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Abstract

We prove that for i ≥ 1, the arithmetic I∆0 + Ωi does not prove
its own Herbrand consistency restricted to the terms of the depth in
(1+ε) logi+2, where ε is an arbitrary small constant greater than zero.

1 Introduction

One of the main methods of showing that one set of axioms, say T , is strictly
stronger than the other one, say S ⊆ T , is to show that T ` ConS. However,
as it was proved by Wilkie and Paris in [WP87] this method does not work
for bounded arithmetic theories if we use the usual Hilbert style provability
predicate. Indeed, they proved that even the strong arithmetic I∆0 + exp
does not prove the Hilbert style consistency of Robinons’s arithmetic Q, that
is I∆0 + exp does not prove that there is no Hilbert prove of 0 6= 0 from Q.
Thus, if we hope to differentiate various bounded arithmetics by provability
of consistency we should use some other provability notions, like tableux or
Herbrand provability. Indeed, for these notions it is usually easier to show
that a given theory is consistent since, e.g., Herbrand proofs are of a bigger
size than Hilbert ones. Thus, it may happen in a model of I∆0 + exp that a
theory S is inconsistent in the Hilbert sense and consistent in the Herbrand
sense. Only when we know that the superexponentiation function is total we
can prove the equivalence of the above notions of provability. (The super-
exponentiation function is defined by inductive conditions: supexp(0) = 1
and supexp(x + 1) = exp(2, supexp(x)).) For some time it has been even
unknown whether the second Gödel incompleteness theorem holds for arith-
metics I∆0 + Ωi and the Herbrand style provability predicate. Adamowicz
and Zbierski in [AZ01] proved, for i ≥ 2, the second incompleteness theorem
for I∆0 + Ωi and the Herbrand notion of consistency and later Adamowicz
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in [A01] proved this result for I∆0 + Ω1. Recently, Ko lodziejczyk showed
in [K06] a strengthening of these results. He proved that there is a finite
fragment S of I∆0 + Ω1 such that no theory I∆0 + Ωi proves the Herbrand
consistency of S. Thus, if one wants to differentiate bounded arithmetics by
means of provability of Herbrand consistency one should consider a thinner
notion, e.g., Herbrand proofs restricted to some cuts of a given model of a
bounded arithmetic.

In our main result, we show that for each i, I∆0 + Ωi does not prove its
Herbrand consistency, when it is suitably formulated, restricted to the terms
of depth in (1 + ε) logi+2 of a given model, where ε > 0, (see theorem 32).
On the other hand it is known that for each i,

I∆0 + Ωi ` HCons(I∆0 + Ωi, logi+3)

that is I∆0 + Ωi proves its Herbrand consistency restricted to terms of depth
logi+3 (see theorem 20).

It is tempting to close the gap by proving, at least for some i ≥ 1, either
that

I∆0 + Ωi ` HCons(I∆0 + Ωi, logi+2) (1)

or
I∆0 + Ωi 6` HCons(I∆0 + Ωi, A logi+3), for some A ∈ N. (2)

Indeed both conjectures (1) and (2) have interesting consequences for
bounded arithmetics. If (1) holds then I∆0 + Ωi+1 would not be Π1–
conservative over I∆0 + Ωi. This is so because logi+2 is closed under ad-
dition in the presence of Ωi+1. Thus, in I∆0 + Ωi+1 the cuts logi+2 and
(1 + ε) logi+2 are the same. It follows then from (1) that I∆0 + Ωi+1 `
HCons(I∆0 + Ωi, A logi+2), for each A ∈ N.

On the other hand, if (2) holds this would mean that we cannot mimic
the proof of theorem 20 for the cut A logi+3. But the only tool needed in that
proof which is unavailable in this situation is the existence of a suitable truth
definition for ∆0 formulas. Thus, it would follow that there is no such truth
definition for ∆0 formulas whose suitable properties are provable in I∆0 +Ωi.

2 Basic notions and facts

For a detailed treatment of bounded arithmetics we refer to [HP93]. We
consider the bounded arithmetics theories I∆0 + Ωi, for i ≥ 1. I∆0 is just
the first order arithmetic with the induction axioms restricted to bounded
formulas i.e. formulas with quantification of the form Qx ≤ t(z̄), where
Q ∈ {∃, ∀} and x 6∈ {z̄}. For i ≥ 1, the axiom Ωi states the totality of
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the function ωi. The functions ωi are defined as follows. Let log(x) be the
logarithm with the base 2 . Let the length function lh(x) be the length of
the binary representation of x,

lh(x) = plog(x+ 1)q.

Now,

ω1(x) =

{

0 if x = 0

2(lh(x)−1)2 if x > 0.

and

ωi+1(x) =

{

0 if x = 0
2ωi(lh(x)−1) if x > 0.

Let exp(x) = 2x. The following relation between exp and ωi will be
important for us. For all i ≥ 1, for all k

ωki (expi+2(0)) = expi+2(k). (3)

This equation allows us to infer the existence of (i+ 2)-th iterated exp on a
number k from the existence of the interpretation for a term ωki (expi+2(0)).
We will need also supexp(x) function defined by conditions supexp(0) = 1
and supexp(x + 1) = exp(supexp(x)) and log∗(x) function, which is a kind
of inverse of supexp, defined as

log∗(x) = max{i ≤ x : supexp(i) ≤ x} ∪ {0} .

We extend the language by adding a function symbol s∃xϕ of arity n for each
formula ∃xϕ with n free variables. As a numeral for i we take i = 2i. We
take the tree depth of i as log2(i). The tree depth of other terms is defined
by the inductive condition:

tr(f(t1, . . . , tk)) = 1 + max {tr(ti) : i ≤ k} .

By the depth of a term t we define the maximum of its tree depth and the
size of the greatest function symbol in t. That is

dp(t) = max {f : f occurs in t} ∪ {tr(t)} .

For a set of terms Λ, the depth of Λ, dp(Λ) = max {dp(t) : t ∈ Λ}.
We assume that our coding has the property that a code of a term

sϕ(t1, . . . , tk) is not greater than (ϕ
∏

i≤k ti)
O(1). The last expression should

be read simply as a product of numbers coding the formula ϕ and terms ti,
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for i ≤ k. Let us remark that usual efficient codings possess this property.
Indeed, for the length of a term t = sϕ(t1, . . . , tk) we have

lh(t) ≤ A(lh(ϕ) +
∑

i≤k

lh(ti)). (4)

for some integer A ∈ N. Thus, t ≤ 2A(lh(ϕ)+
∑

i≤k lh(ti)) and

t ≤ (ϕ
∏

i≤k

ti)
A. (5)

Later in the paper we will refer to the constant A from the above equa-
tions. However, let us note that the precise value of A depends on the coding
method that one uses.

