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1. Introduction.
Constraints are an essential ingreedient of every variational principle and must be discussed in

connection with such principles. A variational principle for a static system studies equilibrium con-
figurations of a physical system in its configuration space. The configuration space is a differential
manifold. Variational formulations of dynamics deal with motions in a configuration space. The space
of motions is not a manifold although it has enough structure to permit introduction of mappings
differentiable in a certain sense.

A. Static systems with constraints.

2. Processes.
The configuration space of a static system is a differential manifold Q. Quasistatic processes

are represented as oriented embedded arcs in the configuration space. An embedded arc is a subset
c ⊂ Q which is the image of an embedding γ : [0, a] → Q of a closed interval [0, a] ⊂ R defined as the
restriction to [0, a] of an embedding γ̃ : R → Q. The embedding γ is a representative of an embedded
arc called its parameterization. Different embeddings may be parameterizations of the same arc. A
parameterization γ : [0, a] → Q of an arc c induces an orientation of the arc. The arc is oriented from
γ(0) to γ(a) if the two points are distinct. The case γ(0) = γ(a) is of no interest for developing criteria
of equilibrium. The boundary ∂c of an arc c is a set of two points q and q′ such that γ(0) = q and
γ(a) = q′ for some parameterization γ: [0, a] → Q of c. The designation of one of the boundary points
as the initial configuration of the process represented by an arc specifies an orientation. An oriented

embedded arc is defined as a pair (c, q0), where c is an embedded arc and q0 is a point in the boundary
∂c designated as the initial configuration. The remaining boundary point is the terminal configuration

of (c, q0). A parameterization γ: [0, a] → Q of an arc c such that γ(0) = q0 is said to be compatible

with the orientation of the oriented arc (c, q0). Compatible parameterizations will be used for oriented
arcs.

Let (c, q0) be an oriented arc. We refer to points in c as elements of (c, q0). Elements of an oriented
arc (c, q0) are ordered by the relation 6 defined in terms of any parameterization γ compatible with
the orientation. The relation γ(s′) 6 γ(s) is equivalent to s′ 6 s. Relations <, >, and > are defined
in a similar way. They reflect the corresponding relations between the values of the parameter.

Let (c, q0) and (c′, q′0) be oriented arcs such that c′ ⊂ c. There are two ordering relations in (c′, q′0)
since elements of (c′, q′0) are also elements of (c, q0). The arc (c′, q′0) is said to be included in the arc
(c, q0) if the two ordering relations coincide. The inclusion relation is denoted by (c′, q′0) ⊂ (c, q0). The
process represented by (c′, q′0) is a subprocess of the process represented by (c, q0) if (c′, q′0) ⊂ (c, q0).
If (c1, q1

0) and (c2, q2
0) are oriented arcs and if one of the pairs (c1∪c2, q1

0) or (c1∪c2, q2
0) is an oriented

arc, then it is considered the union of (c1, q1
0) and (c2, q2

0) and is denoted by (c1, q1
0) ∪ (c2, q2

0).
Let (c, q0) be an oriented arc. A function a : c → R is considered a function on (c, q0). This function

is said to be differentiable if it the restriction to c of a differentiable function on Q. The orientation
of (c, q0) makes it possible to single out increasing functions. A function h ∈ Ac is increasing if q′ > q

implies h(q′) > h(q).
An oriented arc represents a quasi static process. We use these two terms interchangeably. We

denote by PPPQ the set of all processes in Q.

3. Admissible processes.
An essential part of the characterization of a static system is the specification of a set C ⊂ PPPQ of

admissible processes in the configuration space Q. Admissible processes are the processes that can be
actually induced using the control devices at our disposal. The following conditions are satisfied.
(1) A subprocess of an admissible process is admissible.
(2) The union of admissible processes is admissible.
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(3) If a process can be approximated with admissible processes, then it is admissible.
The last condition is made more precise by the following statement. Let

q♯
1, q

♯
2, . . . , q

♯
i, . . . (1)

be a sequence of interior configurations in a process (c, q0) converging to the terminal configuration
q1. If processes (cq♯

i|
, q0) are admissible, then (c, q0) is admissible. The symbol (cq|, q0) denotes the

subprocess of (c, q0) with q ∈ c as the terminal configuration. It is based on the arc

cq| = {q′ ∈ c; q′ 6 q} . (2)

One speaks of constraints if the set C is not the set of all arcs in the configuration space. If
admissible processes are all arcs in a subset C0 ⊂ Q, then constraints are considered holonomic, in
other cases constraints are non holonomic.

