Some PA- exercises

24 października 2007

1 2007/10/09

1. Show that

- $\mathrm{PA}^{-} \vdash \forall x \forall y(x<y \Rightarrow x+1 \leq y)$,
- $\mathrm{PA}^{-} \vdash \forall x \exists y(y+1=x)$,
- for all $n \in \omega, \mathrm{PA}^{-} \vdash \forall x\left(x \leq \underline{n} \Longleftrightarrow \bigvee_{i \leq n} x=\underline{i}\right)$.

2. Define ordering on $\mathbb{Z}[X]$, the set of polynomials with coefficients from \mathbb{Z} such that the set of polynomials greater of equal the zero polynomial satisfies PA^{-}.
Show that $\mathrm{PA}^{-} \forall \forall x \exists y(2 y=x \vee 2 y+1=x)$.
3. If we would define this ordering on $\mathbb{N}[X]$ instead of $\mathbb{Z}[X]$, would $\mathbb{N}[X] \models$ PA^{-}?

Let $T=\operatorname{Th}(\mathcal{N})$.
Definition 1 An element $a \in M \models \mathrm{PA}$ codes a set

$$
X=\left\{i \in \omega: M \models \underline{p_{i}} \mid x[a / x]\right\},
$$

where p_{i} is the i-th prime number. We denote this set by $c_{M}(a)$.
If, for $X \subseteq \omega$, there exists $a \in M$ such that $X=c_{M}(a)$ we say that X is coded in M.
4. Show that each set $X \subseteq \omega$ is coded is some countable model of T. Conclude that there are continuum many nonisomorphic countable models of T.
5. Show that all subsets of ω are coded in $\prod_{i \in \omega} \mathcal{N} / \mathcal{U}$. What is the cardinality of $\prod_{i \in \omega} \mathcal{N}_{/ \mathcal{U}}$?
6. Describe all, up to isomorphism, models of $\operatorname{Th}((\omega, S, 0,1))$, where S is the successor function.

You may need to use Erenfeuch-Fraïsse games or elimination of quantifiers for $\operatorname{Th}((\omega, S, 0,1))$.
7. What about models of $\operatorname{Th}((\omega, \leq, 0,1))$?

2 2007/10/16 and 2007/10 /23

Definition 2 Let $M \models \mathrm{PA}^{-} . \emptyset \neq I \subsetneq e M$ is a cut if it is closed downward and closed on successor.

1. Show that for $M \models \mathrm{PA}^{-}, M$ satisfies overspill for all cuts if and only if $M \models \mathrm{PA}$.
2. (*) Show that for each model $M \models \mathrm{PA}^{-}$there is a model N such that $M \prec N$ and N satisfies overspill for \mathbb{N}. Conlude that overspill only for \mathbb{N} is weaker than induction.
3. Show that for each nonstandard $M \models \mathrm{PA}$ there is continuum many cuts of M. (It suffices to restrict only to countable models. Then, use the characterization of the order type of countable $M \models \mathrm{PA}$ as $\omega+\left(\omega^{*}+\omega\right) \eta$, where η is the order type of rationals.).
4. Repeat the above but with cuts closed on addition and multiplication.
5. Show that $I \Sigma_{n}, L \Sigma_{n}, I \Pi_{n}, L \Pi_{n}$ are equivalent for all n.

Definition $3 A$ model $M \models \mathrm{PA}^{-}$is ω_{1}-like if for all $a \in|M|$,

$$
\operatorname{card}(\{b \in|M|: M \models b \leq a\})=\omega_{0} \text { and } \operatorname{card}(|M|)=\omega_{1} .
$$

6. Show that if $M \models \mathrm{PA}^{-}$is ω_{1}-like then $M \models \operatorname{Coll}_{n}$, for all $n \in \mathbb{N}$.
7. (*) Show that for each model $M \models \mathrm{PA}^{-}$there is N such that $\operatorname{card}(N)=$ $\operatorname{card}(M)$ and $M \subseteq_{e} N$. (Use the characterization of a model M of PA^{-} as a positive part of a discretly ordered ring R_{M}. Then, consider a positive part of a ring of polynomials $R_{M}[X]$.)
8. (*) Show that for each countable model $M \models \mathrm{PA}^{-}$there is ω_{1}-like $N \models \mathrm{PA}^{-}$such that $M \subseteq_{e} N$.
9. (*) Show that $\mathrm{PA}^{-} \cup \bigcup_{n \in \mathbb{N}} \operatorname{Coll}_{n}$ does not prove $\forall x \exists y(2 y=x \vee 2 y+1=$ $x)$ (use the fact that PA^{-}does not prove this).
10. Show that $I \Sigma_{n} \vdash B \Sigma_{n}$.
11. Show that $B \Sigma_{n+1} \equiv B \Pi_{n}$.
12. Show that $B \Sigma_{n+1} \vdash I \Sigma_{n}$. Also show that $\Sigma_{n}\left(B \Sigma_{n}\right)$ is closed on bounded quantification (all it was done during the lecture so there is no need to do this).
13. (*) Show that induction for parameter free formulas is equivalent to PA (Note. It is not the case that induction for parameter free Σ_{n} formulas is equivalent to $I \Sigma_{n}$.)