An evaluation p on a set of terms Λ is a boolean function from Λ2 into
{0, 1}. A given evaluation p tells which terms are equal under p. That is t
equals t′ under p if p(t, t′) = 1. For an evaluation p on Λ we define a model
M(Λ, p). The equality relation of M(Λ, p) is given by p(t, t′) = 1. Then, for
a function symbol f and terms t1, . . . , tk the value of f on t1, . . . , tk is just
f(t1, . . . , tk). We define the ordering in M as: t ≤ t′ if and only if there is
s ∈ Λ such that p(t + s, t′) = 1. Thus, we adopt the standard method of
defining the ordering relation.

Let us observe that M(Λ, p) is a well defined model if and only if Λ has the
property that if f is a function symbol in our language and t1, . . . , tar(f) ∈ Λ,
then f(t1, . . . , tar(f)) ∈ Λ. To have the equality relation well defined we
have to require that the relation on terms given by p(t, t′) = 1 is reflexive,
symmetric and transitive. Moreover, it should be a congruence relation with
respect to an operation of the application of a function symbol, that is for
each t1, . . . , tn and s1, . . . , sn and for each n-ary function symbol f ,

if for each i ≤ n, p(ti, si) = 1 then p(f(t1, . . . , tn), f(s1, . . . , sn)) = 1.

We assume that all considered evaluations satisfy the above conditions.
Let M |= I∆0 and let Λ ∈ M be a set of terms. For I ⊆ M by Λ�I we

define the set of terms from Λ with depths in I that is

Λ�I = {t ∈ Λ : dp(t) ∈ I} .

If I is a cut in M (i.e. I is closed downward and closed on successor) then
M(Λ�I, p) is a well defined model (where we restricted also an evaluation p
from Λ to Λ�I).

In the definition below and in the rest of this article we deal with formulas
in a prenex normal form only. Thus, if we write ¬ϕ for ϕ in a prenex normal
form we assume that negation is pushed into the quantifier free part of ϕ
using rules: ¬∃xγ ≡ ∀x¬γ and ¬∀xγ ≡ ∃x¬γ.
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Definition 1 For a formula ϕ(x1, . . . , xn) and terms t1, . . . , tn we define a
sequence of terms s1, . . . , sr by induction on the complexity of ϕ.

If ϕ is quantifier free then the sequence for ϕ and t1, . . . , tn is just
t1, . . . , tn.

If ϕ = ∃xψ(x1, . . . , xn, x) then the sequence for ϕ and t1, . . . , tn is the
sequence for ψ(x1, . . . , xn, x) and terms t1, . . . , tn, s

∃xψ(x1,...,xn,x)(t1, . . . , tn).
If ϕ = ∀xψ(x1, . . . , xn, x) then the sequence for ϕ and t1, . . . , tn is the

sequence for ¬ψ and terms t1, . . . , tn, s
∃x¬ψ(x1,...,xn,x)(t1, . . . , tn).

Sometimes we call s1, . . . , sr the terms needed to evaluate ϕ(x1, . . . , xn)
on t1, . . . , tn. As we will see, the definition of the relation p |= ϕ[t1, . . . , tn],
in order to work properly, requires all terms s1, . . . , sr to be in Λ..

Definition 2 Let t1, . . . , tn ∈ Λ and ϕ(x1, . . . , xn) be a formula. We say
that (ϕ, t1, . . . , tn) is good enough (g.e. in short) for Λ if all terms from the
sequence for ϕ and t1, . . . , tn are in Λ.

Since the sequence of terms needed to evaluate ϕ on t1, . . . , tn is the same
as the sequence needed to evaluate ¬ϕ on t1, . . . , tn we have an obvious fact.

Fact 3 For each Λ, ϕ and t1, . . . , tn ∈ Λ, (ϕ, t1, . . . , tn) is g.e. for Λ if and
only if (¬ϕ, t1, . . . , tn)is g.e. for Λ.

Now, we define the notion of a satisfaction for evaluations. Later, we
relate this notion to the satisfaction relation in a model M(Λ, p).

Definition 4 Let p be an evaluation on Λ. By induction on ϕ we define
p |= ϕ[t̄], for t̄ ∈ Λ such that (ϕ, t̄) is g.e. for Λ:

• p |= t = t′ if p(t, t′) = 1,

• p |= t ≤ t′ if there is s ∈ Λ such that p |= (t+ s = t′),

• for ϕ quantifier free p |= ϕ[t̄] if p makes ϕ true in the sense of propo-
sitional logic,

• p |= ∃xϕ(x̄, x)[t̄] if p |= ϕ(x̄, x)[t̄, s∃ϕ(t̄)],

• p |= ∀xϕ(x̄, x)[t̄] if for all terms t ∈ Λ such that (ϕ, t̄, t) is g.e. for Λ,
p |= ϕ(x̄, x)[t̄, t].

Of course, whenever we write p |= ϕ[t̄] we assume that (ϕ, t̄) is g.e. for Λ.

One can easily prove by induction on the construction of a formula ϕ the
following fact.
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Fact 5 Let p be an evaluation on Λ and let ϕ and t̄ be g.e. for Λ. It holds
that if p |= ϕ[t̄] then p 6|= ¬ϕ[t̄].

Definition 6 Let T be a theory and let p be an evaluation on Λ. We call p
a T–evaluation if for all ϕ ∈ T such that ϕ is g.e. for Λ, p |= ϕ.

If T has ∆0 definable set of axioms then the notion of T–evaluation is
definable by a ∆0 formula

We have the following relation between p |= ϕ and M(Λ, p) |= ϕ.

Proposition 7 Let p be an evaluation on Λ and let M(Λ, p) be well defined.
Then for a formula ϕ and t̄ ∈ Λ,

if p |= ϕ[t̄] then M(Λ, p) |= ϕ[t̄].

Proof. The proof of the above proposition is a straightforward induction
on the complexity of ϕ. For the quantifier free formulas the thesis is obvious.
If ϕ = ∃yψ(t̄, y) then from p |= ϕ[t̄], we deduce that p |= ψ[t̄, s], where
s = s∃yψ(x̄,y)(t̄) and we may use our inductive assumption to conclude that
M(Λ, p) |= ψ[t̄, s] and that M |= ϕ[t̄].

For ϕ = ∀yψ(t̄, y) we observe that since M(Λ, p) is well defined then for
all s ∈ Λ, (ψ, t̄, s) is g.e. for Λ. It follows that for all s ∈ Λ, p |= ψ[t̄, s]. Since
the universe of M(Λ, p) is made from terms in Λ, we obtain by the inductive
assumption that for all a ∈M , M(Λ, p) |= ψ[t̄, a] and M(Λ, p) |= ϕ[t̄]. �

Let us observe that it is possible that neither p |= ϕ[t̄] nor p |= ¬ϕ[t̄].
This is the case when e.g. for some ψ(x, y), p |= ¬ψ[t, s∃yψ(t)] and p |= ψ[t, s],
for some term s. In this case p 6|= ∃yψ[t] nor p |= ∀y¬ψ[t]. This is why we
need the following definition which describes the situation when p satisfies
for a given formula ϕ(x̄) the law of excluded middle.