4. The work function.
Another object characterizing a static system is a function

W : C → R (3)

associating with each admissible process (c, q0) the work W (c, q0) of the process. Since subprocesses of
admissible processes are admissible we can associate with each admissible process (c, q0) the function

w(c,q0) : c → R : q 7→

{
W (cq|, q0) if q 6= q0

0 if q = q0.
(4)

The work function will be assumed to satisfy the following conditions.
(1) Work is additive in the sense that if (c, q0) is the union of admissible processes

(c0, q0
0), (c1, q1

0), . . . , (cn, qn
0 ) (5)

such that for i = 0, 1, . . . , n− 1 the terminal configuration of (ci, qi
0) is the initial configuration of

(ci+1, qi+1
0 ), then

W (c, q0) =

n∑

i=0

W (ci, qi
0). (6)

(2) For each admissible process (c, q0) the function w(c,q0) is differentiable.

5. Stable local equilibrium configurations.
Let C0 ⊂ Q be the set of initial configurations of all admissible processes for a static system.

A point q0 ∈ C0 is called a stable local equilibrium configuration of the system if for each admissible
process (c, q0) initiating at q0 the function w(c,q0) has a local minimum at q0.

We are excluding constant processes represented by constant arcs. In a complete discussion of
equilibrium configurations isolated admissible configurations and admissible constant processes should
be considered. Only constant admissible configurations can initiate at an isolated admissible configu-
ration. Such configurations are obviously stable local equilibrium configurations. No further discussion
is necessary.

6. Composition of static systems and control.
Static systems can be composed if they share the same control configuration space. The equality

of configuration spaces is usually the result of a suitable choice. Let two systems be characterized by
work functions W1 : C1 → R and W2 : C2 → R defined on sets C1 and C2 of admissible processes in
the same configuration manifold Q. The set C = C1 ∩ C2 is the set of admissible processes of the
composed system and the work is the function W = W1|C + W2|C. Coupling the system to other
systems with the same configuration space is a form of control. The function W is used to find the
equilibrium configurations of the controlled system.
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Composition of constrained systems may encounter difficulties.

7. Realistic constraints.

7.1. Jets of processes
Let q be a point in a differential manifold Q. In the algebra AQ of differentiable functions on Q

we introduce a sequence of ideals

I0(Q, q), I1(Q, q), . . . , Ik(Q, q), . . . . (7)

The ideal
I0(Q, q) = {f ∈ AQ; f(q) = 0} (8)

associated with q is maximal in the sense that it is not a proper subset of any ideal except the trivial
ideal AQ. For k ∈ N, the ideal Ik(Q, q) is the power (I0(Q, q))k+1 of the ideal I0(Q, q). Inclusion
relations

Ik(Q, q) ⊂ Ik′ (Q, q) (9)

hold for all k′ and k in N such that k′6k.
For each k ∈ N we introduce an equivalence relation in the set PPPQ of oriented embedded arcs in

Q. Arcs (c, q0) and (c′, q′0) are equivalent if

Ik(Q, q′0) + I0(Q, c′) = Ik(Q, q0) + I0(Q, c). (10)

The symbol I0(Q, c) denotes the ideal

I0(Q, S) =
{
f ∈ AQ; ∀q∈S

f(q) = 0
}

. (11)

Equivalence classes are called k-jets of processes. The set of k-jets will be denoted by PkQ. The k-jet of
a process (c, q0) will be denoted by jk(c, q0). Inclusion relations (9) imply the existence of projections

