is no obvious way to
get such a presentation for the type P. Therefore one needs to work with
“abstract types of algebras”, that is with operads.

The forgetful functor A-alg → P-alg from the category of A-algebras
to the category of P-algebras admits a left adjoint which we denote by
U : P-alg → A-alg. The main result unravels the algebraic structure and
the coalgebraic structure of any connected Cc-A-bialgebra :
Structure Theorem for generalized bialgebras. Let Cc-A be a bialgebra
type which satisfies (H0) , (H1) and
(H2epi) the coalgebra map ϕ(V ) : A(V ) → Cc(V ) is split surjective.

Then, for any Cc-A-bialgebra H with primitive part PrimH, the follow-
ing are equivalent:
(a) H is connected,
(b) H is isomorphic to U(PrimH),
(c) H is cofree over its primitive part, i.e. isomorphic to Cc(PrimH).

7



8 INTRODUCTION

In this statement the space PrimH is defined as

PrimH = {x ∈ H | δ(x) = 0for any cooperation δ of arity ≥ 2}.

As said above, the tool to determine P and also to prove the structure
theorem, is the operad theory. A triple of operads (C,A,P) as above is said
to be good if the structure theorem holds. There are many cases and many
results in the literature which fall into this framework. They come from
algebraic topology, noncommutative geometry, universal algebra, represen-
tation theory, algebraic combinatorics, computer sciences. Here are some of
them.

The case of (classical) cocommutative bialgebras (i.e. Comc-As-bialgebras,
with Hopf compatibility relation) is well-known. Here P is Lie, that is, the
primitive part of a classical bialgebra is a Lie algebra. The functor U is the
universal enveloping functor

U : Lie-alg → As-alg.

The isomorphism H ∼= U(PrimH) is the Cartier-Milnor-Moore theorem.
The isomorphism U(g) ∼= Sc(g), where g is a Lie algebra, is essentially the
Poincaré-Birkhoff-Witt theorem. It implies that, given a basis for g, we can
make up a basis for U(g) from the commutative polynomials over a basis of
g (classical PBW theorem). In short, there is a good triple

(Com,As, Lie) .

When the bialgebra type satisfies the stronger hypothesis
(H2iso) the Cc-coalgebra map ϕ(V ) : A(V ) → Cc(V ) is an isomorphism,
then the operad P is trivial that is P-alg is the category Vect of vector
spaces. The triple is (C,A, V ect) and the structure theorem becomes the
Rigidity Theorem for generalized bialgebras. Let Cc-A be a bialgebra
type which satisfies (H0) , (H1) and (H2iso) . Then any connected Cc-A-
bialgebra H is free and cofree:

A(PrimH) ∼= H ∼= Cc(PrimH) .

There are many good triples of the form (A,A, V ect). For instance,
when A = Com and the compatibility relation is the Hopf relation, then
this is the classical Hopf-Borel theorem (originally phrased in the framework
of graded vector spaces). One has to keep in mind that, in the notion
Ac-A-bialgebra, the compatibility relation(s) is an important feature. For
instance the rigidity theorem for A = As (operad of associative algebras)
does not hold for the Hopf compatibility relation, but does hold when the
compatibility relation is the unital infinitesimal relation:

δ(xy) = x⊗ y + x(1) ⊗ x(2)y + xy(1) ⊗ y(2) ,

where we have put δ(x) = x(1) ⊗ x(2).
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Similarly, there is a rigidity theorem for Liec-Lie-bialgebras, but the
compatibility relation is not the one of classical Lie bialgebras (see Chapter
4 section 4.4). It gives a criterion to check if a given Lie algebra is free.

In most cases characteristic zero is necessary, but here is an example of
a good triple of operads which is valid over any field K (characteristic free).
The algebra type has two associative operations denoted ≺ and � which
satisfy moreover the relation

(x � y) ≺ z = x � (y ≺ z).

We call them OU -algebras because the free algebra admits an elegant de-
scription in terms of the Over and the Under operation on planar binary
trees. The coalgebra type is determined by a coassociative cooperation δ
and the compatibility relations is the unital infinitesimal relation for both
pairs (δ,≺) and (δ,�). We can show that there is a structure theorem in
this case and that the primitive structure is simply a magmatic structure.
The magmatic operation x · y is given by

x · y := x � y − x ≺ y.

In short, there is a good triple

(As,OU, Mag) .

This example, which is treated in details in Chapter 5, is remarkable, not
only because all the operads are binary, quadratic and Koszul (like in the
(Com,As, Lie) case), but because they are also set-theoretic and regular.

The proof of the main theorem relies on the construction of a certain
“universal” idempotent which maps a given bialgebra onto its primitive part.
This construction does not depend on the explicit presentation of A or C.
It is a conceptual construction. In the classical case the idempotent so
obtained is precisely the Eulerian idempotent, which is an important object
since it permitted us, for instance, to give an explicit description of the
Baker-Campbell-Hausdorff formula [42], and to split the Hochschild chain
complex in the commutative case [41, 43]. See also [10] for an application
to the Kashiwara-Vergne conjecture. Our construction gives an analogue of
the Eulerian idempotent for each triple of operads.

Here is the content of this paper. The first chapter contains elementary
facts about “types of algebras and bialgebras” from the operadic point of
view. The proofs of the theorems are performed in this framework, not only
because of its efficiency, but also because some of the types of algebras that
we encounter are not defined by generators and relations. We introduce the
notion of “connected coalgebra” used in the hypotheses of the main theorem.
The reader who is fluent in operad theory can easily bypass this chapter.

The second chapter contains the main results of this paper together with
their proof. First, we study the algebraic structure of the primitive part of
a generalized bialgebra of type Cc-A. In general a product of two primitive
elements is not primitive. However the primitive part is stable under some
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operations. We determine all of them under the hypotheses (H0) and (H1)
and we get the “maximal” algebraic structure for the primitive part. We
call it the primitive operad and denote it by P.

Then we study more particularly the generalized bialgebra types for
which this primitive structure is trivial. Though it will become a particular
case of the general theorem, we prefer to treat it independently, because
of its importance, because the proofs are easier and because several cases
reduce to this one. The result is the rigidity theorem for triples of the form
(C,Z, V ect). Then we move to the general theorem. We establish that
the conditions (H0) , (H1) and (H2epi) ensure that the structure theorem,
referred to above, is valid for the Cc-A-bialgebras.

Here we phrased these conditions in terms of bialgebras, but they, of
course, can be phrased in terms of operads (more precisely in terms of props).
In short we say that the triple of operads (C,A,P) is a good triple of operads
when these hypotheses are fulfilled.

The previous case (rigidity theorem) is a particular case of this one since
(H2iso) is a particular case of (H2epi) and since P = V ect in this case (so
the universal algebra is the free algebra).

There are several consequences to the structure theorem. For instance
any good triple of operads (C,A,P) gives rise to a natural isomorphism

A(V ) ∼= Cc ◦ P(V ) .

It generalizes the classical fact that the underlying vector space of the sym-
metric algebra over the free Lie algebra is isomorphic to the tensor module

T (V ) ∼= S(Lie(V )).

In the known cases the proof of the structure theorem uses an ad hoc
construction of an idempotent, which depends very much on the type of
bialgebras at hand. The key point of our proof is to construct an “abstract”
idempotent which works universally.

Third Chapter. In the first three sections of this chapter we give recipes
to construct good triples of operads. An important consequence of our
formulation is that, starting with a good triple (C,A,P), we can construct
many others by moding out by some primitive operations. If J is a set of
primitive operations and (J) (resp. ((J))) is the operadic ideal it generates
in P (resp. A), then (C,A/((J)),P/(J)) is also a good triple. In particular
any good triple (C,A,P) determines a good triple of the form (C,Z, V ect),
where Z = A/((P̄)).

Assuming that the tensor product of two A-algebras is still a A-algebra
(Hopf operad, multiplicative operad, for instance), there is a natural way of
constructing a notion of Asc-A-bialgebra which verifies (H0) and (H1) .

For quadratic operads there is a notion of Koszul dual operad. It should
permit us to construct new triples of operads by taking the Koszul dual.

In order to keep the proofs into the most simple form we treated the
case of algebraic operads over a characteristic zero field. But the structure
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theorem admits several generalizations. First, if we work with regular op-
erads, then the characteristic zero hypothesis is not necessary anymore. In
order to simplify the exposition we worked with the tensor category of vector
spaces Vect, but everything is valid into any symmetric monoidal category,
for example the category of sign-graded vector spaces (super vector spaces)
or the category of S-modules . The formulas are the same provided that one
applies the Koszul sign rule. In characteristic p it is expected that similar
results hold.

The structure theorem can be “dualized” in the sense that the role of
the algebra structure and the coalgebra structure are exchanged. The role
of the primitive part is played by the indecomposable part.

In the last two sections we explain the relationship with the theory
of “rewriting systems” and we give some application to the representation
theory of the symmetric groups.

In the fourth chapter we study some explicit examples in details. We
show how several results in the literature can be interpreted as giving rise
to a good triple of operads. Since any good triple (C,A,P) gives rise to a
(quotient) triple of the form (C,Z, V ect), we put in the same section the
triples which have the same quotient triple:

• (Com,Com, V ect) and Hopf compatibility relation. This section deals
with the classical case of Comc-As-bialgebras (cocommutative bialgebras)
and some of its variations: (Com,Parastat,NLie), (Com,Mag, Sabinin).
Our structure theorem for the triple (Com,As, Lie) is equivalent to the
Poincaré-Birkhoff-Witt (PBW) theorem plus the Cartier-Milnor-Moore (CMM)
theorem. We show that our universal idempotent identifies to the Eulerian
idempotent.

• (As,As, V ect) and unital infinitesimal compatibility relation. It con-
tains the case of 2-associative bialgebras, that is the triple (As, 2as, Brace),
and also (As,Dipt,B∞), (As,Mag,MagFine). It is important because it
permits us to handle the structure of classical cofree Hopf algebras [51].

• (As,Zinb, V ect) and semi-Hopf compatibility relation. It contains the
dendriform and dipterous bialgebras. It is interesting for its role in the
study of the graph-complexes à la Kontsevich obtained by replacing the Lie
homology by the Leibniz homology [43, 11].

• (Lie, Lie, V ect). This is a completely new case. It gives a criterion to
show that a Lie algebra is free.

• (Nap, PreLie, V ect). It is due to M. Livernet [40]. A variation
(Nap, Mag, Prim NAP PreLie) needs more work to find a small presentation
of the primitive operad.

• Then we survey some examples of the form (A,A, V ect), we formulate
a conjecture related to a question of M. Markl and we introduce an example
coming from computer sciences (interchange bialgebra). Finally we present
a triple involving k-ary operations and cooperations.
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In the final Chapter we treat in details the case of the triple (As,OU, Mag)
mentioned before. We prove that the triple is good and we make explicit the
analogue of the PBW theorem. We prove that the operad OU is Koszul. We
treat the case (OU, OU, V ect) and we comment on further generalizations.

In the Appendix we provide a tableau of compatibility relations and a
tableau of triples summarizing the examples treated in Chapter 4.

Acknowledgement. Many thanks to Maŕıa Ronco and to Bruno Val-
lette for numerous conversations on bialgebras and operads. Thanks to
E. Burgunder, R. Holtkamp, Y. Lafont, and M. Livernet for their com-
ments. This work has been partially supported by the “Agence Nationale
de la Recherche”.

Notation, convention. In this paper K is a field, which is, sometimes,
supposed to be of characteristic zero. Its unit is denoted 1K or just 1. All
vector spaces are over K and the category of vector spaces is denoted by
Vect. The vector space spanned by the elements of a set X is denoted
K[X]. The tensor product of vector spaces over K is denoted by ⊗. The
tensor product of n copies of the space V is denoted by V ⊗n. For vi ∈ V the
element v1⊗· · ·⊗vn of V ⊗n is denoted by (v1, . . . , vn) or simply by v1 . . . vn.
For instance in the tensor module

T (V ) := K⊕ V ⊕ · · · ⊕ V ⊗n ⊕ · · ·
we denote by v1 . . . vn an element of V ⊗n, but in T (V )⊗k we denote by
v1 ⊗ · · · ⊗ vk the element such that vi ∈ V ⊂ T (V ) is in the ith factor. The
reduced tensor module T (V ) := V ⊕· · ·⊕V ⊗n⊕· · · can be considered either
as a subspace of T (V ) or as a quotient of it.

A linear map V ⊗n → V is called an n-ary operation on V and a linear
map V → V ⊗n is called an n-ary cooperation on V . The symmetric group
is the automorphism group of the finite set {1, . . . , n} and is denoted Sn. It
acts on V ⊗n on the left by σ ·(v1, . . . , vn) = (vσ−1(1), . . . , vσ−1(n)). The action
is extended to an action of K[Sn] by linearity. We denote by τ the switching
map in the symmetric monoidal category Vect, that is τ(u⊗ v) = v ⊗ u (in
the nongraded case).

A magmatic algebra is a vector space A equipped with a binary operation
A⊗A → A, usually denoted (a, b) 7→ a · b . In the unital case it is assumed
that there is an element 1, called the unit, which satisfies a · 1 = a =
1 · a. In the literature a magmatic algebra is sometimes referred to as a
nonassociative algebra.

Quotienting by the associativity relation (ab)c = a(bc) we get the notion
of associative algebra. Quotienting further by the commutativity relation
ab = ba we get the notion of commutative algebra. So, in the terminology
“commutative algebra”, associativity is understood.
References. References inside the paper include the Chapter. So “see
2.3.4” means see paragraph 3.4 in Chapter 2.



CHAPTER 1

Algebraic operads

We briefly recall the definition, notation and terminology of the operad
framework (see for instance [54]). The reader who is familiar with alge-
braic operads and props can skip this first chapter, except for the notion of
connectedness of a coalgebra, which seems to be new.

1.1. S-module

1.1.1. S-module and Schur functor. An S-module P is a family of
right Sn-modules P(n) for n ≥ 0. Its associated Schur functor P : Vect →
Vect is defined as

P(V ) :=
⊕
n≥0

P(n)⊗Sn V ⊗n

where Sn acts on the left on V ⊗n by permuting the factors. We also use the
notation P(V )n := P(n)⊗Sn V ⊗n so that P(V ) :=

⊕
n≥0 P(V )n.

In this paper we always assume that P(n) is finite dimensional. In
general we assume that P(0) = 0 and P(1) = Kid (connected operad). In
a few cases we assume instead that P(0) = K, so that the algebras can be
equipped with a unit. The natural projection map which sends P(V )n to 0
when n > 1 and P(V )1 to itself, that is K id⊗ V = V is denoted

proj : P(V ) → V.

A morphism of S-modules f : P → P ′ is a family of Sn-morphisms
f(n) : P(n) → P ′(n). They induce a morphism of Schur functors: f(V ) :
P(V ) → P ′(V ).

1.1.2. Composition of S-modules. Let P and Q be two S-modules
. It can be shown that the composite Q ◦ P of the Schur functors (as
endomorphisms of Vect) is again the Schur functor of an S-module , also
denoted Q ◦ P. The explicit value of (Q ◦ P)(n) involves sums, tensor
products and induced representations of the representations Q(i) and P(i)
for all i ≤ n. This composition makes the category of S-modules into a
monoidal category (also called tensor category) whose neutral element is the
identity functor. Observe that this is not a symmetric monoidal category
since the composition of functors is far from being symmetric.

13



14 1. ALGEBRAIC OPERADS

1.1.3. Generating series. The generating series of an S-module P is
defined as

fP(t) :=
∑
n≥1

dimP(n)
n!

tn .

It is immediate to check that the generating series of a composite is the
composite of the generating series:

fQ◦P(t) = fQ(fP(t)).

1.2. Algebraic operad

1.2.1. Definition. By definition an algebraic operad , or operad for
short, is a Schur functor P equipped with two transformations of functors
ι : IdVect → P and γ : P ◦ P → P which makes it into a monoid. In other
words we assume that γ is associative and that ι is a unit for γ. Such an
object is also called a monad in Vect.

The identity functor IdVect is itself an operad that we denote by V ect
(instead of IdVect) when we consider it as an operad. We call it the identity
operad.

We usually assume that the operad is connected, that is P(0) = 0.

1.2.2. Algebra over an operad. By definition an algebra over the
operad P, or a P-algebra for short, is a vector space A equipped with a linear
map γA : P(A) → A such that the following diagrams are commutative:

P ◦ P(A)
P(γA) //

γ(A)

��

P(A)

γA

��

A
ι(A)//

=
!!CC

CC
CC

CC
C P(A)

γA

��
P(A)

γA // A A

There is an obvious notion of morphism of P-algebras. The category of P-
algebras is denoted P-alg. Since we made the assumption P(0) = 0, these
algebras are nonunital.

If we want a unit for the P-algebras, then we take P(0) = K and the
image of 1 ∈ K by γA : P(0) → A is the unit of A.

The operation id ∈ P(1) is the identity operation: id(a) = a for any
a ∈ A. For µ ∈ P(k) and µ1 ∈ P(n1), . . . , µk ∈ P(nk) the composite
γ(µ;µ1, · · · , µk) ∈ P(n1+· · ·+nk) is denoted µ◦(µ1, · · · , µk) or µ(µ1, · · · , µk)
if no confusion can arise.
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??? ���
· · · ??? ���

µ1

<<
<<

<<
<<

<<
<<

µk

��
��

��
��

��
��

µ(µ1, · · · , µk) :=

µ

So, an operad can also be described as a family of linear maps

γ : P(k)⊗ P(i1)⊗ · · · ⊗ P(ik) → P(i1 + · · ·+ ik)

which assemble to give a monad (P, γ, ι).
The restriction of γA to P(n)⊗Sn A⊗n is denoted γn : P(n)⊗Sn A⊗n → A

if no confusion can arise.
Given an element µ ∈ P(n) and an n-tuple (a1, . . . , an) of elements of

A, we can construct

µ(a1, . . . , an) = γn(µ⊗ (a1, . . . , an)) ∈ A .

Hence P(n) is referred to as the “space of n-ary operations” for P-algebras.
The integer n is called the “arity” of the operation µ (or its degree if no
confusion can arise).

The category of algebras over the operad V ect is simply the category of
vector spaces Vect. Hence we have V ect(1) = K and V ect(n) = 0 for n 6= 1.

1.2.3. Free P-algebra. By definition a P-algebra A0 is free over the
vector space V if it is equipped with a linear map i : V → A0 and if it
satisfies the following universal property:

any map f : V → A, where A is a P-algebra, extends uniquely into a
P-algebra morphism f̃ : A0 → A:

V
i

~~}}
}}

}}
}} f

��?
??

??
??

?

A0
f̃ //_______ A

Observe that the free algebra over V is well-defined up to a unique isomor-
phism.

For any vector space V one can equip P(V ) with a structure of P-
algebra by setting γP(V ) := γ(V ) : P(P(V )) → P(V ). The axioms defining
the operad P show that (P(V ), γ(V )) is the free P-algebra over V .

Categorically, P is left adjoint to the forgetful functor which assigns, to
a P-algebra A, its underlying vector space:

HomP-alg(P(V ), A) ∼= HomVect(V,A).
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1.2.4. Operadic ideal. For a given operad P and a family of opera-
tions {ν} in P the ideal I, generated by this family, is the sub-S-module I
linearly generated by all the compositions µ◦(µ1, · · · , µk) where at least one
of the operations is in the family. The quotient P/I, defined as (P/I)(n) =
P(n)/I(n), is an operad.

If Q is a suboperad of P, then we denote by Q the sub S-module of Q
such that Q̄(1) = 0 and Q̄(n) = Q(n) for n ≥ 2. We denote by (Q̄) the
operadic ideal generated by Q̄ in P. So the quotient P/(Q̄) is an operad.

1.2.5. Type of algebras and presentation of an operad. For a
given type of algebras defined by generators and relations (supposed to be
multilinear), the associated operad is obtained as follows. Let P(V ) be the
free algebra of the given type over V . Let V = Kx1 ⊕ · · · ⊕ Kxn be a
based n-dimensional vector space. The multilinear part of P(V ) of degree
n (i.e. linear in each variable) is a subspace of P(V )n denoted P(n). It is
clear that P(n) inherits an action of the symmetric group. The universal
property of the free algebra P(V ) permits us to give a structure of operad
on the Schur functor P. The category of P-algebras is precisely the category
of algebras we started with.

The operad P can also be constructed by taking the free operad over the
generating operations and quotienting by the ideal (in the operadic sense)
generated by the relators.

For instance the free operad on one binary operation µ (with no symme-
try) is the magmatic operad Mag. In degree n we get Mag(n) = K[Yn−1]⊗
K[Sn] where Yn−1 is the set of planar binary rooted trees with n−1 internal
vertices (and n leaves), cf. 5.1.2. The tree | ∈ Y0 codes for id ∈ Mag(1) and

the tree ��
?? ∈ Y1 codes for the generating operation µ ∈ Mag(2).

The operad As of (nonunital) associative algebras is the quotient of Mag
by the ideal generated by the relator

µ ◦ (µ⊗ id)− µ ◦ (id⊗ µ) ∈ Mag(3).

Observe that a morphism of operads P → Q gives rise to a functor
between the corresponding categories of algebras in the other direction:

Q-alg −→ P-alg.

1.2.6. Binary and quadratic operad. An element µ ∈ P(2) defines
a map

µ : A⊗2 → A, a⊗ b 7→ µ(a, b) ,

called a binary operation. Sometimes such an operation is denoted by a
symbol, for instance ∗, and we write a ∗ b instead of µ(a, b). We allow
ourselves to talk about “the operation a ∗ b ”.

An operad is said to be binary, resp. 〈k〉-ary, if it is generated by binary,
resp. 〈k〉-ary, operations (elements in P(2), resp. P(k)). An operad is said
to be quadratic if the relations are made of monomials involving only the
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composition of two operations. In the binary case, it means that the relations
are of the form ∑

i

µi(νi ⊗ Id) =
∑

j

µj(Id⊗ νj)

where the elements µi, νi, µj , νj are binary operations (not necessarily the
generating ones). Sometimes, in the literature, the adjective quadratic is
used in place of binary and quadratic (see for instance [26]). Most classi-
cal types of algebras are defined by binary quadratic operads: associative,
commutative, Lie, Poisson, pre-Lie, Leibniz, dendriform, 2-associative, al-
ternative, magmatic, etc. Some are generated by n-ary operations, but are
still quadratic: Lie triples, Jordan triples, A∞, C∞, L∞, Brace,B∞,Mag∞,
etc.

1.2.7. Regular operad. Let P be an operad whose associated type
of algebras has the following property. The generating operations do not
satisfy any symmetry property and, in the relations, the variables stay in
the same order. Then, it is easy to show that P(n) = Pn ⊗K[Sn] for some
vector space Pn. Here K[Sn] stands for the regular representation. Moreover
the operadic structure is completely determined by composition maps

γi1···in : Pn ⊗ Pi1 ⊗ · · · ⊗ Pin −→ Pi1+···+in .

Such operads are called regular operads. The object (Pn, γi1···in)n≥1 is called
a nonsymmetric operad (though that, strictly speaking, it is not an operad).
The operads

As,Dend, Dipt, 2as, Mag, A∞,Mag∞

are regular.

1.2.8. Set-theoretic operad. So far we have defined an operad in
the monoidal category of vector spaces (and ⊗), but we could choose the
category of sets (and ×). This would give us the notion of set-operad . Since
any set X gives rise to a vector space K[X], any set-operad gives rise to an
algebraic operad. Such an operad is said to be set-theoretic.

1.2.9. Classical examples: the three graces. The classical exam-
ples of algebraic operads are the operad As of associative algebras, the
operad Com of commutative algebras (understood to be associative) and
the operad Lie of Lie algebras. In each case the free algebra is well-
known, so the operad is easy to describe: As(V ) is the (nonunital) alge-
bra of noncommutative polynomials over V (reduced tensor algebra T (V )),
Com(V ) is the (nonunital) algebra of polynomials over V (reduced symmet-
ric algebra S(V )), Lie(V ) is the subspace of As(V ) generated by V under
the bracket operation [x, y] = xy − yx. It follows that in the associative
case we get As(n) = K[Sn] (regular representation). In the commutative
case we get Com(n) = K (trivial representation). In the Lie case we get
Lie(n) = IndSn

Cn
(K) (induced representation from the trivial representation

over the cyclic group Cn).
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Observe that As is regular, As and Com are set-theoretic, but Lie is
not regular nor set-theoretic.

