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1 Introduction

The goal of this paper is to give some information about the following question,
posed by Andreas Weiermann (private communication). Is it true that for every
β, γ < ε0 there exist α so that whenever A is α–large, A satisfies some inessential
assumption, say min(A) ≥ 2, and G : A → β is such that ∀a ∈ A psn(G(a)) ≤ a

there must exist γ–large C ⊆ A on which G is nondecreasing. Here ε0 is the
smallest ordinal solution to the equation ωε = ε, the notion of α–largeness is
in the sense of the so–called Hardy hierarchy and psn(α) is the greatest natural
number which occurs in the full Cantor normal expansion of α. We answer this
positively. We derive this result from a partition theorem of J. Ketonen and
R. Solovay [10] as reworked for the Hardy hierarchy in [1, 2, 3] and [12], in
particular from theorem 5 in [2]. Later we obtain much sharper upper bound
for α in terms of β and γ for very small ordinals β.

Now, we write something on the motivations which stand behind this work.
One of the open problems of proof theory is to determine the exact strength of
the Ramsey’s theorem for pairs (RT2

2) stated as the sentence of second order
arithmetic

For each X , if X codes a coloring of pairs of natural numbers into two colors,

then there exists an infinite set Y such that Y is homogeneous for X .

The exact relation of this principle to the other second order principles is un-
known, see [6] and [8] (for some background definitions see [15]). Even the
first order proof theoretic strength of RT2

2 is not fully described. It is known
that RT2

2 implies the first order Σ2 collection principle, see [9]. On the other
hand it is not known whether it is Π2 conservative over IΣ1. In [4], the au-
thors describe the set of Σ1 definable functions {hn : n ∈ ω} such that the
theory IΣ1 ∪ {∀x∃yhn(x) = y : n ∈ ω} has the same first order Π2–theorems
as RCA0 + RT2

2. These functions are constructed in a natural way from an
indicator for RCA0 + RT2

2 and describe bounds for some Ramsey properties of
sets (see [4]). Then, the Π2 conservativity problem of RCA0 + RT2

2 over IΣ1 is
reduced to the problem whether all hn’s are provably total in IΣ1. Since the
functions which are provably total in IΣ1 are exactly primitive recursive func-
tions, the problem of conservativity is reduced to the problem of giving (in IΣ1)
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primitive recursive upper bounds for some Ramsey properties. However, let us
note that it is even not known whether all hn’s are primitive recursive in the
Ackermann’s function (see also Question 1 on page 126 of [12]).

The functions hn’s are constructed from the indicator for RT2
2 but an ap-

parently related family of functions may be constructed using combinatorics on
α–large sets and their corresponding functions from Hardy hierarchy, for α < ε0

(for some background see [1] or the unpublished monograph [11]). Let α0 = 0
and let αn+1 be the least α such that for every set of natural numbers X which
is αn–large and for every 2–coloring F : [X ]2 −→ 2 of pairs of X there is an
αn–large Y ⊆ X which is homogeneous for F . In [12] it is proved that such
defined hierarchy of ordinals cannot be bounded in ωω. The rate of growth
of this hierarchy is not known. If it would be possible to prove (in IΣ1) that
it is included in ωω then it would prove that all hn’s are primitive recursive
(provably in IΣ1). On the other hand, showing that αn’s go beyond ωω would
suggest that also hn’s have not a primitive recursive a rate of growth.

Nevertheless, before attacking directly the problem of Π2 conservativity
of RCA0 + RT2

2 over IΣ1 Andreas Weiermann wanted to look closer at some
other second order principles, weaker but somewhat related to RT2

2, like Chain–
Antichain Property (every infinite order has an infinite chain or antichain) or
Tournament Property, see [4]. Here, we deal with combinatorics which is related
to a principle that every function from natural numbers into natural number
has a weakly monotone increasing subsequence.

Our paper can be seen as a research in combinatorics but with motivations
which are not purely combinatorial but comes also from questions mentioned
above.

We have organized the paper as follows. In section 2 we give the necessary
preliminaries. In section 3 we derive the existence of the appropriate ordinals α.
In section 4 we give an estimate of α below ωω which is much sharper than
the estimate obtained directly from the Ramsey–style result as in section 3. In
section 5 we go up to ωωω

.
The second author would like to thank the referee for his careful reading of

the paper, valuable insight and many corrections improving the quality of the
final article.

2 Preliminaries

Let α < ε0. Then α may be written in the Cantor normal form

α = ωα0 · a0 + · · · + ωαs · as (1)

for some α0 > α1 > · · · > αs with α > α0 and a0, · · · , as ∈ N \ {0}.
By LM(α) we denote the leftmost exponent of α, that is, if α is written in

the form (1), then LM(α) = α0. Similarly, by RM(α) we denote the rightmost
exponent of α, i.e. αs in (1). (In [1] we denoted RM(α) by %(α).)

As in the literature we write β � α if either α = 0 or β = 0 or all the
exponents in the Cantor normal form of β are ≥ all the exponents in the normal
form of α. We write β ≫ α for the same but with strict inequality.