πk′

k Q : PkQ → Pk′

Q : jk(c, q0) 7→ jk
′

(c, q0) (12)

for k′ 6 k in addition to
πk Q : PkQ → Q : jk(c, q0) 7→ q0. (13)

7.2. Constraints determined by differential equations.
From the set C ⊂ PPPQ of admissible processes of a static system we extract the sequence of sets

C0 ⊂ Q, C1 ⊂ P1Q, . . . , Ck ⊂ PkQ, . . . (14)

The k-jet of a process is in Ck if it has a representative in C. Relations

πk′

k Q(Ck) = Ck′

(15)

hold for k′ 6 k and
πk Q(Ck) = C0 (16)

for k > 0.
Let (c, q0) be a process with the property that for each configuration q ∈ (c, q0) the jet jk(c|q, q)

of the process (c|q, q) based on the arc

c|q = {q′ ∈ c; q′>q} . (17)

is in Ck. We denote by Ck the class of all such processes. If a process (c, q0) with terminal point q1 is
in Ck, then jk(c|q, q) ∈ Ck for each q ∈ c. It follows that jk

′

(c|q, q) = πk′

k Q(jk(c|q, q)) ∈ Ck′

for each

q ∈ c. Hence, (c, q0) ∈ Ck′

. We have established the inclusion

Ck′

⊃ Ck (18)
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for k′ 6 k.
It may happen that the equality C = Ck holds for k ∈ N. If it holds for k and not for k − 1,

then the set C is said to represent constraints of order k. The set Ck is interpreted as a differential
equation of order k. Admissible processes are obtained by solving this equation. Constraints of order
0 are the constraints already recognized as holonomic. Constraints of order higher than 0 are said to
be non holonomic. Constraints of order higher than 1 are not usually discussed since their presence is
not apparent if only first order criteria of equilibrium are considered.

8. Jets of processes with volume, the work integral

A k-jet of a process with volume is a pair (jk(c, q0), v), where v ∈ Tq0
Q is a vector represented by

one of the parameterizations of c compatible with the orientation of (c, q0). We denote by VkQ the

space of k-jets with volume. Spaces V0Q and V1Q are identified with the bundle T
◦

Q ⊂ TQ of tangent
vectors with the zero vectors removed. This is possible since in the pair (j0(c, q0), v) or (j1(c, q0), v) the
vector v already contains the complete information about the jet. We denote by V k the k-jets with
volume associated with admissible processes. Note that if (jk(c, q0), v) ∈ V k, then (jk(c, q0), λv) ∈ V k

for each λ > 0.
The work of a realistic static system is defined in terms of a work form

ϑ : V k → R. (19)

The work form is positive homogeneous in its vector argument: if λ > 0, then ϑ(jk(c, q0), λv) =
λϑ(jk(c, q0), v). The work form is used to define the work function w(c,q0) along an admissible processes.
Let q1 be the terminal point of the process (c, q0). For each configuration q ∈ c \ {q1} the value of the
work function is the integral

w(c,q0)(q) =

∫

(c|q,q0)

ϑ (20)

of the work form defined as the Riemann integral

∫ γ−1(q)

0

ϑ(jk(c|γ(s), γ(s)), tγ(s))ds (21)

in terms of a parameterization γ : [0, a] → Q. Homogeneity of ϑ makes the integral independent of the
parameterization. The work of the process is the integral

W (c, q0) =

∫ γ−1(q1)

0

ϑ(jk(c|γ(s), γ(s)), tγ(s))ds. (22)

The work form of a system of the usually considered type is a positive homogeneous function

ϑ : V 0 → R (23)

or

ϑ : V 1 → R. (24)

9. Stable local equilibria defined in terms of germs.

The function w(c,q0) will have a local minimum at q0 if there is a point q ∈ c such that the function
w(c,q0) restricted to the arc

cq| = {q′ ∈ c; q′ 6 q} (25)

is increasing. This observation implies that equilibrium at q0 is a property of the germ of w(c,q0) at q0.
We will state the definition of equilibrium in terms of germs.
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With a process (c, q0) we associate an ideal Ic(c, q0) in the algebra A(c, q0) of differentiable func-
tions on (c, q0). A function h is in this ideal if there is a neighbourhood V ∈ c of the initial configuration
q0 such that h|V = 0. The quotient algebra

Ac(Q, q0) = A(c, q0)
/

Ic(Q, q0) (26)

is the algebra of germs of functions on (c, q0) at q0. An element of Ac(c, q0) is said to be increasing if
it has an increasing representative in A(c, q0).