Definition 8 Let (ϕ(x1, . . . , xk), t1, . . . , tk) be g.e. for Λ.
An evaluation p on Λ decides (ϕ, t1, . . . , tk) if

p |= ϕ[t1, . . . , tk] or p |= ¬ϕ[t1, . . . , tk].

An evaluation p decides a formula ϕ(x̄) if for each terms t̄ ∈ Λ, such that
(ϕ, t̄) is g.e. for Λ, p decides (ϕ, t̄).

For formulas which are decided by an evaluation p the satisfaction relation
behaves in a way which is easy to handle.
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Lemma 9 Let (∀xϕ, t̄) be g.e. for Λ and let p decide ∀xϕ. Then,

p |= ∀xϕ[t̄] ⇐⇒ p |= ϕ[t̄, s∃x¬ϕ(t̄)].

Proof. The direction from the left to the right is obvious. So let us assume
p |= ϕ[t̄, s∃x¬ϕ(t̄)]. Since p decides ∀xϕ we have either

p |= ∀xϕ[t̄]

or
p |= ∃x¬ϕ[t̄].

But if the latter is true then p |= ¬ϕ[t̄, s∃x¬ϕ(t̄)] what �

is impossible by our assumption and fact 5.
We have the following proposition

Proposition 10 Let ϕ = Q1x1 . . . Qnxnψ(z̄, x1, . . . , xn) for ψ quantifier free
and let (ϕ, t̄) be g.e. for Λ. Let p, an evaluation on Λ, decide ϕ(t̄). Then,

p |= ϕ[t̄] ⇐⇒ p |= ψ[t̄, s1/x1, . . . , sn/xn],

where t̄, s1, . . . , sn is the sequence for (ϕ, t̄).

Proof. The proof is an easy induction on the complexity of ϕ. For the
only nontrivial step for universal quantifier one should use lemma 9. �

The ralation p |= ϕ[t̄] is preserved while going to some subsets of the
original set of terms Λ. As a consequence we obtain that we can deduce that
if Λ′ ⊆ Λ and M(Λ′, p) is a well defined model, then its properties may be
deduced from the properties of p considered as an evaluation on Λ.

Proposition 11 Let M |= I∆0 and let p ∈ M be an evaluation on a set of
terms Λ ∈ M . Let I ⊆ M be a cut in M and let p�I be an evaluation p
restricted to Λ�I. If t̄ ∈ Λ�I and p |= ϕ[t̄] then p�I |= ϕ[t̄]. In consequence
M(Λ�I, p�I) |= ϕ[t̄].

Proof. Let M,Λ, p and I be as in the assumptions of the proposition. We
need to show that for all t̄ ∈ Λ�I, if p |= ϕ[t̄] then p�I |= ϕ[t̄].

For the quantifier free ϕ the thesis is obvious. For the case of ϕ =
∃yψ(t̄, y) one should use the fact, that the term for skolem witness, s∃yψ(x̄,y)(t̄)
is a member of Λ�I and use the inductive assumption. For the universal
quantifier step one should use the fact that Λ�I is a subset of Λ. �

In what follows we write p for an evaluation on a set of terms Λ as well as
for the evaluation p restricted to any of subset of Λ. The last proposition
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shows that they will satisfy the same formulas. In what follows we will use
the fact that, in order to establish that M(Λ�I, p) |= ϕ, it suffices to show
that p |= ϕ, when we treat p as an evaluation on the whole Λ.

The next lemma shows that if an evaluation p decides a formula ∃yϕ(t̄)
then, to check whether p |= ∃yϕ(t̄), it suffices to check whether p |= ϕ(s, t̄)
for some term s ∈ Λ. Indeed any s is as good as the canonical witness for
∃yϕ(t̄) which is s∃yϕ(t̄).

Lemma 12 Let p be an evaluation on Λ and let p decide ∃yϕ(y, t̄). Then,

p |= ∃yϕ(y, t̄) if and only if

there is s ∈ Λ such that (ϕ, s, t̄) is g.e. for Λ and p |= ϕ(s, t̄).

Proof. Let p decide ∃yϕ(y, t̄). To prove the direction from the left to the
right it suffices to take s = s∃yϕ(t̄). For the direction from the right to the
left let us assume that there is s0 ∈ Λ such that (ϕ, s0, t̄) is g.e. for Λ and
p |= ϕ(s0, t̄). By definition we have:

p |= ∃yϕ(y, t̄) if and only if p |= ϕ(s∃yϕ(t̄), t̄).

Thus let us assume, for the sake of contradiction, that

p 6|= ϕ(s∃yϕ(t̄), t̄).

Since p decides ∃yϕ(y, t̄), it follows that

p |= ¬∃yϕ(y, t̄).

This is equivalent to saying that for all s′ ∈ Λ such that (ϕ, s′, t̄) is g.e. for
Λ,

p |= ¬ϕ(s′, t̄).

But this contradicts our assumption that p |= ϕ(s0, t̄). �

In the next lemma we show a kind of closure of the relation p |= ϕ under
the Hilbert notion of provability. This lemma will be useful in establishing
that a given T–evaluation p will satisfy some consequences of T .

Lemma 13 Let T ` ϕ, let M |= I∆0 and let p ∈ M be a T–evaluation on
Λ, where Λ contains all standard terms. If p decides ϕ, then p |= ϕ.
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Proof. In the proof we use the fact that if M |= I∆0 then p and Λ have
all the properties proven above for evaluations.

Let Λ′ ⊆ Λ be a set of all terms in Λ of a standard depth. Then, M(Λ′, p)
is a well defined model. Moreover, since Λ′ contains all standard terms,
each axiom of T is g.e. for Λ′. Then, by the fact that p is a T–evaluation,
M(Λ′, p) |= T . Now, if p |= ¬ϕ, then M(Λ′, p) |= ¬ϕ what is impossible. �

Let T0 be the finite set of axioms of I∆0 which characterize the recursive
properties of successor, addition and multiplication and basic properties of
ordering. We put in T0 all axioms which are used in the proof of lemma 14,
e.g., such as ∀x∀y(x ≤ y + 1 ⇒ (x ≤ y ∨ x = y + 1)).

Lemma 14 Let M |= I∆0, let Λ be a set of terms from M such that
{0, . . . , k} ⊆ Λ and let p ∈ M be a T0–evaluation on Λ. The following
holds:

1. for each t ∈ Λ, i ≤ k, if p |= t ≤ i then there exists j ≤ i, p |= t = j;

2. for each i, j ≤ k, i ≤ j if and only if p |= i ≤ j;

3. for each i ≤ k, l ≤ k, m ≤ k,

• i+ j = m ⇐⇒ p |= i + j = m,

• ij = m ⇐⇒ p |= ij = m,

Proof. The proof of the first point is an easy induction on i ≤ k. For
i = 0 one should use the fact that p makes true the following axioms of T :
∀x(0 ≤ x) and ∀x∀y((x ≤ y ∧ y ≤ x) ⇒ x = y). Thus, if p |= i ≤ 0 then
p |= i = 0. The induction step follows easily from the fact that p makes true
the following axiom: ∀x∀y(x ≤ y + 1 ⇒ (x ≤ y ∨ x = y + 1)).

