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Outline of the talk Disclaimer

Disclaimer

1. Survey talk;

2. Based on previous work by many different groups (to name but a few:
Cortés, Grabowski, Iglesias, de León, Marrero, Mart́ın de Diego,
Mart́ınez, Moser, Saunders, Urbanski, Veselov, Weinstein);

3. Field theories: joint work with F. Cantrijn.
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Outline of the talk Disclaimer

Lie groupoids

I Used since the 1920s to describe equivalence relations (Brandt,
Grothendieck, Connes, etc.). Have rejoiced in increasing attention
over the years:

“. . . that groupoids should perhaps be renamed ‘groups’,
and those special groupoids with just one base point
given a new name to reflect their singular nature.”

(F. Lawvere, quoted by A. Weinstein)

I Other uses: analysis on manifolds with corners (Melrose), categorical
physics (Baez), etc.

I Our aims will be much more modest. . .
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Outline of the talk Disclaimer

Introductory definitions

Definition

For the purpose of this talk, it suffices to know that a groupoid is a set G
with anchor mappings α, β : G → Q and a partial multiplication
m : G2 → G .

g h

gh

α(g) β(g) = α(h) β(h)

g

g−1

α(g) β(g)

I Categorical view: small category with all arrows invertible;

I Lie groupoids: “everything” suitably smooth.

(Cf. the talk of David Iglesias)
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Mechanics on groupoids

Mechanics on groupoids
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Mechanics on groupoids

Motivation: Moser-Veselov discretization of the rigid body

I Continuous Lagrangian: L = 1
2 ΩT · I · Ω, where Ω = RT Ṙ and

R ∈ SO(3). Discretize by setting

Ω ≈ 1

h
RT

k (Rk+1 − Rk).

I Discrete Lagrangian:

L(Rk ,Rk+1) = Tr(RT
k+1IRk)− 1

2
Tr(Λk(RkRT

k − 1)).

I To obtain the discrete equations of motion: vary the discrete action
sum S =

∑N−1
k=1 L(Rk ,Rk+1) to obtain

Rk+1I + Rk−1I = ΛkRk .

where Λk are Lagrange multipliers ensuring that Rk ∈ SO(3).
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Mechanics on groupoids

Moser-Veselov: reduction
I Recall the equations Rk+1I + Rk−1I = ΛkRk .
I Multiply by the left with RT

k+1 and use the fact that ΛT
k = Λk to write

Moser-Veselov:

{
Mk+1 = ωkMkω

T
k

Mk = ωT
k I− Iωk

where ωk = RT
k Rk−1 ∈ SO(3), and Mk ∈ so(3)∗.

Relation with groupoids

I Original system lives on SO(3)× SO(3), the Moser-Veselov algorithm
takes place on SO(3): groupoids.

I Derivation of Moser-Veselov: example of groupoid reduction.
Morphism: Φ : SO(3)× SO(3)→ SO(3), with

Φ(Rk ,Rk+1) = ωk+1 = RT
k+1Rk .

(Starting point for the work of Alan Weinstein in 1993).
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Mechanics on groupoids

Intermezzo: the importance of the MV equations

Advantages

I Theoretical: integrable, symplectic, conservation laws, etc.

I Practical: easy to implement, 2nd order, etc.

Illustration

A free rigid body rotates stably around its shortest and longest axes,
but unstably around the middle axis.

I Animation: stable motion

I Animation: unstable motion
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Mechanics on groupoids

Groupoid mechanics
Weinstein 1995; Marrero, Mart́ın de Diego, Mart́ınez 2006

I Configuration space: a Lie groupoid G .

I Lagrangian: a function L : G → R.

I A sequence (g1, . . . , gN) ∈ GN is admissible if (gi , gi+1) is
composable (for i = 1, . . . ,N − 1). Example: if G = Q × Q, then

(x1, x2), (x2, x3), (x3, x4), . . . , (xn−1, xn)

is admissible.

Aim

Find admissible sequences which extremize the following discrete action
sum:

S(g1, . . . , gN) =
N∑

i=1

L(gi ).