A point q0 ∈ C0 is a stable local equilibrium configuration if for each process (c, q0) the germ
jcw(c,q0) is increasing.

10. Jets of functions on [0, a] ⊂ R

Some elementary results concerning the algebra A[0, a] of differentiable functions on [0, a] ⊂ R, its
ideals

I0([0, a], 0), I1([0, a], 0), . . . , Ik([0, a], 0), . . . (27)

and the quotient algebras

A0([0, a], 0) = A[0, a]
/

I0([0, a], 0), A1([0, a], 0) = A[0, a]
/

I1([0, a], 0), . . .

. . . , Ak([0, a], 0) = A[0, a]
/

Ik([0, a], 0), . . .
(28)

are needed for developing differential conditions of equilibrium. Elements of the algebra Ak([0, a], 0)
are k-jets of functions on [0, a]. A differentiable function on [0, a] is the restriction to [0, a] of a
differentiable function on R. A function is in an ideal Ik([0, a], 0) if and only if it is the restriction to
[0, a] of a function in Ik(R, 0). As a consequence the quotient algebra Ak([0, a], 0) = A[0, a]

/
Ik([0, a], 0)

is isomorphic to Ak(R, 0) = AR
/

Ik(R, 0).
In each algebra Ak([0, a], 0) there is a sequence of ideals

Ik0([0, a], 0) = I0([0, a], 0)
/

Ik([0, a], 0), Ik1([0, a], 0) = I1([0, a], 0)
/

Ik([0, a], 0), . . .

. . . , Ikk([0, a], 0) = Ik([0, a], 0)
/

Ik([0, a], 0).
(29)

A function g ∈ A[0, a] is said to be increasing if the inequality s′ > s implies q(s′) > g(s). An
element of a quotient algebra Ac([0, a], 0) = A[0, a]

/
Ic([0, a], 0) is said to be increasing if it has an

increasing representative in A[0, a]. A function g ∈ A[0, a] is in Ic([0, a], 0) if and only if there is a real
number δ > 0 such that g(s) = 0 for s 6 δ. It follows that the germ jcg(0) of a function g ∈ A[0, a] is
increasing if there is a number δ > 0 such that g is increasing in [0, δ].

Proposition 1. For k ∈ N a function g ∈ A[0, a] is in Ik([0, a], 0) if and only if Dig(0) = 0 for each

i 6 k.

Proof: The derivatives of a function g ∈ A[0, a] at 0 are well defined and the function can be
represented by the Taylor formula

g = e0(g) + e1(g)s + . . . + ek(g)sk + rsk+1, (30)

where

ei(g) =
1

k!
Dig(0), (31)

s : [0, a] → R is the canonical injection, and r is a differentiable function on [0, a]. The function s is
in I0([0, a], 0) and the power sk+1 is in Ik([0, a], 0). If Dig(0) = 0 for each i 6 k, then g = rsk+1 is in
Ik([0, a], 0).

A function g ∈ Il([0, a], 0) is a combination of products g0g1 · · · gl of elements of I0([0, a], 0). The
derivative Dg is a combination of products of functions with each product containing at least l factors
in I0([0, a], 0). It follows that the derivative Dg of a function g ∈ Il([0, a], 0) is in Il−1([0, a], 0). If
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g ∈ Ik([0, a], 0), then D0g = g ∈ Ik([0, a], 0), D1g = Dg ∈ Ik−1([0, a], 0), D2g ∈ Ik−2([0, a], 0), . . .,
Dkg ∈ I0([0, a], 0). Hence, Dig(0) = 0 for each i 6 k.