For the second and the third point one should use the inductive defini-
tions of addition and multiplication and the properties of the ordering. �

The next lemma shows that if {0, . . . , k} ⊆ Λ then any T0–evaluation on
Λ has to reflect the truth on {0, . . . , k} for ∆0 formulas.

Lemma 15 (Absoluteness lemma) Let M |= I∆0, let Λ ∈ M be a set of
terms such that {0, . . . , k} ⊆ Λ and let p ∈ M be a T0–evaluation on Λ. Let
ϕ be a ∆0–formula with only variables as bounds of quantifiers, such that
values of terms in ϕ(x̄) are not greater than max {x̄}. We have that for each
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i1, . . . , im ≤ k, such that (ϕ, im, . . . , im) is g.e. for Λ, the following holds in
M :

If p decides (ϕ, im, . . . , im) then

ϕ(i1, . . . , im) ⇐⇒ p |= ϕ[i1, . . . , im].

Proof. The proof is by induction on the complexity of ϕ. The case
for atomic formulas holds by points 2 and 3 of lemma 14. The bounded
quantifier step can be carried out by point 1 of the same lemma. �

Now, we will estimate the size of terms which occur in the sequence for
a given formula ϕ and t̄.

Lemma 16 (Estimation lemma) Let ϕ(x1, . . . , xk) be a formula, let
t1, . . . , tk be arbitrary terms and let t1, . . . , tk, w1, . . . , wr be the sequence of
terms needed to evaluate ϕ on t1, . . . , tk. Then, for all i ≤ r

wi ≤ max{tj : j ≤ r}(ϕE)ϕ(ϕE),

where E is a standard constant.

Proof. First, we prove by induction on i ≤ r,

wi ≤ (ϕ
∏

j≤k

tj)
(2A)i

Let A be, by equation (4), such that

lh(sϕ(t1, . . . , tk) ≤ A(lh(ϕ) +
∑

j≤k

lh(tj)).

Then,

w1 ≤ 2A(lh(ϕ)+
∑

j≤k lh(tj))

≤ ϕA(
∏

j≤k

tj)
A

≤ ϕ2A(
∏

j≤k

tj)
2A.

Now, let
wi = sψ(t1, . . . , tk, w1, . . . , wi−1)
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and
wi+1 = sψ

′

(t1, . . . , tk, w1, . . . , wi),

for ψ and ψ′ being subformulas of ϕ. Then,

lh(wi+1) ≤ A(lh(ψ′) +
∑

j≤k

lh(tj) +
∑

j≤i

lh(wj))

≤ A(lh(ψ) +
∑

j≤k

lh(tj) +
∑

j≤i−1

lh(wj)) + A lh(wi)

≤ A(lh(wi) + lh(wi))

≤ 2A lh(wi).

So,

wi+1 ≤ 22A lh(wi)

≤ (wi)
2A

≤ ((ϕ
∏

j≤k

tj)
(2A)i

)2A

≤ (ϕ
∏

j≤k

tj)
(2A)i+1

.

But r, k ≤ log(ϕ), so

wi ≤ (
∏

j≤k

tj)
O(1)log(ϕ)

ϕO(1)log(ϕ)

≤ (max{ti : i ≤ r})log(ϕ)O(1)log(ϕ)

ϕO(1)log(ϕ)

≤ (max{ti : i ≤ r})log(ϕ)(ϕO(1))ϕ(ϕO(1))

≤ (max{ti : i ≤ r}(ϕO(1))ϕ(ϕO(1)).

�

The following theorem by Adamowicz is theorem 1.1 from [A02]

Theorem 17 (Adamowicz, [A02]) For each m,n ∈ N there is a bounded
formula θ(x̄) such that

I∆0 + Ωn + ∃x̄ ∈ logm θ(x̄) is consistent

and
I∆0 + Ωn + ∃x̄ ∈ logm+1 θ(x̄) is inconsistent.
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Definition 18 An evaluation p on Λ is a T–evaluation if for each ϕ ∈ T
such that ϕ is g.e. for Λ, p |= ϕ.

Let N be an integer. An evaluation p on Λ is N–deciding p decides all
formulas ϕ with codes less than N .

We define the following version of Herbrand consistency.

Definition 19 Let N be a sufficiently large standard constant.
HCons(T, i) is a Π1 arithmetical formula which states that for each set of

terms Λ of depth not greater than i, there exists an N–deciding, T–evaluation
on Λ.

The Herbrand theorem can be stated in the following form: a theory T
is consistent if and only if for each set of terms Λ in the skolemized language
there is an evaluation p on pairs of terms from Λ such that p makes true all
axioms of T which are g.e. for Λ.

Our definition of Herbrand consistency is parameterized by a constant
N . We take this parameter for technical reasons to have evaluations better
behaved. As we will see in theorem 20 this additional condition does not
restrict the provability of some cases of Herbrand consistency while it allows
us to have an interesting and still natural unprovability result.

We do not specify what is the size of the constant N . We do not need
to fix it because for each i, I∆0 + Ωi ` HCons(I∆0 + Ωi, logi+3), when we
take an arbitrary constant N (theorem 20). On the other hand for our
unprovability result one should take N so large that evaluations decide all
relevant formulas which occur in the course of the proof of the unprovability
of HCons(I∆0 + Ωi, (1 + ε) logi+2). It will be a large constant but its precise
value is irrelevant for us.

3 Provability of Herbrand consistency

In this section we show a case for which a Herbrand consistency is provable
in bounded arithmetic.

Theorem 20 I∆0 + Ωi proves its Herbrand consistency restricted to the
terms of depth not greater than logi+3 that is

I∆0 + Ωi ` HCons(I∆0 + Ωi, logi+3).

Proof. We prove the theorem for the case of i = 1. The proof for i > 1 is
essentially the same.
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Let T = I∆0 + Ω1. The proof is a straightforward induction. Let M |= T
and let Λ = {t1, . . . , tk} be a set of terms of depth not greater than some
d ∈ log4(M). For simplicity we assume that if tm is a subterm of tj then
m ≤ j. We prove by induction on m ≤ k the following

∃Hm = {ht1 , . . . , htm} ∀j ≤ m[∀a ≤ Λ(tj = a⇒ htj = a)∧

∀r∀ϕ ≤ Λ∀(n1, . . . , nr) ≤ Λ(tj = s∃yϕ(tn1 , . . . , tnr) ⇒

htj = the least witness ∃yϕ(htn1
, . . . , htnr

) or 0 otherwise)].