The sequences will satisfy the discrete Euler-Lagrange equations.
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Mechanics on groupoids

The Euler-Lagrange equations

I Form the discrete action sum S as follows:

S : (g1, g2, . . . , gN) 7→
N∑

k=1

L(gk),

where (g1, g2, . . . , gN) is a sequence of composable pairs, i.e.
(gi , gi+1) is composable for i = 1, . . . ,N − 1.

I The extremals of this sum (under variations that keep the end points
fixed) satisfy the discrete Euler-Lagrange equations:

←−
X (g1)(L)−

−→
X (g2)(L) = 0,

for all sections X of AG .

g0

g1

g2pL pR
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Mechanics on groupoids

Further geometry: the prolongation groupoid PG
Saunders 2004

Discrete version of the iterated tangent bundle T (TQ).

PπG //

��

AG × AG

π×π
��

G
(α,β)

// Q × Q

The Poincaré-Cartan sections are sections of PG ∗.

Theorem

I PG has both groupoid and algebroid structures;

I PG is isomorphic to Vβ ⊕ Vα. The isomorphism:

(g ; uα(g), vβ(g)) 7→ (TLg (uα(g)),TRg (vβ(g))).
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Mechanics on groupoids

The Poincaré-Cartan forms
Considered as sections of Vβ ⊕ Vα, the Poincaré-Cartan sections
associated to L are defined as

θ−L (g)(Xg ,Yg ) = −Xg (L) and θ+
L (g)(Xg ,Yg ) = Yg (L).

On PG , they satisfy

θ−L (g)(X (1,0)(g)) = −
−→
X (g)(L) and θ+

L (g)(X (1,0)(g)) =
←−
X (g)(L)

Remark

I θ−L and θ+
L can also be derived from the variational principle;

I they also arise as pullbacks along the discrete Legendre
transformation of a canonical Liouville form;

I The symplectic section ΩL = dθ+
L = −dθ−L is preserved under the

discrete flow (symplecticity).
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Mechanics on groupoids Example: the heavy top

Example: the heavy top

The continuous theory:

I Configuration space: the Lie algebroid τ : S2 × so(3)→ S2;

I Lagrangian:

L(Γ,Ω) =
1

2
Ω · I · Ω−mglΓ · e.

The discrete theory:

I Configuration space: the transformation groupoid S2 × SO(3), with
following anchor maps:

α(p,A) = p, β(p,A) = pA,

and multiplication defined by

(p,A) · (q,B) = (p,AB) (if q = pA).
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Mechanics on groupoids Example: the heavy top

Example: the heavy top

I Lagrangian: approximate Ω̂ ∈ so(3) as follows:

Ω̂ = RT Ṙ ≈ 1

h
RT

k (Rk+1 − Rk) =:
1

h
(Wk − 1),

and substitute this in the continuous Lagrangian. The result:

Ldiscrete(Γk ,Wk) = −1

h
Tr(IWk)− hmglΓk · e.

I Equations of motion:

Πk+1 = W T
k Πk + mglh2Γk+1 × e,

together with Γk+1 = W T
k Γk (composability) and Π̂k = Wk I− IW T

k .
(See Bobenko and Suris)
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Mechanics on groupoids Nonholonomic constraints

Further topics: nonholonomic constraints
D. Iglesias, J. C. Marrero, D. Mart́ın de Diego, E. Mart́ınez 2007

Ingredients

I A discrete Lagrangian L : G → R;

I a constraint distribution Dc ⊂ AG ;

I a discrete constraint submanifold C ↪→ G , such that dim C = dim Dc .

Discrete Hölder principle

A sequence of (g1, . . . , gN) of admissible elements such that g1 · · · gN = g
and gi ∈ C for i = 1, . . . ,N is a solution of the discrete nonholonomic
Lagrangian system if and only if its a Hölder critical point of S , i.e. if
δS = 0 for all variations taking values in Dc .
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Mechanics on groupoids Nonholonomic constraints

Discrete nonholonomic systems

Equations of motion

The discrete Euler-Lagrange equations for the nonholonomic system
(L,Dc , C) are given by

←−
X (g1)(L)−

−→
X (g2)(L) = 0 for X ∈ Sec(Dc),

or alternatively (λα are Lagrange multipliers)

←−
Y (g1)(L)−

−→
Y (g2)(L) = λαXα(Y )|β(g1)

for all Y ∈ Sec(AG ) and (g1, g2) ∈ G2 ∩ (C × C).
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Mechanics on groupoids Nonholonomic constraints

Example: rolling ball on a rotating table

Continuous model

I Configuration space: Q = R2 × SO(3);

I L on TQ/SO(3):

L =
1

2
m(ẋ2 + ẏ 2)− 1

4
Tr(ω2) (ω ∈ so(3)).

I Constraints: ẋ + Rω2/2 = −Ωy and ẏ − Rω1/2 = Ωx .