For the notion of the Hardy hierarchy and the notion of largeness determined
by it we refer the reader to [1]. In fact, in order to avoid repetition we assume
the reader to have a copy of [1] in hand.
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In [1] we followed Ketonen and Solovay [10] and used their norm function.
Here we shall use the pseudonorm function defined as the greatest natural num-
ber which occurs in the full Cantor normal form of α, which is obtained from (1)
by writing all exponents α0, · · · , αs in their Cantor normal forms and repeating
till we get an expression in which only natural numbers occur. Technically we
define the function psn sending ordinals below ε0 into N by putting psn(n) = n

for n < ω and for α ≥ ω

psn(α) = max(psn(α0), · · · , psn(αs), a0, · · · , as)

where α is written in its Cantor normal form (1). See [5] for more about the
use of some version of norm to get an information about the Hardy hierarchy
and related topics.

Lemma 2.1 If β is limit, α < β and A ⊂ N is β–large and satisfies min(A) >

psn(α) > 1, then A is α–large.

Proof: See [3], corollary 2.2. �

We shall use the following function F : ε0 → ε0 (essentially it adds to α the
order type of the set of limit ordinals smaller than α). It is formally defined as
follows. We write

α = ωα0 · a0 + · · · + ωαs · as + ωn · mn + · · · + ω0 · m0,

where α > α0 > · · · > αs ≥ ω and n < ω (we allow some mi’s to be zero,
moreover we write ω0 rather than 1 to increase readability). Then F (α) is
equal to

ωα0 · 2a0 + · · · + ωαs · 2as+
ωn · mn + ωn−1 · (mn + mn−1) + · · · + ω0 · (mn + · · · + m0)+

(a0 + · · · + as).
(2)

Observe that F (α) is about α(+)α, where α(+)β denotes the so–called natural
sum of α and β.

Lemma 2.2 (The estimation lemma) For every α < ε0 we have: for every A ⊆ N

with min(A) > 0, if there exists a strictly decreasing function G : A → (≤ α)
such that ∀a ∈ A psn(G(a)) ≤ a, then A is at most F (α)–large.

Proof: See section 3 in [3]. �

Let us use the following notation, taken from Ramsey theory (cf. [7]):

α → (β)n
c iff for every α–large set A with min(A) > c and every

partition P : [A]n → (< c) there exists a β–large homogeneous set.

We shall need the following result of Ketonen and Solovay [10] as reworked for
the Hardy hierarchy in [2].

Theorem 2.3 Let A be an ωωα·c–large set and let P : [A]2 → (< c) be a partition

of [A]2 into c parts as indicated. Assume also min(A) > c. Then there exists

an ωα–large homogeneous set for this partition.
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Proof: This is theorem 5 in [2]. �

It turns out that if h satisfies the usual assumptions, that is it is increasing
and increases the argument and α is fixed, then hα may be also iterated in the
Hardy style. Thus we have: (hα)0 = id, (hα)β+1 = (hα)β ◦ hα and (hα)λ(b) =
(hα){λ}(b)(b).

Lemma 2.4 ∀β ∀α � LM(β) (hωα)β = hωα·β .

Proof: See [12], lemma 5.3. �

We shall also need the following fact.

Lemma 2.5 For all α, all β ≥ α and all a ≥ 1

{hωβ+ωα(a) ↓⇒ [hωα ◦ hωβ (a) ↓ & hωα ◦ hωβ (a) ≤ hωβ ◦ hωα(a)]}.

Proof: See [3], lemma 3.2. �

We also need the following lemma which can be easily verified by induction
up to ε0.

Lemma 2.6 For α, β < ε0 such that β � α, hβ+α = hβ ◦ hα.

Another lemma which we shall need later is as follows. In the lemma below
we use the usual notation a0 = min(A). By Sα we denote the Hardy iterations
of the usual successor: S(x) = x + 1.

Lemma 2.7 Assume that ξ < ε0 , k ≥ 2, min(A) ≥ 2 and A is ωωξ+1k–

large. Then A is ωωξ·s–large, where s = Sω2·7·(k−1)(a0). In particular, A is

ωωξk4min(A)

–large.

Proof: Let ξ, k and A satisfy assumptions of the lemma, let h denote the suc-
cessor in the sense of A. For a function f , by f (i)(x) we denote the i-th iterate
of f on x.

So let A be ωωξ+1k–large. Then A is ωωξ+1(k−1)+ωξ+1

–large, hence it is

ωωξ+1(k−1)+ω–large, so it is ωωξ+1(k−1)+a0–large. Thus A is ωωξ+1(k−1)+(a0−1)a0–

large and so ωωξ+1(k−1)+(a0−1) + ω2–large. Hence A is ωωξ+1(k−1)hω2(a0)–large

what gives that A is, at least, ωωξ+1(k−1)8–large (because min(A) ≥ 2). Thus A

is ωωξ+1(k−1) + ω2 · 7–large and A − [a0, hω2·7(a0)) is ωωξ+1(k−1)–large.

Applying this procedure k − 1 times we infer that A − [a0, h
(k−1)
ω2·7 (a0)) is

ωωξ+1

–large. We simply repeat the same procedure but instead of a0 we take

hω2·7(a0), then hω2·7(hω2·7(a0)), . . . , and finally h
(k−1)
ω2·7 (a0). But h

(i)
ω2·7(x) is

just hω2·7i(x) so we infer that A is ωωξ+1

+ ω2 · 7(k − 1)–large. Thus, A is

ωωξhω2
·7(k−1)(a0)–large. The last part of the lemma follows from the fact that

s = hω2·7(k−1)(a0) ≥ 4a0k and hence A is ωωξk4min(A)

–large. �
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3 The existence proof

The preliminaries collected in section 2 allow us to give a very simple proof of
the existence of the required α.