It follows from Proposition 1 that the jet jkg(0) ∈ Ak([0, a], 0) is fully represented by the sequence

e0(g), e1(g), . . . , ek(g) (32)

of derivatives

ei(g) =
1

k!
Dig(0) (33)

of its representative g ∈ A[0, a]. The polynomial

e0(g) + e1(g)s + . . . + ek(g)sk (34)

represents the jet jkg(0) and the product of two jets is represented by the product of the corresponding
polynomials truncated after the first k + 1 terms.

An element of the ideal Ik0([0, a], 0) ⊂ Ak([0, a], 0) is represented by the sequence e0, e1, . . . , ek

with e0 = 0. This element is said to be positive if the first non zero element in the sequence is positive.
The element is said to be negative if the first non zero element in the sequence is negative. Each element
of the ideal Ik0([0, a], 0) is either positive or negative if it is not zero. There are obvious relations >,
<, >, and 6 between elements of Ik0([0, a], 0).

Proposition 2. If a jet jkg(0) in the ideal Ik0([0, a], 0) is positive, then the germ jcg(0) is increasing.

If the jet jkg(0) is negative, then the germ jcg(0) is decreasing.

Proof: is represented by Taylor formula

g(s) = el(g)sl + r(s)sl+1. (35)

From
lim
s→0

(
(l + 1)r(s)s + Dr(s)s2

)
= 0 (36)

it follows that there is a number δ > 0 such that

|(l + 1)r(s)s + Dr(s)s2| < |lel(g)| (37)

for |s| < δ. If el(g) > 0, then the function g is increasing in the interval [0, δ] since the derivative

Dg = lels
l−1 + (l + 1)r(s)sl + Dr(s)sl+1

=
(
lel + (l + 1)r(s)s + Dr(s)s2

)
sl−1

(38)

is positive for 0 < s < δ. This is a consequence of the Lagrange mean value theorem. It follows that
the germ jcg(0) is increasing. It is shown in a similar way that if el is negative, then the germ is
decreasing.

It follows from the proposition that if the germ jcg(0) of a function g is increasing, then the jet
jkg(0) is non negative for each k ∈ N.

11. Differential criteria of local equilibrium.

Let h be a function in the algebra A(c, q0) of differentiable functions on c and let γ : [0, a] → Q

be a parameterization of the process (c, q0). The parameterization induces the mapping c|γ : [0, a] →
c : s 7→ γ(s). The composition h ◦ c|γ is a function on [0, a]. The function h is increasing if and only
if h ◦ c|γ is increasing. Let h be in the ideal I0(c, q0) ⊂ A(c, q0). For k ∈ N, the jet jkh ∈ Ik0(c, q0)
is said to be positive if the jet jk(h ◦ c|γ)(0) is positive. The jet jkh is said to be negative if the jet
jk(h ◦ c|γ)(0) is negative. Being positive or negative is a property of the jet jkh independent of the
choice of the parameterization. The following proposition is an adaptation of Proposition 2.
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Proposition 3. If a jet jkh in the ideal Ik0(c, q0) is positive, then the germ jch is increasing. If the

jet jkh is negative, then the germ jch is decreasing.

The proposition implies that if the germ jch of a function h is increasing, then the jet jkh is non
negative for each k ∈ N.

Let q0 be a configuration in the set C0 an let k ∈ N. If for each jet jk(c, q0) of an admissible
process (c, q0) the jet jkw(c,q0) is positive, then the germ jcw(c,q0). Hence, q0 is a stable equilibrium
configuration. We have obtained a sufficient condition for a point q0 ∈ C0 to be a stable local
equilibrium configuration for each k ∈ N ∪ {∞}.

If q0 is a stable equilibrium configuration, then the germ jcw(c,q0) is increasing for each germ

jc(c, q0) of an admissible process (c, q0). It follows that for each k ∈ N and each jet jk(c, q0) of an
admissible process (c, q0) the jet jkw(c,q0) is non negative. This results in a series of necessary conditions
for a point q0 ∈ C0 to be a stable local equilibrium configuration. Neither of these conditions is
sufficient. Variational principles of classical physics are based on the necessary equilibrium condition
of order k = 1.