This is a system on a Lie algebroid.
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Mechanics on groupoids Nonholonomic constraints

Rolling ball on a rotating table: discretisation
I Configuration space: Atiyah groupoid: R2 × R2 × SO(3).
I Discrete Lagrangian:

Ld(x0, y0, x1, y1; W ) = L(x0, y0;
x1 − x0

h
,

y1 − y0

h
;

1

h
log W ),

where log = exp−1 : SO(3)→ so(3), approximated as
(log W )/h = (W − 1)/h. After simplification:

Ld =
m

2

(
x1 − x0

h

)2

+
m

2

(
y1 − y0

h

)2

− I

(2h)2
Tr(W ).

I Discrete constraints:

x1 − x0

h
+

R

2h
W1 = −Ω

y0 + y1

2

+ the other one.
I Dc : affine subbundle of AG = TR2 × so(3) induced by the

continuous constraints.
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Mechanics on groupoids Nonholonomic constraints

Rolling ball on a rotating table: discretisation

I Equations of motion:

x2 − 2x1 + x0

h2
+

I Ω

I + mR2

y2 − y0

2h
= 0

y2 − 2y1 + y0

h2
− I Ω

I + mR2

x2 − x0

2h
= 0

(W2)3 − (W1)3 = 0

x2 − x1

h
+

R

2h
(W2)2 + Ω

y1 + y2

2
= 0

y2 − y1

h
− R

2h
(W2)1 + Ω

x1 + x2

2
= 0

I Point of contact describes a circle on the plate: accurately captured
by this discrete system.
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Mechanics on groupoids Nonholonomic constraints

Joris Vankerschaver (Ghent University) Lie groupoids Tuesday, August 21 21 / 35



Groupoids in field theory

Groupoids in field theory
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Groupoids in field theory

Discretising a field theory: overview
Cantrijn, Vankerschaver 2007

New elements

For a discretisation of a field theory, we need:

I A cell complex in the base space;

I A suitable discretisation of the fibre: Gk .

Simplifications

We consider only the following kind of field theories:

I The base space is R2;

I The fibre bundle is trivial.

⇒ k-symplectic approach.
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Groupoids in field theory

Fibre discretisation

k-symplectic approach (Günther, de León, Salgado, etc.)

I Fields are maps from Rn to a manifold Q, or sections of the bundle
Rn × Q → Rn;

I The jet bundle J1π is isomorphic to

Rn × [TQ ⊕ · · · ⊕ TQ]︸ ︷︷ ︸
n times

.

Discretization

Apply the “Moser-Veselov procedure” n times:

TQ ⊕ · · · ⊕ TQ  Q × · · · × Q︸ ︷︷ ︸
n times

.
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Groupoids in field theory

The manifold of k-gons Gk

From now on, let G be an arbitrary Lie groupoid.

The manifold of k-gons Gk

Elements of Gk : k-tuples (g1, g2, . . . , gk) of
composable elements in G such that

g1 · g2 · · · gk = eα(g1).

g6

g1 g2

g3

g4
g5

Why study such a manifold?

I Gk is a discrete counterpart to J1π;

I the discrete Lagrangian L is defined on Gk .
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Groupoids in field theory

The prolongation PkG
Definition

The elements of PkG are of the form

([g ]; v1, . . . , vk) ∈ Gk × AG × · · · × AG .

v6

v1

v2 v3

v4

v5

g6

g1 g2

g3

g5

Commutative diagram:

PkG //

��

AG × · · · × AG

��
Gk // Q × · · · × Q

Notice the similarity with PG :

I PkG is a Lie algebroid;

I PkG is not a groupoid, as it has k anchors.