Theorem 3.1 Given β, γ < ε0 there exists α such that for every α–large A and
every G : A → (≤ β) such that ∀a ∈ A psn(G(a)) ≤ a there exists a γ–large
C ⊆ A on which G is nondecreasing.

Proof: Let β, γ be given. Let F : (< ε0) → (< ε0) be defined as on page 3
after lemma 2.1. Let m = max(psn(F (β)) + 1, psn(γ)). Pick also % such that
ω% ≥ max(F (β)+1, γ). Let α = ωω%·2 +m+1. We assert that α has the desired
property.

So let A, G : A −→ (≤ β) satisfy the assumption. Let u = hA
m+1(min(A)).

Then u > m. Let A∗ = {x ∈ A : u ≤ x}. Then A∗ is ωω%·2–large. Let
G∗ = G�A∗. Let a partition P : [A∗]2 → 2 be defined as follows. Put P (x, y) = 0
if G∗(x) ≤ G∗(y) and P (x, y) = 1 otherwise. By theorem 2.3 there exist an ω%–
large C ⊆ A∗ ⊆ A homogeneous for P . Obviously min(C) ≥ min(A∗) > m.
By lemma 2.1 C is both F (β) + 1–large and γ–large. Assume that [C]2 is
colored by 1. Then G∗ is strictly decreasing on C. But this is impossible by the
estimation lemma (i.e. lemma 2.2). It follows that [C]2 is colored by 0, so G is
nondecreasing on C. But as observed above this set is γ–large. �

Observe that the estimate given by this proof is very weak. The essence is
that we pick a large enough ω% and must go down from ωω%·2 to ω%, that is we
loose one exponent. But observe that the question has much more to do with
the so–called monotone subsequence theorem than with Ramsey theorem. The
monotone subsequence theorem is only mentioned on page 17 in [7], but see [14].
In § 4.1 of [14] the authors give a proof via Dilworth theorem and in problem 1
to chapter 4 they sketch a direct proof. Therefore it is by no means surprising
that we may obtain much stronger estimates, at least for very small ordinals.
This will be done in subsequent sections.

4 Below ω
ω

In order to get a better estimate it will be more convenient to work with func-
tions sending A to (< β) rather than to (≤ β). Moreover we assume that
min(A) > 1. Let us also strengthen the conclusion slightly. Let WR(α, β, γ) be
an abbreviation for

whenever A is α–large, G : A → β, where min(A) ≥ 2 and G is such
that for all a ∈ A psn(G(a)) ≤ a, then there exists a γ–large C ⊆ A

such that G is either strictly increasing or constant on C.

Moreover we shall assume that γ is of some very special form: γ = ωωξ·k. Indeed,
most of the argument given below depends on this assumption.

The goal of this section are the following two theorems.

Theorem 4.1 Let γ be of the form γ = ωωξ·k. Given β < ωω write β = ωm ·
nm + ωm−1 · nm−1 + · · · + ω0 · n0 in the Cantor normal form. Let

α = ωωξ·k·4m

· nm + ωωξ·k·4(m−1)

· nm−1 + · · · + ωωξ·k·40

· n0. (3)
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Then WR(α, β, γ).

In the following result we need the assumption that k > 1. If k = 1 then we may

require the existence of an ωωξ·2–large set on which the appropriate function
is constant or increasing, so we need a slightly stronger assumption. We could
work equally well assuming ξ > 0.

Theorem 4.2 Assume that k > 1. Let γ = ωωξ·k and β = ωω. Let α = ωωξ+1·16·k.
Then WR(α, β, γ).

We begin with some simple observations. The first one is as follows. Let β = 1.
Then let α = γ and we are done, indeed, G has only one value, so is constant.
Thus we have WR(γ, 1, γ).

Let G : A → β + 1 satisfy the assumption. Let B = {a ∈ A : G(a) = β}.
If this set is γ–large, then we are done, so assume that B is γ-small. Thus we
must ensure that A \ B is α(β, γ)–large. Using theorem 12 in [1] we see that

if WR(α, β, γ) and α � γ then WR(α + γ, β + 1, γ) (4)

Let us generalize this trick. Assume that β = µ + ν, where µ � ν and both
µ, ν are greater than 0. Let G : A → µ + ν satisfy the assumption. Let B =
{a ∈ A : G(a) ≥ µ}. Then for every a ∈ B there exists ζ(a) < ν such that
G(a) = µ + ζ(a). This follows easily by considering the Cantor normal form of
the ordinal G(a). Thus, write it as

G(a) = ωη0 · w0 + . . . + ωηt−1 · wt−1

and see that the initial part of this expansion must equal µ and let the further
part be ζ(a). Thus, we are given a function ζ : B → ν, so if B is α–large, where
WR(α, ν, γ), then we are done. This is so because in this case, by our inductive
assumption, there would be a γ–large C ⊆ B such that ζ(x) is constant or
strictly increasing on C. Then, of course, G(x) = µ + ζ(x) would be constant
or strictly increasing on C, too. It follows that we are done (with the following
Lemma) if the remainder A \B is α′–large, where WR(α′, µ, γ). Indeed, in this
case, G sends this remainder A\B to µ and there would be a γ–large C ⊆ A\B

such that G is constant or strictly increasing on C. Summing up, using the same
theorem 12 in [1] we get that

Lemma 4.3 If β = µ + ν, µ � ν, α, α′ are such that WR(α′, ν, γ), WR(α, µ, γ)
and α � α′, then WR(α + α′, µ + ν, γ).