Since the theory T is Π1, it is easy to see that the greatest element of Hi

may be only for a term ωm1 (0) and is less than exp3(m) ∈ log(M) because
m ∈ log4(M). Thus, we may use a universal formula to compute the witness
for ∃yϕ(hn1, . . . , hnr). It is worth to mention that this is the only place where
we use the relation between the rate of the growth of ω1 function and the
4-th logarithm (or, more generally, between the rate of the growth of ωi and
the (i + 3)-th logarithm).

It is also easy to see that Hm is small enough to be in M . The number
of terms of depth d is not greater than dlog(d)d

. Indeed, the number of nodes
in the tree for a term of depth not greater than d is at most log(d)d (log(d)
is the branching of a tree and d is the depth of a tree). Since we have only
d labels for these nodes, the number of terms is at most dlog(d)d

. Thus,

card(Hi) ≤ (log4(M))(log5(M))(log
4(M))

≤ 22log6(M)(log4(M)+1)

≤ 22log3(M)

≤ log(M).

It follows that the size of Hm, the set of log(M) elements of sizes in log(M),
is not greater than

log(M)log(M) ≤ 2(log(M))2

which is an element of M . Thus we can take an element of M to bound the
quantifier ∃Hm in the induction formula.

Now, we define an evaluation p on Λ = {t1, . . . , tk} according to Hk =
{ht1 , . . . , htk}:

p(t, t′) = 1 ⇐⇒ ht = ht′ .

It suffices to show that p is an N–deciding, T–evaluation. By induction on
the complexity of a formula we show that p decides all standard formulas.
Indeed, we show something stronger: for each formula ϕ and for all terms
s1, . . . , sr ∈ Λ,

M |= ϕ[hs1 , . . . , hsr ] ⇐⇒ p |= ϕ[s1, . . . , sr].
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For atomic formulas the statement is obvious. So it is for all quantifier
free formulas. Now, let us take the formula ϕ = ∃yψ(y, x̄) and s̄ ∈ Λ,
s̄ = s1, . . . , sr, such that (ϕ, s̄) is g.e. for Λ. If M |= ∃yψ[hs1, . . . , hsr ],
then for s = s∃yψ(s1, . . . , sr), M |= ψ[hs, hs1, . . . , hsr ] and, by the inductive
assumption, p |= ψ[s, s1, . . . , sr]. So, p |= ∃yψ[s1, . . . , sr].

On the other hand, if M |= ¬∃yψ[hs1 , . . . , hsr ], then for all h ∈ H , M |=
¬ψ[h, hs1 , . . . , hsr ]. It easily follows by the inductive assumption that p |=
¬∃yψ[s1, . . . , sr].

Let us observe that the argument above works also for all nonstandard
∆0 formulas if we change our statement to: for all terms s1, . . . , sr ∈ Λ,

M |= Tr∆0(ϕ, 〈hs1, . . . , hsr〉) ⇐⇒ p |= ϕ[s1, . . . , sr].

Since for all i ≤ r, hsi
∈ log(M), Tr∆0(ϕ, 〈hs1, . . . , hsr〉) has in M the prop-

erties of a ∆0–truth definition. Moreover, since H ⊆ log(M), we can bound
the existential quantifier in Tr∆0 by an element of a model.

Now we show that p satisfies the bounded induction axioms. Let ϕ(x) be
a ∆0 formula. We want to show that

p |= ∀z(¬ϕ(0) ∨ ∃x ≤ z(ϕ(x) ∧ ¬ϕ(x+ 1)) ∨ ϕ(z)).

Let us assume that M |= Tr∆0(ϕ, 0) and M |= ∀x ≤ hsi
(Tr(ϕ, x) ⇒

Tr(ϕ, x + 1)), where hsi
is an arbitrary, fixed element of H . If not, then

by the remark above, we could easily show that, either p |= ¬ϕ(0) or
p |= ∃x ≤ si(ϕ(x) ∧ ¬ϕ(x + 1)). Now, by the ∆0 induction in M for
Tr∆0(ϕ, x) we infer that M |= Tr∆0(ϕ, hsi

) (Tr∆0 is in fact a ∆0 formula if
we put inside a big parameter which is available in M). Thus, p |= ϕ[si].
Since si is arbitrary we showed that the induction axioms holds under p. �

4 Unprovability of Herbrand consistency

In this section we prove that for Ti = I∆0 + Ωi, the arithmetic Ti does not
prove its Herbrand consistency restricted to terms of depth in (1 + ε) logi+2.
However, for simplicity, we present the proof only for the most subtle case,
for I∆0 + Ω1. Indeed, only in this case we should take care whether all the
objects that we construct are inside a model and that the main inductive
argument can be carried out in bounded induction. We encourage the reader
to review the proof after reading it with an eye on how it behaves for i > 1.
For such an i > 1 all the estimations become easier. One should only replace
log3 with logi+2, log4 with logi+3 and insure that all elements needed in the
proof are in the model.
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Thus, from now on let T = I∆0 + Ω1. For the sake of contradiction, till
the end of this section we assume that

T ` HCons(T, (1 + ε)log3),

for some ε > 0.
Let us also fix a model M |= T and an element a ∈ log3(M). We will con-

sider only evaluations for the set of Skolem terms for formulas ϕ ≤ log∗(a).
Since our result is about unprovability of HCons(T, (1 + ε) log3) such a re-
striction only makes our result stronger.

The main idea of the proof is the following. Under the assumption that
T ` HCons(T, (1 + ε) log3), we show that for any model M |= T and any
a ∈ log3(M) we can construct a model M ′ such that

M� {0, . . . , a} ∼= M ′� {0, . . . , a}

and
M ′ |= a ∈ log4 .

Together with theorem 17 this will allow us to obtain a contradiction when
we suitably choose an element a ∈M such that by its ∆0–properties it cannot
be (provably in T ) in log4.

In order to construct M ′ we work in M . We construct a sequence of sets of
terms and evaluations on them {(Λi, pi)}i≤a/C2 , for some standard constant
C. The key property of the sequence will be that under pi the element
exp4((1+ε/2)ia) exists. Then, the desired model M ′ will be, roughly saying,
the model defined by Λa/C and pa/C .

We should say a word on how we choose the constant C. Again the reader
should think about C as about a fixed large integer. Our construction is
uniform in C thus the particular choice of C is not important for us. We only
require that it so large that it satisfies some inequalities as: C > 4E log(C)
and C ≥ (|=) log(2A)+1, where E is the constant from the estimation lemma,
A is the constant from the equation (4) and |= is understood here as a Gödel
number for the formula x |= y[z].

We start with a definition which will be used in the formulation of the
main inductive argument.

Definition 21 Let M |= I∆0, let a ∈ log3(M), let ε > 0 be small
standard constant and let d ∈ M be such that d > N and d <
min

{

(ε/2)a, 2a−a/(C
2)(1+log(1+ε/2))

}

(we comment on this choice of d below

the definition). The elements a, ε and d are parameters of the definition
which will be fixed during the whole proof.