1.3. Coalgebra and cooperad

1.3.1. Coalgebra over an operad. By definition a coalgebra over the
operad C is a vector space C equipped with Sn-equivariant maps

C(n)⊗ C → C⊗n, δ ⊗ c 7→ δ(c) = cδ
1 ⊗ · · · ⊗ cδ

n

(we omit the summation symbol on the right hand side) which are compat-
ible with the operad structure of C . In particular, there is a commutative
diagram

C(k)⊗ C(i1)⊗ · · · ⊗ C(ik)⊗ C //

��

C(i1)⊗ C ⊗ · · · ⊗ C(ik)⊗ C

��
C(i1 + · · ·+ ik)⊗ C C⊗i1 ⊗ · · · ⊗ C⊗ik

C(n)⊗ C // C⊗n

In this framework the elements of C(n) are called n-ary cooperations.

1.3.2. Primitive part, connectedness (conilpotency). Let C be
an operad such that C(0) = 0 and C(1) = K id. We suppose that there is
only a finite number of generating cooperations in each degree (i.e. arity) so
that C(n) is finite dimensional. The identity operation id is not considered
as a generating operation. Let C be a C-coalgebra. We define a filtration
on C as follows:

F1C = Prim C := {x ∈ C | δ(x) = 0 for any generating cooperation δ}.

The space Prim C is called the primitive part of C, and its elements are said
to be primitive. Then we define the filtration by:

FrC := {x ∈ C | δ(x) = 0 for any δ ∈ C(n), n > r}.

By definition C is said to be connected, or conilpotent, if C =
⋃

r≥1 FrC.
If the operad C is binary, then this definition is equivalent to

FrC := {x ∈ C | δ(x) ∈ (Fr−1C)⊗|δ| for any generating cooperation δ}.

1.3.3. Cofree coalgebra. By definition a C-coalgebra C0 is said to
be cofree over the vector space V if it is connected, equipped with a map
s : C0 → V and if it satisfies the following universal property:
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any map p : C → V , where C is a connected C-coalgebra, extends
uniquely into a C-coalgebra morphism p̃ : C → C0:

C
p̃ //_______

p
��?

??
??

??
? C0

s
~~}}

}}
}}

}

V

The cofree coalgebra over V is well-defined up to a unique isomorphism.
Observe that we are working within the category of “connected” coalgebras.
If we were working in the whole category of coalgebras, the notion of cofree
object would be different.

Let C = As. The cofree coassociative coalgebra over V is the reduced
tensor module T (V ) equipped with the deconcatenation operation:

δ(v1 . . . vn) =
∑

1≤i≤n−1

v1 . . . vi ⊗ vi+1 . . . vn .

1.3.4. Cooperad and coalgebra over a cooperad. Taking the lin-
ear dual of an operad C gives a cooperad denoted Cc. Let us recall that a
cooperad is a comonoid structure on a Schur functor. As a vector space
Cc(n) = C(n)∗ = Hom(C(n), K). We equip this space with the following
right Sn-module structure:

fσ(µ) := f(µσ−1
),

for f ∈ C(n)∗, µ ∈ C(n) and σ ∈ Sn.
The cooperadic composition is denoted θ : Cc → Cc ◦ Cc. There is an

obvious notion of coalgebra C over a cooperad Cc given by maps:

θ(C) : C −→ Cc(C)∧ :=
∏
n≥1

Cc(n)⊗Sn C⊗n.

It coincides with the notion of coalgebra over an operad when the co-
operad is the linear dual of the operad. Here we use the characteristic zero
hypothesis to identify invariants and coinvariants under the symmetric group
action. We always assume that Cc(0) = 0, Cc(1) = Kid and that C(n) is fi-
nite dimensional. The elements of Cc(1) are called the trivial cooperations
and an element f ∈ Cc(n), n ≥ 2, is called a nontrivial cooperation.

The projection of θ(C) to the n-th component is denoted

θn : C → Cc(n)⊗Sn C⊗n

if no confusion can arise. Let 〈−,−〉 : C(n) ⊗ Cc(n) → K be the evaluation
pairing. The relationship with the notation introduced in 1.3.1 is given by
the commutative diagram
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C(n)⊗ Cc(n)⊗ C⊗n

〈−,−〉⊗id

**TTTTTTTTTTTTTTTTTT

C(n)⊗ C

id⊗θn

66lllllllllllll
// C⊗n

δ ⊗ c 7→ δ(c) = cδ
1 ⊗ · · · ⊗ cδ

n

1.3.5. Lemma. If the coalgebra C is connected (cf. ??), then the map
θ(C) factors through the direct sum:

θ(C) : C −→ Cc(C) := ⊕n≥1Cc(n)⊗Sn C⊗n.

Proof. Since for any x ∈ C there is an integer r so that δ(x) = 0 for any
cooperation δ such that |δ| > r, it follows that there is only finitely many
nonzero component in θ(C)(x). �

1.3.6. Cofree coalgebra and cooperad. From the axioms of a co-
operad it follows that Cc(V ) is the cofree Cc-coalgebra over V .

Explicitly the universal lifting p̃ : C → Cc(V ) induced by p : C → V is
obtained as the composite

C
θ(C)−→ Cc(C)

Cc(p)−→ Cc(V ).

Suppose that the operad C is binary quadratic, generated by operations
µ1, µ2, . . . and relations of the form∑

i,j

αijµi(µj ⊗ Id) =
∑

βijµi(Id⊗ µj), αij , βij ∈ K.

Then a coalgebra C over C is defined by the cooperations µ∗i : C → C ⊗ C
satisfying the relations:∑

i,j

αij(µ∗j ⊗ Id)µ∗i =
∑
i,j

βij(Id⊗ µ∗j )µ
∗
i .

1.3.7. Invariants versus coinvariants. Saying that a binary cooper-
ation δ : C → C ⊗C is symmetric means that its image lies in the invariant
subspace (C ⊗C)S2 . In characteristic zero the natural map from invariants
to coinvariants is an isomorphism (C ⊗ C)S2 ∼= (C ⊗ C)S2 . Therefore, if
C(2) = K (trivial representation), then δ defines a map C → C(2)⊗S2 C⊗2.

1.3.8. Regular cooperad. If the operad C is regular (cf. 1.2.7), then
the equivalence between the two notions of coalgebra does not need the
characteristic zero hypothesis. Indeed, since C(n) = Cn ⊗ K[Sn], we simply
take Cc(n) := C∗n ⊗K[Sn].
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1.4. Prop

1.4.1. Definition. In the algebra framework (i.e. operad framework)
an operation µ can be seen as a box with n inputs and one output:

µ

In the coalgebra framework (i.e. cooperad framework) a cooperation δ
can be seen as a box with 1 input and m outputs:

δ

If we want to deal with bialgebras, then we need boxes with multiple
inputs and multiple outputs:

called multivalued operations or properations. Hence we have to replace
the S-modules by the Sop-S-modules , i.e. families P(m,n) of Sop

m × Sn-
bimodules. There is a way of defining a monoidal product on Sop-S-modules
, denoted �, which extends the monoidal product on S-modules . By def-
inition a prop (also denoted PROP in the literature), is a monoid in the
monoidal category of Sop-S-modules (cf. for instance [71]).

Equivalently it can be defined as a K-linear monoidal category ([P],⊗)
whose objects are [0], [1], . . . , [n], . . ., and such that [1]⊗n = [n]. The rela-
tionship with the preceding definition is given by

P(m,n) = Hom[P]([m], [n]) .

Observe that an operad (resp. a cooperad) is a particular case of prop for
which P(m,n) = 0 when m ≥ 2 (resp. P(m,n) = 0 when n ≥ 2).

There is a notion of gebra over a prop which generalizes the notion of
algebra (resp. coalgebra) over an operad (resp. cooperad). If H is a gebra
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over the prop P, then there exist maps

P(m,n)⊗H⊗n −→ H⊗m .

A type of gebra can be defined by generators and relations. When the
generators are either operations (i.e. elements in P(1, n)) and/or coopera-
tions (i.e. elements in P(m, 1)), the gebras are called generalized bialgebras,
or simply bialgebras if there is no ambiguity with the classical notion of
bialgebras.

Since, in this paper, we are dealing only with generalized bialgebra types
we will not use this general notion of prop, except for terminological use.
However, in the expected generalizations of the results presented here, the
notion of prop will prove central.



CHAPTER 2

Generalized bialgebra and triple of operads

We introduce the notion of generalized bialgebra and its primitive part.
We prove that, under some hypotheses (H0) and (H1) , a generalized bial-
gebra type determines an operad called the primitive operad. Primitive
elements in a generalized bialgebra do not, in general, give a primitive ele-
ment under an operation. However they do when this operation is primitive.
So, the primitive part of a generalized bialgebra has the property of being
an algebra over the primitive operad.

Then we treat the case where the primitive operad is trivial (i.e. Vect).
We prove that under the hypotheses (H0) (distributive compatibility condi-
tion), (H1) (the free algebra is a bialgebra), and (H2iso) (free isomorphic
to cofree), any connected Cc-A-bialgebra is both free and cofree. This is
the thm:rigidity. The key of the proof is the construction of a universal
idempotent eH : H → H whose image is the space of primitive elements
PrimH.

For a given prop Cc-A (satisfying (H0) and (H1) ) whose primitive op-
erad is P, we call (C,A,P) a triple of operads. Our aim is to find sim-
ple conditions under which the “structure theorem” holds for (C,A,P) .
This structure theorem says that any connected Cc-A-bialgebra is isomor-
phic to U(PrimH) as an algebra and is cofree over PrimH as a coalgebra.
These simple conditions are (H0) , (H1) and (H2epi) (the coalgebra map
A(V ) → Cc(V ) is surjective and admits a splitting).

Then we give some immediate consequences of the main theorem.
In this chapter we suppose that the ground field is of characteristic zero.

We indicate in the next chapter how to avoid this hypothesis in certain cases.

2.1. Generalized bialgebra

We consider a certain type of prop generated by operations and cooper-
ations. A gebra over such prop is called a generalized bialgebra.

2.1.1. Compatibility relation and generalized bialgebra. Let A
and C be two algebraic operads. We always assume that there is a finite
number of generating operations in each arity. As a consequence C(n) and
A(n) are finite dimensional vector spaces.

By definition a (Cc, G,A)-bialgebra, or Cc-A-bialgebra for short, also
called generalized bialgebra, is a vector space H which is an A-algebra, a
C-coalgebra, and such that the operations of A and the cooperations of C

23
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acting on H are related by some compatibility relations, denoted G, read
“between” (some equalities involving composition of operations and coop-
erations). This kind of structure is an example of an algebraic prop as
mentioned in 1.4 (cf. for instance [71]). We will not use this general notion
here, though, sometimes, we will say “the prop Cc-A” instead of “the type
of (Cc, G,A)-bialgebras”.

A compatibility relation between the operation µ and the cooperation δ
is distributive, if it is of the form

δ ◦ µ =
∑

i

(µi
1 ⊗ · · · ⊗ µi

m) ◦ ω ◦ (δi
1 ⊗ · · · ⊗ δi

n) (G)

where 
µ ∈ A(n), µi

1 ∈ A(k1), . . . , µi
m ∈ A(km),

δ ∈ C(m), δi
1 ∈ C(l1), . . . , δi

n ∈ C(ln),
k1 + · · ·+ km = l1 + · · ·+ ln = r,
ω ∈ K[Sr].

Hence distributivity means that the composite of an operation and a
cooperation can be re-written as cooperations first and then operations.
Observe that the identity is both an operation and a cooperation.

Hypothesis (H0) : There is a distributive compatibility relation for
any pair (δ, µ) where µ is an operation and δ is a cooperation.

Of course, it suffices to check this hypothesis for µ a generating operation
and δ is a generating cooperation.

For a given relation G we denote by Φ the right-hand side term.

2.1.2. Diagrams. It will prove helpful to write the compatibility rela-
tions as diagrams instead of long algebraic expressions. For instance, for a
binary operation µ and a binary cooperation δ we draw

??
?

��
�

µ , δ
����

====
.

For instance the associativity property of µ, which is written µ(µ(x, y), z) =
µ(x, µ(y, z)) algebraically, becomes

??
?

{{
{{

µ

::
:: =

µ

�����������
::

::
::

::
:

µ

���
CCCC

µ

��� .

Example of a compatibility relation for the pair (δ, µ) with n = 3,m = 4
and r = 8 :
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µ

??? ���

δ
qqq

qqq
��

� MMM
MMM >>

>

=

����
????

mmmmmmm
����
OOOOOO

ω
GGGG wwww

MMMM qqqq
GGGG wwww

Here we have l1 = 1, l2 = 3, l3 = 4; k1 = 2, k2 = 1, k3 = 3, k4 = 2 and
so r = 1 + 3 + 4 = 2 + 1 + 3 + 2. Observe that, in the general case, the
right-hand side term Φ is a sum of such compositions. We split Φ into two
summands

Φ = Φ1 + Φ2,

as follows. The summand Φ1 contains all the terms for which r = n and Φ2

contains all the terms for which r > n see section 2.1 for the meaning of r
and n. There is no term with r < n since we assume that C(0) = 0. The
important point of this splitting is the following: for each summand

(µi
1 ⊗ · · · ⊗ µi

m) ◦ ω ◦ (δi
1 ⊗ · · · ⊗ δi

n)

of Φ2 at least one of the cooperations δi
k is nontrivial (i.e. of arity ≥ 2). In

Φ1 the only cooperation which pops up is the identity.
When both operads A and C are regular and, in the compatibility re-

lations, there is no crossing (in particular the only permutations ω are the
identity), then we say that this is a regular case and that Cc-A is a regular
prop.

2.1.3. Examples of distributive compatibility relations.
2.1.3.1. Example 1. Hopf algebra (classical bialgebra, Hopf relation):
A classical bialgebra is a unital associative algebra equipped with a

counital coproduct ∆ which satisfies the Hopf compatibility relation

∆(xy) = ∆(x)∆(y).

Since, here, we want to work without unit nor co-unit, we work over the
augmentation ideal and with the reduced comultiplication δ defined by

δ(x) := ∆(x)− x⊗ 1− 1⊗ x.

The classical Hopf compatibility relation becomes GHopf :

δ(xy) =

x⊗y+y⊗x+x(1)⊗x(2)y+x(1)y⊗x(2)+xy(1)⊗y(2)+y(1)⊗xy(2)+x(1)y(1)⊗x(2)y(2)

under the notation δ(x) := x(1) ⊗ x(2) (Sweedler notation with summation
sign understood).

Pictorially the relation GHopf reads:
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??? ���

��� ???
= + OOOO

oooo

︸ ︷︷ ︸
Φ1

+
��� ???

??? ���
+

��� ???

???���??? ���
+

��� ???

??? ���
+ ???���

���
???

??? ���
+

��� ??? ��� ???

???���??? ��� ??? ���︸ ︷︷ ︸
Φ2

2.1.3.2. Example 2. Unital infinitesimal bialgebra (Asc-As-bialgebra, u.i.
relation).

The motivation for this case is the tensor algebra that we equip with
the deconcatenation coproduct (instead of the shuffle coproduct). In the
nonunital framework the compatibility relation satisfied by the concatena-
tion product and the (reduced) deconcatenation coproduct is

δ(xy) = x⊗ y + x(1)y ⊗ x(2) + xy(1) ⊗ y(2)

under the notation δ(x) := x(1) ⊗ x(2).
Pictorially we get Gui :

??? ���

��� ???
=

︸ ︷︷ ︸
Φ1

+
��� ???

??? ���
+

��� ???

??? ���︸ ︷︷ ︸
Φ2

See [51] and 4.2 for more details. The prop defined by this type of
generalized bialgebras is regular.

2.1.3.3. Example 3. Bimagmatic bialgebra (Magc-Mag-bialgebra, mag-
matic relation). The motivation for this case is the magmatic algebra
Mag(V ). We equip it with the magmatic coproduct obtained by identi-
fying the classical basis of Mag(K) (planar binary trees) with its dual. In
the nonunital framework the compatibility relation is Gmag :

??? ���

��� ???
=

︸ ︷︷ ︸
Φ1

+ 0

︸︷︷︸
Φ2

This is a regular prop.

2.1.3.4. Example 4. Frobenius algebra (Asc-As-bialgebra, Comc-Com-
bialgebra Frobenius relation):
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??? ���

��� ???
= 0

︸︷︷︸
Φ1

+
��� ???

??? ���︸ ︷︷ ︸
Φ2

and
??? ���

��� ???
= 0

︸︷︷︸
Φ1

+
��� ???

??? ���︸ ︷︷ ︸
Φ2

This is a regular case if the algebra and the coalgebra are not supposed to
be commutative.

These examples and many more will be treated in Chapter 4. See 6.1
for a list of some compatibility relations.

2.2. The primitive operad

The primitive part of a generalized bialgebra is, in general, not stable
under the operations of the operad A. However it may be stable under some
operations. In this section we describe the maximal suboperad P of A such
that the primitive part PrimH of the Cc-A-bialgebra H is a P-algebra. Both
operads A and C are supposed to be finitely generated and connected, that
is A(0) = 0 = C(0).

2.2.1. The primitive part of a bialgebra. LetH be a Cc-A-bialgebra.
By definition the primitive part of the Cc-A-bialgebra H, denoted PrimH,
is

PrimH := {x ∈ H | δ(x) = 0 for all δ ∈ Cc(n), n ≥ 2}.
Hence, if C is generated by δ1, . . . , δk, . . ., then we have

PrimH = Ker δ1 ∩ . . . ∩Ker δk ∩ . . . .

By definition an element µ ∈ A(n) is called a primitive operation if, for
any independent variables x1, . . . , xn, the element µ(x1, . . . , xn) ∈ A(Kx1 ⊕
· · · ⊕Kxn) is primitive. Let (Prim CA)(n) ⊂ A(n) be the space of primitive
operations for n ≥ 1:

(Prim CA)(n) := {µ ∈ A(n) | µ is primitive}.

By functoriality of the hypothesis, (Prim CA)(n) is a sub-Sn-module of A(n)
and so we obtain an inclusion of Schur functors

Prim CA � A.

2.2.2. Theorem (The primitive operad). Let (Cc, G,A) be a type of gen-
eralized bialgebras over a characteristic zero field K. We suppose that the
following hypotheses are fulfilled:

(H0) any pair (δ, µ) satisfies a distributive compatibility relation,
(H1) the free A-algebra A(V ) is equipped with a Cc-A-bialgebra structure
which is functorial in V .
Then the Schur functor P, given by P(V ) := (Prim CA)(V ), is a suboperad
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of A. For any Cc-A-bialgebra H the space PrimH is a P-algebra and the
inclusion PrimH � H is a morphism of P-algebras.

Proof. First we remark that the elements of V ⊂ A(V ) are primitive, hence
V ⊂ P(V ), and id is a primitive operation. Indeed, since the bialgebra
structure of A(V ) is functorial in V , any cooperation δ on A(V ) respects
the degree. For n ≥ 2 the degree one part of A(V )⊗n is trivial. Since V is of
degree one in A(V ), we get δ(V ) = 0. Hence any element of V is primitive
and the functor ι : Id → A factors through P.

To prove that the Schur functor P : Vect → Vect is an operad, it
suffices to show that it inherits a monoid structure P ◦ P → P from the
monoid structure of A. In other words it suffices to show that composition
of primitive operations, under the composition in A, provides a primitive
operation:

P ◦ P��

��

// P��

��
A ◦ A

γ // A
We use the hypothesis of distributivity of the compatibility relation be-

tween operations and cooperations, cf. 2.1.
Let µ, µ1, . . . , µn be operations, where µ ∈ P(n). We want to prove

that the composite µ ◦ (µ1, . . . , µn) is primitive when all the operations are
primitive. It suffices to show that δ ◦ µ ◦ (µ1, . . . , µn) applied to the generic
element (x1, . . . , xs) is 0 for any nontrivial cooperation δ.

By 2.1 we know that δ ◦µ = Φ1 +Φ2, where Φ1 involves only operations,
and Φ2 is of the form

Φ2 =
∑

i

(µi
1 ⊗ · · · ⊗ µi

m) ◦ ω ◦ (δi
1 ⊗ · · · ⊗ δi

n)

where, for any i, at least one of the cooperations δi
k, k = 1, . . . , n, is nontriv-

ial. We evaluate this expression on a generic element (x1, . . . , xn). On the
left-hand side µ(x1, . . . , xn) is primitive by hypothesis, so (δ◦µ)(x1, . . . , xn) =
0. On the right-hand side Φ2(x1, . . . , xn) = 0 because the evaluation of a
nontrivial cooperation on a generic element (which is primitive) is 0. Hence
we deduce that Φ1(x1, . . . , xn) = 0. Therefore the operation Φ1 is 0.

Let us now suppose that, not only µ is primitive, but (µ1, . . . , µn) are
also primitive operations. By the preceding argument we get

Φ2 ◦ (µ1, . . . , µn) =
∑

i

Ψ ◦ (δi
1µ1 ⊗ · · · ⊗ δi

nµn)

where, for any i, at least one of the cooperations δi
k, k = 1, . . . , n is non-

trivial. Hence, summarizing our arguments, the evaluation on (x1, . . . , xs)
give:
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(δ ◦ µ ◦ (µ1, . . . , µk))(x1, . . . , xs) = Φ2 ◦ (µ1, . . . , µn)(x1, . . . , xs)
= Ψ ◦ (δi

1µ
i
1(x1 . . .), . . . , δi

nµi
n(. . . xs))

= 0,

because a nontrivial cooperation applied to a primitive element gives 0.
In conclusion we have shown that, when µ, µ1, . . . , µn are primitive, then

δ ◦ µ ◦ (µ1, . . . , µn)(x1, . . . , xs) = 0.

Hence the operation µ ◦ (µ1, . . . , µn) is primitive. As a consequence the
image of the composite

P ◦ P � A ◦ A γ→ A

lies in P as expected, and so P is a suboperad of A.

From the definition of the primitive part of the Cc-A-bialgebra H it
follows that PrimH is a P-algebra. Since P is a suboperad of A, H is also
a P-algebra and the inclusion PrimH → H is a P-algebra morphism. �

2.2.3. Examples. Theorem 2.2.2 proves the existence of an operad
structure on P = Prim CA, however, even when A and C are described by
generators and relations, it is often a challenge to find a small presentation
of P and then to find explicit formulas for the functor F : A-alg → P-alg.

In the case of the classical bialgebras, the primitive operad is Lie and
the functor F : As-alg → Lie-alg is the classical Liezation functor: F (A) is
A as a vector space and the bracket operation is given by [x, y] = xy − yx,
cf. 4.1.2.

In the case of u.i. bialgebras the primitive operad is V ect and the functor
F is simply the forgetful functor, cf. 4.2.2.

In the magmatic bialgebras case the primitive operad is V ect and the
functor F is simply the forgetful functor, cf. ??.

In the case of Frobenius bialgebras the primitive operad is As (that is
the whole operad) and the functor F is the identity.

We end this section with a result which will prove helpful in the sequel.

2.2.4. Lemma. Let Cc-A be a generalized bialgebra type verifying the
hypotheses (H0) and (H1) of Theorem 2.2.2. Let ϕ(V ) : A(V ) → Cc(V ) be
the unique coalgebra map induced by the projection map proj : A(V ) → V .
Denote by

〈−,−〉 : C(n)× Cc(n) → K
the pairing between the operad and the cooperad.

For any cooperation δ ∈ C(n) the image of (µ;x1 · · ·xn) ∈ A(V ) is

δ(µ;x1 · · ·xn) = 〈δ, ϕn(µ)〉x1 ⊗ · · · ⊗ xn ∈ V ⊗n ⊂ A(V )⊗n.

Proof. Let us recall from 1.3.4 that the map ϕn : A(n) → Cc(n) is given by
the composite
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A(V ) θn−→ Cc(n)⊗Sn (A(V )⊗n)
Id⊗proj⊗n

−−−−→ Cc(n)⊗Sn V ⊗n.

By assumption the bialgebra structure of A(V ) is functorial in V . There-
fore θn(µ ⊗ (x1, . . . , xn)) is linear in each variable xi. Hence it lies in
Cc(n) ⊗Sn A(V )1⊗n = Cc(n) ⊗Sn V ⊗n. So we have proved that θn(µ ⊗
(x1, . . . , xn)) = ϕn(µ)⊗ (x1, . . . , xn).

By definition, the coalgebra structure of A(V )

C(n)⊗A(V ) → A(V )⊗n

is dual to (cf. 1.3.4)

θn : A(V ) → Cc(n)⊗A(V )⊗n

via the pairing 〈−,−〉. Hence we get

δ(µ⊗ (x1, . . . , xn)) = 〈δ, ϕn(µ)〉x1 ⊗ · · · ⊗ xn.

�

2.3. Rigidity theorem

We first study the generalized bialgebra types for which the primitive
operad is trivial. The paradigm is the case of cocommutative commutative
bialgebras (over a characteristic zero field). The classical theorem of Hopf
and Borel [6], can be phrased as follows:

Theorem (Hopf-Borel). In characteristic zero any connected cocommuta-
tive commutative bialgebra is both free and cofree over its primitive part.