In the following lemma the assumption that γ is of the form ωωξ·k is essential.
(What is needed is that γ is of the form ωδ, where δ � δ, so δ is of the form ωξ ·k

and, hence, γ = ωωξ·k.) In the lemma the square almost suffices, we take the
fourth power rather than square just to handle a minor tail that occurs.

Lemma 4.4 WR(ωωξ·k·4, ω, ωωξ·k)

Proof: Let G : A → ω satisfy the assumption. Thus we have: for all a ∈ A

G(a) ≤ a. In order to work out this case assume that there exists a (γ + 1)–
large B ⊆ A, say B = {b0, · · · , br−1} in increasing order, such that for every
j < r−1 the interval A∩ [bj , bj+1) of A is ωδ+1–large. We assert that under this
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assumption each G as above is either increasing or constant on some γ–large
C ⊆ A. Indeed, consider two cases.

Case 1. For every j < r − 1 there exists c ∈ A ∩ [bj , bj+1) such that
G(c) ≥ bj . In this case choose for each j < r−1 one such cj and let C be the set
just chosen c’s. Then it is easy to check that G is strictly increasing on C. The
reason is as follows. Let c1 < c2, both in C. Then bj1 ≤ c1 < bj1+1 ≤ bj2 ≤ c2

for the elements bj1 , bj2 as above. But then G(c2) ≥ bj2 ≥ bj1+1 > c1 ≥ G(c1)
by the assumption on G. Moreover C is γ–large. The reason is lemma 5(ii)
in [1]. Indeed, C has the same cardinality as B \ {min(B)} and the consecutive
elements of C are smaller than consecutive elements of B \ {min(B)}, which is
γ–large.

Case 2. There exists j < r−1 such that for all a ∈ A∩ [bj , bj+1) G(a) < bj.
In this case consider the partition A ∩ [bj , bj+1) = ∪i<bj

Ai, where Ai = {a ∈
[bj , bj+1) ∩ A : G(a) = i} and apply theorem 1 in [1] to see that G is constant
on some ωδ–large C, namely C = Ai for some i.

Thus what is needed is to see how large A is supposed to be in order to ensure
the existence of B as above. To see this, observe at first that it suffices that the
intervals A∩[bj , bj+1] are ωδ+1+1–large, this follows from lemma 2.5. Indeed, we
want that A∩[bj , bj+1) is ωδ+1–large what is equivalent to hω0◦hωδ+1(bj) ≤ bj+1.
Then, by lemma 2.5, it suffices that hωδ+1 ◦ hω0(bj) ≤ bj+1 what is equivalent
to A ∩ [bj, bj+1] being ωδ+1 + 1–large. Of course it suffices to ensure that these
intervals are ωδ·2–large because min(A) > 1. Using the specific form of δ and
lemma 2.4 we see that every set which is ωδ·3–large almost has the required
property, that is it is the union of its intervals A∩ [bj, bj+1), but then the set B

is ωδ–large. In order to ensure that it is ωδ + 1–large as required, it suffices
to have one more ωδ·2–large set at the beginning of A, but clearly it suffices to
assume that A is ωδ·4–large. �

Lemma 4.5 If α = ωωξ·4k · m, then WR(α, ω · m, ωωξ·k).

Proof: Immediate by lemmas 4.4 and 4.3 by induction on m. �

Lemma 4.6 For all m > 0 if α = ωωξ·k·4m

, then WR(α, ωm, ωωξ·k).

Proof: By induction on m, case m = 1 is just lemma 4.4. Assume the assertion

WR(α, ωm, ωωξ·k) for m. Let G : A → ωm+1. We write G(a) = ωm·wsp(a)+ζ(a)
with ζ(a) < ωm. Let B ⊆ A be such that the function a 7→ wsp(a) is either
constant or strictly increasing on B. If it is strictly increasing on B, so is G, so

we need merely to know that B is ωωξ·k–large, so in this case it suffices that A

is ωωξ·k·4–large. So assume that wsp is constant on B. Then the function
b 7→ ζ(b) sends B to ωm, so we shall be done if we knew that B is %–large for

some % such that WR(%, ωm, ωωξ·k). By the inductive assumption it is enough

if B is ωωξ·k·4m

–large. Together, by Lemma 4.4, it suffices to require that A is

ωωξ·k·4m+1

–large. �

Proof of theorem 4.1: Immediate by lemmas 4.6 and 4.3. �

Proof of theorem 4.2: Assume that k > 1. Let G : A → ωω satisfy the assump-
tion. Every G(a) is of the form G(a) = ω`(a) · wsp(a) + ζ(a), where `(a) ≤ a,
0 < wsp(a) ≤ a and ζ(a) < ω`(a). (We assume here that if wsp(a) = 0 then
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`(a) = 0, too.) In particular, if `(a) = 0 then G(a) = wsp(a). Let B ⊆ A be
such that the function a 7→ `(a) is either constant or increasing on B. As usual,
if it is increasing, so is G, so this case causes no problems. So assume that
this function is constant on B. Pick C ⊆ B on which the function b 7→ wsp(b)
is either increasing or constant. Finally, pick D ⊆ C on which the function
c 7→ ζ(c) is either increasing or constant. We want to ensure that we are able to

find an ωωξ·k–large D. Observe that `, the constant value of `(b) on B, satisfies
` ≤ b0. This follows from the assumption about G applied to b0. Moreover,
b0 ≤ c0 because C ⊆ B. It follows that the function c 7→ ζ(c) sends C to ωc0 .