Joris Vankerschaver (Ghent University) Lie groupoids Tuesday, August 21 26 / 35



Groupoids in field theory

Lie algebroid structure of PkG
Define the projection maps P i : PkG→ PG (i = 1, . . . , k) as follows:

P i ([g ]; v1, . . . , vk) = (gi ; vi , vi+1).

Theorem

There exists a unique Lie algebroid structure on PkG such that P i ,
i = 1, . . . , k, are Lie algebroid morphisms.

Hence, the dual PkG∗ is equipped with

I a linear Poisson structure;

I an exterior differential dk .

Poincaré-Cartan sections θ
(i)
L , i = 1, . . . , k : sections of PkG∗, and

θ
(1)
L + · · ·+ θ

(k)
L = dkL.
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Groupoids in field theory Discrete field theories

Discrete field theories

Consider a planar graph (V ,E ,F ) in R2. The set of edges can be
extended to the discrete groupoid V × V .

Definition

Discrete fields are groupoid morphisms from V × V
to G . Equivalently, they are maps from F to Gk

satisfying an additional morphism property.

ψ

φ([x]4) ψ([y])
φ([x]2)

φ([x]1)

φ([x])3

[y]
[x]1

[x]4 [x]3
[x2]

Morphism property

If [x ] and [y ] are elements of Xk having an edge in common, then the
images of [x ] and [y ] under ψ have the corresponding edge in Gk in
common. Explicitly:

[x ]l = ([y ]m)−1 implies that ψ([x ])l = (ψ([y ])m)−1. (1)
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Groupoids in field theory Discrete field theories

The Euler-Lagrange equations

Theorem

The extremals of the discrete action sum satisfy the following discrete
Euler-Lagrange equations: for all v ∈ AqG ,

v
(1)
[g1](L) + v

(2)
[g2](L) + v

(3)
[g3](L) + v

(4)
[g4](L) = 0.

The solutions of the discrete Euler-Lagrange equations are multisymplectic
(this is important in the construction of numerical integrators).

∑
[x]∩∂U 6=∅

 ∑
l ;α(l)([x])∈∂U

(
Ω

(l)
L (ψ([x ]))(V1,V2)

) = 0.
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Groupoids in field theory Symmetry and reduction

Symmetry and reduction

I 1
2 Noether theorem: every continuous symmetry gives rise to a
conservation law;

I Reduction and (sometimes) reconstruction.

Remark

Lie groupoids are indispensable in doing symmetry reduction: take the
unreduced Lie groupoid Q × Q and a symmetry group G:

Φ : Q × Q → (Q × Q)/G (Atiyah groupoid).

Reduced space cannot be described classically!
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Groupoids in field theory Symmetry and reduction

An important special case: G is a Lie group

Discrete differential geometry

I Discrete G-connections, curvature, flatness (similar to continuous
case).

I If G is Abelian, discrete differential forms.

Definition

A discrete G-connection is a map ω : E → G such that

ω(e−1) = ω(e)−1. for all e.

Curvature: the map Ω : F → G, defined as Ω(f) = ω(e1) · · ·ω(ek).

A connection is flat if Ω(f) = e for all f ∈ F .
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Groupoids in field theory Symmetry and reduction

Euler-Poincaré reduction

The fields take values in a Lie group G, which is also the symmetry group
of the theory.

Discrete version of a theorem by M. Castrillón-López

The reduced fields are discrete G-connections. The reconstruction
procedure can be carried out iff the discrete curvature vanishes.

Prime example: harmonic maps, nonlinear σ-models.
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Conclusions and outlook

Outlook

Future directions

I Adiabatic groupoids (have both continuous and discrete aspects);

I Higher-order integrators;

I Better theoretical justification.

Just as deduction should be supplemented by intuition, so the impulse to
progressive generalization must be tempered and balanced by respect and
love for colorful detail. The individual problem should not be degraded to

the rank of special illustion of lofty general theories. In fact, general
theories emerge from consideration of the specific, and they are

meaningless if they do not serve to clarify and order the more particular
substance below. (Richard Courant, quoted by G. Patrick)
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Conclusions and outlook

Thank you for your time!
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Conclusions and outlook
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