In other words such a bialgebra H is isomorphic to S(PrimH) (symmet-
ric algebra over the primitive part), see 4.1.8 for more details. Recall that,
here, we are working in the monoidal category of vector spaces. The classi-
cal Hopf-Borel theorem was originally phrased in the monoidal category of
sign-graded vector spaces cf. 3.5.

Our aim is to generalize this theorem to the Cc-A-bialgebra types for
which P = V ect.

2.3.1. Hypotheses. In this section we make the following assumptions
on the given Cc-A-bialgebra type:

(H0) for any pair (δ, µ) of generating operation µ and generating cooperation
δ there is a distributive compatibility relation,

(H1) the free A-algebra A(V ) is naturally equipped with a Cc-A-bialgebra
structure.

(H2iso) the natural coalgebra map ϕ(V ) : A(V ) → Cc(V ) induced by the
projection proj : A(V ) � V is an isomorphism of S-modules ϕ : A ∼= Cc.
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2.3.2. Proposition. Let Cc-A be a type of bialgebras which verifies hy-
potheses (H0) , (H1) and (H2iso). Then the primitive operad is the identity
operad: P = V ect.

Proof. It follows from (H0) , (H1) and Theorem 2.2.2 that there exists
a primitive operad P. Let µ ∈ P(n) be a nonzero n-ary operation for
n ≥ 2. Since ϕ : P(n) ∼= Cc(n) is an isomorphism by (H2iso), there exists
a cooperation δ ∈ C(n) such that 〈δ, ϕµ〉 = 1. Let V = Kx1 ⊕ · · · ⊕Kxn. It
follows from Lemma 2.2.4 that

δ ◦ µ(x1, . . . , xn) = x1 ⊗ · · · ⊗ xn ∈ V ⊗n ⊂ A(V )⊗n.

Therefore δ ◦ µ 6= 0 and there is a contradiction. Hence we have P(n) = 0
for any n ≥ 2. �

2.3.3. Proposition. Let Cc-A be a type of bialgebras which verifies hy-
potheses (H0) , (H1) and (H2iso). Let H be a Cc-A-bialgebra and let
V → PrimH be a linear map. Then the unique algebra lifting α̃ : A(V ) → H
of the composite α : V → PrimH � H is a bialgebra map.

Proof. First let us observe that, by Proposition 2.3.2, we have PrimA(V ) =
V . Since α̃ is an algebra map by construction, we need only to prove that it
is a coalgebra map. We work by induction on the filtration of A(V ). When x
is primitive, that is x lies in F1A(V ) = V , then α̃(x) = α(x) is primitive by
hypothesis. Let x ∈ A(V ) be an obstruction of minimal filtration degree m.
From the definition of the filtration by the cooperations there exists some
cooperation which provides an obstruction of minimal filtration degree m−1.
But, since for m = 1 there is no obstruction, we get a contradiction and α̃
is a coalgebra morphism. �

2.3.4. The universal idempotent e. Let H be a Cc-A-bialgebra . We
define a linear map ω[n] : H → H for each n ≥ 2 as the following composite

ω[n] : H θn−→ Cc(n)⊗Sn H⊗n
ϕ−1⊗Id∼= A(n)⊗Sn H⊗n γn−→ H.

We define a linear map e : H → H by the formula:

e = eH := (Id− ω[2])(Id− ω[3]) · · · (Id− ω[n]) · · ·
(infinite product). We also denote by eH, or simply e, the surjective map
H � Im(e).

Before stating and proving the main theorem of this section, we prove
some technical results on the universal idempotent e.

We denote by ι̃H : A(PrimH) → H the unique algebra lifting induced
by the inclusion map ιH : PrimH � H.

2.3.5. Proposition. If the Cc-A-bialgebra H is connected, then the map
e = eH : H → H is well-defined and satisfies the following properties:

a) eA(V ) = projV : A(V ) → V ,
b) the image of eH is PrimH,
c) e is an idempotent: e2 = e.
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Proof. Let (δn
i1

, . . . , δn
ik

) be a linear basis of C(n) and let (δ̄n
i1

, . . . , δ̄n
ik

) be the
dual basis (of Cc(n)). We know by Lemma 2.2.4 that for any x ∈ C we have

θn(x) =
∑

j

δ̄n
ij ⊗ δn

ij (x) .

From the connectedness assumption on C (cf. 1.3.2) it follows that, for
any x ∈ C, there exists an integer r such that x ∈ FrH. Hence we have
θn(x) = 0 whenever n > r and therefore ω[n] = 0 on FrH whenever n > r.
As a consequence

e(x) =
(
(Id− ω[2])(Id− ω[3]) · · · (Id− ω[r])

)
(x),

and so e(x) is well-defined.

Proof of (a). We consider the following diagram (where ⊗ means ⊗Sn):

A(n)⊗V ⊗n ϕ⊗Id //
��

��

Cc(n)⊗V ⊗n ϕ−1⊗Id //
��

��

A(n)⊗V ⊗n = //
��

��

A(n)⊗V ⊗n

��

��
A(V )

θn // Cc(n)⊗A(V )⊗nϕ−1⊗Id// A(n)⊗A(V )⊗n γn // A(V )

where the composition in the last line is ω[n]. The left hand side square is
commutative by definition of ϕ, cf. 1.3.4. The middle square is commutative
by construction. The right hand side square is commutative by definition
of the A-structure of A(V ), cf. 1.2.3. As a consequence the whole diagram
is commutative. Since, in the diagram, the lower composite is ω[n] and the
upper composite is the identity, we deduce that the restriction of ω[n] on
the n-th component A(V )n is the inclusion into A(V ). As a consequence
Id − ω[n] is 0 on the n-th component for any n ≥ 2. So e is the projection
on V = A(V )1 parallel to the higher components, since e(x) = x for any
primitive element.

Proof of (b). First we remark that the statement is true for H = A(V )
by virtue of (a). Since α is a bialgebra morphism by Proposition 2.3.3, there
is a commutative diagram:

A(V ) α̃ //

eA(V )

��

H
eH

��
V

α // PrimH
where V = PrimH. Statement (a) implies that eH is surjective.

Proof of (c). From the definition of e we observe that e(x) = x for any
x ∈ PrimH because ω[n](x) = 0 for any n ≥ 2. Since e(x) is primitive by
(b) we get e2 = e.

�
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2.3.6. Corollary. Let Cc-A be a type of generalized bialgebras which
verifies hypotheses (H0) and (H1) . For any connected bialgebra H the natu-
ral algebra map ι̃ : A(PrimH) → H induced by the inclusion ι : PrimH → H
is surjective.

Proof. If x ∈ PrimH = Im ι, then clearly x ∈ Im ι. Let us now work
by induction on the filtration of H. Assume that Fm−1H ⊂ Im ι̃ and let
x ∈ FmH. In the formula

x = e(x) +
( ∑

ω[i](x)−
∑

ω[i] ◦ ω[j](x) + · · ·
)

the first summand e(x) is in PrimH ⊂ Im ι̃ by Proposition 2.3.5. The second
summand is also in Im ι̃ because it is the sum of elements which are products
of elements in PrimH by induction. Therefore we proved x ∈ Im ι̃ for any
x ∈ H, so ι̃ is surjective. �

2.3.7. Theorem (Rigidity theorem). Let Cc-A be a type of generalized
bialgebras (over a characteristic zero field) verifying the following hypothe-
ses:
(H0) the operad C is finitely generated and for any pair (δ, µ) of generating
operation µ and generating cooperation δ there is a distributive compatibility
relation,
(H1) the free A-algebra A(V ) is naturally equipped with a Cc-A-bialgebra
structure,
(H2iso) the natural coalgebra map ϕ(V ) : A(V ) → Cc(V ) is an isomor-
phism.

Then any Cc-A-bialgebra H is free and cofree over its primitive part:

A(PrimH) ∼= H ∼= Cc(PrimH).

Proof. By Proposition 2.3.2 the map ι̃ : A(PrimH) → H is a bialgebra
morphism. On the other hand the projection e : H → PrimH induces a
coalgebra map ẽ : H → Cc(PrimH) by universality (cf. 1.3.3). We will prove
that both morphisms are isomorphisms and that the composite

A(PrimH) ι̃→ H ẽ→ Cc(PrimH)

is ϕ.
By Proposition 2.3.3 and the fact that the idempotent is functorial in

the bialgebra, there is a commutative diagram

H
e

##GGGGGGGGG

A(PrimH) α̃ //

ι̃

99tttttttttt
PrimH

which induces, by universality of the cofree coalgebra, the commutative
diagram:
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H
ẽ

%%KKKKKKKKKK

A(PrimH)
ϕ //

ι̃

99tttttttttt
Cc(PrimH)

Since ϕ is an isomorphism by (H2iso), it follows that ι̃ is injective.
In Proposition 2.3.6 we proved that ι̃ is surjective, therefore e = ι̃ :

A(PrimH) −→ H is a bialgebra isomorphism and, as a consequence, ẽ is
also an isomorphism. �

2.3.8. Corollary. Let H be a connected Cc-A-bialgebra and let H2

denote the image in H of
⊕

n≥2A(n)SnH⊗n. Then one has eH(H2) = 0.

Proof. By the rigidity theorem it suffices to show that this assertion is valid
when H if free. By definition of e we have eA(V ) = projV , whose kernel is
precisely A(V )2. �

2.3.9. Explicit universal idempotent. Let us suppose that A and C
are given by generators and relations, and that one knows how to describe
A(n) and C(n) explicitly in terms of these generators. Then it makes sense
to look for an explicit description of e in terms of the elements of A(n)
and C(n). In the cases already treated in the literature (cf. for instance
[65, 51, 40, 32, 33, 9, 18], the first step of the proof of the rigidity
theorem consists always in writing down such an explicit idempotent. In
the case at hand (i.e. under (H2iso) ) the universal idempotent and the
explicit idempotent coincide because, on A(V ), it is the projection onto V
parallel to the other components ⊕n>1A(n)⊗Sn V ⊗n.

The exact form of the compatibility relation(s) depends on the choice
of the presentation of A and of C. Let us suppose that hypotheses (H0)

, (H1) and (H2iso) hold. Once a linear basis (µ[n]
1 , . . . , µ

[n]
k ) of A(n) is

chosen, then we can choose, for basis of C(n), its dual (δ[n]
1 , . . . , δ

[n]
k ) under

the isomorphism ϕ: 〈ϕ(µ[n]
i ), δ[n]

j 〉 = 1 if i = j and 0 otherwise. Then the

compatibility relation of the pair (δ[n]
j , µ

[n]
i ) is such that Φ1 = idn if i = j

and 0 otherwise.

2.4. Triple of operads

We introduce the notion of triple of operads

(C,A,P) = (C, G,A, F,P)

deduced from the prop Cc-A, that is from a notion of Cc-A-bialgebra.
We construct and study the universal enveloping functor

U : P-alg → A-alg .
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2.4.1. Triple of operads. Let (C, G,A) be a type of generalized bial-
gebras. Suppose that the hypotheses (H0) and (H1) are fulfilled, cf. 2.3.1.
Then it determines an operad P := Prim CA and a functor F : A-alg →
P-alg. Observe that the operad P is the largest suboperad of A such that
any P-operation applied on primitive elements give a primitive element. For
any Cc-A-bialgebra H the inclusion PrimH � H becomes a morphism of
P-algebras. We call this whole structure a triple of operads and we denote
it by

(C, G,A, F,P), or (C, G,A,P), or more simply (C,A,P).

2.4.2. The map ϕ and the hypothesis (H2epi). Since, by hypothe-
sis (H1) , A(V ) is a Cc-A-bialgebra , the projection map projV : A(V ) � V
determines a unique coalgebra map (cf. 2.2.4):

ϕ(V ) : A(V ) → Cc(V ).

We recall from 1.3.6 that ϕ(V ) is the composite

A(V )
θ(A(V ))−→ Cc(A(V ))

Cc(proj)−→ Cc(V ).

We denote by ϕ : A → Cc the underlying functor of S-modules and by
ϕn : A(n) → Cc(n) its degree n component.

We make the following assumption:

(H2epi) the natural coalgebra map ϕ(V ) is surjective and admits a natural
coalgebra map splitting s(V ) : Cc(V ) → A(V ), i.e. ϕ(V ) ◦ s(V ) = IdCc(V ).

2.4.3. Universal enveloping functor. The functor

F : A-alg −→ P-alg

is a forgetful functor in the sense that the composition

A-alg F−→ P-alg −→ Vect

is the forgetful functor A-alg → Vect. In other words, in passing from an
A-algebra to a P-algebra we keep the same underlying vector space. Hence
this forgetful functor has a left adjoint denoted by

U : P-alg −→ A-alg

and called the universal enveloping algebra functor (by analogy with the
classical case U : Lie-alg → As-alg). Let us recall that adjointness means
the following: for any P-algebra L and any A-algebra A there is a binatural
isomorphism

HomA-alg(U(L), A) = HomP-alg(L,F (A)).

2.4.4. Proposition. Let L be a P-algebra. The universal enveloping
algebra of L is given by

U(L) = A(L)/ ∼
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where the equivalence relation ∼ is generated, for any x1, . . . , xn in L ⊂
A(L), by

µP(x1, . . . , xn) ∼ (µA;x1, . . . , xn), µP ∈ P(n),
where µP 7→ µA under the inclusion P(n) ⊂ A(n).

Proof. We have µP(x1, . . . , xn) ∈ L = A(1) ⊗ L and (µA;x1, . . . , xn) ∈
A(n)⊗Sn L⊗n. So the equivalence relation does not respect the graduation.
However, it respects the filtration given by

FnA(V ) :=
⊕
j≤n

A(V )j .

Let us show that the functor L 7→ U(L) := A(L)/ ∼ is left adjoint to
the forgetful functor F . Let A be an A-algebra and let f : L → F (A) be a
P-morphism. There is a unique A-algebra extension of f to A(L) since A(L)
is free. It is clear that this map passes to the quotient by the equivalence
relation and so defines an A-morphism U(L) → A.

In the other direction, let g : U(L) → A be a A-morphism. Then
its restriction to L is a P-morphism L → F (A) by Theorem 2.2.2. It is
immediate to verify that these two constructions are inverse to each other.
Therefore we have an isomorphism

HomA-alg(U(L), A) ∼= HomP-alg(L,F (A)),

which proves that U is left adjoint to F . �

2.4.5. Proposition. Under the hypotheses (H0) , (H1) and (H2epi) the
universal enveloping algebra U(L) of the P-algebra L is a Cc-A-bialgebra .

Proof. Since we mod out by an ideal, the quotient is an A-algebra. By hy-
pothesis the free algebra A(L) is a Cc-A-bialgebra . The coalgebra structure
of U(L) is induced by the coalgebra structure of A(L). For any nontrivial
cooperation δ we have

δ(µP(x1, . . . , xn)) = 0
since µP(x1, . . . , xn) lies in L, and we have

δ(µA(x1, . . . , xn)) = 0

because δ(µA) is a primitive operation. Hence for any cooperation δ we have
δ(relator) = 0. Then δ is also 0 on Ker(U(L) → A(L)) by the distributivity
property of the compatibility relation G. �

2.5. Structure Theorem for generalized bialgebras

In this section we show that any triple of operads (C,A,P), which sat-
isfies (H2epi) , gives rise to a structure theorem analogous to the classical
CMM+PBW theorem valid for the triple (Com,As, Lie) (cf. 4.1.3). It says
that any connected Cc-A-bialgebra is cofree over its primitive part as a coal-
gebra and that, as an algebra, it is the universal enveloping algebra over its
primitive part.
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2.5.1. Theorem (Structure Theorem for generalized bialgebras). Let
Cc-A be a type of generalized bialgebras over a field of characteristic zero.
Suppose that the following hypotheses are fulfilled:
(H0) for any pair (δ, µ) of generating operation µ and generating cooperation
δ there is a distributive compatibility relation,
(H1) the free A-algebra A(V ) is naturally equipped with a Cc-A-bialgebra
structure,
(H2epi) the natural coalgebra map ϕ(V ) : A(V ) → Cc(V ) is surjective and
admits a natural coalgebra map splitting s(V ) : Cc(V ) → A(V ).

Then for any Cc-A-bialgebra H the following are equivalent:
a) the Cc-A-bialgebra H is connected,
b) there is an isomorphism of bialgebras H ∼= U(PrimH),
c) there is an isomorphism of connected coalgebras H ∼= Cc(PrimH).

We need a construction and two Lemmas before entering the proof of
the structure Theorem. We first introduce a useful terminology.

2.5.2. The versal idempotent e. The choice of a coalgebra splitting
s permits us to construct a functorial idempotent e = eH : H → H as
follows. First we define ω[n] : H → H as the composite

ω[n] : H θn−→ Cc(n)⊗Sn H⊗n s(n)⊗Id−→ A(n)⊗Sn H⊗n γn−→ H.

We define a linear map e : H → H by the formula:

e = (Id− ω[2])(Id− ω[3]) · · · (Id− ω[n]) · · · .

By the very same argument as in the proof of Proposition 2.3.5 we show
that e is well-defined though it is given by an infinite product.

We will show below that e is an idempotent (e2 = e). We call it the
versal idempotent (and not universal) since it depends on the choice of a
splitting. Different choices lead to different idempotents.

2.5.3. Lemma. We assume hypotheses (H0) , (H1) and (H2epi). Let
δc
1, . . . , δ

c
k be a basis of Cc(n). Let µi := s(V )(δc

i ) ∈ A(n) and complete it
into a basis µ1 . . . , µk, µk+1, . . . , µl of A(n).

Then one has:{
δi ◦ µi = id + higher terms,
δj ◦ µi = 0 + higher terms, when j 6= i,

where “higher terms” means a sum of some multivalued operations which be-
gin with at least one nontrivial cooperation (Φ2-type multivalued operations).

Proof. Graphically, for n = 2 the statement that we want to prove is
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= or 0 +

∑ xxxxx
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GGGG wwww

MMMM wwww

Since we are interested only in the Φ1-type part, it is sufficient to com-
pute the value of δj◦µi on the generic element x1 · · ·xn ofA(Kx1⊕· · ·⊕Kxn).
By Proposition 2.2.4 we get

δj ◦ µi(x1 · · ·xn) = 〈δj , ϕn(µi)〉x1 ⊗ · · · ⊗ xn,
= 〈δj , δ

c
i 〉x1 ⊗ · · · ⊗ xn,

= (id or 0)x1 ⊗ · · · ⊗ xn,

depending on j = i or j 6= i. �

2.5.4. Lemma. If the Cc-A-bialgebra H is connected, then the map e =
eH : H → H is well-defined and satisfies the following properties:

a) the image of e is PrimH,
b) e is an idempotent.

Proof. First we observe that, if x is primitive, then e(x) = x. Indeed, it
is clear that ω[n](x) = 0 for any n ≥ 2 since ω[n] begins with a nontrivial
cooperation. Hence we have e(x) = Id(x) = x.

Proof of a). We will prove by induction on n that the image of FnH by
e lies in PrimH. It is true for n = 1, since F1H = PrimH. We use the
notation of the previous Lemma.

For n = 2 we have

θ2(x) =
i=k∑
i=1

µi ◦ δi(x).

On F2H we have e = Id − ω[2]. We want to prove that for any x ∈ F2H
we have (Id− ω[2])(x) ∈ F1H = PrimH, that is, for any δj ∈ C(2), δj(x) =
δjω

[2](x).
We have {

δjω
[2](x) =

∑k
i=1 δjµiδi(x),

= δi(x) + higher terms,
by Lemma 2.5.3. So we have

δj(Id− ω[2])(x) = δj(x)− δj(x) +
∑

δi ◦ higher terms(x).

Since x ∈ F2H, we have δi ◦ higher terms(x) = 0 and therefore δj(Id −
ω[2])(x) = 0 as expected.

A similar proof shows that x ∈ FnH implies (Id − ω[n])(x) ∈ Fn−1H.
Hence, putting all pieces together, we have shown that x ∈ FnH implies
e(x) ∈ F1H = PrimH. The expected assertion follows from the connected-
ness of H.
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Proof of b) Since e(x) = x when x is primitive and since e(x) ∈ Prim (x)
for any x ∈ H, it is clear that e ◦ e = e. �

2.5.5. Proof of the structure Theorem. (a) ⇒ (b). Since the func-
tor U : P-alg → A-alg is left adjoint to the forgetful functor F : A-alg →
P-alg, the adjoint to the inclusion map ι : PrimH → H is an algebra map
α : U(PrimH) → H.

Let us show that α is surjective. If x ∈ H is in PrimH, then obviously
it belongs to the image of α. For any x ∈ H there is an integer m such that
x ∈ FmH by the connectedness hypothesis. We now work by induction and
suppose that α is surjective on Fm−1H. From the formula

x = e(x) +
∑

i

ω[i](x)−
∑
i,j

ω[i]ω[j](x) + · · ·

and the fact that ω[n] consists in applying a cooperation first and then an
operation, it follows that x − e(x) is the sum of products of elements in
Fm−1H. From the inductive hypothesis we deduce that x − e(x) is in the
image of α. Since e(x) ∈ PrimH by Proposition 2.3.4 we have proved that
any x ∈ H belongs to the image of α and so α is surjective.

Let us show that α is injective. The inductive argument as in the proof
of Theorem 2.3.7 shows the injectivity of α.

In conclusion the algebra map α : U(PrimH) → H is surjective and
injective, so it is an isomorphism. It is also a coalgebra map by 2.3.3 and
2.4.5, so it is a bialgebra isomorphism.

(b) ⇒ (c). Let L be a P-algebra. Since U is left adjoint to the functor
F : A-alg → P-alg the map ϕ(L) : A(L) → Cc(L) factors through U(L):

A(L)
ϕ(L)) //

## ##GGGGGGGG
Cc(L)

U(L)

;;wwwwwwwww

We first show that the map U(L) → Cc(L) is an isomorphism when
L is a free P-algebra. In this case we know that Prim U(L) = L since
U(P(V )) = A(V ) (left-adjointness), and PrimA(V ) = P(V ) by definition
of P. Since U(L) is a Cc-A-bialgebra and Prim U(L) = L by Proposition
2.4.5, there is a surjection eU(L) : U(L) → L. By the universality of the
cofree coalgebra there is a lifting ẽU(L) and so a commutative diagram:

U(L)
ẽU(L) //

!! !!DD
DD

DD
DD

Cc(L)

||||zzzzzzzz

L
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Observe that the composite A(L) � U(L) → Cc(L) is the map ϕ(L),
hence ẽU(L) is compatible with the filtration.

We claim that the associated morphism gr(U(L)) → grCc(L) = Cc(L) on
the graded objects is an isomorphism. Indeed, the quotient FnU(L)/Fn−1U(L)
consists in moding out A(L)1⊕· · ·⊕A(L)n by the subspace Jn generated by
the elements µP(x1 . . . xn)−µA(x1 . . . xn) and by A(L)1⊕· · ·⊕A(L)n−1. On
the other hand, the quotient FnCc(L)/Fn−1Cc(L) is simply Cc(L)n, which is
the quotient of A(L)n by the homogeneous degree n part of Jn. These two
quotients are the same because the relations
– u + v ∼ 0 and v ∼ 0,
and
– u ∼ 0 and v ∼ 0,
are equivalent (recall that µP(x1 . . . xn) is in degree 1).

Let us now prove that U(L) → Cc(L) is an isomorphim for any Lie
algebra L. Let

L1 → L0 � L → 0
be a free resolution of L. Since the morphism U(V ) → Cc(V ) is natural in
V , the isomorphisms for L0 and L1 imply the isomorphism for L.

The implication (c) ⇒ (a) is a tautology. �

2.5.6. Good triple of operads. If a triple of operads (C,A,P) sat-
isfies the structure theorem, then we call it a good triple of operads. So
Theorem 2.5.1 shows that, if the triple of operads (C,A,P) satisfies the
hypothesis (H2epi) , then it is a good triple. Conversely, if the triple is
good, then the coalgebra isomorphism A(V ) ∼= Cc(P(V )) composed with
the projection induced by proj : P(V ) → V defines A(V ) → Cc(V ), which
is a splitting of ϕ(V ). Hence the hypothesis (H2epi) is fulfilled. Therefore
the triple (C,A,P) is good if and only if the hypothesis (H2epi) is fulfilled.

2.5.7. About the verification of the hypotheses.
2.5.7.1. (H0). The hypothesis (H0) (distributivity of the compatibility

relation) is, in general, immediate to check by direct inspection. Observe
that, when the operads C and A are given by generators and relations, it
suffices to check the compatibility relations on the pairs (δ, µ) when they are
both generators.