By lemma 4.6 it suffices to make sure that C is ωωξ·k·4c0
–large. By lemma 2.7

it is enough if C is ωωξ+1k–large. Thus it suffices to observe that when passing
from A to C we used two functions into ω, so it suffices to multiply the exponent
by 4 twice. �

5 Below ω
ωω

The direct method used above, when applied to ordinals β above ωω, gives only a
very weak estimate, comparable with the one given by the proof of theorem 3.1.
In order to see this consider the case β = ωω·2. So let G : A → ωω·2. Then
every G(a) is of the form ωω+n · kn + ωω+n−1 · kn−1 + · · · + ωω · k0 + ζ, where
ζ < ωω. We must consider the functions a 7→ n, a 7→ kn, · · · , a 7→ k0, a 7→ ζ

and the argument as above yields: if α = ωωξ+2·k·162

, then WR(α, ωω·2, ωωξ·k).
Thus adding ω in the exponent of β needs addition of 1 at the second level of

exponent in γ. Similarly, if β = ωω2

, then we need α of order ωωξ+ω

. In order
to get a better estimate we need some additional work. It will be based on a
slightly another expansion of ordinals below ωωω

than the usual Cantor normal
form. This will be used to get an estimate of the length of the expansion. Below,
if we write % =

∑
j ω%j · rj we assume that the sum is written in such a way

that the sequence of exponents %j is decreasing.

Lemma 5.1 Let % < ωωn+1

. Then for every k ≤ n we may represent % in the
form

% =
∑

i≤mk

ωωn·wn,i+ωn−1·wn−1,i+···+ωn−k·wn−k,i · ζi, (∗)

where the coefficients ζi are strictly smaller than ωωn−k

and the length mk +1 of
the k–th sum is estimated as follows. If k = 0 set w = maxw : ωωn·w ≤ % and
m0 ≤ w. For k > 0 let ζi : i ≤ mk−1 be the coefficients in the (k−1)–st sum (∗).

Let ui = max u : ωωn−k·u ≤ ζi and then mk ≤ (u0 + 1) + · · · + (umk−1
+ 1).

If % = 0 then we represent % as the empty sum.

For k ≤ n we shall refer to the expansion (∗) as to the k–th Cantor normal form
of %.

Proof: Fix % and proceed by induction on k. Let k = 0. Set w = maxw :
ωωn·w ≤ %. By the theorem on division with remainder (cf. [13]) there exist
ζ = ζw and η = ηw < ωωn·w such that % = ωωn·w · ζw + ηw. We have also
ζw < ωωn

. Indeed, if ζw ≥ ωωn

, then % ≥ ωωn·w · ζw ≥ ωωn·w · ωωn

= ωωn·(w+1)

contrary to maximality of w. Now we divide ηw with remainder by ωωn·(w−1)

and obtain ζw−1, ηw−1 such that % = ωωn·w · ζw +ωωn·(w−1) · ζw−1 + ηw−1 where
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ηw−1 < ωωn·(w−1) and check that ζw−1 < ωωn

. We continue in the same fashion,
that is divide ηw−1 by ωωn·(w−2) and obtain ζw−2, ηw−2 and so on. Together
we obtain % =

∑0
j=w ωωn·j · ζj as required in the case k = 0. In particular the

desired inequality m0 ≤ w is obvious.
Assume the lemma for k − 1 and let ζmk−1

, · · · , ζ0 be the coefficients of the

sum (∗) for k − 1. For each j we let uj = maxu : ωωn−k·u ≤ ζj . By the

initial step applied to each ζj we have a representation ζj = ωωn−k·uj · ζj,uj
+

ωωn−k·(uj−1) · ζj,uj−1 + · · ·+ ωωn−k·0 · ζj,0, where all ζj,i are smaller than ωωn−k

for i = uj , uj −1, · · · , 0. We substitute these representations to the sum (∗) and
obtain the representation (∗) for k, of course after a re–enumeration of the ζ’s.
Obviously, it has the required properties. �

Let k ≤ n. For (an, · · · , ak) by ω(an, · · · , ak) we denote the ordinal ωn · an +
· · ·+ωk ·ak (these will be used as abbreviated versions of exponents occurring in
the k–th expansion from lemma 5.1). If the sequence is empty we put ω(∅) = 0.

For a set X , X i is the set of sequences of the length i of elements from X .
In particular, X0 = {∅} since there is only one sequence of the length 0. We
implicitly use this fact in the next lemma which is the main tool in obtaining
an upper bound for functions into ωωn+1

. In the lemma we use an inequality
hω24(n+1)(x) ≥ 4(x+1)n

for x ≥ 1. It can be easily verified by the fact that
for a function h being a successor function (what is the worst case) we have
hω2(x) = 2xx and that, by lemma 2.6, hω2r(x) = (hω2)r(x), where (hω2)r(x) is
the r–times iterated hω2 on x.