Let Λ be a set of terms, p be an evaluation on Λ and let k, b ∈ M . The
sequence (Λ, p, k, b) is suitable when

15



1. k and b are nonstandard parameters,

2. Λ is the set of terms of the form

Λ =
{

t : Term(t) ∧ dp(t) ≤ b ∧ t ≤ 22k
}

,

3. p is a T–evalution on Λ and p is N–deciding,

4. k + d < b and bd < 2k.

During the induction we will consider only suitable sequences (Λi, pi, ki, bi)
where ki = a − iC and bi = (1 + ε/2)i+1a, for i ≤ a/C2. We chose the
parameter d as above to ensure that the 4–th point of the definition will be
always satisfied. It would suffice for our needs that only ki + N < bi and
biN < 2ki however this condition is even not expressible by an arithmetical
formula unless we cannot define the standard part of the model.

Fact 22 Let (Λ, p, k, b) be suitable. Then
{

0, . . . , 22k−1
}

⊆ Λ.

Proof. For i ≤ 22k−1, we have i ≤ 2i ≤ 22k

and dp(i) ≤ k < b. �

In the next lemma we show which formulas with numerals as parameters
are g.e. for a suitable sequence (Λ, p, k, b).

Lemma 23 Let (Λ, p, k, b) be suitable and let ϕ(x1, . . . , xr) be a formula less
than C. Then, for m1, . . . , mk ≤ 22k−C

(ϕ,m1, . . . , mr) is g.e. for Λ.

Proof. The lemma follows from the estimation lemma and from the
fact that, by our choice of C, C > 4E log(C), where E is the constant
from the estimation lemma. Indeed, the size of the greatest term needed
to evaluate ϕ(m1, . . . , mr) is, by the estimation lemma, not greater than

(max{mi : i ≤ r})(CE)C(CE). It follows that terms are not greater than

(222k−C

)(CE)C(CE) ≤ 2(2k−C+1)(CE)+log(C)CE

≤ 2(2k−C+1+E log(C)+E log(C)+log log(C))

≤ 22k−C+4E log(C)

≤ 22k

.

Moreover, the depths of the terms are not greater than k + N which is
less than b. �
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In the most important case ϕ from lemma 23 will be just x |= y[z].
In the lemma below we show how much exponentiation is available under

an evaluation p which occurs in a suitable sequence (Λ, p, k, b). We show that
p |= “exp3(b− C) exists”. Ideally, we would like to have exp3(b). Unfortu-
nately, to show that exp3(i) exists we need a term ωi1(8) and we need that
some formulas with this term (used in the course of a proof of lemma 24) are
g.e. for Λ. This is why we restrict lemma 24 to exp3(b− C).

Lemma 24 Let (Λ, p, k, b) be suitable. Then,

p |= ∃x(x = exp3(b− C)).

Proof. Let (Λ, p, k, b) be a suitable sequence. In order to show that
p |= ∃x(x = exp3(b− C)) we show that for each i ≤ b− C,

p |= x = exp3(y)[ωi1(8)/x, i/y]

what clearly suffices. This is so, because the formula ∀x∀y(x = ωy1(8) ⇒ x =
exp3(y)) is provable in T . Thus, the following equation holds by lemma 13
and by the fact that N is chosen large enough,

p |= ∀y∀x(x = ωy1(8) ⇒ x = exp3(y)). (6)

Of course, in the formula x = ωy1(8), y is a free variable so ωy1(8) should not
be read as a closed term but as a formula with free variables x and y.

By equation (6), to show that for all i ≤ b− C,

p |= x = exp3(y)[ωi1(8)/x, i/y]

it suffices to show that for each i ≤ b− C,

p |= x = ωy1(8)[ωi1(8)/x, i/y].

For i = 0 there is nothing to prove. Indeed, 8 = ω0
1(8) is a true ∆0

formula thus is has to be decided positively by p.
Now, let us assume that for some i < b − C, p |= x = ωy1(8)[ωi1(8), i].

Then, since
T ` ∀x∀y[x = ωy1(8) ⇒ ω1(x) = ωy+1

1 (8)]

we have, again by lemma 13,

p |= ω1(x) = ωy+1
1 (8)[ωi1(8)/x, i/y].

Since p |= z = y + 1[i+ 1/z, i/y], the last equation is nothing else than

p |= x = ωy1(8)[ωi+1
1 (8)/x, i+ 1/y].
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Thus, we have proved the induction step and this finishes the proof of the
lemma. �

In the next lemma we show how to construct from a suitable sequence
(Λ, p, k, b) a new suitable sequence. The new sequence is of the form (Λ̃, p̃, k−
C, (1 + ε/2)b). The lemma below is, essentially, the inductive step in our
construction. The key property of the new constructed sequence (Λ̃, p̃, k −
C, (1 + ε/2)b) is that we will have more exp available under p̃.

Lemma 25 Let ε′ = ε/2, M |= I∆0, a ∈ log3(M) and let i < a/(C2). Let d
be chosen according to definition 21.

Let (Λ, p, k, b) be suitable, were k = a − iC and b = (1 + ε′)i+1a. Then,
there are Λ̃, p̃ such that (Λ̃, p̃, k̃, b̃) is suitable, where k̃ = k − C and b̃ =
(1 + ε′)b.

Proof. Let Λ, p, k, b, k̃, b̃ satisfy the assumptions of the lemma. By our
choice of the parameter d in the definition 21, k̃ and b̃ satisfy the 4-th point
of definition 21.

definition 21 and (1 + ε/2) ≥ 2k−2C then k̃ and b̃ also satisfy the 4-th
point of definition 21.

We define Λ̃ in the only possible way as

Λ̃ =
{

t : Term(t) ∧ dp(t) ≤ b̃ ∧ t ≤ 22k̃
}

.

Claim 26 For each t ≤ 22k−C

,

t ∈ Λ̃ if and only if

p |= Term(t), p |= dp(t) ≤ (1 + ε′)b and p |= t ≤ 22k−C

.

Proof. For t ≤ 22k−C

, formulas Term(x), dp(x) ≤ y and x ≤ 22y

with
terms t and (1 + ε′)b are g.e. for Λ (see lemma 23). Since p decides these
formulas the result follows from the absoluteness lemma. �

Let Λ(t, x, y) be a formula expressing that term t is such that t ≤ 22x

and
dp(t) ≤ y. Claim 26 established that

∀t(t ∈ Λ̃ ⇐⇒ p |= Λ[t, k − C, (1 + ε′)b]. (7)

Let Λ(x, y) be the set of terms defined by Λ(t, x, y). We can refer to this set
by a term s∃z∀t≤x(t∈z≡Λ(t,x,y)). Let

γ(x, y) := ∃z(z is an N–deciding, T–evaluation on Λ(x, y)).
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Then, let
p̂ = s∃zγ(x,y)(k − C, (1 + ε′)b).