2.5.7.2. (H1). In order to verify hypothesis (H1) there are, essentially,
three strategies.
(1). When the free algebra A(V ) is known explicitly (for instance a basis of
A(n) is identified with some explicit combinatorial objects), then one can
usually construct explicitly the generating cooperations and check that they
satisfy the relations of Cc and the compatibility relations.
(2). Another strategy consists in taking advantage of the distributivity of
the compatibility relations. One constructs inductively the cooperations on
A(V ) = ⊕n≥1A(V )n by sending V to 0 and then by using the compatibility
relations. Then one checks, again inductively, that they satisfy the relations
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of Cc and the compatibility relations. This is very close to the techniques
used in “rewriting systems”, cf. citeLafont97 and 4.8.
(3). The third strategy consists in viewing a given triple as a quotient of a
good triple. It is given in Proposition 3.1.1 below.

2.5.7.3. (H2epi). The map ϕ is in fact a map of S-modules . Therefore
it sends the degree n part of A to the degree n part of Cc. So in order to
check surjectivity, it is sufficient to compute the composite δ ◦ µ for any
pair (δ, µ) where µ is a linear generator of A(n) and δ is a linear generator
of Cc(n). From this functorial property of ϕ we deduce that the element
δ ◦ µ(x1, . . . , xn) is of the form

∑
σ aσ(xσ(1), . . . , xσ(n)). Let a(µ, δ) be the

coefficient aid of this sum. The map ϕ is

ϕn(µ) =
∑

δ

a(µ, δ)δ

where the sum is over a basis of Cc(n).

2.6. A few consequences of the structure theorem

We derive a few consequences of the structure theorem, namely by ap-
plying it to the free algebra A(V ). It gives some criterion to check if a given
triple of operads has some chances to be good.

2.6.1. From the structure theorem to the rigidity theorem. The
rigidity theorem is a Corollary of the structure theorem. Indeed, if the hy-
pothesis (H2iso) holds, then (H2epi) holds (unique choice for the splitting)
and the primitive operad is V ect by Proposition 2.3.2. Hence the triple
(C,A, V ect) is a good triple and the functor F is simply the forgetful func-
tor to Vect. The left adjoint functor of F is the free A-algebra functor, so
item (b) in the structure theorem becomes H ∼= A(PrimH). So H is free
and cofree over its primitive part, as claimed in Theorem 2.3.7.

2.6.2. Dualization. Observe that if (C,A, V ect) is a good triple of
operads, then so is the triple (A, C, V ect). The compatibility relation(s)
is obtained by dualization, i.e. reading G upsidedown. The new map ϕ is
simply the linear dual of the former one.

2.6.3. Theorem. If (C,A,P) is a good triple of operads over the field K,
then there is an equivalence of categories between the category of connected
(i.e. conilpotent) Cc-A-bialgebras and the category of P-algebras:

{con. Cc-A-bialg}
U
�

Prim
{P-alg} .

Proof. We already know that if L is a free P-algebra, i.e. L = P(V ), then
Prim U(L) = Prim U(P(V )) = PrimA(V ) = P(V ) = L. By the same
argument as in the proof of (b) ⇒ (c) it is true for any P-algebra L.
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In the other direction, let H be a connected Cc-A-bialgebra . By item
(b) in Theorem 2.5.1 we have an isomorphism H ∼= U(PrimH). �

2.6.4. Proposition. If (C,A,P) is a good triple of operads, then there
is an isomorphism of Schur functors:

A ∼= Cc ◦ P .

Proof. It suffices to apply the structure theorem to the free algebra A(V ),
which is a Cc-A-bialgebra by hypothesis. It is connected because A(1) = K.

Since the composite of left adjoint functors is still left adjoint, we have
U(P(V )) = A(V ). Hence, by the structure Theorem 2.5.1, we get the
expected isomorphism. �

2.6.5. Corollary. If (C,A,P) is a good triple of operads, then there is
an identity of formal power series:

fA(t) = fC(fP(t)) = t.

Proof. Since Cc(n) is finite dimensional, the two Schur functors C and Cc

have well-defined generating series which are equal. The formula follows
from Proposition 2.6.4 and the computation of the generating series of a
composite of Schur functors, cf. 1.1.3. �

2.6.6. Searching for good triples. Observe that this relationship
entertwining the generating series gives a criterion to the possible existence
of a good triple. Indeed, let us suppose that we start with a forgetful functor
A-alg F→ P-alg and we would like to know if it can be part of a good triple
(C, G,A, F,P). Then, there should exist a power series c(t) =

∑
n≥1

c(n)
n! tn

where the coefficients c(n) are integers (and c(1) = 1), such that fA(t) =
c(fP(t)).

For instance, if (Com,A,P) is a good triple of operads and if B-alg →
A-alg is a forgetful functor, then there is no good triple for the composite
B-alg → P-alg (unless B = A).

2.6.7. Frobenius character. There is an invariant which is finer than
the generating series. It consists in taking the Frobenius character series of
the Schur functor. Indeed the isomorphism

A(n) ∼=
∑

i1+···+ik=n

Cc(k)⊗Sk
IndSn

Si1
+···+Sik

(
P(i1)⊗ · · · ⊗ P(ik)

)
implies that the composite of the Frobenius characters of Cc and P is the
Frobenius character of A.



CHAPTER 3

Applications and variations

In this chapter we give a few applications of the structure theorem,
some generalizations and we give some general constructions to obtain a
good triple of operads. Concrete examples will be given in the next chapter.

One of the most easy ways of constructing a good triple from an existing
triple is to mod out by primitive relators. It gives rise to many examples.

There are some techniques to obtain triples of the form (As,A,Prim AsA).
For instance one can assume that A is an Hopf operad, that is, the Schur
functor is a functor to coalgebras. Another assumption is to suppose that
there exists an associative operation verifying some good properties (multi-
plicative operad).

In the regular case, we do not need the characteristic zero hypothesis to
get a good triple, so, under this hypothesis, the structure theorem is valid
in a characteristic free context.

We show how Koszul duality should help to construct good triples out
of existing ones.

Our basic category is the category Vect of vector spaces. It is a sym-
metric monoidal category and this is exactly the structure that we used.
So there is an immediate extension of our main theorem to any symmetric
monoidal category, for instance the category of sign-graded vector spaces
and the category of S-modules .

We can reverse the roles of algebraic and coalgebraic structures. Then
the primitives are replaced by the indecomposables and we obtain a “dual”
result.

The classical result (PBW+CMM) admits a characteristic p variant.
We expect similar generalizations in characteristic p and we explain how to
modify the operad framework to do so.

We mention briefly the relationship with rewriting systems in computer
sciences.

Finally, we give an application to a natural problem in representation
theory of the symmetric groups.

3.1. Quotient triple

3.1.1. Proposition. Let (C,A,P) be a good triple of operads and let
r ∈ P(n), (n ≥ 2), be a nontrivial primitive operation. Then the triple of
operads (C,A/((r)),P/(r)), where (r), resp.((r)), is the operadic ideal in P,
resp. A, generated by r, is a good triple. As a consequence, there is a good

43
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triple

(C,A/((P̄)), V ect).

Proof. First we check immediately that the type of algebras C-A/((r)) sat-
isfies the hypotheses (H0) , (H1) and (H2epi). Indeed, the operad A/((P̄))
is a quotient of A, so the compatibility relations are the same. The space
A(V ) is a Cc-coalgebra and we mod out by elements which give 0 under
any nontrivial cooperation since they are primitive. So (A/((r)))(V ) is a
Cc-coalgebra. As for hypothesis (H2epi) , it suffices to take the composite
Cc → A(V ) � (A/((r)))(V ) to get a splitting. This argument proves the
Proposition by applying Theorem 2.5.1.

When moding out by all the generating operations of P the mapA/((P)) →
Cc becomes an isomorphism and so, by Theorem 2.3.7, we get the last state-
ment. �

3.1.2. Quotient triple of a triple. The triple (C,A/((P̄)), V ect) as-
sociated to the triple (C,A,P) is called its quotient triple.

3.1.3. Remark. Observe that in many cases, included the classical
case, the S-module isomorphism C ∼= A/((P̄)) is in fact an operad isomor-
phism. But this not always true, see for instance examples 4.3.1 and 4.5.2.

3.1.4. Theorem (Analogue of the classical PBW Theorem). Let (C,A,P)
be a good triple of operads, and let Z := A/((P̄)) be the quotient operad of A
by the ideal generated by the primitive operations. Then, for any P-algebra
L there is an isomorphism of Z-algebras:

Z(L) → gr U(L) .

Proof. First we observe that gr U(L) is a Z-algebra by direct inspection of
the structure of U(L), cf. 2.4.4. The composite map

L → A(L) → U(L) → gr1U(L) ⊂ U(L)

induces a Z-algebra map Z(L) → gr U(L). The commutativity of the
diagram

Z(L) //

%% %%KKKKKKKKKK
gr U(L)

����

// Cc(L)

yyyysssssssssss

L

shows that the composite of the horizontal arrows is the isomorphism Z(L) →
Cc(L) coming from the good triple (C,Z, V ect). Since gr U(L) → Cc(L) is
an isomorphism (cf. the proof of (b) ⇒ (c) in Theorem 2.5.1), we are done.
�
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3.1.5. Remark on PBW. In the classical case (Com,As, Lie) (see 4.1
for details) the isomorphism of commutative algebras

S(g) → gr U(g)

is often called the Poincaré-Birkhoff-Witt theorem (cf. [29]).

3.1.6. Split triple of operads. Let (C,A,P) be a triple of operads
and let Z := A/((P̄)) be the quotient operad. We say that (C,A,P) is a split
triple if there is a morphism of operads s : Z � A such that the composite
Z � A � Z is the identity and the map s(V ) : Z(V ) → A(V ) is a Cc-Z-
bialgebra morphism. For instance the triple (Com,As, Lie) is not split, and
the triple (As,OU, Mag) (cf. 5) admits two different splittings.

3.1.7. Proposition. Let (C,A,P) be a split triple of operads. Then any
Cc-A-bialgebra H is also a Cc-Z-bialgebra and the idempotent eH is the same
in both cases.

Proof. Since, by hypothesis, the splitting s induces a morphism of bialgebras
on the free algebras, it induces a morphism of props Cc-Z → Cc-A, or,
equivalently, a functor between the category of bialgebras Cc-A-bialg and
Cc-Z-bialg. In the construction of the idempotent eH for Cc-A-bialgebras we
need a coalgebra splitting Cc → A. We can take the composite Cc ∼= Z s→ A.
From the construction of eH (cf. 2.3.4) it follows that we get precisely the
universal idempotent for Cc-Z-bialgebras. �

3.2. Hopf operad, multiplicative operad

Under some reasonable assumption on an operad P we can show that
the tensor product of two P-algebras is still a P-algebra. As a consequence
one can equip the free P-algebra with a coassociative cooperation. It gives
rise to a notion of Asc-P-bialgebras. Quite often the assumption are easy to
verify and show immediately that hypothesis (H1) is fulfilled. We present
two cases: Hopf operad and multiplicative operad.

3.2.1. Hopf operad. By definition a Hopf operad is an operad P in
the category of coalgebras (cf. [58] for instance). Moreover we assume that
P(0) = K, so P-algebras have a unit (the image of 1 ∈ P(0)). Explicitly
the spaces P(n) are coalgebras, i.e. they are equipped with a coassociative
map ∆ : P(n) → P(n) ⊗ P(n), compatible with the operad structure. For
instance a set-theoretic operad gives rise to a Hopf operad by using the
diagonal on sets. As a consequence the tensor product of two P-algebras A
and B is a P ⊗P-algebra (where P ⊗P is the Hadamard product ) and the
map ∆ makes it into a P-algebra.

An algebra over P in this framework is a coalgebra equipped with a
coalgebra map P(A) → A. Hence we get a notion of Asc-P-bialgebra. In
particular the free P-algebra is a Asc-P-bialgebra since there is a unique
P-algebra morphism

P(V ) → P(V )⊗ P(V )
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which extends v 7→ v ⊗ 1 + 1 ⊗ v. Several examples of triples of operads
(As,P,Prim AsP) are of this type (see Chapter 4).

3.2.2. Multiplicative operad [45]. Let P be a binary quadratic reg-
ular operad which contains an associative operation, denoted ∗ (this hypoth-
esis is sometimes called “split associativity” as ∗ comes, often, as the sum of
the generating operations). We call it a multiplicative operad . We suppose
that there is a partial unit 1 in the following sense. We give ourselves two
maps

α : P(2) → P(1) = K and β : P(2) → P(1) = K
which give a meaning to x◦1 and 1◦x for any ◦ ∈ P(2) and any x ∈ A = P-
algebra:

x ◦ 1 = α(◦)x 1 ◦ x = β(◦)x.

We always assume that 1 is a two sided unit for ∗ (i.e. α(∗) = 1 = β(∗)).
Observe that we do not require 1 ◦ 1 to be defined. Let A+ = A ⊕ K1A

be the augmented algebra. For two P-algebras A and B the augmentation
ideal of A+ ⊗B+ is

A⊗K1B ⊕ K1A ⊗B ⊕ A⊗B

The Ronco’s trick consists in constructing an operation ◦ on the augmenta-
tion ideal as follows:

(a⊗ b) ◦ (a′ ⊗ b′) = (a ∗ a′)⊗ (b ◦ b′)

whenever all the terms are defined, and (when b = 1B = b′)

(a⊗ 1B) ◦ (a′ ⊗ 1B) = (a ◦ a′)⊗ (1A⊗B).

Observe that the relations of P are verified for any a, a′ ∈ A and b, b′ ∈ B.
If they are also verified in all the other cases, then the choice of α and β is
said to be coherent with P.

It was proved in [45] that, under this coherence assumption, the free P-
algebra P(V ) is equipped with a coassociative coproduct δ. It is constructed
as follows. By hypothesis there is a P-algebra structure on

P(V )⊗K1 ⊕ K1⊗ P(V ) ⊕ P(V )⊗ P(V )

We define ∆ from P(V ) to the P-algebra above as the unique P-algebra
map which sends v ∈ V to v ⊗ 1 + 1 ⊗ v. The projection to P(V ) ⊗ P(V )
gives the expected map δ.

From this construction we get a well-defined notion of Asc-P-bialgebra
for which the hypotheses (H0) and (H1) are fulfilled. Of course, this con-
struction can be re-written in the nonunital context. But, then, the formulas
are more complicated to handle (see 4.1.1).

In many cases we get a good triple of operads (As,P,Prim AsP), see
[45]. Several cases will be described in Chapter 4. The interesting point
point about these examples is that P(V ) is a Hopf algebra in the classical
sense. In fact many combinatorial Hopf algebras can be constructed this
way.
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A refinement of this method gives triples of the form (A,A, V ect), cf. 4.6.3.

3.3. The regular case

In the preceding chapter we always made the hypothesis: K is a charac-
teristic zero field. The reason was the following. In the interplay between
operad and cooperad we had to identify invariants and coinvariants, cf. 1.3.4.
There is an environment for which this hypothesis is not necessary, it is the
regular case (for the characteristic p case, see 3.7).

We suppose that C and A are regular operads (cf. 1.2.7) and that, in the
compatibility relations, the only permutation which is involved is the iden-
tity (cf 2.1.2). Such a type is called a regular type of generalized bialgebras
(regular prop). In hypothesis (H2epi) we suppose that there is a cooperad
splitting of the form Cc

n → An, i.e. not involving the symmetric group. This
is called the regular version of (H2epi) . Then the very same proof as in
the structure Theorem can be performed and we get the following result.

3.3.1. Theorem (Structure Theorem for regular generalized bialgebras).
Let Cc-A be a regular type of generalized bialgebras over a field K. Suppose
that the hypotheses (H1) and regular (H2epi) are fulfilled.

Then the good triple of operads (C,A,P) has the following property.

For any Cc-A-bialgebra H the following are equivalent:
a) the Cc-A-bialgebra H is connected,
b) there is an isomorphism of bialgebras H ∼= U(PrimH),
c) there is an isomorphism of connected coalgebras H ∼= Cc(PrimH).

The following rigidity theorem is a Corollary of the Structure Theorem
in the regular case.

3.3.2. Theorem (Rigidity Theorem, regular case). Let Cc-A be a regular
type of generalized bialgebras over a field K. Suppose that the hypotheses
(H1) and (H2iso) are fulfilled.

Then any Cc-A-bialgebra H is free and cofree over its primitive part:

A(PrimH) ∼= H ∼= Cc(PrimH).

Explicit examples will be given in the next section.

3.4. Koszul duality and triples

We provide a method to construct good triples of operads by using the
Koszul duality for operads.

3.4.1. Koszul duality of quadratic operads. Let us recall briefly
from [26] and [22] that any quadratic operad P gives rise to a dual operad
P !. It is also quadratic and (P !)! = P. For instance As! = As,Com! =
Lie,Mag! = Nil. When the operad P is binary, then the generating series
of P and of P ! are related by the formula:

fP
!
(−fP(−t)) = t,
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(see [26], or the Appendix of [44] for a brief account of Koszul duality of
operads). When the operad P is k-ary, one needs to introduce the skew-
generating series

gP(t) :=
∑
n≥1

(−1)k dimP((k − 1)n + 1)
n!

t((k−1)n+1).

If the operad P is Koszul, then Vallette proved in [72]) the formula:

fP
!
(−gP(−t)) = t.

In the most general case (generating operations of any arity), it is best to
work with a series in two variables, cf. [72] for details.

3.4.2. Extension of operads. Let us say that the sequence of operads

P � A � Z

is an extension of operads if � is a monomorphism, � is an epimorphism,
and if there is an isomorphism of S-modules (which is part of the structure)
A ∼= Z ◦ P such that IdVect � Z induces P � A, and P � IdVect induces
A � P. Under this hypothesis we say that A is an extension of Z by P.
For instance As and Pois are both extensions of Com by Lie.

In many cases where all the operads are quadratic we can check that

Z ! � A! � P !

is also an extension of operads (Exercise: show that it works at the level of
generating functions). For instance the classical extension

Lie � As � Com

is self-dual.
Suppose that (C,A,P) is a good triple and that P ! is part of a good

triple (Q!,P !, V ect). We recall that we have also a good triple (C,Z, V ect).
Then comparing the generating functions we can expect the existence of a
good triple of the form:

(Q!,A!,Z !).

In the case where Q = P and C = Z, we would get the triple

(P !,A!, C!).

Similar structures have been studied in [19].

3.5. Graded version

We briefly explore the change of symmetric monoidal category.
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3.5.1. Graded vector space. Until now our ground category was the
category of vector spaces over a field. The only property of Vect that we
used is that it is a symmetric monoidal category. Hence we can replace it by
any other symmetric monoidal category, like, for instance, the category of
graded vector spaces (more accurately we should say the sign-graded vector
spaces). Recall that the objects are the graded vector spaces {Vn}n≥0 and
the symmetric isomorphism (twisting map) is given by

τ(x⊗ y) = (−1)|x||y|y ⊗ x ,

where x and y are homogeneous elements of degree |x| and |y| respectively.

3.5.2. Structure theorem in the graded case. The main result
(cf. 2.5.1) holds in this more general setting because, as already said, our
proofs use only the symmetric monoidal properties of Vect. The result is
not significantly different when the operads are regular (since the symmetric
group does not play any role). However it is different for general operads
since, for instance, the free commutative algebra over an odd-degree vector
space is the exterior algebra instead of the symmetric algebra. In particular
when the vector space is finite dimensional, the exterior algebra is finite
dimensional, while the symmetric algebra is not.

In algebraic topology it is the sign-graded framework which is relevant.

3.5.3. Structure theorem for S-modules. The category of S-modules
can be equipped with a symmetric product as follows. Let M and N be two
S-modules . We define their tensor product M ⊗N by

(M ⊗N)(V ) := M(V )⊗N(V ) .

Here we use the interpretation of S-modules in terms of endofunctors of V ect
(Schur functors, see 1.1). We let the reader write the theorem explicitly.

3.5.4. Generalization to colored operads. A category is a gener-
alization of a monoid in the sense that the composition of two elements is
defined only if certain conditions are fulfilled (source of one = target of the
other). Similarly there is a generalization of the notion of operads in which
the composition of operations is defined only if some conditions are fulfilled
among the operations. This is called a colored operad or a multicategory.
One should be able to write a structure theorem in this framework. See [69]
for an example.

3.5.5. Generalization of the regular case. In the regular case we
don’t even use the symmetry properties of the monoidal category Vect.
Hence we can extend our theorem to other monoidal categories. For instance
we can replace (Vect,⊗) by the category of S-modules equipped with the
composition product ◦ , cf. 1.1.2. Then, there are notions of (generalized)
algebras, coalgebras and bialgebras in this context and we can extend our
main theorem. For instance the analogue of associative algebra (resp. as-
sociative coalgebra) is the notion of operad (resp. cooperad). So a unital
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infinitesimal bioperad B is an S-module B equipped with an operad struc-
ture γ : B ◦ B → B and a cooperad structure θ : B → B ◦ B satisfying the
following compatibility relation

θγ = −idB◦B + (idB ◦ θ)(γ ◦ idB) + (θ ◦ idB)(idB ◦ γ)

which is nothing but the unital infinitesimal relation 2.1.3.2. Observe that
we denoted the composition of functors by concatenation (for instance θγ)
to avoid confusion with the composition of S-modules . The generalization
of our theorem says that the only example of unital infinitesimal bioperad
is the free operad.

Observe that there is no such object as Hopf bioperad since the monoidal
category (S−modulesS)-modules, ◦) is not symmetric.

We plan to come back to this notion of generalized bioperads in a sub-
sequent paper.

3.6. Coalgebraic version

Let Cc-A be a bialgebra type. The notion of “indecomposable” is dual
to the notion of “primitive”. By definition, the indecomposable space of a
Cc-A-bialgebra H is the quotient

IndecH := H/H2

where H2 is the image of
⊕

n≥2A(n)⊗Sn H⊗n in H under γ. Observe that
it depends only on the A-algebra structure of H. In general IndecH is not
a Cc-coalgebra, but we will construct a quotient cooperad of Cc on which
IndecH is a coalgebra.

3.6.1. Proposition. Suppose that the bialgebra type Cc-A satisfies (H0)
and

(H1c) the cofree Cc-coalgebra Cc(V ) is equipped with a natural Cc-A-
bialgebra structure.

Then the S-module Qc(V ) = IndecACc(V ) := Cc(V )/Cc(V )2 inherits a
cooperad structure from Cc.

Moreover for any Cc-A-bialgebra H the indecomposable space IndecH is
a Qc-coalgebra, and the surjection H → IndecH is a Qc-coalgebra morphism.

Proof. It suffices to dualize the proof of 2.5.1. �

Example. Let Asc-Com be the type “commutative (classical) bialgebras”.
Then Q = Lie and the surjection Asc → Liec is simply the dual of the
inclusion Lie → As. Explicitly the coLie structure of the coassociative
coalgebra (C, δ) is given by (id− τ)δ where τ is the twisting map.

Since Qc is a quotient of Cc, there is a forgetful functor

F c : Cc-coalg → Qc-coalg

which admits a right adjoint, that we denote by

F c : Qc-coalg → Cc-coalg.
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So now we have all the ingredients to write a structure theorem in the
dual case .

Observe that U c(C) acquires a Cc-A-bialgebra structure from the Cc-A-
bialgebra structure of Cc(V ).

The dual PBW has been proved in [56]. See also [23] §4.2 for the dual
PBW and dual CMM theorems. The Eulerian idempotent has been worked
out in this context by M. Hoffman [31]

3.7. Generalized bialgebras in characteristic p

First, observe that in the regular framework (cf. 3.3), there is no charac-
teristic assumption, therefore the structure theorem holds in characteristic
p. In [12] and [57] the authors give a characterisic p version of the PBW
theorem and of the CMM theorem. So there is a characteristic p version
of the structure theorem for cocommutative (classical) bialgebras. But the
notion of Lie algebra has to be replace by the notion of p-restricted Lie
algebras.

3.7.1. p-restricted Lie algebras. By definition a p-restricted Lie al-
gebra is a Lie algebra over a characteristic p field which is equipped with a
unary operation x 7→ x[p] called the Frobenius operation. It is supposed to
satisfy all the formal properties of the iterated bracket

[x, [x, [ · · · , [x︸ ︷︷ ︸
p times

,−] · · · ]]]

in an associative algebra (cf. loc.cit.).
In the PBW and CMM theorems the forgetful functor is replaced by the

functor As-alg → p-Lie-alg where the bracket is as usual and the Frobenius
is the iterated bracket as above. Since this functor admits a left adjoint U all
the ingredients are in place for a structure theorem in that case (cf. loc.cit.).