12. Refinements of the criteria of equilibrium.
In the set PPPQ of oriented embedded arcs in Q we introduce an equivalence relation. Arcs (c, q0)

and (c′, q′0) are equivalent

Ic(Q, q′0) + I0(Q, c′) = Ic(Q, q0) + I0(Q, c). (39)

Equivalence classes are called germs of processes. The set of germs is denoted by PcQ. The germ
of a process (c, q0) is denoted by jc(c, q0). The symbol Cc will denote the set of germs of admissible
processes.

The algebra A(c, q0) is canonically isomorphic to the quotient algebra AQ
/

I0(Q, c) and the ideal
Ic(c, q0) is isomorphic to the quotient

(Ic(Q, q0) + I0(Q, c))
/

I0(Q, c). (40)

We will adopt the following identification

Ac(c, q0) = A(c, q0)
/

Ic(c, q0) is identified with AQ
/

(Ic(Q, q0) + I0(Q, c)) . (41)

As a consequence of this identification the algebra Ac(c, q0) is associated with the germ jc(c, q0) rather
than with the process (c, q0) since the algebra Ac(c′, q′0) is the same as the algebra Ac(c, q0) if (c′, q′0)
and (c, q0) are equivalent.

Each function h ∈ A(c, q0) has a germ jch ∈ Ac(c, q0). The germ jcw(c,q0) of the work function
w(c,q0) along an admissible process (c, q0) is the same as the germ jcw(c′,q′

0
) if (c′, q′0) and (c, q0) are

equivalent.
A reformulation of the definiion of stable local equilibrium is now possible. A point q0 ∈ C0 is a

stable local equilibrium configuration if for each process jc(c, q0) the germ jcw(c,q0) is increasing.
In the algebra A(c, q0) of differentiable functions on the oriented arc (c, q0) we have ideals

I0(c, q0), I1(c, q0), . . . , Ik(c, q0), . . . (42)

defined just as the ideals in the sequence (7) and the corresponding quotient algebras

A0(c, q0) = A(c, q0)
/

I0(c, q0), A1(c, q0) = A(c, q0)
/

I1(c, q0), . . .

. . . , Ak(c, q0) = A(c, q0)
/

Ik(c, q0), . . .
(43)

For each k ∈ N the ideal Ik(c, q0) is isomorphic to the quotient

(Ik(Q, q0) + I0(Q, c))
/

I0(Q, c). (44)
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This justifies the following identification

Ak(c, q0) = A(c, q0)
/

Ik(c, q0) is identified with AQ
/

(Ik(Q, q0) + I0(Q, c)) . (45)

The identification implies that the algebra Ak(c, q0) is associated with the k-jet jk(c, q0) rather than
with the process (c, q0) since the algebra Ak(c′, q′0) is the same as the algebra Ak(c, q0) if (c′, q′0) and
(c, q0) have the same k-jet.

In view of these observations it is possible to certain refinements to the differential criteria of
equlibrium. Only the k-jet jk(c, q0) of a process intervenes in equlibrium criteria of order k. We will
apply such refinements to particular cases of the differential criteria.

13. The principle of virtual work.

Variational principles of classical physics are versions of what is known in statics as the principle

of virtual work. This principe consists in applying the first necessary equilibrium condition to a static
system. Constraints are represented by a set V 1 ∈ TQ .

and that the work is represented by a work form

ϑ : V 1 → R. (46)

Elements of V 1 are the admissible virtual displacements. The principle of virtual work states that the
inequality

ϑ(v)>0 (47)

holds for each virtual displacement v tangent to an admissible process initiating at a configuration of
equilibrium.

A process is represented by first jets with volume identified with tangent vectors. This is a
simplicication based on the observations of the preceding section.

