Some PA- exercises

24 października 2007

$1 \quad 2007/10/09$

1. Show that

- $\operatorname{PA}^- \vdash \forall x \forall y (x < y \Rightarrow x + 1 \le y),$
- $PA^- \vdash \forall x \exists y(y+1=x),$
- for all $n \in \omega$, $PA^- \vdash \forall x (x \le \underline{n} \iff \bigvee_{i \le n} x = \underline{i})$.
- 2. Define ordering on $\mathbb{Z}[X]$, the set of polynomials with coefficients from \mathbb{Z} such that the set of polynomials greater of equal the zero polynomial satisfies PA⁻.

Show that $PA^- \not\vdash \forall x \exists y (2y = x \lor 2y + 1 = x).$

3. If we would define this ordering on $\mathbb{N}[X]$ instead of $\mathbb{Z}[X]$, would $\mathbb{N}[X] \models PA^{-}$?

Let $T = \operatorname{Th}(\mathcal{N})$.

Definition 1 An element $a \in M \models PA$ codes a set

$$X = \left\{ i \in \omega : M \models \underline{p_i} | x[a/x] \right\},\$$

where p_i is the *i*-th prime number. We denote this set by $c_M(a)$.

If, for $X \subseteq \omega$, there exists $a \in M$ such that $X = c_M(a)$ we say that X is coded in M.

4. Show that each set $X \subseteq \omega$ is coded is some countable model of T. Conclude that there are continuum many nonisomorphic countable models of T.

- 5. Show that all subsets of ω are coded in $\prod_{i \in \omega} \mathcal{N}_{\mathcal{U}}$. What is the cardinality of $\prod_{i \in \omega} \mathcal{N}_{\mathcal{U}}$?
- 6. Describe all, up to isomorphism, models of $Th((\omega, S, 0, 1))$, where S is the successor function.

You may need to use Erenfeuch–Fraïsse games or elimination of quantifiers for $Th((\omega, S, 0, 1))$.

7. What about models of $Th((\omega, \leq, 0, 1))$?

2 2007 /10 /16 and 2007/10 /23

Definition 2 Let $M \models PA^-$. $\emptyset \neq I \subsetneq_e M$ is a cut if it is closed downward and closed on successor.

- 1. Show that for $M \models PA^-$, M satisfies overspill for all cuts if and only if $M \models PA$.
- 2. (*) Show that for each model $M \models PA^-$ there is a model N such that $M \prec N$ and N satisfies overspill for N. Conclude that overspill only for N is weaker than induction.
- 3. Show that for each nonstandard $M \models \text{PA}$ there is continuum many cuts of M. (It suffices to restrict only to countable models. Then, use the characterization of the order type of countable $M \models \text{PA}$ as $\omega + (\omega^* + \omega)\eta$, where η is the order type of rationals.).
- 4. Repeat the above but with cuts closed on addition and multiplication.
- 5. Show that $I\Sigma_n$, $L\Sigma_n$, $I\Pi_n$, $L\Pi_n$ are equivalent for all n.

Definition 3 A model $M \models PA^-$ is ω_1 -like if for all $a \in |M|$,

 $\operatorname{card}(\{b \in |M| : M \models b \le a\}) = \omega_0 \text{ and } \operatorname{card}(|M|) = \omega_1.$

- 6. Show that if $M \models PA^-$ is ω_1 -like then $M \models Coll_n$, for all $n \in \mathbb{N}$.
- 7. (*) Show that for each model $M \models PA^-$ there is N such that card(N) = card(M) and $M \subseteq_e N$. (Use the characterization of a model M of PA⁻ as a positive part of a discretly ordered ring R_M . Then, consider a positive part of a ring of polynomials $R_M[X]$.)

- 8. (*) Show that for each countable model $M \models PA^-$ there is ω_1 -like $N \models PA^-$ such that $M \subseteq_e N$.
- 9. (*) Show that $PA^- \cup \bigcup_{n \in \mathbb{N}} Coll_n$ does not prove $\forall x \exists y (2y = x \lor 2y + 1 = x)$ (use the fact that PA^- does not prove this).
- 10. Show that $I\Sigma_n \vdash B\Sigma_n$.
- 11. Show that $B\Sigma_{n+1} \equiv B\Pi_n$.
- 12. Show that $B\Sigma_{n+1} \vdash I\Sigma_n$. Also show that $\Sigma_n(B\Sigma_n)$ is closed on bounded quantification (all it was done during the lecture so there is no need to do this).
- 13. (*) Show that induction for parameter free formulas is equivalent to PA (Note. It is not the case that induction for parameter free Σ_n formulas is equivalent to $I\Sigma_n$.)