3.7.2. Operads in characteristic p. Since the Frobenius is not a lin-
ear operation (it is polynomial of degree p), a p-restricted Lie algebra is not
an algebra over some operad in the sense of 1.2.2. Note that, in our defi-
nition of operad, we defined the Schur functor P(V ) :=

⊕
n P(n) ⊗Sn V ⊗n

by using the coinvariants. If, instead, we had taken the invariants, then
there would be no difference in characteristic 0, but it would be different in
characteristic p. In short, there is a way to handle p-restricted Lie algebras
in the operad framework by playing with the two different kinds of Schur
functors. In fact B. Fresse showed in [21] how to work with any operad
in characteristic p along this line. It gives rise to the notion of P-algebra
with divided symmetries. For instance, in the commutative case, it gives
rise to the divided power operation. If the operad is regular the notions of
P-algebra and P-algebra with divided symmetries are equivalent.
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3.7.3. Structure theorem in characteristic p. Now we have all the
ingredients to write down a structure theorem for generalized bialgebras in
characteristic p, including a toy-model. I conjecture that such a theorem
exists. In fact some cases, with C = As or Com, have already been proved,
see [60] and the references in this paper.

Observe that there are two levels of difficulty. First write the general
theorem and its proof, second handle explicit cases. Recall for instance
that, for Poisson algebras, we have to work with two divided operations:
the Frobenius operation and the divided power operation. The relationship
between these two are quite complicated formulas (cf. [23]).

3.8. Relationship with rewriting systems

The rewriting theory aims at computing a monoid (or a group) start-
ing from a presentation. The idea is to write any relation under the form
u1 . . . uk = v1 . . . vl and to think of it as a “rewriting procedure” u1 . . . uk →
v1 . . . vl. In this setting one can define the notions of convergence, conflu-
ence, noetherianity, critical peak. There is a way to extend the rewriting
theory to operads and even props, see Y. Lafont [36]. For instance a dis-
tributive compatibility relation like δ ◦µ = Φ (cf. 2.1.1 can be thought of as
a rewriting procedure δ ◦ µ → Φ. The aim is to find a reduced form for the
multivalued operations. In this setting Hypothesis (H1) can be proved by
verifying that the rewriting systems is convergent (cf. loc.cit.). See 4.8 for
an example taken out of [35].

3.9. Application to representation theory

Given an S-module A and a sub S-module P it is usually difficult to
decide whether there exists an S-module Z such that A = Z ◦P (recall that
in this framework the composition ◦ is called the plethysm). We will show
that, in certain cases, we can give a positive answer to this question.

3.9.1. Proposition. Let A be an operad and let P be a suboperad of A.
The following condition is sufficient to ensure that there is an isomorphism
of S-modules A ∼= Z ◦ P, where Z := A/(P).

Condition: there exists an operad C and a good triple of operads (C,A,P)
giving rise to the inclusion P ⊂ A.

Proof. If (C,A,P) is good, then so is (C,A/(P), V ect) = (C,Z, V ect) by
Proposition 3.1. So we get isomorphisms of S-modules Cc ∼= Z as S-modules
and A ∼= Cc ◦ P (Proposition 2.6.4), which imply A ∼= Z ◦ P. �



CHAPTER 4

Examples

The problem of determining if a triple of operads (C,A,P) , or more
accurately (C, G,A, F,P), is good may crop up in different guises. Most of
the time the starting data is the prop (C, G,A), that is the type of bialgebras.
Verifying (H0) is, most of the time, immediate by direct inspection. The
first problem is to verify the hypotheses (H1) and (H2epi) . The second
problem (and often the most difficult) is to find a small presentation of the
operad P = Prim CA and make explicit the functor F : A-alg → P-alg.

Another kind of problem is to start with a forgetful functor F : A-alg →
P-alg (i.e. P is a suboperad of A) and to try to find C and G so that
(C, G,A, F,P) is a good triple.

In both problems Corollary 2.6.5 relating the generating series of C,A
and P is a good criterion since the knowledge of two of the operads deter-
mines uniquely the generating series of the third.

As said in the introduction the (uni)versal idempotent e is a very pow-
erful tool. In Chapter 3 it is constructed abstractly. To get it explicitly in
a given example is often a challenge.

In this chapter we present several concrete cases. For many of them,
existing results in the literature permits us to prove the hypotheses and
to find a small presentation of the primitive operad. In some cases the
technique is very close to the rewriting techniques in computer sciences.
Proposition 3.1.1 is quite helpful in proving that (C,A,Prim CA) is a good
triple since it reduces several cases to one case. For instance when A is
generated by one operation, it suffices to prove the hypotheses for the prop
Cc-Mag.

We have seen that any good triple (C,A,P) gives rise to a triple of
the form (C,Z, V ect) (the quotient triple) by moding out by the primitive
operad P. We put in the same section the triples which have the same
quotient triple (with a few exceptions).

We give only the proofs of the statements which are not already in the
literature.

In section 1 we treat (Com,Com, V ect) with Hopf compatibility relation.
It includes the classical case (Com,As, Lie) as well as (Com,Parastat,Nil)
and (Com,Mag, Sabinin). The rigidity theorem for (Com,Com, V ect) is
the Hopf-Borel theorem and the structure theorem for (Com,As, Lie) is the
union of the CMM theorem and the PBW theorem. We prove that, in this

53
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classical case, the universal idempotent in precisely the well-known Eulerian
idempotent.

In section 2 we treat (As,As, V ect) with unital infinitesimal compat-
ibility relation. It includes the case (As,Mag,MagFine) and the case
(As, 2as,B∞) which is important because the category of cofree Hopf alge-
bras is equivalent to the category of B∞-algebras. The triple (As,OU, Mag)
where a OU -algebra is a space equipped with two associative operations sat-
isfying further the relation

(x � y) ≺ z = x � (y ≺ z),

should be in this section. It will be treated in full detail in the next Chapter.
In section 3 we treat (As,Zinb, V ect) with semi-Hopf compatibility re-

lation. It includes the case (As,Dipt,B∞) and the case (As,Dend, brace)
(due to Maŕıa Ronco [68]) which is important since it permits us to unravel
the structure of a free brace algebra.

In section 4 we treat (Lie, Lie, V ect). It should be noted that the no-
tion of Liec-Lie-bialgebra is NOT what is commonly called Lie bialgebras
because the compatibility relation is different. In particular there is a non-
trivial Φ1 term in our case (cf. 2.1.2).

In section 5 we treat (NAP, PreLie, V ect) due to M. Livernet [40] and
the triple (NAP, Mag, Prim NAP Mag).

In section 6 we describe several cases of the form (A,A, V ect).
In section 7 we describe the interchange bialgebra case. Here the operads

are no more quadratic but cubic.
In section 8 we treat a case where the generating operations and coop-

erations are of arity k.
When there is no Φ1 term in the compatibility relation(s) (see 2.1.2),

every operation is a primitive operation and there is nothing to prove. This
is why we do not treat the Frobenius case.

4.1. Hopf algebras: the classical case

In this section we treat several triples admitting the triple (Com,Com, V ect)
(Hopf-Borel) as a quotient triple. It includes the classical case (Com,As, Lie).
The compatibility relation in these cases is the Hopf relation.

4.1.1. The Hopf compatibility relation. First, let us recall some
elementary facts about unital associative algebras. The tensor product A⊗B
of the two unital associative algebras A and B is itself a unital associative
algebra with product given by (a ⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ and with unit
1A ⊗ 1B. The free unital associative algebra over V is the tensor algebra

T (V ) = K⊕ V ⊕ · · · ⊕ V ⊗n ⊕ · · ·

whose product is the concatenation:

(v1 · · · vp)(vp+1 · · · vn) = v1 · · · vn.
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Let V → T (V )⊗ T (V ) be the map given by v 7→ v ⊗ 1 + 1⊗ v. Since T (V )
is free, there is a unique extension as algebra homomorphism denoted

∆ : T (V ) −→ T (V )⊗ T (V ) .

It is easy to show, from the universal property of the free algebra, that ∆ is
coassociative and cocommutative. The fact that ∆ is an algebra morphism
reads

∆(xy) = ∆(x)∆(y) ,

which is the classical Hopf compatibility relation. Hence the tensor algebra,
equipped with this comultiplication, is a classical cocommutative bialgebra.
The map ∆ can be made explicit in terms of shuffles, cf. [42].

In order to work in a non-unital framework, we need to restrict ourself
to the augmentation ideal of the bialgebra and to introduce the reduced
coproduct δ

δ(x) := ∆(x)− x⊗ 1− 1⊗ x .

As already mentioned (cf. 2.1.3.1) the compatibility relation between the
product µ and the coproduct δ becomes GHopf :

δ(xy) = x⊗ y + y⊗ x + δ(x)(y⊗ 1 + 1⊗ y) + (x⊗ 1 + 1⊗ x)δ(y) + δ(x)δ(y),

where xy = µ(x, y). Diagrammatically it reads:

??? ���

��� ???
= + OOOO

oooo +
��� ???

??? ���
+

��� ???

???���??? ���
+

��� ???

??? ���
+ ???���

���
???

??? ���
+

��� ??? ��� ???

???���??? ��� ??? ���
.

Observe that this is a distributive compatibility relation.

4.1.2. The triple (Com,As, Lie). By definition a Comc-As-bialgebra
is (in the non-unital framework) a vector space H equipped with a (nonuni-
tal) associative operation µ, a commutative associative comultiplication δ,
satisfying the Hopf compatibility relation GHopf . Obviously hypothesis (H0)
is fulfilled. As we already mentioned in 2.1.3.1 a Comc-As-bialgebra is equiv-
alent to a classical bialgebra1 by the map H 7→ H+ := K1⊕H.

The free As-algebra over V is the reduced tensor algebra

As(V ) = T (V ) = V ⊕ · · · ⊕ V ⊗n ⊕ · · ·
equipped with the concatenation product. From the property of the tensor
algebra recalled above, it follows that T (V ) is a cocommutative bialgebra,
in other words it satisfies the hypothesis (H1). We claim that the operad
P deduced from Theorem 2.5.1 is the operad Lie of Lie algebras. Indeed
it is well-known that Prim T (V ) = Lie(V ), cf. for instance [75] for a short
proof.

The map ϕ : As → Comc is given by x1 · · ·xn 7→ x1 · · ·xn in degree n,
where on the left side we have a noncommutative polynomial, and on the

1Here we only deal with connected bialgebras for which an antipode always exists.
So there is an equivalence between connected bialgebras and Hopf algebras
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right side we have a commutative polynomial. In other words ϕn : As(n) →
Comc(n) is the map K[Sn] → K, σ 7→ 1K. This map has a splitting in char-
acteristic zero, given by x1 · · ·xn 7→ 1

n!

∑
σ∈Sn

σ(x1 · · ·xn). It is a coalgebra
morphism for the coalgebra structure of T (V ) = As(V ) constructed above.
Hence the hypothesis (H2epi) is fulfilled. So the triple (Com,As, Lie) is
a good triple of operads and the structure Theorem holds for this triple.
Translated in terms of unital-counital cocommutative bialgebras it gives:

4.1.3. Theorem (CMM+PBW). Let K be a field of characteristic zero.
For any cocommutative bialgebra H the following are equivalent:
a) H is connected,
b) there is an isomorphism of bialgebras H ∼= U(PrimH),
c) there is an isomorphism of connected coalgebras H ∼= Sc(PrimH).

Here the functor U is the classical universal enveloping algebra func-
tor from the category of Lie algebras to the category of unital associative
algebras (or more accurately classical cocommutative bialgebras).

Of course, this is a classical result. In fact (a) ⇒ (b) is the Cartier-
Milnor-Moore Theorem which first appeared in Pierre Cartier’s seminar lec-
tures [12]2 and was later popularized by Milnor and Moore in [57].

Then (b) ⇒ (c) is, essentially, the Poincaré-Birkhoff-Witt Theorem. In
fact it is slightly stronger since it not only gives a basis of U(g) from a
basis of the Lie algebra g but it also provides an isomorphism of coalgebras
U(g) → Sc(g). This is Quillen’s version of the PBW theorem, cf. [65]
Appendix B. In this appendix Dan Quillen gives a concise proof of the PBW
Theorem and of the CMM Theorem. The idempotent that he uses in his
proof is the Dynkin idempotent

x1 . . . xn 7→
1
n

[. . . [[x1, x2], x3], . . . , xn].

We will show that the idempotent given by our proof (cf. 2.3.5) is the
Eulerian idempotent (cf.[66, 42]).

Theorem 3.1.4 applied to the triple (Com,As, Lie) gives the most com-
mon version of the PBW Theorem:

gr U(g) ∼= S(g).

Observe that the implication (a) ⇒ (c) had been proved earlier by Jean
Leray (cf. [38]), who had shown that the associativity hypothesis of the
product was not necessary for this implication (see 4.1.12 for an explanation
in terms of triples of operads).

For historical notes on the PBW theorem one may consult the paper by
P.-P. Grivel [29].

2In this paper a bialgebra is called a “hyperalgebra”.
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4.1.4. Eulerian idempotent. [42] Let H be a connected cocommu-
tative bialgebra (nonunital framework). The convolution of two linear maps
f, g : H → H is defined as

f ? g := µ ◦ (f ⊗ g) ◦ δ .

It is known that δ can be made explicit in terms of shuffles. By definition
the (first) Eulerian idempotent e(1) : H → H is defined as

e(1) := log?(uc + J) = J − J?2

2
+

J?3

3
− . . .

where J = IdH. For H = T (V ), the nonunital tensor algebra, e(1) sends
V ⊗n to itself and we denote by e

(1)
n : V ⊗n → V ⊗n the restriction to V ⊗n.

Explicitly, it is completely determined by an element e
(1)
n =

∑
σ aσσ ∈ Q[Sn]

since, by the Schur Lemma,

e(1)
n (x1, . . . , xn) =

∑
σ

aσ(xσ(1) · · ·xσ(n)),

for some coefficients a(σ) (here we let σ act on the right).
The higher Eulerian idempotents are defined as

e(i) :=
(e(1))?i

i!
.

From the relationship between the exponential series and the logarithm se-
ries, it comes:

Idn = e(1)
n + · · ·+ e(n)

n .

4.1.5. Proposition. For any connected cocommutative bialgebra H the
versal idempotent e is equal to the Eulerian idempotent:

e := Πn≥2(Id− ω[n]) =
∑
n≥1

(−1)n J?n

n
=: e(1) .

Proof. It suffices to prove this equality for H = T (V ). From the definition
of ω[n] we get its expression in terms of shuffles. We get

ω[n] = e(n) + e(n+1) + · · · .

Hence we deduce

Id− ω[n] = e(1) + · · ·+ e(n−1) .

Since the idempotents e(i) are orthogonal to each other (cf. [42]) we get

e = Πn≥2(Id− ω[n]) = e(1)(e(1) + e(2))(e(1) + e(2) + e(3))(· · · ) · · · = e(1).

�
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4.1.6. Explicit formula for the PBW isomorphism. Since the
Eulerian idempotent can be computed explicitly in the symmetric group
algebra, one can give explicit formulas for the isomorphism

T (V ) ∼= Sc(Lie(V )) .

In low dimension we get:
x = x,

xy =
1
2
[x, y] +

1
2
(xy + yx),

xyz =
1
6
([[x, y], z] + [x, [y, z]])

+
1
4
(
x[y, z] + [y, z]x + y[x, z] + [x, z]y + z[x, y] + [x, y]z

)
+

1
6

∑
σ∈S3

σ(xyz) .

4.1.7. Remark. In the case of classical bialgebras, not necessarily co-
commutative, i.e. Asc-As-bialgebra with G=GHopf , the hypotheses (H0) and
(H1) are also fulfilled. However the condition (H2epi) is not fulfilled, since
the map ϕ : T (V ) → T

c(V ) factors through S
c(V ). This is due to the

cocommutativity of the coproduct on the free associative algebra.

4.1.8. The triple (Com,Com, V ect). As mentioned in 3.1 if we mod
out by relators in Lie, then we get a new triple of operads. For instance if
we mod out by Lie (cf. 1.2.4 for the notation), then we get a good triple of
operad:

(Com,Com, V ect).
In the unital framework the free commutative algebra Com(V ) is the

symmetric algebra S(V ), which is the polynomial algebra K[x1, . . . , xr] when
V = Kx1 ⊕ . . . ⊕ Kxr. Similarly the cofree coalgebra Comc(V ) can be
identified with K[x1, . . . , xr] and the coproduct is given by ∆(xi) = xi⊗ 1+
1⊗ xi. Under these identifications the map ϕ(V ) : Com(V ) → Comc(V ) is

not the identity, but is given by xi1
1 · · ·xir

r 7→ x
i1
1

i1! · · ·
xir

r
ir! . This phenomenon

can be phrased differently as follows. On the vector space of polynomials in
one variable one can put two different commutative algebra structures:

(I) xpxq := xp+q,

(II) xpxq :=
(

p + q

p

)
xp+q,

where
(
p+q

p

)
is the binomial coefficient (p+q)!

p!q! . Of course, over a characteristic
zero field, they are isomorphic (xn 7→ xn

n! ). By dualization we obtain two
coalgebra structures (Ic) and (IIc). In order to make K[x] into a Hopf
algebra we have to combine either (I) and (IIc) or (II) and (Ic).
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The rigidity theorem for the cocommutative commutative connected
bialgebras is the classical Hopf-Borel theorem recalled in the introduction
of 2.3. Let us recall that the classical version (the one which is used in
algebraic topology) is phrased in the graded framework (cf. 3.5). Here we
gave the claim in the nongraded framework.

4.1.9. The triple (Com,Parastat,NLie). Let us start with the triple
(Com,As, Lie) and quotient by the relation

[[x, y], z] = 0.

Since the elements [[x, y], z] are primitive we can apply Proposition 3.1. The
new algebra type, that is associative algebras for which this relation holds, is
called parastatistics algebras. The primitive type is simply nilpotent algebras
whose product is antisymmetric. The structure theorem was proved in [47]
(it follows easily from the classical one). This triple is interesting on two
grounds. First, the parastatistics algebras (and their sign-graded version)
appear naturally in theoretical physics. Second, the parastatistics operad is
interesting from a representation theory point of view because Parastat(n)
is the sum of one copy of each irreducible type of Sn-representations.

4.1.10. The triple (Com,Mag, Sabinin). Let Comc-Mag be the mag-
matic cocommutative bialgebra type. The compatibility relation is the Hopf
compatibility relation. Let us recall that a magmatic algebra is a vector
space equipped with a binary operation, without further hypothesis. This
is the nonunital case. In the unital case we assume further that there is an
element 1 which is a unit on both sides. It is easy to show that the free
magmatic algebra can be equipped with a cocommutative cooperation as
follows. Working in the unital framework we put on the tensor product of
two unital magmatic algebras a unital magmatic structure by

(a⊗ b) · (a′ ⊗ b′) = (a · a′)⊗ (b · b′) and 1A⊗B = 1A ⊗ 1B.

So the free unital magmatic algebra Mag+(V ) tensored with itself is still
a unital magmatic algebra. There is a unique morphism Mag+(V ) →
Mag+(V )⊗Mag+(V ) which extends the map

V → Mag+(V )⊗Mag+(V ), v 7→ v ⊗ 1 + 1⊗ v.

This cooperation is immediately seen to be coassociative and cocommu-
tative. Restricting the whole structure to the augmentation ideal gives a
Comc-Mag structure on the free magmatic algebra Mag(V ). Hence hy-
pothesis (H1) holds. Explicitly the cooperation δ is given by

δ(t; v1, . . . , vn) =
n−1∑
i=1

∑
σ

(tσ(1); vσ(1), . . . , vσ(i))⊗ (tσ(2); vσ(i+1), . . . , vσ(n))

where σ is an (i, n − i)-shuffle and the trees tσ(1) and tσ(2) are subtrees of t

corresponding to the shuffle decomposition (cf. [33]).
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A coalgebra splitting s to ϕ(V ) is obtained by

s(v1 . . . vn) =
∑
σ∈Sn

1
n!

(combl
n; vσ(1) . . . vσ(n))

where combl
n is the left comb (cf. 5.1.2). So Hypothesis (H2epi) is fulfilled.

Hence the structure theorem holds for Comc-Mag-bialgebras. It was first
proved by R. Holtkamp in [33]. Earlier studies on this case can be found in
the pioneering work of M. Lazard [37] in terms of “analyseurs” and also in
[24].

4.1.11. Sabinin algebras. The problem is to determine explicitly the
primitive operad Prim ComMag. Results of Shestakov and Urmibaev [70]
and of Pérez-Izquierdo [62] show that it is the Sabinin operad. A Sabinin
algebra can be defined as follows (there are other presentations). The gen-
erating operations are:

〈x1, . . . , xm; y, z〉, m ≥ 0,

Φ(x1, . . . , xm; y1, . . . , yn), m ≥ 1, n ≥ 2,

with symmetry relations

〈x1, . . . , xm; y, z〉 = −〈x1, . . . , xm; z, y〉,

Φ(x1, . . . , xm; y1, . . . , yn) = Φ(ω(x1, . . . , xm); θ(y1, . . . , yn)), ω ∈ Sm, θ ∈ Sn,

and the relations are

〈x1, . . . , xr, u, v, xr+1, . . . , xm; y, z〉 − 〈x1, . . . , xr, v, u, xr+1, . . . , xm; y, z〉

+
r∑

k=0

∑
σ

〈xσ(1), . . . , xσ(k); 〈xσ(k+1), . . . , xσ(r);u, v〉, xr+1, . . . , xm; y, z〉

where σ is a (k, r − k)-shuffle,

Kx,y,z

(
〈x1, . . . , xr, x; y, z〉+

r∑
k=0

∑
σ

〈xσ(1), . . . , xσ(k); 〈xσ(k+1), . . . , xσ(r); y, z〉, x〉
)

= 0

where Kx,y,z is the sum over all cyclic permutations.
Observe that there is no relation between the generators 〈−;−〉 and

the generators Φ. The functor F : Mag-alg → Sabinin-alg is constructed
explicitly in [70] (also recalled in [62]). For instance 〈y, z〉 = −y · z + z · y
and (x · y) · z− (x · y) · z = −1

2〈x; y, z〉+Φ(x; y, z). It is easy to check that in
Mag(V ) the two operations “bracket” and “associator” are not independent
but related by the nonassociative Jacobi identity(cf. [33]):

[[x, y], z] + [[y, z], x] + [[z, x], y] =
∑

sgn(σ)σ∈S3

σ as(x, y, z) .

In the preceding presentation it corresponds to the cyclic relation with r = 0.
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So, there is a good triple of operads

(Com,Mag, Sabinin) .

As a consequence, the generating series is fSab(t) = log(1 + (1/2)(1 −√
1− 4t)) and the dimension of the space of n-ary operations is

dim Sab(n) = 1, 1, 8, 78, 1104, . . . .

4.1.12. Remarks. Since the Comc-Mag-bialgebra type satisfies (H0)
, (H1) and (H2epi) , any connected bialgebra is cofree. This result has
been proved earlier by Jean Leray in [38]. See also [59, 20] for a different
generalization.

4.1.13. Quotients of Asc-Mag. The classical type (Com,As, Lie) is
a quotient of the triple (Com,Mag, Sabinin) (quotient by the associator,
which is a primitive element and apply Proposition 3.1). In fact we have
the following commutative diagram of operads:

Sabinin // //

��

Lie // //

��

NLie // //

��

V ect

��
Mag // // As // // Parastat // // Com

It may be worth to study other quotients of Mag by an ideal J (for
instance PreLie since 〈x; y, z〉 is the pre-Lie relator) and find a small pre-
sentation of the quotient Sabinin/(J). Some results in this direction have
been done for Malcev-algebras in [63]. It fits into this framework, since the
Malcev relators:

x · y − y · x
((x · y) · z) · t + (x · (y · z)) · t− (x · y) · (z · t) + x · ((y · z) · t) + x · (y · (z · t))
are primitive in Mag(V ).

4.1.14. Poisson bialgebras. Let us mention that there is a notion of
Hopf-Poisson algebras (see for instance [19]), that is Asc-Pois-bialgebra and
also cocommutative Hopf-Poisson algebras, that is Comc-Pois-bialgebra.
The compatibility relation for the pair (δ, ·) (where a · b is the commutative
operation) is Hopf and the compatibility relation for the pair (δ, [ ]) (where
[ ] is the Lie bracket) is given by

<< ��

[ ]

uuu
u III
I

=
uuu

u III
I

zz
z DD
D

???���<< �� 666 ���
[ ] ·

+
zz

z DD
D

uuu
u III
I

???���666 ���
<< ��

· [ ]
.

As in the classical case there is a good triple (Com,Pois, Lie) since it is
well-known that the free Poisson algebra Pois(V ) is precisely Com(Lie(V )).
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4.1.15. A conjectural triple (Com, ??, preLie). In [14] F. Chapoton
and M. Livernet showed that the symmetric algebra over the free pre-Lie al-
gebra in one generator can be identified with the dual of the Connes-Kreimer
Hopf algebra [16]. The study of this case, as done in [30] for instance, sug-
gests the existence of a triple of the form (Com,A, preLie) where the operad
A is the unknown. It is expected that A(K) ∼= H∗

CK and that this triple
admits (Com,As, Lie) as a quotient. It is also interesting to remark that
dimA(n) should be equal to (n + 1)n−1 which is also dim Park(n) (parking
functions).