We assumed that T ` HCons(T, (1 + ε) log3). Thus, by the fact that

(1 + ε′)b ≤ (1 + ε)(b− C)

and by lemmas 24 and 23, we have:

p |= ∃z(z is an N–deciding, T–evaluation on Λ(x, y))[k − C/x, (1 + ε′)b/y]

and, consequently,

p |= (z is an N–deciding, T–evaluation on Λ(x, y))[p̂/z, k − C/x, (1+ε′)b/y].

Of course, by our choice of N , p decides this formula.1

Since p decides the formula x1 |= x2[x3], then for each t1, t2 ∈ Λ̃,

p |= “p̂ |= t1 = t2” or p |= “¬p̂ |= (t1 = t2)”,

and not both. Thus, we define p̃ on Λ̃ as follows: for each t1, t2 ∈ Λ̃,

p̃ |= t1 = t2 ⇐⇒ p |= “p̂ |= t1 = t2”.

We claim that (Λ̃, p̃, k̃, b̃) is suitable. It suffices to show that p̃ is an N–
deciding, T–evaluation on Λ̃. The other conditions from definition 21 are
easily seen to be satisfied.

Now, we establish the relationship between p̃ |= ϕ and p |= “p̂ |= ϕ”. We
need to show that it makes sense to ask whether p |= “p̂ |= ϕ” when we ask
whether p̃ |= ϕ.

Claim 27 Let ϕ ≤ log∗(a) and t1, . . . , tm ∈ Λ̃. If (ϕ, t1, . . . , tm) is g.e. for
Λ̃ then (|=, p̂, ϕ, 〈t1, . . . , tm〉) is g.e. for Λ.

Proof. Let us assume that (ϕ, t1, . . . , tm) is g.e. for Λ̃. Under the usual
coding the term sϕ(t1, . . . , tm) is greater than ϕΠi≤mti. Thus, by the con-
struction of Λ̃,

ϕΠi≤mti ≤ 22k−C

.

1One may object that we want N to be greater than a formula which uses N as a fixed
parameter. However, this is easily possible if N has a short encoding. If N is of the form
expn(2), for some n, than a formula ϕ(N) can be written in a short but equivalent form
∃z(z = expn(2) ∧ ϕ(z)).
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Let

s0 = f1(p̂, ϕ, 〈t1, . . . , tm〉),
s1 = f2(p̂, ϕ, 〈t1, . . . , tm〉, s0),

...
sr = fr(p̂, ϕ, 〈t1, . . . , tm〉, s0, . . . , sr−1)

be all terms in the sequence for a formula p̂ |= ϕ[t1, . . . , tm] besides param-
eters p̂, ϕ and 〈t1, . . . , tm〉. (Here 〈x1, . . . , xm〉 is the m-th iteration of the
pairing function.) The depth of si is not greater than k + N thus it is less
than b. So, it suffices to show that s1, . . . , sr ≤ 22k

. We estimate the size of
sr. Since s1, . . . , sr are terms witnessing quantifiers in |= we have r ≤ lh(|=).
Now we estimate lengths of terms si. We show that for i ≤ r,

lh(si) ≤ 2iAi lh(s0)

where A is the constant from equation 4. Of course, there is nothing to prove
for s0 but we write the formula for lh(s0) since it will be useful later.

lh(s0) ≤ A(lh(|=) + lh(p̂) + lh(ϕ) +m lh(〈〉) +
∑

i≤m

lh(ti)),

lh(s1) ≤ A(lh(|=) + lh(p̂) + lh(ϕ) +m lh(〈〉) +
∑

i≤m

lh(ti) + lh(s0))

≤ 2A lh(s1)
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lh(s2) ≤ A(lh(|=) + lh(p̂) + lh(ϕ) +m lh(〈〉) +
∑

i≤m

lh(ti) + lh(s0) + lh(s1))

≤ A(lh(|=) + lh(p̂) + lh(ϕ) +m lh(〈〉) +
∑

i≤m

lh(ti)) + A(lh(s0) + lh(s1)))

≤ A lh(s0) + A(20A0 lh(s0) + 21A1 lh(s0))

≤ (A+
∑

j<2

2jAj) lh(s0)

≤ (1 +
∑

j<2

2j)A2 lh(s0)

≤ 22A2 lh(s0)

...

lh(sr) ≤ A(lh(|=) + lh(p̂) + lh(ϕ) +m lh(〈〉) +
∑

i≤m

lh(ti) +
∑

i<r

lh(si))

≤ A(lh(|=) + lh(p̂) + lh(ϕ) +m lh(〈〉) +
∑

i≤m

lh(ti)) + A
∑

i<r

lh(si))

≤ A lh(s0) + A
∑

i<r

2iAi lh(s0)

≤ (1 +
∑

i<r

2i)Ar lh(s0)

≤ 2rAr lh(s0).

The parameter m is less than lh(ϕ) ≤ log∗(a). So, we can estimate the
elements in the sum for lh(s0) as follows:

lh(p̂) ≤A(2 lh(k − C) + lh(sγ)),

lh(ϕ) ≤ log∗(a),

m lh(〈〉) ≤ log∗(a) lh(〈〉),

Thus, the length of s0 can be estimated by

2A log(k) + log∗(a) + log∗(a) log∗(a) +
∑

i≤m

lh(ti) + N.

Since a ≤ 22k

, it follows that

lh(s0) ≤ 3A log(k) +
∑

i≤m

lh(ti).
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Since the length of the greatest term sr is not greater than 2rAr lh(s0) we
can bound the size of sr by

sr ≤ 2(2A)r lh(s0)

≤ 2(2A)r(3A log(k)+
∑

i≤m lh(ti))

≤ 2(2A)r3A log(k)(
∏

i≤m

ti)
(2A)r

and, because ϕ
∏

i≤m ti ≤ 22k−C

,

≤ 2(2A)r3A log(k)(22k−C

)(2A)r

≤ 2(2A)r3A log(k)22k−C(2A)r

≤ 23 log(k)(2A)rA22k−C+r log(2A)

≤ 22k−C+r log(2A)+3 log(k)(2A)rA

and, since k > N we have 2k−C+r log(2A) > 3 log(k)(2A)rA,

≤ 22k−C+r log(2A)+1

≤ 22k

.

The last inequality is true since r is not greater than log(|=) and we have
chosen C so that C ≥ r log(2A) + 1.

It is also easy to see that dp(sr) ≤ k + N ≤ b. This completes the proof
of claim 27. �

Now, we need to show that p̃ reflects p̂ not only for equality but for all
formulas of size log∗(a).

Claim 28 For each ϕ ≤ log∗(a), for each t1, . . . , tm ∈ Λ̃ such that
(ϕ, t1, . . . , tm) are g.e. for (Λ̃, p̃),

p̃ |= ϕ[t1, . . . , tm] ⇐⇒ p |= “p̂ |= ϕ[t1, . . . , tm]”.