Lemma 5.2 Let µ � ω0, let A be ωωµ+n+1k42(n+1)2–large and let G : A −→ ωωn+1

such that for all a ∈ A, psn(G(a)) ≤ a. Then there exist a sequence of sets:

Bn+1 ⊇ Bn ⊇ . . . ⊇ B0; a sequence of functions Gi : Bi −→ ωωn+1

for i ≤ n+1;
and there exist a sequence of sets Ci ⊆ [0, min(Bi)]

n−i+1 and a sequence of
tuples c̄i ∈ [0, min(Bi+1)]

n−i, for i ≤ n, such that the following holds for all
i = n, . . . , 0:

1. Bn+1 = A and Gn+1 = G;

2. Bi is ωωµ+i+1k4(n+1)(i+1)–large;

3. the (n− i)–th Cantor normal form of Gi(x) can be written, independently
of x ∈ Bi, either as

Gi(x) = Gi+1(x) =
∑

c̄∈Ci

ωω(c̄)ξc̄(x)

or as
Gi(x) =

∑

c̄∈Ci

ωω(c̄)ξc̄(x) + ωω(c̄i)+ωdδ(x)η(x),

where i ≤ d ≤ n and c̄i is the sequence (ci,n, . . . , ci,d+1, 0, . . . , 0) of the
length n− i and where δ : Bi −→ ω is strictly increasing on Bi and for all

x ∈ Bi, η(x) < ωω(c̄i)+ωd

and for all x ∈ Bi \ {min(Bi)}, η(x) 6= 0.

Here, the choice of d, c̄i, δ, η and ξc̄ for c̄ ∈ Ci is done independently of
x ∈ Bi.

4. for all D ⊆ Bi, if Gi is strictly increasing on D then Gi+1 is strictly
increasing on D;
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5. either Gi = Gi+1 on Bi or there is no subset D ⊆ Bi such that card(D) ≥ 2
and Gi is constant on D.

Moreover, we assume that for all 0 ≤ i ≤ n, Ci is not empty. If, for some i ≤ n,
Ci = ∅ we stop the construction. If, for some i ≥ 0, Ci = ∅ then for x ∈ Bi,
Gi(x) = ωω(c̄i)+ωiδ(x)η(x), where δ : Bi −→ ω is strictly increasing on Bi and

for all x ∈ Bi, η(x) < ωω(c̄i)+ωi

and for all x ∈ Bi \ {min(Bi)}, η(x) 6= 0 (this
is the second case in point 3).

Proof: Before we begin the proof of the lemma let us comment on point 3. From
our assumption that the ordering of exponents in the sum

∑
j ω%j · rj is always

decreasing if follows that if

Gi(x) =
∑

c̄∈Ci

ωω(c̄)ξc̄(x) + ωω(c̄i)+ωdδ(x)η(x)

and ā0 is a minimal member of Ci in the lexicographic ordering then there is no
sequence b̄ of length n−i such that ωω(b̄) appears in the (n−i)-th Cantor normal
form of Gi(x) and ω(ā0) > ω(b̄) > ω(c̄i) + ωd (for c̄i = (ci,n, . . . , ci,d+1, 0, . . . , 0)
we think of ω(c̄i) + ωd as ωnci,n + . . . + ωd+1ci,d+1 + ωd).

Now, to construct Bn and Gn we define the function w : Bn+1 −→ ω as

w(a) = max({u : ωωn·u ≤ Gn+1(a)} ∪ {0}).

We take the set Bn ⊆ Bn+1 such that w(x) is constant or strictly increasing on
Bn. Since we have to deal with only one function into ω, Bn can be chosen to
be ωωµ+n+1k4(n+1)2–large.

If w(a) is strictly increasing on Bn we take Cn = ∅ and c̄n = ∅. The function
Gn is defined as

Gn(a) = ωωn·w(a)η(a) = ωω(∅)+ωnw(a)η(a),

where η is such that for a ∈ Bn,

Gn+1(a) = ωωnw(a)η(a) + ξ(a)

for some ξ(a) < ωωnw(a). It is straightforward to check that points 3–5 are
satisfied and that Gn is strictly increasing on Bn.

Now, let us assume that w(x) is constant on Bn and equal to some w ≤
psn(G(min(Bn))) ≤ min(Bn). Then, we set Cn = {0, . . . , w} and we set

Gn(x) = Gn+1(x) =
∑

i∈Cn

ωωn·iξi(x),

when we write Gn(x) in the 0-th Cantor normal form. Again, the sequence
c̄n = ∅. It is easy to check that points 3–5 are satisfied.

Now, let us assume that for some i + 1 ≤ n we constructed Bi+1, Gi+1,
Ci+1 6= ∅ and c̄i+1. Then, for a ∈ Bi+1, Gi+1(a) can be written as

∑

c̄∈Ci+1

ωω(c̄)ξc̄(a) + ξ(a),
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where ξ(a) depends on the case in point 3 of the lemma. Now, for c̄ ∈ Ci+1, we
define the function wc̄ : Bi+1 −→ ω as

wc̄(a) = max({u : ωω(c̄)+ωiu ≤ ξc̄(a)} ∪ {0}). (5)

We choose Bi such that all wc̄ are constant or strictly increasing on Bi. Firstly,
let us assure that Bi is suitably large. The set Bi+1 is

ωωµ+i+2k4(n+1)(i+2)–large.