4.2. Unital infinitesimal bialgebras

In this section we study some triples (As,A,P) which are over (As,As, V ect)
with compatibility relation the unital infinitesimal relation.

4.2.1. The unital infinitesimal compatibility relation. On the
tensor algebra T (V ) the product is the concatenation product µ. Let us
equip it with the deconcatenation coproduct given by

∆(v1 · · · vn) :=
n∑

i=0

v1 · · · vi ⊗ vi+1 · · · vn.

The pair (∆, µ) does not satisfy the Hopf compatibility relation, but does
satisfy another relation:

∆(xy) = −x⊗ y + x(1) ⊗ x(2)y + xy(1) ⊗ y(2),

where ∆(x) = x(1) ⊗ x(2).
Since we want to work in the nonunital framework, we need to introduce

the reduced coproduct δ defined by the equality ∆(x) = x⊗1+1⊗x+δ(x).
The compatibility relation for the pair (δ, µ) is the unital infinitesimal

(u.i.) compatibility relation Gui:

δ(xy) = x⊗ y + δ(x)(1⊗ y) + (x⊗ 1)δ(y),

Diagrammatically it reads (cf. 2.1 example 2):

??? ���

��� ???
= +

��� ???

??? ���
+

��� ???

??? ���
.

4.2.2. The triple (As,As, V ect). By definition a unital infinitesimal
bialgebra ((Asc-As)-bialgebra) is a vector space equipped with an associative
operation and a coassociative cooperation satisfying the u.i. compatibility
relation. Hypothesis (H0) is obviously fulfilled. From the above discussion
it follows that hypothesis (H1) is also fulfilled.

The next Proposition shows that hypothesis (H2iso) is fulfilled. So we
get the rigidity theorem for the triple (As,As, V ect). It was first announced
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in [49] and proved in [51] where details can be found. Let us just recall that
the universal idempotent in this case is given by the geometric series:

e =
∑
n≥1

(−1)n−1id?n

where ? is the convolution product f ? g := µ ◦ (f ⊗ g) ◦ δ.

4.2.3. Proposition. The map ϕ(V ) : T (V ) → T (V )c is induced by the
identification of the generator of Asn with its dual.

Proof. The prop Asc-As is regular and Asn is one-dimensional. Let µn

denote the generator of Asn, so µn(x1, . . . , xn) = x1 . . . xn. In order to
compute its image by ϕ it suffices to compute δn ◦ µn(x1, . . . , xn) where
δn is the dual of µn, that is the generator of Asc

n (cf. 2.5.7). From the
compatibility relation we get

δn ◦ µn(x1, . . . , xn) = x1 ⊗ . . .⊗ xn ∈ V ⊗n ⊂ As(V )⊗n

where V = Kx1⊕· · ·⊕Kxn. Hence ϕ(V )(µn) = δn and ϕ is an isomorphism.
�

4.2.4. The triple (As,Mag,MagFine). This triple has been studied
and proved to be good in [34]. The compatibility relation is Gui. The
coproduct δ on Mag(V ) = ⊕n≥1K[Yn−1] ⊗ V ⊗n, where Yn is the set of
planar binary trees with n internal vertices (cf. 5.1.2, can be constructed
as follows. Let t be p.b. trees whose leaves are numbered from left to right
beginning at 0. We cut the tree along the path going from the ith vertex
(standing between the leaves i − 1 and i) to the root. It gives two trees
denoted ti(1) and ti(2).We have

δ(t; v0 · · · vn) =
n∑

i=1

(ti(1); v0 · · · vi−1)⊗ (ti(2); vi · · · vn) .

Hypothesis (H1) can be proved either by using the explicit form of δ or by
an inductive argument as explained in 2.5.7. The map ϕ(V ) : Mag(V ) →
Asc(V ) sends t to the generator 1n of Asc

n. We choose the splitting sn :
Asn → Magn given by s(1n) = combl

n (left comb). So Hypothesis (H2epi)
is fulfilled and we have a good triple of operads:

(As,Mag,Prim AsMag) .

It is proved in [34] that the primitive operad Prim AsMag is generated by
n−2 operations in arity n and that they satisfy no relations. So this operad is
a magmatic operad (free operad). Since the dimension of (Prim AsMag)n is
the Fine number, it is called the magmatic Fine operad , denoted MagFine.
So there is a good triple of operads

(As,Mag,MagFine) .
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4.2.4.1. Relationship with previous work. As a byproduct of the struc-
ture theorem for Asc-Mag-bialgebras we have that a connected coassociative
algebra equipped with a magmatic operation satisfying the u.i. relation is
cofree. Dually we have the following: an associative algebra equipped with
a comagmatic operation, which is connected and satisfies the u.i. relation is
free. A very similar result has been shown by I. Berstein in [5], who proved
that a cogroup (in fact comonoid) in the category of associative algebras in
free. M. Oudom remarked in [59] that coassociativity of the cooperation is
not even necessary to prove the freeness. The difference with our case is in
the compatibility relation. See also [4] for similar results in this direction.

4.2.4.2. Quotient triples. Of course the quotient triple of (As,Mag,MagFine)
is (As,As, V ect). It would be interesting to find a small presentation of the
intermediate quotient by the pre-Lie relator

〈x; y, z〉 := (x · y) · z − x · (y · z)− (x · z) · y + x · (z · y) ,

which gives the good triple(
As, PreLie, MagFine/(〈x; y, z〉)

)
.

4.2.5. The triple (As, 2as,B∞). (cf. [51]). By definition a 2-associative
algebra or 2as-algebra for short, is a vector space A equipped with two asso-
ciative operations denoted a · b and a ∗ b. In the unital case we assume that
1 is a unit for both operations. By definition a Asc-2as-bialgebra is a 2as-
algebra equipped with a coassociative cooperation δ, whose compatibility
relations are as follows:

a) · and δ satisfy the u.i. compatibility relation (cf. 4.2.2),
b) ∗ and δ satisfy the Hopf compatibility relation (cf. 4.1).
The free 2as-algebra can be explicitly described in terms on planar trees

and on can show that it has a natural Asc-2as-bialgebra structure. Hy-
potheses (H0) , (H1) and (H2epi) are also easy to check (cf. loc.cit.) and
so there is a good triple of operads (As, 2as, Prim As2as). It has been first
proved in [51] where the primitive operad Prim As2as has be shown to be
the operad of B∞-algebras. This is a very important operad since there is
an equivalence between the category of B∞-algebras and the category of
cofree Hopf algebras.

Let us give some details on this equivalence. By definition a B∞-algebra
(cf. [25, 51]) is a vector space A equipped with (p + q)-ary operations Mpq

satisfying some relations. Let T c(A) be the cofree counital coalgebra on A.
Let

∗ : T c(A)⊗ T c(A) → T c(A)

be the unique coalgebra morphism which extends the operations Mpq : A⊗p⊗
A⊗q → A. Then the relations satisfied by the operations Mpq imply that
(T c(A), ∗, deconcatenation) is a cofree Hopf algebra. In the other direction,
any cofree Hopf algebra determines a B∞-structure on its primitive part.
The details are to be found in [51].
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Hence we deduce that

(As, 2as,B∞)

is a good triple of operads (first proved in loc.cit.). One of the outcome of
this result was to give an explicit description of the free B∞-algebra. Indeed
the operad 2as can be explicitly described in terms of planar rooted trees.
Thanks to this description and the structure theorem, one can describe the
operad B∞ in terms of trees (cf. loc.cit.). Observe that moding out by the
primitives gives the triple (As,As, V ect).

Since the functor As-alg → 2as-alg admits an obvious splitting (forgetful
map), we can use it to construct the splitting of ϕ. Hence the idempotent e
is the same as in the case of the triple (As,As, V ect). It was shown in [51]
that the universal idempotent is given by the geometric series:

e = Id− Id ? Id + · · ·+ (−1)n−1Id?n + · · · .

Here ? stands for the convolution product.

4.2.6. The triple (As,As2, As). An As2-algebra is, by definition, a
vector space A equipped with two operations denoted a · b and a ∗ b such
that the associativity relation

(a ◦1 b) ◦2 c = a ◦1 (b ◦2 c)

holds for any value of ◦i (i.e. either equal to · or to ∗). In a Asc-As2-bialgebra
the compatibility relations are the u.i. relations for both pairs (δ, ·) and (δ, ∗).
It is immediate to verify that

Prim AsAs2 = As .

The associative product of the primitive operad is given by

x ◦ y := x · y − x ∗ y .

Finally, we get a good triple of operads

(As,As2, As) .

The operad As2 appears in many places in the literature. For instance
in [28] there is a notion of Comc-As2-bialgebra where the compatibility
relation for the pair (δ, ·) is Hopf (unital version) and for the pair (δ, ∗) it is
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4.2.7. The triple (As, 2as, Mag∞). Consider Asc-2as-bialgebras with
compatibility relations being both the u.i. compatibility relation. So this
type of bialgebras is different from the one described in 4.2.5. It is immediate
to check (H0) , (H1) and (H2epi) are fulfilled. So there is a good triple of
operads (As, 2as, Prim As2as). With some more work one can show that the
primitive operad is the operad Mag∞ which has one generating operation
in each arity and no relation. So there is a good triple of operads

(As, 2as, Mag∞).

Observe that the triple (As,As2, As) is a quotient of it.

4.3. Dendriform, dipterous and Zinbiel bialgebras

In this section we study some triples (As,A,A) which are over (As,Zinb, V ect)
with compatibility relation the semi-Hopf relation. Here Zinb is the operad
of Zinbiel algebras.

4.3.1. Zinbiel algebra and semi-Hopf compatibility relation. By
definition a Zinbiel algebra is a vector space A equipped with an operation
denoted a ≺ b satisfying the Zinbiel relation

(a ≺ b) ≺ c = a ≺ (b ≺ c + c ≺ b).

We note immediately that the operation a ∗ b := a ≺ b + b ≺ a is associative
(and commutative of course). The terminology comes from the fact that the
Koszul dual operad is the operad of Leibniz algebras (cf. [44]).

By definition a Asc-Zinb-bialgebra is a Zinbiel algebra equipped with
a coassociative cooperation δ, whose compatibility relation is semi-Hopf ,
denoted Gl

semiHopf :

BB ||
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Observe that, as a consequence, the compatibility relation for the pair
(δ, ∗) is Hopf (nonunital setting). It was obtained as a consequence of the
semi-Hopf relation in the unital framework, given by

∆(x ≺ y) = ∆(x) ≺ ∆(y),

where the tensor product of the bialgebra with itself has been equipped with
following Zinbiel structure:

(a⊗ b) ≺ (a′ ⊗ b′) = a ∗ a′ ⊗ b ≺ b′,

whenever it is defined and

(a⊗ 1) ≺ (a′ ⊗ 1) = a ≺ a′ ⊗ 1,
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otherwise (cf. M. Ronco [67] and 3.2.2). The behavior of ≺ with respect to
the unit is given by

1 ≺ x = 0, x ≺ 1 = x .

The free Zinbiel algebra over V is the reduced tensor module T (V ) and the
relationship between the tensors and the Zinbiel algebra is given by

v1 · · · vn = v1 ≺ (v2 ≺ (· · · (vn−1 ≺ vn) · · · )).

Explicitly, the Zinbiel product is given by the half-shuffle:

v1 . . . vp ≺ vp+1 · · · vn = v1

∑
σ∈SH(p−1,n−p)

σ(v2 · · · vn)

where SH(p− 1, n− p) is the set of (p− 1, n− p)-shuffles. As a consequence
(T (V ), ∗) is the (nonunital) shuffle algebra.

It can be shown that the free Zinbiel algebra satisfies both hypotheses
(H1) and (H2iso) . It is a consequence of the work of M. Ronco [67, 68],
see E. Burgunder [8] for a direct proof. Hence

(As,Zinb, V ect)

is a good triple of operads. This example is interesting because it shows
that, for a certain algebraic structure A, (A = As here), there can be
several different coalgebraic structures C for which (C,A, V ect) is a good
triple. Here C = As or Zinb.

We can revert the roles of As and Zinb in this example (cf. 3.6) and so
there is a notion of Zinbc-As-bialgebra. As a consequence

(Zinb, As, V ect)

is also a good triple (cf. 3.6).

4.3.2. Dipterous algebra. By definition a dipterous algebra is a vec-
tor space A equipped with two binary operations denoted a ∗ b and a ≺ b
verifying the relations:

(x ≺ y) ≺ z = x ≺ (y ∗ z) ,

(x ∗ y) ∗ z = x ∗ (y ∗ z) .

By definition a Asc-Dipt-bialgebra is a dipterous algebra equipped with a
coassociative cooperation δ, whose compatibility relation is Hopf with ∗ and
semi-Hopf with ≺. In fact one can put a unit on a dipterous algebra by
requiring that 1 is a unit for ∗ and that

1 ≺ a = 0, a ≺ 1 = a,

(1 ≺ 1 is not defined). This is a particular case of a multiplicative operad,
see 3.2 and [45].

The free dipterous algebra can be described in terms of planar trees. It
can be shown that the free dipterous algebra satisfies both hypotheses (H1)
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and (H2iso) (cf. [49]). The primitive operad was proven to be in loc.cit. the
B∞ operad (cf. 4.2.5). Hence

(As,Dipt,B∞)

is a good triple.

4.3.3. Dendriform algebra. A dendriform algebra A is determined
by two binary operations A ⊗ A → A called left (a, b) 7→ a ≺ b and right
(a, b) 7→ a � b, satisfying the following three relations

(x ≺ y) ≺ z = x ≺ (y ∗ z) ,

(x � y) ≺ z = x � (y ≺ z) ,

(x ∗ y) � z = x � (y � z) ,

where x ∗ y := x ≺ y + x � y. From these axioms it follows that the opera-
tion ∗ is associative, hence a dendriform algebra is an example of dipterous
algebra. The operad Dend is obviously regular. It has been shown in [44]
that the associated operad Dend is such that Dendn = K[Yn] where Yn is
the set of planar binary rooted trees with n + 1 leaves ( #Yn = (2n)!

n!(n+1)! is
the Catalan number).

By definition a Asc-Dend-bialgebra is a dendriform algebra equipped
with a coassociative cooperation δ, whose compatibility relations are as fol-
lows.

For the pair (δ,�) it is given by Gr
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and for the pair (δ,≺) it is given by Gl
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Though As and Dend are regular, this prop is not regular because of
the form of the compatibility relation. Observe that the sum of these two
relations gives the Hopf compatibility relation for the pair (δ, ∗). Since Dend
is a quotient of Dipt by the relation (x � y) ≺ z = x � (y ≺ z) and since
the operation (x � y) ≺ z−x � (y ≺ z) in Dipt is primitive, it follows from
Proposition 3.1 that (As,Dend,B∞ / ∼) is a good triple. The quotient
B∞ / ∼ is easy to compute, and it turns out to be the operad Brace of
brace algebras, that we know recall.



4.3. DENDRIFORM, DIPTEROUS AND ZINBIEL BIALGEBRAS 69

The Brace operad admits one n-ary operation {−;−, · · · ,−}, for all
n ≥ 2, as generators and the relations are:

Brn,m : {{x; y1, . . . , yn}; z1, . . . , zm} =
∑

{x; . . . , {y1; . . .}, . . . , {yn; . . . , }, . . .}.

On the right-hand side the dots are filled with the variables zi’s (in order)
with the convention {yk; ∅} = yk. In a Asc-Dend-bialgebra the binary op-
eration is given by

{x; y} := x ≺ y − y � x

and the ternary operation is given by

{x; y, z} = x ≺ (y � z)− y � x ≺ z + (y ≺ z) � x .

The first nontrivial relation, which relates the 2-ary operation and the 3-ary
operation reads

Br1,1 : {{x; y}; z} − {x; {y; z}} = {x; y, z}+ {x; z, y} .

As a consequence we deduce that the associator of the 2-ary operation is
right-symmetric:

{{x, y}, z} − {x, {y, z}} = {{x, z}, y} − {x, {z, y}} .

So the primitive part of a Asc-Dend-bialgebra is, in particular, a pre-Lie
algebra.

It is easy to check that the quotient B∞ / ∼ is Dend, hence it follows
that (As,Dend, Brace) is a good triple of operads.

The Hopf structure of the free dendriform algebra was first constructed
in [48]. See [2] for an alternative basis with nice behavior with respect to
the coproduct. The primitive operad Prim AsDend was first identified to be
the brace operad by Maŕıa Ronco in [67]. The structure theorem was proved
in [68] and in [13]. It was the first example outside the classical framework
and the one which motivated this theory.

If we mod out by the primitive operation x ≺ y − y � x, then we get
the good triple (As,Zinb, V ect).

4.3.4. Tridendriform algebra. The notion of dendriform algebra ad-
mits several generalizations. One of them is the notion of tridendriform
algebra (originally called dendriform trialgebra in [50]). It has three gener-
ating operations denoted ≺ (left), � (right), and · (dot or middle). They
satisfy the following 11 relations (one for each cell of the pentagon):
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(x ≺ y) ≺ z = x ≺ (y ∗ z) ,

(x � y) ≺ z = x � (y ≺ z) ,

(x ∗ y) � z = x � (y � z) ,

(x � y) · z = x � (y · z) ,

(x ≺ y) · z = x · (y � z) ,

(x · y) ≺ z = x · (y ≺ z) ,

(x · y) · z = x · (y · z) ,

where x ∗ y := x ≺ y + x � y + x · y.
The operad Tridend is obviously binary, quadratic and regular. The

free tridendriform algebra on one generator has been shown to be linearly
generated by the set of all planar rooted trees in [50].

Using the existence of a partial unit one can put a structure of Asc-Tridend-
bialgebra structure on Tridend(V ) as in [45]. The coefficients α and β
(cf. 3.2.2) are given by:

x ≺ 1 = x = 1 � x, and 1 ≺ x = x � 1 = 1 · x = x · 1 = 0 .

These choices are coherent with the operad structure of Dend and therefore,
by [45] (see also 3.2.2), there is a well-defined notion Asc-Dend-bialgebra
for which the hypotheses (H0) and (H1) are fulfilled.

Hypothesis (H2epi) is easy to check, and therefore the triple

(As, Tridend,Prim AsTridend)

is good. The operad Prim AsTridend can be described explicitly as a mixture
of the brace structure and the associative structure, cf. [61].

One of the interesting points about the good triple (As, Tridend,Brace+
As) is its quotient (As,CTD, Com), where CTD stands for the Commuta-
tive TriDendriform algebra operad. The commutativity property is

x ≺ y = y � x, and x · y = y · x .

Hence a CTD-algebra can be described by two generating operations x ≺ y
and x · y (the second one being symmetric), satisfying the relations:

(x ≺ y) ≺ z = x ≺ (y ∗ z) ,

(x · y) ≺ z = x · (y ≺ z) ,

(x · y) · z = x · (y · z) .

The good triple
(As,CTD, Com)

has been studied in [46] and shown to be strongly related with the quasi-
shuffle algebras.



4.4. Liec − Lie-BIALGEBRAS 71

4.4. Liec-Lie-bialgebras

In this section we work over a characteristic zero field. We introduce
the notion of Liec-Lie-bialgebra, different from the classical notion of Lie
bialgebra, and we prove a rigidity theorem for Liec-Lie-bialgebras.

4.4.1. Definition. A Liec-Lie-bialgebra is a vector space A which is a
Lie algebra for the bracket [x, y], a Lie coalgebra for δ[ ] and whose compat-
ibility relation is GLily:

??? ���

��� ???
= 2

(
− OOOO

oooo
)

+
1
2

( ��� ???

??? ���
+

��� ???

???���??? ���
+

��� ???

??? ���
+ ???���

���
???

??? ���

)

Here ??
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stands for the bracket [−,−] and ����
????

stands for the

cobracket δ[ ].
Observe that the notion of Liec-Lie bialgebra is completely different

from the notion of Lie bialgebras, since, in this latter case, the compatibility
relation is the cocycle condition GbiLie:
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In particular for GLily there is a Φ1-term, so there is chance for a rigidity
theorem.

In order to show that the free Lie algebra Lie(V ) is equipped with a
structure of Liec-Lie-bialgebra, we are going to use the tensor algebra T (V )
for V = Kx1 ⊕ · · · ⊕ Kxn. Hence T (V ) is the space of noncommutative
polynomials without constant term in the variables xi’s. The coproduct δ
on T (V ) is the deconcatenation coproduct (cf. 4.2.2). Recall that Lie(V ) is
made of the Lie polynomials, that is the polynomials generated by the xi’s
under the bracket operation. The degree of a homogeneous polynomial X is
denoted |X|. We use the involution X 7→ X on T (V ) which is the identity
on the xi’s and satisfies (XY ) = Y X.

4.4.2. Lemma. If X ∈ Lie(V ), then X = −(−1)|X|X and

2δ(X) = X1 ⊗X2 − (−1)p+qX2 ⊗X1,

where δ(X) =: X1 ⊗X2 and p = |X1|, q = |X2|.

Proof. The proof is by induction on the degree n of X. We assume that
these formulas are true for X, and then we prove them for [X, z] where z is
of degree 1.
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For the first formula we get

[X, z] = (Xz − zX) = zX −Xz = −(−1)n([z,X]) = −(−1)n+1[X, z],

as expected.
For the second formula, the u.i. compatibility relation and the induction

hypothesis give:

δ([X, z]) = δ(Xz − zX)
= X ⊗ z + X1 ⊗X2z − z ⊗X − zX1 ⊗X2

= X ⊗ z − z ⊗X +
1
2

(
X1 ⊗X2z − zX1 ⊗X2

−(−1)p+qX2 ⊗X1z + (−1)p+qzX2 ⊗X1

)
.

On the other hand we have
[X, z]1 ⊗ [X, z]2 − (−1)p+q[X, z]1 ⊗ [X, z]2
= 1

2

(
X ⊗ z − z ⊗X + X1 ⊗X2z − zX1 ⊗X2 − (−1)n+1z ⊗X
+(−1)n+1X ⊗ z − (−1)p+q+1zX2 ⊗X1 + (−1)p+1+qX2 ⊗X1z

)
.

The two expresssions are equal, because, since X is a Lie polynomial,
we have X = −(−1)nX. �

4.4.3. Proposition. Let δ[,] := δ − τδ. The image of Lie(V ) by δ[,] is
in Lie(V )⊗ Lie(V ).

Proof. The proof is by induction on the degree n of X ∈ Lie(V ). It is
immediate for n = 1. Suppose that X ∈ Lie(V ), δ(X) = X1 ⊗ X2 and
X1, X2 ∈ Lie(V ). We observe that, by Lemma 4.4.2 we have

δ(X) =: X1 ⊗X2 =
1
2
(
X1 ⊗X2 −X2 ⊗X1

)
.

We are going to show that, for any element z of degree 1, we have δ[,]([X, z]) ∈
Lie(V )⊗ Lie(V ). We compute:

δ[,]([X, z]) = (δ − τδ)(Xz − zX)
= X ⊗ z − z ⊗X + X1 ⊗X2z − zX1 ⊗X2

−z ⊗X + X ⊗ z −X2z ⊗X1 + X2 ⊗ zX1

= 2
(
X ⊗ z − z ⊗X

)
+

1
2
(
X1 ⊗X2z − zX1 ⊗X2 −X2z ⊗X1 + X2 ⊗ zX1

−X2 ⊗X1z + zX2 ⊗X1 + X1z ⊗X2 −X1 ⊗ zX2

)
= 2

(
X ⊗ z − z ⊗X

)
+

1
2
(
X1 ⊗ [X2, z]− [z,X1]⊗X2 − [X2, z]⊗X1 + X2 ⊗ [z, X1]

)
.

So we have proved that δ[,]([X, z]) ∈ Lie(V )⊗ Lie(V ). �

4.4.4. Proposition. On Lie(V ) the bracket operation [x, y] and the
bracket cooperation δ[,] satisfy the compatibility relation GLily (cf. 4.4.1).
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Proof. Let X, Y ∈ Lie(V ). We compute δ[,]([X, Y ]) :

δ[,]([X, Y ]) = (δ − τδ)(XY − Y X)

= δ(XY )− δ(Y X)− τδ(XY ) + τδ(Y X)
= +X ⊗ Y + X1Y ⊗X2 + XY1 ⊗ Y2

−Y ⊗X − Y1X ⊗ Y2 − Y X1 ⊗X2

−Y ⊗X −X2 ⊗X1Y − Y2 ⊗XY1

+X ⊗ Y + Y2 ⊗ Y1X + X2 ⊗ Y X1

= 2
(
X ⊗ Y − Y ⊗X

)
+[X1, Y ]⊗X2 + [X, Y1]⊗ Y2 + X1 ⊗ [X2, Y ] + Y1 ⊗ [X, Y2]

= 2
(
X ⊗ Y − Y ⊗X

)
+

1
2

(
[X[1], Y ]⊗X[2]

+[X, Y[1]]⊗ Y[2] + X[1] ⊗ [X[2], Y ] + Y[1] ⊗ [X, Y[2]]
)
.