Proof. The proof is by induction on ϕ. For atomic ϕ the statement follows
from the definition of p̃.

Since,

p |= ”p̂ satisfies Tarski conditions for propositional connectives”,
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it follows that the equivalence holds for all quantifier free formulas. Now,
let us consider a case where ϕ is of the form ∃yψ(y, z̄). Let us assume that
p̃ |= ∃yψ(y, t1, . . . , tm). Then,

p̃ |= ψ[s∃yψ(t1, . . . , tm), t1, . . . , tm].

By the inductive assumption,

p |= “p̂ |= ψ[s∃yψ(t1, . . . , tm), t1, . . . , tm]”.

Since all terms s∃yψ(t1, . . . , tm), t1, . . . tm are in
{

0, . . . , 22k
}

it follows that

p decides that s∃yψ(t1, . . . , tm) is a witnessing term for ∃yψ and t1, . . . , tm.
Thus,

p |= (“p̂ |= ψ[s∃yψ(t1, . . . , tm), t1, . . . , tm]” ⇐⇒ “p̂ |= ∃yψ[t1, . . . , tm]”).

Let us observe, that in the above formula ψ and ∃yψ are given as terms.
Thus, p does not need to decide these formulas to decide positively the above
equivalence. The proof of the implication from p |= “p̂ |= ∃yψ[t1, . . . , tm]” to
p |= ∃yψ[t1, . . . , tm] goes exactly in the same way.

Finally, let p̃ |= ∀xψ[t1, . . . , tm]. This is equivalent to

∀t ∈ Λ̃ p̃ |= ψ[t, t1, . . . , tm]

and
∀t ∈ Λ̃ p |= “p̂ |= ψ[t, t1, . . . , tm]”.

But, by equation (7),

∀t(t ∈ Λ̃ ⇐⇒ p |= Λ[t, k − C, (1 + ε′)b]).

Thus
p |= ∀z(z ∈ Λ(k − C, (1 + ε′)b) ⇒ p̂ |= ψ[t1, . . . , tm, z])

and this is just the definition of

p |= “p̂ |= ∀xψ[t1, . . . , tm]”.

Again, we skip the proof of the other implication. �

Since p̂ is (under p) a T–evaluation, p |= “p̂ |= ϕ”, for ϕ ∈ T (ϕ ≤

log∗(a)). By claim 28, for each ϕ ∈ T such that ϕ is g.e. for Λ̃,

p̃ |= ϕ.
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Thus p̃ is a T–evaluation. Moreover, p̃ decides formulas less or equal N
because

p |= “p̂ decides formulas less or equal N”

and this property is also transferred to p̃ by claim 28. So, (Λ̃, p̃, k̃, b̃) satisfies
the third condition for being suitable. This completes the proof of lemma
25. �

Now, we are ready to formulate the induction.

Proposition 29 Assume that T ` HCons((1+ε) log3), M |= T , a ∈ log3(M)
and that d is chosen according to definition 21. Then, for all i ≤ a/(C2) there
exist Λi, pi such that

(Λi, pi, a− iC, (1 + ε/2)i+1)a)

is suitable.

Proof. We prove the conclusion by induction on i ≤ a/C2. To carry on the
induction we should take sufficiently large parameter to express the induction
formula as bounded. To see that such a parameter exists we should estimate
the size of Λ0 and p0 which are the greatest ones among Λi, pi for i ≤ a/C2.
Λ0 is a set of terms less or equal 22a

. Thus,

Λ0 ≤ 222a

.

Since a ∈ log3, Λ0 ∈M . An evaluation p0 is just a 0–1 function from the set
of pairs of terms from Λ and we can bound p0 as

p0 ≤ 2card(Λ)2 = 2(22a
)2 = 2222a

= 222a+1

.

In T , the third logarithm of the model is closed on successor. Thus,

p0 ∈M

and we can bound the induction formula by an element from M .
To start the induction, the existence of a suitable (Λ0, p0, a, (1 + ε/2)a) is

guaranteed by our assumption that T ` HCons((1 + ε) log3).
To prove the induction step let us assume that for some i ≤ a/C2 there

are Λi, pi such that the sequence (Λi, pi, a− iC, (1 + ε/2)i+1a) is suitable.
Then, (Λi, pi, a− iC, (1 + ε)i+1a) and chosen parameters satisfy the assump-
tions of lemma 25. It follows that there exists (Λ̃, p̃, a− (i + 1)C, (1 + ε/
2)i+2a) which is suitable. And this is just the (i+ 1)-th sequence. �

24



Lemma 30 Assume that T ` HCons((1 + ε) log3). Then for each model
M |= T and each a ∈ log3(M) there exists a model M ′ |= T such that
M ′�a = M�a and a ∈ (C2/ log(1 + ε/2)) log4(M ′).

Proof. By proposition 29, for i = a/C2, there exists a suitable sequence

(Λ, p, a(1 − 1/C), (1 + ε/2)a/C
2

a).

Now, for any cut I < (1 + ε/2)a/C
2
a if we take terms from Λ of depths in I

we can define from p a model M ′ for T . By lemma 24 and proposition 11,

M ′ |= ∃z(z = exp3((1 + ε/2)a/C
2

a− C)).

But

(1 + ε/2)a/C
2

a− C = 2log(1+ε/2)C−2a+log(a) − C ≥ 2log(1+ε/2)C−2a.

It follows that
M ′ |= 2log(1+ε/2)C−2a ∈ log3

what means that a ∈ (C2/ log(1 + ε/2)) log4(M ′). Moreover, since
{0, . . . , a} ⊆ Λ, we obtain, by lemma 14, that M ′�a = M�a. �

Theorem 31 Assume that T ` HCons((1 + ε) log3). Then for each model
M |= T and each a ∈ log3(M) there exists a model M ′ |= T such that
M ′�a = M�a and a ∈ log4(M ′).

Proof. It suffices to use lemma 30 twice to obtain the thesis. Indeed, let
M |= T , a ∈ log3(M) and let D = C2/ log(1 + ε/2) ∈ N. Then, by lemma
30, there exists M ′′ |= T such that M ′′�a = M�a and a ∈ D log4(M ′′). Thus,
2a/D ∈ log3(M ′′) and, again by lemma 30, there exists M ′ |= T such that
M ′�(2a/D) = M�(2a/D) and 2a/D ∈ D log4(M ′). So, 2a/D−log(D) ∈ log4(M ′).
Since a > N and D ∈ N, a < 2a/D−log(D). Thus, we have that a ∈ log4(M ′).
This ends the proof of the theorem. �

Theorem 32 Let T = I∆0 + Ω1. Then, for any ε > 0, T does not prove its
Herbrand consistency restricted to terms of depth not greater than (1+ε) log3,
that is T 6` HCons(T, (1 + ε) log3).

Proof. The thesis is an easy consequence of theorems 31 and 17. �
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