Thus, it is also

ωωµ+i+2k4(n+1)(i+1)+ω24(n+1)–large.

Since, by the remark before the lemma, hω24(n+1)(x) ≥ 4(x+1)n

, the set Bi+1 is
also

ωωµ+i+2k4(n+1)(i+1)+4(min(Bi+1)+1)n

–large

and consequently Bi+1 is

ωωµ+i+1k4(n+1)(i+1)·4(min(Bi+1)+1)n

–large.

But the cardinality of Ci+1 is less than (min(Bi+1)+1)n, thus Bi can be chosen
to be

ωωµ+i+1k4(n+1)(i+1)–large.

Now, to define Gi, Ci and c̄i we consider two cases. The first one is when
all wc̄ are constant on Bi. Then,

Ci = {(cn, . . . , ci+1, c) : (cn, . . . , ci+1) ∈ Ci+1 ∧ c ≤ wcn,...,ci+1(min(Bi))}.

Then, we choose c̄i as (c̄i+1, 0). We define Gi = Gi+1 and we write Gi, for
a ∈ Bi, as

Gi(a) =
∑

c̄∈Ci

ωω(c̄)ξc̄(a) + γ(a),

where
∑

c̄∈Ci
ωω(c̄)ξc̄(a) is the beginning of the (n− i)-th Cantor normal form of

Gi+1(a) and γ(a) is just the zero function or ωω(c̄i)+ωdδ(a)η(a) in the case when

Gi+1(a) =
∑

c̄∈Ci+1

ωω(c̄)ξ′c̄(a) + ωω(c̄i+1)+ωdδ(a)η(a),

for some n − i ≤ d ≤ n, δ being strictly increasing on Bi and η(a) < ωωd

. It is
straightforward to check that points 3–5 are satisfied.

Now, let us consider the case when there exists c̄ ∈ Ci+1 such that wc̄ is
strictly increasing on Bi. Then we choose c̄i as the greatest such sequence in
the lexicographic ordering and we set Ci as

Ci = {(cn, . . . , ci+1, c) :

(cn, . . . , ci+1) ∈ Ci+1 is greater than c̄i and c ≤ wcn,...,ci+1(min(Bi))}.

For each c̃ ∈ Ci+1 greater than c̄i, the function wc̃ is constant on Bi. Then,
by the definition of wc̃ (see (5)), in the (n−i)-th Cantor normal form of Gi+1(a)
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for a ∈ Bi there are no elements of the sum of the form ωω(c̃)+ωicξc̃,c(a) for
c̃ ∈ Ci+1, c̃ greater than c̄i and c > wc̃(a) = wc̃(min(Bi)). This is why, in
defining Ci, we restrict our our attention only to c ≤ wcn,...,ci+1(min(Bi)).

Let us observe that it may happen that Ci is empty.
Now, we define Gi. Firstly, let us write Gi+1(a) for a ∈ Bi in the following

form
Gi+1(a) =

∑

c̄∈Ci

ωω(c̄)ξc̄(a) + ωω(c̄i)+ωiwc̄i
(a)η(a) + ξ(a),

where
∑

c̄∈Ci
ωω(c̄)ξc̄(a) + ωω(c̄i)+ωiwc̄i

(a)η(a) is the beginning of the (n − i)-th

Cantor normal form of Gi+1(a), η(a) < ωωi

and ξ(a) < ωω(c̄i)+ωi

. Let us
observe that since wc̄i

is strictly increasing on Bi and is defined as max({u :

ωω(c̄i)+ωiu ≤ ξc̄i
(a)} ∪ {0}) it follows that it may happen that η(a) = 0 only if

wc̄i
(a) = 0. Thus, for all a ∈ Bi \ {min(Bi)}, η(x) 6= 0. Now, we define Gi(a)

as the first elements of the (n − i)-th Cantor normal form of Gi+1(a), that is

Gi(a) =
∑

c̄∈Ci

ωω(c̄)ξc̄(a) + ωω(c̄i)+ωiwc̄i
(a)η(a).

Now, the point 3 is obviously satisfied. Similarly, since wc̄i
is strictly increasing

on Bi and η(x) 6= 0 for x ∈ Bi \ {min(Bi)}, the point 5 is satisfied. Let us
now verify the point 4. Let A ⊆ Bi be such that Gi is strictly increasing on
A. Then, Gi+1(a) differs from Gi(a) only by a factor ξ(a) which is smaller than

ωω(c̄i)+ωi

. And moreover the factor ωω(c̄i)+ωiwc̄i
(a)η(a) occurs in all Gi+1(a),

for a ∈ Bi \ {min(Bi)}. Thus, the factor ξ(a) is inessential and Gi+1 is strictly
increasing on A, too. Thus, we have proved the lemma. �

Now, we can give an estimation for α in WR(α, ωωn+1

, ωωµk), where µ � ω0.

Lemma 5.3 Let µ � ω0, k ≥ 1. WR(ωωµ+n+1(k+1)42(n+1)2 , ωωn+1

, ωωµk).