Observe that, in this computation, we have used the fact that, for any
element Z ∈ Lie(V ), the element δ(Z) = Z1 ⊗ Z2 is antisymmetric, that is
Z1 ⊗ Z2 = −Z2 ⊗ Z1 (cf. 4.4.2). As a consequence we have 1

2δ[,](Z) = δ(Z).
�

4.4.5. Theorem. In characteristic zero, the prop Liec-Lie satisfies the
hypotheses (H0) (H1) (H2iso) , therefore the triple (Lie, Lie, V ect) (with
G=GLily) is a good triple. Hence any connected Liec-Lie-bialgebras is both
free and cofree.

Proof. It is clear that the compatibility relation GLily is distributive. By
Propositions 4.4.3 and 4.4.4 the hypothesis (H1) is fulfilled. Let us prove
(H2iso) .

We have seen in the last proof that δ[,](Z) = 2δ(Z) when Z ∈ Lie(V ).
The cooperation δ induces the isomorphism map ϕAs(V ) : As(V ) → Asc(V )
which identifies the generator of Asn with its dual. Hence, restricted to
Lie(V ) it is injective. So the map ϕLie(V ) : Lie(V ) → Liec(V ), induced by
δ[,] is injective. Since Lie(n) and Liec(n) have the same dimension, it is an
isomorphism. �

4.4.6. The conjectural triple (Lie, PostLie, Prim AsPostLie). By def-
inition, cf. [73] a PostLie algebra is a vector space A equipped with two
operations x ◦ y and [x, y] which satisfy the relations

[x, y] = −[y, x]
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

(x ◦ y) ◦ z − x ◦ (y ◦ z)− (x ◦ z) ◦ y + x ◦ (z ◦ y) = x ◦ [y, z]
[x, y] ◦ z = [x ◦ z, y] + [x, y ◦ z]

In particular a PostLie algebra is a Lie algebra for the bracket [x, y]. But it
is also a Lie algebra for the operation {x, y} := x◦y−y◦x+[x, y] (cf. loc.cit).
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We conjecture that there exists a notion of Liec-PostLie bialgebra such that
the free PostLie algebra is such a bialgebra. Hopefully there is a good triple
of operads (Lie, PostLie, Prim AsPostLie). The isomorphism of PostLie =
Lie ◦ PBT , where PBTn = K[Yn−1] proved in [72] is an evidence in favor
of this conjecture. It is not clear what is the algebraic structure one should
put on PBT to make it work (Mag is one option out of many).

4.5. NAP c-A-bialgebras

Triples of the form (NAP c,A,Prim NAPA) come from the work of Muriel
Livernet [40].

4.5.1. Pre-Lie algebras. By definition a pre-Lie algebra is a vector
space A equipped with a binary operation a · b which satisfies the following
relation

(x · y) · z − x · (y · z) = (x · z) · y − x · (z · y)

(right-symmetry of the associator). The free pre-Lie algebra has been de-
scribed in terms of abstract trees in [14].

4.5.2. NAP -algebra. By definition a non-associative permutative al-
gebra, or NAP algebra for short, is a vector space A equipped with a binary
operation denoted ab which satisfies the following relation

(xy)z = (xz)y .

In fact we are going to use the notion of NAP -coalgebra, whose relation is
pictorially as follows:
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4.5.3. NAP c-PreLie-bialgebra. By definition a NAP c-PreLie-bialgebra
is a pre-Lie algebra equipped with a NAP cooperation δ, whose compatibility
relation GLiv is as follows:
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It has been shown by M. Livernet in [40], Proposition 3.2, that the free
pre-Lie algebra is naturally a NAP c-PreLie-bialgebra. She also proved the
rigidity theorem for NAP c-PreLie-bialgebras by providing an explicit idem-
potent. This result follows also from our general result, since the coalgebra
map PreLie(V ) → NAP c(V ) is an isomorphism (cf. loc.cit.). The explicit
description of the universal idempotent in terms of generating operations
and cooperations (as described in 2.3.9) is to be found in loc.cit.
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4.5.4. NAP c-Mag-bialgebras. The compatibility relation for NAP c-Mag-
bialgebras is GLiv. Hypothesis (H0) is clearly fulfilled. Here is a proof of
Hypothesis (H1) .

4.5.5. Proposition. On the free magmatic algebra Mag(V ) there is a
well-defined cooperation δ which satisfies the NAP c relation, that is (δ ⊗
Id)δ = (Id⊗ τ)(δ ⊗ Id)δ, and the Livernet compatibility relation GLiv.

Proof. We use the inductive method described in 3.2. We let

δ : Mag(V ) → Mag(V )⊗Mag(V )

be the unique linear map which sends V to 0 and which satisfies the compat-
ibility relation GLiv. Here the tensor product Mag(V )⊗Mag(V ) is equipped
with its standard magmatic operation. In low dimension we get

δ(x · y) = x⊗ y,

δ((x · y) · z) = x · y ⊗ z + x⊗ y · z + x · z ⊗ y,

δ(x · (y · z)) = x⊗ y · z.

Remark that the pre-Lie relator is primitive. We show that δ satisfies the
NAP c-relation (see the diagram above) inductively, by using the natural
filtration of Mag(V ) = ⊕n≥1K[Yn−1]⊗ V ⊗n. Applying GLiv twice we get
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Let us denote by ω1 +ω2 +ω3 +ω4 +ω5 the five terms on the right-hand
side of the last line. We check that (Id ⊗ τ)ω1 = ω3, and that, under the
NAP c relation, we have (Id ⊗ τ)ω2 = ω4 and (Id ⊗ τ)ω5 = ω5. Hence we
have proved that the NAP c-relation holds. By Theorem 2.2.2 there is a
triple of operads (NAP, Mag, Prim NAP Mag). �

4.5.6. Conjecture on NAP c-Mag-bialgebras. We mentioned in the
proof of Proposition 4.5.5 that the pre-Lie relator is primitive in the bial-
gebra Mag(V ). Moding out by the ideal generated by this pre-Lie relator
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gives the NAP c-PreLie-bialgebra PreLie(V ). It follows that the map ϕ(V )
described in 2.4.2 is the composite

ϕ(V ) : Mag(V ) � PreLie(V ) ∼= NAP c(V ) .

Conjecture. The coalgebra map ϕ(V ) : Mag(V ) � NAP c(V ) admits a
coalgebra splitting.

It would follow that there is a good triple of operads

(NAP, Mag, Prim NAP Mag)

with quotient triple (NAP, PreLie, V ect). The operad Prim NAP Mag has
no generating operation in arity 2, but has a generating operation in arity
3, namely the pre-Lie relator

〈x; y, z〉 := (x · y) · z − x · (y · z)− (x · z) · y + x · (z · y) .

4.6. Some examples of the form (A,A, V ect)

We have already discussed the cases (Com,Com, V ect) and (As,As, V ect).
We give here some more examples, some of them being already in the liter-
ature. The main point is to unravel the compatibility relation. The triple
(OU, OU, V ect) will be treated in Chapter 5.

4.6.1. The triple (Mag,Mag, V ect). The free magmatic algebra Mag(V ) =
⊕n≥1K[Yn−1] ⊗ V ⊗n inherits a comagmatic coalgebra structure under the
identification of the basis of Yn−1 of Magn with its dual. An immediate
inspection shows that the magmatic operation and the comagmatic cooper-
ation are related by the magmatic compatibility relation Gmag :

??? ���

��� ???
=

Hence Hypotheses (H0) and (H1) are fulfilled for Magc-Mag-bialgebras.
Since the map ϕ(V ) : Mag(V ) → Magc(V ) is easily seen to be the identifica-
tion of the basis of Magn with its dual, it is an isomorphism and Hypothesis
(H2iso) is fulfilled. By Theorem 2.3.7

(Mag,Mag, V ect)

is a good triple of operads.
Exercise. Describe the idempotent e explicitly in terms of the generating
operation and the generating cooperation. The answer is to be found in [8].

4.6.2. The triple (2as, 2as, V ect). The operad 2as admits a basis made
of planar trees. In fact, for n ≥ 2, the space 2asn is spanned by two copies of
the set of planar trees with n leaves. So it is immediate to describe the 2as-
coalgebra structure on the same space. We put the compatibility relations
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given by the following tableau:

∗ ·
δ· Hopf u.i.
δ∗ u.i. Hopf

It was shown in [51] (see also 4.2.5) that 2as(V ) equipped with δ· sat-
isfies the first row of the compatibility relations. Inverting the role of · and
∗ it is clear that there is an associative cooperation δ∗ which satisfies the
second row of compatibility relations. Therefore the free 2as-algebra is a
2asc-2as-bialgebra. It is interesting to note that, in this case, the isomor-
phism between the free 2as-algebra and the free 2as-coalgebra is not given
by identifying the basis with its dual.

4.6.3. The triple (A,A, V ect) for a multiplicative operad A. Let
A be a binary operad with split associativity (cf. 3.2.2 and [45]). We denote
by x∗y the associative operation and by α(◦), β(◦) the coefficients such that

x ◦ 1 = α(◦)x and 1 ◦ x = β(◦)x .

We always assume α(∗) = 1K = β(∗). Let us suppose moreover that all the
relations in A are generalized associativity, that is

(x ◦1 y) ◦2 z = x ◦3 (y ◦4 z) ,

where ◦i ∈ A(2). For each generating operation ◦ we denote by ∆◦ the asso-
ciated cooperation in the unital framework. By definition a Ac-A-bialgebra,
called biA-bialgebra, has the following compatibility relations:

∆◦(x • y) = ∆∗(x) •∆◦(y)

where, by definition,

(x⊗ y) • (x′ ⊗ y′) = (x ∗ x′)⊗ (y • y′)

(Ronco’s trick, see 3.2.2 for the convention when y = 1 = y′). In order to
formulate this compatibility relation in the nonunital framework we need to
introduce the reduced cooperations δ◦, defined by the equality

∆◦ = α(◦)x⊗ 1 + β(◦)1⊗ x + δ◦ .

The compatibility relations become:
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◦
~~ @@

= β(◦)β(•) + α(◦)α(•) OOOO
oooo +β(◦)

∗
~~ @@

@@ ~~
•

+α(◦)α(•)
∗

~~ @@
???���@@ ~~

∗

+ β(•)
◦

~~ @@

@@ ~~
∗

+
◦

???���
~~

@@

@@ ~~
•

+
∗

~~ @@ ◦
~~ @@

???���@@ ~~ @@ ~~
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4.6.4. Proposition. If A is a multiplicative operad with generalized
associativity relations, then the free A-algebra has a natural structure of
biA-bialgebra.

Proof. Let us work in the unital framework (cf. 3.2.2). First, we construct a
cooperation ∆◦ on A(V )+ for each generating binary operation ◦ by induc-
tion as follows. First, ∆◦(v) = α(◦)v ⊗ 1 + β(◦)1 ⊗ v. Second, we use the
compatibility relations to define ∆◦ on A(V )2, then on A(V )3 and so forth.
So the maps ∆◦ are uniquely defined and satisfy the compatibility relations.
Let us use the inductive argument to prove the generalized associativity
relations.

One one hand we have:

∆◦((x ◦1 y) ◦2 z) = ∆∗(x ◦1 y) ◦2 ∆◦(z)
= (∆∗(x) ◦1 ∆∗(y)) ◦2 ∆◦(z)

On the other hand we have:

∆◦(x ◦3 (y ◦4 z)) = ∆∗(x) ◦3 ∆◦(y ◦4 z)
= ∆∗(x) ◦3 (∆∗(y) ◦4 ∆◦(z))

Assuming that the generalized associativity relations hold in some dimension
(including the associativity of ∗), we prove from this computation that they
hold one step further.

Again by induction we can show, by a straightforward verification, that
these cooperations do satisfy the Ac relations. So A(V )+ is a unital-counital
Ac-A-bialgebra and, by restriction, A(V ) is a Ac-A-bialgebra. �

4.6.5. Examples. The operads

As,Dend, Dipt, 2as, OU,OU !, T ridend,Dias, Trias,Quad, Ennea

(cf. [44, 49, 51, 50, 3, 39, 17]) are examples of multiplicative operads with
generalized associative relations. In some of these examples the map ϕ is an
isomorphism. However it is not always true: As is a counter-example. In
the following section we study in more details the case A = Dend. Observe
that in the case of 2as (resp. OU) we get a type of bialgebras which is
different from the type studied in 4.6.2 (resp. 5.7) since the compatibility
relations are different.

4.6.6. The triple (Dend,Dend, V ect). Let us make explicit the par-
ticular case A = Dend which has been treated in details in [18]. Recall that
the coefficients α and β are given by the relations

1 ≺ x = 0 = x � 1 and x ≺ 1 = x = 1 � x.

The compatibility relations for the reduced cooperations read as follows. For
the pair (δ�,�):
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It has been shown by L. Foissy in [18] that the triple (Dend, Dend, V ect)
is good by using the explicit description of the free dendriform algebra [44]
(compare with 3.2.2). So there is a rigidity theorem in this case.

4.6.7. The triple (Nil,Nil, V ect). By definition a Nil-algebra is a
vector space A equipped with a binary operation a · b such that any triple
product is 0:

(x · y) · z = 0 = x · (y · z) .

Hence the operad Nil is binary, quadratic and regular. We have Nil1 =
K, Nil2 = K and Niln = 0 when n ≥ 3.
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By definition a Nilc-Nil-bialgebra is determined by the following com-
patibility relation Gnil:

??? ���

��� ???
= − ��� ?????? ��� − ��� ?????? ��� +

��� ??? ��� ?????? ���
??? ��� .

On Nil(V ) = V ⊕ V ⊗2 the cooperation δ is given by δ(x) = 0 and
δ(x · y) = x⊗ y. We obviously have (δ ⊗ id)δ = 0 = (id⊗ δ)δ as expected.

From the explicit formula of δ it follows that ϕ(V ) : Nil(V ) → Nilc(V )
is an isomorphism. Therefore (Nil, Nil, V ect) is a good triple of operads.

Question. Is there a compatibility relation which makes (Nil3, Nil3, V ect)
into a good triple of operads ? Here Nil3 is the operad of algebras equipped
with a binary operation for which any quadruple product is 0.

4.6.8. The triple (Mag∞+ ,Mag∞+ , V ect). By definition a Mag∞+ -algebra
is a vector space equipped with an n-ary operation µn for any integer n ≥ 2
and also equipped with a unit 1. Moreover we suppose that

µn(a1 · · · ai−11ai+1 · · · an) = µn−1(a1 · · · ai−1ai+1 · · · an).

This triple has been treated in [8] along the same lines as the general case.

4.7. Pre-Lie algebras and a conjectural triple

4.7.1. From Pre-Lie algebras to Lie algebras. Let A be a pre-
Lie algebra, cf. 4.5.1. It is immediate to check the the antisymmetrization
[x, y] := xy−yx of this operation is a Lie bracket. Therefore there is defined
a forgetful functor F : PreLie-alg → Lie-alg which associates to a pre-Lie
algebra A the Lie algebra (A, [−,−]).

4.7.2. The conjectural triple (??, P reLie, Lie). In [53] Markl stud-
ied this functor. He mentioned the possible existence of connection with
some triple of operads. Indeed it is very likely that there exists a notion
of generalized bialgebras Cc-PreLie giving rise to a good triple of operads
(C, P reLie, Lie). Not only we have to find the operad C but also the com-
patibility relations. The operad C would have at least one binary generating
operation verifying the symmetry xy = yx and one ternary operation ver-
ifying the symmetry (x, y, z) = (y, z, x) (and probably more generators in
higher arity). The compatibility relation between the binary coproduct and
the pre-Lie product is probably of Hopf type. In low degrees the dimension
of C(n) are (1, 1, 4 = 3 + 1, 23, 181).

4.8. Interchange bialgebra

We introduce the notion of interchange algebra and interchange bialge-
bra and we prove that hypothesis (H1) holds. This example is extracted
from the paper [35] by Yves Lafont.
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4.8.1. Interchange algebra and bialgebra. By definition an inter-
change algebra is a vector space A equipped with two operations ◦ and •
satisfying the interchange law :

(a ◦ b) • (c ◦ d) = (a • c) ◦ (b • d) .

This law is quite common in category theory and algebraic topology since
it is part of the axioms for a bicategory (◦ = horizontal composition, • =
vertical composition). It can be used to prove the commutativity of the
higher homotopy groups.

Observe that this relation is not quadratic.
By definition an interchange bialgebra (ICc-IC-bialgebra) H is both an

interchange algebra and an interchange coalgebra with compatibility rela-
tions as follows:

@@ ~~
◦

◦
~~ @@

= ,

@@ ~~
•

•
~~ @@

= OOOO
oooo ,

@@ ~~
◦

•
~~ @@

=
•

~~ @@ •
~~ @@

???���@@ ~~ @@ ~~
◦ ◦

,

@@ ~~
•

◦
~~ @@

=
◦

~~ @@ ◦
~~ @@

???���@@ ~~ @@ ~~
• •

.

4.8.2. Proposition. The free interchange algebra IC(V ) has a natural
ICc-IC-bialgebra structure.

Proof. Since the operad IC is set-theoretic, IC(V )⊗ IC(V ) is still an IC-
algebra and one can define maps δ◦ and δ• : IC(V ) → IC(V ) ⊗ IC(V )
sending V to 0 and satisfying the compatibility relations, cf. 3.2. By induc-
tion they can be shown to satisfy the interchange law (cf. strategy number
(2) in 2.5.7). This proof is explained in terms of rewriting systems in [35].
�

4.9. The 〈k〉-ary case

In the preceding examples the generating operations and cooperations
were all binary (except sometimes for the primitive operad). In this section
we give some examples with k+1-ary operations and cooperations for k ≥ 1.
There are many more, not yet explored.

4.9.1. Associative k + 1-ary algebras. Let k be an integer greater
than or equal to 1. Let C and A be two operads generated by k + 1-ary
operations. Here are two important examples taken from [27].
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A totally associative k +1-ary algebra is a vector space A equipped with
a k + 1-ary operation (a0 · · · ak) satisfying the relations(

(a0 · · · ak)ak+1 · · · a2k

)
=

(
a0 · · · (ai · · · ai+k) · · · a2k

)
for any i = 0, . . . , k. The operad is denoted tAs〈k〉.

A partially associative k-ary algebra is a vector space A equipped with
a k-ary operation (a0 · · · ak) satisfying the relations

k∑
i=0

(−1)ki
(
a0 · · · (ai · · · ai+k) · · · a2k

)
= 0

for any i = 0, . . . , k. These two operads were shown to be Koszul dual to
each other by V Gnedbaye in [27].

In this context, a Cc-A-bialgebra (or generalized bialgebra) is a vector
space H equipped with a C-coalgebra structure, a A-algebra structure, and
each pair (δ, µ) of a generating operation and a generating cooperation is
supposed to satisfy a distributive compatibility relation. Observe that in
this case the Φ1-term is an element of the group algebra K[Sk+1].

Here is an example for k = 2, denoted GtAs〈2〉 :

????
����

��
�� ??

??
= + ��

�� ??
??

GGGG wwww
+ ��

�� ??
??

GGGG wwww
+ ��

�� ??
??

GGGG wwww

+ ��
�� ??

??

GGGG wwww
+ ��

�� ??
??

GGGG wwww
+ ��

�� ??
??

GGGG wwww

We let the reader figure out the similar relation for higher k’s.

4.9.2. The triple (tAs〈k〉, tAs〈k〉, V ect). By definition a tAs〈k〉-bialgebra
is a vector space H equipped with a structure of tAs〈k〉-algebra, a structure
of tAs〈k〉-coalgebra, related by the compatibility relation GtAs〈k〉 described
above. For k = 1 this is the unital infinitesimal compatibility relation.

The free totally associative (k + 1)-ary algebra over V is tAs〈k〉(V ) =⊕
n≥0 V ⊗1+kn. We put a structure of tAs〈k〉-coalgebra on it by dualizing the

natural basis. Then it is easy to prove by induction that the compatibility
relation is precisely GtAs〈k〉 . The map ϕ(V ) is the isomorphism of basis,
hence the triple

(tAs〈k〉, tAs〈k〉, V ect)

is good and the rigidity theorem holds.
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4.9.3. The triple (tCom〈k〉, tCom〈k〉, V ect). By definition a tCom〈k〉-
algebra is a totally associative (k + 1)-ary algebra which is commutative in
the sense

(a0 · · · ak) = (aσ(0) · · · aσ(k))
for any permutation σ ∈ Sk+1.
Exercise. Find the compatibility relation which gives a good triple of op-
erads (tCom〈k〉, tCom〈k〉, V ect).

It would be also interesting to work out the cases pAs〈k〉 and pCom〈k〉,
and also the triple

(tCom〈k〉, tAs〈k〉, tLie〈k〉),
which is (Com,As, Lie) for k = 1.





CHAPTER 5

OU-bialgebras

In this chapter we study in details the operad of OU -algebras. They are
defined by two associative operations verifying one more relation. We show
that there exists a good triple of operad

(As,OU, Mag) ,

which is quite peculiar since the three operads are binary, quadratic, regular,
set-theoretic and Koszul.

In order to prove that the operad OU is Koszul, we compute its dual
and construct the chain complex giving rise to the homology of OU -algebras.
It turns out that it is the total complex of a certain chain complex whose
horizontal (resp. vertical) components are of Hochschild type.

5.1. OverUnder algebra

5.1.1. Definition. A OverUnder algebra (or OU-algebra for short) A
is determined by two binary operations A⊗A → A called left (x, y) 7→ x ≺ y
and right (x, y) 7→ x � y respectively, satisfying the following three relations

(x ≺ y) ≺ z = x ≺ (y ≺ z) ,

(x � y) ≺ z = x � (y ≺ z) ,

(x � y) � z = x � (y � z) .

So the two operations left and right are associative. From this definition it
is clear that the operad OU is binary, quadratic, regular and set-theoretic.

In order to describe the free OU -algebra (or, equivalently, the operad),
we need to introduce the planar binary rooted trees.

5.1.2. Planar binary trees. By definition a planar binary rooted tree
(we simply say planar binary tree, or p.b. tree for short) is a finite planar
graph with vertices which are either trivalent or univalent, with a pointed
univalent vertex called the root. The other univalent vertices are called the
leaves. The trivalent vertices are called the internal vertices. The set of
planar binary rooted trees with n + 1 leaves is denoted Yn:

Y0 = { | } , Y1 =
{ ��

?? }
, Y2 =

{ �� ����

???? ,
??����

????
}

85
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Y3 =

{
�� ����

������

?????? ,

??����
������

?????? ,
�� ??������

?????? ,
��???? ������

?????? ,

?????? ������

??????

}

Recall that the number of elements in Yn is the Catalan number cn = (2n)!
n!(n+1)!

and the generating series is

c(t) :=
∑
n≥1

cn−1t
n =

1
2
(1−

√
1− 4t) .

On these trees one can perform the following two kinds of grafting: the
operation Over and the operation Under. By definition the operation Over ,
denoted t/s consists in grafting the tree t on the first leaf of s. Similarly,
the operation Under , denoted t\s consists in grafting the tree s on the last
leaf of t. Observe that for t ∈ Yp and s ∈ Yq we have t/s ∈ Yp+q, t\s ∈ Yp+q.

t

t/s =

��������

4444444
s====














s

t\s = t

;;;;;;;;

�������

4444444444
����

The Over and Under operations, together with their properties appear
in the work of C. Brouder and A. Frabetti [7]. We will also use another type
of grafting, denoted t∨ s which consists in creating a new root and grafting
the two trees to this root. Hence we have t ∨ s = Yp+q+1. Observe that any
tree t (except |) is uniquely determined by its left part tl and its right part
tr so that t = tl ∨ tr. The left comb is the tree combl

n defined inductively as

combl
1 = ��

?? and combl
n = ��

??
/combl

n−1.

5.1.3. Proposition. The free OU -algebra on one generator is spanned
by the set of planar binary trees and the left (resp. right) operation is induced
by the Over operation t/s (resp. Under operation t\s). Hence the space of
n-ary operations is OUn = K[Yn].

Proof. First, we verify immediately that
⊕

n≥1 K[Yn] equipped with the Over
and Under operations is a OU -algebra generated by the unique element

��
?? of Y1. Moreover we see that, for any p.b. tree t = tl ∨ tr we have

t = tl/ ��
?? \tr.

Let us show that
⊕

n≥1 K[Yn] satisfies the universal condition. Let A

be a OU-algebra and let a ∈ A. We define a map φ :
⊕

n≥1 K[Yn] → A

inductively by φ( ��
?? ) = a and φ(t) = φ(tl ∨ tr) = φ(tl) � a ≺ φ(tr). It

is straightforward to check that this map is a OU -morphism (same proof as



5.2. OU-BIALGEBRAS 87

the dendriform case, see [44] Proposition 5.7 and [64]). Since we have no
other choice for its value, it is the expected universal extension map. �

5.2. OU-bialgebras

5.2.1. Definition. By definition a Asc-OU -bialgebra, also called Over-
Under-bialgebra, is a vector space H equipped with a OU-algebra structure,
a coassociative coalgebra structure, and the compatibility relations are of
unital infinitesimal type for both pairs (δ,≺) and (δ,�):

BB ||
≺

ttt
t JJJ
J

= +
��� ???

BB ||
≺

+
��� ???

BB ||
≺

BB ||
�

ttt
t JJJ
J

= +
��� ???

BB ||
�

+
��� ???

BB ||
�

Observe that this is a regular bialgebra type (hence a regular prop).

5.2.2. Proposition. The free OU -algebra OU(V ) is a Asc-OU -bialgebra.

Proof. Let us first define the cooperation

δ : OU(K) =
⊕

n

K[Yn] →
⊕

n

K[Yn]⊗
⊕

n

K[Yn].

For any t ∈ Yn we define

δ(t) =
∑

1≤i≤n−1

δi(t) =
∑

1≤i≤n−1

ri ⊗ si

as follows. Let us number the leaves of t from left to right by the integers
0, 1, . . . , n. For any i = 1, . . . , n − 1 we consider the path going from the
leaf number i to the root. The left part of t (including the dividing path)
determines the tree ri and the right part of t (including the dividing path)

determines the tree si. In particular δ( ��
?? ) = 0.

Example for i = 2:

t =

0 1 2 3 4
vv HHvvvvv

vvvvvvvvvv

HHHHHHHHHH
, r2 =

�� ����

???? , s2 =
??����

???? .
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It is immediate to verify, by direct inspection, that δ is coassociative.
Let us prove that

δ(x/y) = x⊗ y + x(1) ⊗ x(2) ≺ y + x ≺ y(1) ⊗ y(2) ,

under the notation δ(x) = x(1)⊗x(2). Let x ∈ Yp, y ∈ Yq, so that x/y ∈ Yp+q.
The element δ(x/y) is the sum of three different kinds of elements: either
the dividing path starts from a leaf of x not being the last one, or starts
from the last leaf of x, or starts from a leaf of y. In the first case we get
x ≺ y(1) ⊗ y(2), in the second case we get x ⊗ y, in the third case we get
x(1) ⊗ x(2) ≺ y. The proof for � is similar.

To prove that OU(V ) is a Asc-OU -bialgebra for any V it suffices to
extend δ to

⊕
n K[Yn]⊗ V ⊗n by

δ(t; v1 · · · vn) =
∑

1≤i≤n−1

(ri; v1 · · · vp)⊗ (si; vp+1 · · · vp+q)

and use the property that T (V ) is a u.i. bialgebra (cf. [51] of 4.2.2). �

5.2.3. Remark. We could also prove this Proposition by using the in-
ductive method described in 2.5.7 (it is a good exercise !).

5.2.4. Proposition. The prop Asc-OU satisfies the hypothesis (H2epi).

Proof. Since we are dealing with a regular bialgebra type, it suffices to look
at OU(K) =

⊕
n K[Yn]. The map ϕ : OUn = K[Yn] → K = Asc

n is given by
ϕ(t) = α where α is a scalar determined by the equation

δn−1(t) = α ��
?? ⊗ · · · ⊗ ��

??
.

Here δn−1 stands for the iterated comultiplication. From the explicit de-

scription of δ it comes immediately: δn−1 = ��
?? ⊗ · · · ⊗ ��

?? . Hence

α = 1 and the map ϕ is given by ϕ(t) = 1.
Define a map sn : Asn = K → K[Yn] by sn(1) = combl

n, where combl
n

is the left comb. It is immediate to check that s. induces a coalgebra map
s(V ) : As(V ) → OU(V ) which is a splitting to ϕ(V ). Hence hypothesis
(H2epi) is fulfilled. �

As a consequence the triple (As,OU, Prim AsOU) is a good triple and
it satisfies the structure Theorem over any field K by 3.3.1. Let us now
identify the operad Prim AsOU .

5.2.5. Theorem. The primitive operad Prim AsOU of the bialgebra type
Asc-OU is the magmatic operad Mag and the functor

F : OU -alg → Mag-alg, F (A,≺,�) = (A, ·)

is determined by
x · y := x ≺ y − x � y .
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5.2.6. Corollary. There is a good triple of operads

(As,OU, Mag) .

Before entering the proof of the Theorem and its Corollary we prove
some useful technical Proposition.

5.2.7. Proposition. Let (R, ·) be a magmatic algebra. On As(R) =
T (R) we define the operation a � b as being the concatenation (i.e. �= ⊗)
and we define the operation a ≺ b by a ≺ b = a ·b+a � b where the operation
a · b is defined inductively as follows:

(r ⊗ a) · b = r ⊗ (a · b)
r · (s⊗ b) = (r · s) · b− r · (s · b) + (r · s)⊗ b.

Then (As(R),≺,�) is a OU -bialgebra with the deconcatenation as coproduct.

Proof. The last relation of OU -algebra (associativity of �) is immediate.
The other two are proved by a straightforward induction argument on the de-
gree. The compatibility relation for the pair (δ,�) is well-known (cf. 4.2.2).
The compatibility relation for the pair (δ,≺) is proved by induction. �

5.2.8. Proof of the Theorem 5.2.5 and the Corollary 5.2.6. Ap-
plying Proposition 5.2.7 to the free magmatic algebra R = Mag(V ), we get
a OU -algebra As(Mag(V )). The inclusion map

V = As(Mag(V ))1 → As(Mag(V ))

induces a OU -map OU(V ) → As(Mag(V )). From the construction of
As(Mag(V )) it follows that this map is surjective.

From 5.1.3 it follows that dim OUn = cn. It is also known that dim(As◦
Mag)n = cn because

fAsfMag(t) =
c(t)

1− c(t)
=

c(t)− t

t
=

∑
n≥1

cntn .

(Use the identity c(t)2− c(t) + t = 0). Therefore the surjective map OUn →
(As◦Mag)n is an isomorphism. Hence OU → As◦Mag is an isomorphism.
Since the comultiplication in As(Mag(V )) is the deconcatenation, its primi-
tive part is Mag(V ). It follows that Prim AsOU(V ) = Mag(V ) as expected.
�

5.2.9. Corollary. As an associative algebra for the product �= / the
space OU(V ) is free over Mag(V ).

Proof. By the structure theorem for Asc-OU -bialgebras we know that
there is an isomorphism OU(V ) ∼= T

c(Prim AsOU(V )). Because of our
choice of s, it turns out that the As-structure of the Asc-As-bialgebra
T

c(Prim AsOU(V )) corresponds to / = � , cf. 4.2.2. Hence OU(V ) is free
for the operation �. �



90 5. OU-BIALGEBRAS

We have an extension of operads

As � OU � Mag

in the sense of 3.4.2. It is even a split extension.

5.2.10. Remark on the map ϕ : Mag → OU . Let us write Yn as a
union of two disjoint subsets Y a

n and Y b
n , where Y a

n is made of the trees of the
form | ∨ t for t ∈ Yn−1. From the definition of ϕn : Magn → OUn = K[Yn]
and Theorem 5.2.5 it follows that the composition of maps

K[Yn−1] = Magn → OUn = K[Yn] � K[Yn/Y b
n ] = K[Y a

n ] ∼= K[Yn−1]

is an isomorphism. It is a nontrivial isomorphism, given in low dimension
by:

��
?? 7→ − ��

??

�� ����

???? 7→ −
??����

????

??����

???? 7→ +
??����

???? −
�� ����

????

�� ����
������

?????? 7→ −
?????? ������

??????

??����
������

?????? 7→ −
?????? ������

?????? −
�� ??������

??????

�� ??������

?????? 7→ −
?????? ������

?????? +
��???? ������

??????

��???? ������

?????? 7→ −
?????? ������

?????? +
�� ??������

?????? +
??����

������

?????? −
�� ����

������

??????

?????? ������

?????? 7→ −
?????? ������

?????? +
�� ??������

?????? −
��???? ������

?????? −
�� ����

������

??????

5.3. Explicit PBW-analogue isomorphism for OU

WhenH = OU(V ) the isomorphismH ∼= Asc(PrimH) becomes OU(V ) ∼=
T

c(Mag(V )). Therefore we should be able to write any linear generator of
OUn as a tensor of elements in Magk, k ≤ n. Since we choose the operation
� to split the map ϕ, we can replace the tensor by � and write an equality
in OU(V ) (analogous to what we did in the classical case, see 4.1.6). In low
dimension it gives the following equalities:
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OU T 1Mag T 2Mag T 3Mag
x = x

x � y = 0 + x � y
x ≺ y = x · y + x � y

x � y � z = 0 + 0 + x � y � z
(x ≺ y) � z = 0 + (x · y) � z + x � y � z
x � y ≺ z = 0 + x � (y · z) + x � y � z

x ≺ (y � z) = (x · y) · z + (x · y) � z + x � y � z
−x · (y · z)

x ≺ y ≺ z = (x · y) · z + (x · y) � z + x � y � z
+x � (y · z)

These formulas are consequences of Proposition 5.2.7.

5.4. Koszulity of the operad OU

5.4.1. Dual operad. Since the operad OU is quadratic, it admits a
dual operad, denoted OU !, cf. [26]. The OU !-algebras are OU -algebras
which satisfy the following additional relations:

(x ≺ y) � z = 0 and 0 = x ≺ (y � z) .

This is easy to check from the conditions given in [44] Appendix for a regular
operad to be Koszul.

The free OU !-algebra is easy to describe (analogous to the free diassocia-
tive algebra, see [44]). We have OU !

n = Kn, where the ith linear generator
corresponds to

x � x � · · ·x︸ ︷︷ ︸
i−1

� x ≺ x · · · ≺ x ≺ x︸ ︷︷ ︸
n−i

.

5.4.2. The total bicomplex COU
∗∗ . Let A be a OU -algebra. We define

a chain bicomplex COU
∗∗ (A) as follows: COU

pq (A) = A⊗p+q+1 and

dh(a0 · · · ap+q) =
p−1∑
i=0

(−1)ia0 · · · (ai � ai+1) · · · ap+q ,

dv(a0 · · · ap+q) =
p+q−1∑

j=p

(−1)ja0 · · · (aj ≺ aj+1) · · · ap+q .

The relation dhdh = 0 follows from the associativity of the operation �.
The relation dvdv = 0 follows from the associativity of the operation ≺.
The relation dhdv + dvdh = 0 follows from the relation entwining ≺ and �.
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COU
∗∗ (A) ·

��
A⊗3

Id⊗≺
��

·oo

��
A⊗2

≺
��

A⊗3
�⊗Idoo

−Id⊗≺
��

·oo

��
A A⊗2

�oo A⊗3
�⊗Idoo ·oo

5.4.3. Proposition. The (operadic) homology of a OU -algebra A is the
homology of the total complex of the bicomplex COU

∗∗ (A) up to a shift.

Proof. The operadic chain complex of a OU -algebra is given by

COU
n (A) = (OU !

n)∗(A)

and the differential d is the unique coderivation which extends the OU -
products.

From the description of the operad OU !, cf. 5.4.1, we check immediately
that Tot COU

∗∗ (A) = COU
∗ (A). The fact that dh+dv identifies to the operadic

differential is also immediate. �

5.4.4. Theorem. The operad OU is a Koszul operad.

Proof. Let us recall some facts about Hochschild homology of non-unital
algebras. Let R be a non-unital algebra and let M be a right R-module.
The Hochschild complex of R with coefficients in M is:

C∗(R,M) : → · · ·M ⊗R⊗n b′−→ M ⊗R⊗n−1 → · · · → M

where b′(a0, . . . , an) =
∑i=n−1

i=0 (−1)i(a0, . . . , aiai+1, . . . , an) and a0 ∈ M,ai ∈
R. The homology groups are denoted by H∗(R,M). If R is free over W ,
i.e. R = T (W ), then one can prove the following (cf. for instance [43]):

H0(R,M) = M/MR,

Hn(R,M) = 0 otherwise.

In order to prove the theorem it suffices to show that the Koszul complex
is acyclic, or equivalently that the OU homology of the free OU -algebra
OU(V ) is

HOU
1 (OU(V )) = V, and HOU

n (OU(V )) = 0
for n ≥ 2.

Since by Proposition 5.4.3 the chain complex of the OU -algebra A is the
total complex of a bicomplex, we can use the spectral sequence associated
to this bicomplex to compute it:

E2
pq = Hv

q Hh
p (COU

∗∗ (A)) ⇒ HOU
p+q+1(A) .
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Since A := OU(V ) is free over Mag(V ) as an associative algebra for � (cf.
5.2.9) and since the horizontal complex is the Hochschild complex (for �)
with coefficients in Mag(V ), we get

Hv
q (COU

p∗ (A)) = 0, for q ≥ 1 and Hv
0 (COU

p∗ (A)) = A⊗p ⊗Mag(V ) .

Hence the complex (E1
0∗, d

1) is the Hochschild complex (for ≺) of A with
coefficients in Mag(V ). Its homology is

E2
00 = Mag(V )/Mag(V )A = V,

E2
0q = 0 otherwise.

Hence the spectral sequence tells us that HOU
n (A) = 0 for n > 1 and

that HOU
1 (A) = V . So we can deduce that OU is a Koszul operad. �

5.4.5. Alternative proof. (Bruno Vallette, private communication)
Since the operad OU is set-theoretic, one can apply the poset method of
Vallette [72, 15] to prove its Koszulity. Here the poset is as follows. Let us
fix an integer n. The poset ΠOU (n) is made of ordered sequences (t1, . . . , tk)
of p.b. trees such that

∑k
i=1 |ti| = n and |ti| ≥ 1. The covering relations

defining the poset structure are

(t1, . . . , tk+1) → (t′1, . . . , t
′
k)

if and only if the second sequence is obtained from the first by replacing two
consecutive trees ti, ti+1 either by ti/ti+1 or by ti\ti+1. One can show that
the poset is “Cohen-Macaulay” by methods of [15], and so, by [72], that
the associated chain complex is acyclic (except in top dimension). In fact
the top dimension homology group is OU !

n. This computation proves the
Koszulity of the operad OU .

5.4.6. Question. Since Mag! = Nil and As! = As the construc-
tion proposed in 3.4 suggests the existence of a good triple of operads
(Nil,OU !, As). Does it exists ?

5.5. On a quotient of OU

Let OUpreLie be the operad which is a quotient of OU by the relation

(x ≺ y) � z − x ≺ (y � z) = (x ≺ z) � y − x ≺ (z � y) .

This operad is still binary and quadratic, but is not regular anymore since
the added relation does not keep the variables in the same order.

5.5.1. Lemma. In any OU -algebra the following equality holds:

(x · y) · z − x · (y · z) = (x ≺ y) � z − x ≺ (y � z) .

Proof. Recall that x · y := x ≺ y − x � y. It is an immediate consequence
of the relations. �
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It follows from this Lemma that the above relator defines a primitive oper-
ation. It follows from Proposition 3.1 that there is a good triple

(As,OUpreLie, PreLie)

since the quotient of the primitive operad by this relator is precisely the
pre-Lie operad, cf. 4.5.1.

5.5.2. Proposition. The dimension of OUpreLie(n) is nn × n!.

Proof. By Corollary 2.6.5 we have the following relation between the gener-
ating series:

fOUpreLie(t) = fAs(fpreLie(t)) .

Since fAs(t) = t
1−t and since y := fpreLie(t) satisfies y = t exp(y), it follows

that dim OUpreLie(n) = nn × n!. �

5.6. Grafting algebras

For OU -algebras we used the grafting on the first leaf and the grafting
on the last leaf. However there is a more subtle structure which consists in
using the grafting operations on any leaf. Strictly speaking it does not give
an operad because, for a given integer i, the operation “grafting on the ith
leaf” exists only when the elements have high enough degree. This “grafting
algebra” structure has been studied in details by Maŕıa Ronco in [69], where
she proves the analogue of a structure theorem in this setting.

5.7. The triple (OU, OU, V ect)

5.7.1. OU-bialgebra. By definition a OU c-OU -bialgebra is determined
by the following compatibility relations:

BB ||
�

�
|| BB

= +
�

|| BB

BB ||
�

+
�

|| BB

BB ||
�

BB ||
�

≺
|| BB

=
≺

|| BB

BB ||
�

BB ||
≺

�
|| BB

=
≺

|| BB

BB ||
�
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BB ||
≺

≺
|| BB

= +
≺

|| BB

BB ||
≺

+
≺

|| BB

BB ||
≺

5.7.2. Proposition. Equipped with the dual basis coalgebra structure,
the free OU -algebra OU(V ) is a natural OU c-OU -bialgebra. So Hypothesis
(H1) is fulfilled.

Proof. We use the explicit description of OU(V ) in terms of planar binary
trees given in 5.1.3. We check the case

δ≺(x ≺ y) = x⊗ y + x≺(1) ⊗ x≺(2) ≺ y + x ≺ y≺(1) ⊗ y≺(2),

where δ≺(x) = x≺(1) ⊗ x≺(2).
First we describe δ≺(x) explicitly when x is a p.b. tree. Along the right

edge of x we can cut between legs to obtain two trees denoted x≺(1) and x≺(2)

such that x = x≺(1)\x
≺
(2). Then δ≺(x) is the sum of these x≺(1) ⊗ x≺(2) for all

possible cuts.
Let x and y be two p.b. trees. Since x ≺ y = x\y in the free algebra,

the cuts on the right edge of x � y are of three different types:
– either a cut in x,
– or a cut separating x from y,
– or a cut in y.
The first type of cuts gives the summands of x≺(1) ⊗ (x(2) ≺ y); the

second type of cuts gives x⊗ y; the third type of cuts gives the summands
of (x ≺ y≺(1))⊗ y≺(2).

Since in x � y = x/y the right edge is the same as the right edge
of y the cuts to obtain δ≺(y) are exactly the cuts of y. Therefore we get
δ≺(x � y) = x � y≺(1)⊗ y(2) ≺ as expected. The proof of the other two cases
are analogous. �

5.7.3. Proposition. The map ϕ(V ) : OU(V ) → OU c(V ) identifies the
basis of OUn with its dual, which is a basis of OU c. So Hypothesis (H2iso)

is fulfilled.

Proof. Let t and s be p.b. trees. We need to compute δt(s), which is of the

form λ x⊗ · · · ⊗ x, where λ is a coefficient and x = ��
?? is the generator of

OU(K). From the compatibility relations it is immediately seen that λ = 1
if t = s and that λ = 0 is t 6= s. �

5.7.4. Corollary. The triple (OU, OU, V ect) is a good triple of operads.
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5.8. Towards NonCommutative Quantization

There is another possible choice of compatibility relations for which the
free OU -algebra would still be a bialgebra. It consists in taking C = OU = A
and the u.i. compatibility relation for the four cases

(δ≺,≺), (δ�,≺), (δ≺,�), (δ�,�).

In this case the map ϕ(V ) is not surjective anymore because, for OU(V ),
we have δ≺ = δ� = δ as described in 5.2. Hence ϕ(V ) factors through
Asc(V ) (cf. 4.2.6. This phenomenon is similar to ϕ(V ) factorizing through
Comc(V ) in the Asc-As case with G=GHopf .

Analogously, for C = As2 = A and compatibility relations as above,
the free As2-algebra is a bialgebra, but the map ϕ is not surjective since it
factors through Asc. The notion of infinitesimal associative bialgebra (with
infinitesimal compatibility relation, cf. [1]) is going to play a role in the
analysis of these bialgebras.

We intend to address these cases in a future paper.



CHAPTER 6

Appendix

6.1. Compatibility relations G mentioned in this paper

Hopf:

??? ���

��� ???
= + OOOO

oooo +
��� ???

??? ���
+

��� ???

???���??? ���
+

��� ???

??? ���
+ ???���

���
???

??? ���
+

��� ??? ��� ???

???���??? ��� ??? ���

Unital infinitesimal:

??? ���

��� ???
= +

��� ???

??? ���
+

��� ???

??? ���

Infinitesimal:

??? ���

��� ???
=

��� ???

??? ���
+

��� ???

??? ���

Magmatic:

??? ���

��� ???
=

Frobenius:

??? ���

��� ???
=

��� ???

??? ���
=

��� ???

??? ���

97



98 6. APPENDIX

Livernet:

??? ���

��� ???
= +

��� ???

??? ���
+

��� ???

???���??? ���

Semi-Hopf:

BB ||
≺

ttt
t JJJ
J

= OOOO
oooo +

��� ???

BB ||
≺

+
ww

w GG
G

???���@@ ~~
∗

+ ???���
tttt
JJJJ

BB ||
≺

+
ww

w GG
G

ttt
t JJJ
J

???���>> �� BB ||
∗ ≺

BiLie:

??? ���

��� ???
=

��� ???

??? ���
+

��� ???

???���??? ���
+

��� ???

??? ���
+ ???���

���
???

??? ���

Lily:

??? ���

��� ???
= 2

(
− OOOO

oooo
)

+
1
2

( ��� ???

??? ���
+

��� ???

???���??? ���
+

��� ???

??? ���
+ ???���

���
???

??? ���

)
Nilpotent:

??? ���

��� ???
= − ��� ?????? ��� − ��� ?????? ��� +

��� ??? ��� ?????? ���
??? ���

Unital infinitesimal 3-ary:

????
����

��
�� ??

??
= + ��

�� ??
??

GGGG wwww
+ ��

�� ??
??

GGGG wwww
+ ��

�� ??
??

GGGG wwww

+ ��
�� ??

??

GGGG wwww
+ ��

�� ??
??

GGGG wwww
+ ��

�� ??
??

GGGG wwww
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6.2. Tableau of some good triples of operads

C A P G reference
Com Com V ect Hopf [6]
Com Parastat NLie Hopf [47]
Com As Lie Hopf [12, 57]
Com ?? As Hopf+? conjectural
Com Park PreLie Hopf+? conjectural
Com Mag Sabinin Hopf [?, 33]
Com Dipt Prim ComDipt Hopf ??
As As V ect u.i. [51]
As PreLie Prim AsPreLie u.i.
As Mag MagFine u.i. [34]
As 2as B∞ u.i.+Hopf [51]
As As2 As u.i.+u.i. 4.2.6
As OUpreLie PreLie u.i.+u.i. see 5.5
As OU Mag u.i.+u.i. see 5.2.6
As 2as Mag∞ u.i.+u.i. see 4.2.7
As Zinb V ect semi-Hopf [8]
As Dend Brace semi-Hopf [68]
As Dipt B∞ semi-Hopf [49]
As CTD Com semi-Hopf [46]
As Tridend Brace + As semi-Hopf [61]

Zinb As V ect semi-Hopf [8]
Mag Mag V ect magmatic [9]
NAP PreLie V ect ad hoc [40]
NAP Mag Prim NAP Mag see 4.5
2as 2as V ect u.i.2+Hopf2 [51]
2as 2mag Prim 2as2mag u.i.2+Hopf2

Dend Dend V ect hemisemi-Hopf [18]
Dend 2mag Prim Dend2mag hemisemi-Hopf
Lie Lie V ect Lily (not biLie) see 4.4
Lie PostLie Prim LiePostLie Lily+? [72]
Nil Nil V ect Nil 4.6.7
Nil Dias Leib ? conjectural
Nil OU ! As ? conjectural
IC IC V ect ? Hopf+ad hoc 4.8, [35]

tCom〈k〉 tAs〈k〉 tLie〈k〉 Hopf style see 4.9.2
tAs〈k〉 tAs〈k〉 V ect u.i. see 4.9.2
??? PreLie Lie ? conjectural

The notation Prim CA in the column “P” means that we do not know
yet about a small presentation of this operad.
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[27] V. Gnedbaye, Opérades des algèbres (k + 1)-aires. Operads: Proceedings of Re-
naissance Conferences (Hartford, CT/Luminy, 1995), 83–113, Contemp. Math., 202,
Amer. Math. Soc., Providence, RI, 1997.

[28] A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative
geometry. Duke Math. J. 128 (2005), no. 2, 209–284.
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[66] V. Reutenauer, Theorem of Poincaré-Birkhoff-Witt, logarithm and symmetric group

representations of degrees equal to Stirling numbers. Combinatoire énumérative
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