Proof: Let A be ωωµ+n+1(k+1)42(n+1)2–large and let G : A −→ ωωn+1

. Then, we
take the sequences A = Bn+1 ⊇ Bn ⊇ . . . ⊇ Bi; Gn+1, . . . , Gi; Cn, . . . , Ci and
c̄n, . . . , c̄i from lemma 5.2. We have that either i = 0 or Ci = ∅. By point 2 of
lemma 5.2 we have that Bi is ωωµ+1(k+1)4(n+1)–large. We consider two cases.
Firstly, let us assume that Ci = ∅. Then, by the second case of point 3 in
Lemma 5.2, for all a ∈ Bi, Gi(a) can be written as

Gi(a) = ωω(c̄i)+ωdδ(a)η(a),

for some i ≤ d ≤ n, c̄i = (ci,n, . . . , ci,d+1, 0, . . . , 0), for δ(a) being strictly in-

creasing on Bi and for η(a) < ωωd

and η(a) 6= 0 for all a ∈ Bi \ {min(Bi)}.
(This is the only case when Ci may be empty.) It follows that Gi is strictly
increasing on Bi. Then, by point 4 of lemma 5.2 applied n − i + 1 times, G is
strictly increasing on Bi, too.

Now, let us assume that Ci 6= ∅. Then, it has to be the case that i = 0.
According to point 3 of lemma 5.2, we again have two cases.

In the first case, for all a ∈ B0,

G0(a) =
∑

c̄∈C0

ωω(c̄)ξc̄(a),
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where all ξc̄ are functions into ω. Let us observe that, by point 3 of lemma 5.2,
in this case for x ∈ B0,

G0(x) = G1(x) = . . . = Gn+1(x) = G(x).

This is so because if we once use the second option in point 3 of lemma 5.2
then we will never leave it later to the first option. Then, the cardinality of
C0 is not greater than (min(B0) + 1)n+1. So, if we find B ⊆ B0 such that for
all c̄ ∈ C0 functions ξc̄ are constant or strictly increasing on B than G will be
constant or strictly increasing on B, too. Thus, we need to take care of, at most,
(min(B0) + 1)n+1 functions into ω. But B0 is

ωωµ+1(k+1)4(n+1)–large.

Since k ≥ 1, it is also

ωωµ+1k+ω24(n+1)–large.

Since, hω24(n+1)(x) ≥ 4(x+1)n+1

, it follows that B0 is

ωωµk4(min(B0)+1)n+1

–large.

Thus, we can find a suitable B such that it is

ωωµk–large.

In the second case, for all a ∈ B0,

G0(a) =
∑

c̄∈C0

ωω(c̄)ξc̄(a) + ωω(c̄0)+ωdδ(x)η(x),

for some 0 ≤ d ≤ n and where δ : B0 −→ ω is strictly increasing on B0, η(a) <

ωωd

and for all x ∈ B0 \ {min(B0)}, η(x) 6= 0. Then, for all c̄ ∈ C0, ξc̄ is
a function into ω and we need to find the set B ⊆ B0 such that all ξc̄ are
constant or strictly increasing on B. For such a set B, G0 is strictly increasing
on it. Consequently, by point 4 of lemma 5.2 applied n − 1 times, G is strictly
increasing on B, too. By the same analysis of largeness as in the first case
we can show that B can be chosen ωωµk–large. This finishes the proof of the
lemma. �

Theorem 5.4 Let µ � ω and k ≥ 1. WR(ωωµ+ωk42

, ωωω

, ωωµk).

Proof: Let A be ωωµ+ωk42

–large and let G : A −→ ωωω

. Then, let us consider
the function

w(a) = max({u : ωωu

≤ G(a)} ∪ {0})

and take B ⊆ A such that B is ωωµ+ωk4–large and w is constant or strictly
increasing on B. In the latter case G is strictly increasing on B too so we
consider only the former one. Since for all a ∈ B psn(G(a)) ≤ a, G is on B a

function into ωωb0+1

, where b0 = min(B). It follows, by lemma 5.3, that if B is

ωωµ+b0+1(k+1)42(b0+2)2–large
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then there is C ⊆ B such that C is ωωµk–large and G is constant or strictly
increasing on C. But since B is ωωµ+ωk4–large it is also ωωµ+ωk+ω2k3–large and,
since hω2k3(x) ≥ 42(k + 1)(x + 1)2 + x + 1 for x ≥ 1, we finally obtain that B is

ωωµ+b0+1(k+1)42(b0+1)2–large.

This is so because

h
ωωµ+ωk+ω2k3(x) ≥ h

ω
(ωµ+ωk+h

ω2k3
(x))(x)

≥ h
ωωµ+ωk+(42(k+1)(x+1)2+x+1)(x)

≥ h
ωωµ+x+1+42(k+1)(x+1)2 k

(x)

≥ h
ωωµ+x+142(k+1)(x+1)2 (x).

This finishes the proof of the theorem. �

We conjecture that also for larger ordinals the similar estimations to the
given above holds. That is, if µ � ωn, for n ≥ 1, then there is b ∈ ω such
that WR(ωωµ+ωnk·b, ωωωn

, ωωµk). However, it seems that to extend our results
to the case of n > 1 one needs to develop a new approach which would reduce
the complexity of some properties of considered objects.
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