14. Potential systems and the Legendre transformation.

A potential of a potential static system is a differentiable function U on the configuration space Q.
A potential system is unconstrained. For each process (c, q0) ∈ C = PPPQ with terminal point q1 the
function w(c,q0) is defined by

w(c,q0)(q) = U(q) − U(q0) (48)

for q ∈ c \ {q1} and the work W (c, q0) = w(c,q0)(q1) is the limit

W (c, q0) = lim
q→q1

w(c,q0)(q). (49)

The set V 1 of a potential system is the tangent bundle T
◦

Q and the function ϑ is the function

ϑ : T
◦

Q → R : v 7→ 〈dU, v〉 (50)

constructed from the differential dU of the potential. The principle of virtual work for a potential
system states that the equality

〈dU, v〉 = 0 (51)

holds for every virtual displacement from a configuration of equilibrium. The appearance of the equality
in place of the inequality is due to the reversibility of virtual displacements: if v is a admissible virtual
displacement from a configuration of equilibrium, then so is −v and 〈dU,−v〉 = −〈dU, v〉

The Legendre transformation associates with a static system represented by a set V 1 ⊂ T
◦

Q and
a function ϑ : V 1 → R the constitutive set S of the system defined as

S =
{
f ∈ T∗Q; πQ(f) ∈ C0, ϑ(v) − 〈f, v〉 > 0 for each v ∈ V such that τQ(v) = πQ(f)

}
(52)
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The set C0 is obtained by applying the tangent projection τQ to virtual displacements. If constraints

are holonomic, then V 1 = T
◦

C0. A virtual displacement is in T
◦

C0 if there is a curve ξ : R → Q and
a number ε > 0 such that ξ([0, ε]) ⊂ C0 and v = tξ(0) 6= 0. The inequality in the definition of S is
replaced by an equality in the case of reversibility.

The physics of the Legendre transformation is that of control of a static system by means of po-
tential external devices. The covector f = −dU(πQ(f)) is the external force applied to the controlled
system by the potential device with potential U . The constitutive set S characterizes the response of
a static system to control by potential devices only. Under certain conditions (convexity) this charac-
terization is complete since the set V and the function ϑ can by reconstructed from the constitutive
set by the inverse Legendre transformation.

15. Examples of static systems and Legendre transformations.
Configuration spaces of most systems considered here are affine spaces. If Q is an affine space

modeled on a vector space W , then the tangent bundle TQ is identified with the product Q × W , the
cotangent bundle is identified with Q × W∗ and the canonical pairing is the mapping

〈 , 〉 : (Q × W∗) × (Q × W ) : ((q, f), (q, w)) 7→ 〈f, w〉. (53)

We denote by q1 − q0 the vector associated with the points q0 and q1.
For the sake of simplicity we will not exclude zero vectors in the set V of virtual displacements.

Example 1. Let Q be the configuration manifold of a static mechanical system and let ρ : TQ → T∗Q

be a mapping with the properties of a Euclidean metric. This means that ρ defines an isomorphism of
vector bundles

TQ

τQ

��

ρ
// T∗Q

πQ

��

Q Q

, (54)

the symmetry relation
〈ρ(u), v〉 = 〈ρ(v), u〉 (55)

holds for any pair (u, v) ∈ TQ ×
(τQ,τQ)

TQ, the inequality

〈ρ(v), v〉 > 0 (56)

holds for each v 6= 0. The function

ϑ : TQ → R : v 7→
√
〈ρ(v), v〉 (57)

is positive homogeneous on fibres of the tangent fibration. It represents the virtual work of a virtual
displacement v due to friction. The principle of virtual work is the inequality

√
〈ρ(v), v〉 − 〈f, v〉>0. (58)

It is satisfied if f is in the constitutive set S and (f, v) ∈ T∗Q ×
(πQ,τQ)

TQ.

Let f ∈ T∗Q be in the constitutive set. By using v = ρ−1(f) in the principle of virtual work we
arrive at the inequality

〈f, ρ−1(f)〉 6
√
〈f, ρ−1(f)〉. (59)

Hence,
〈f, ρ−1(f)〉 6 1. (60)
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The inequality
〈f, v〉 6

√
〈f, ρ−1(f)〉

√
〈ρ(v), v〉. (61)

is the result of the Schwarz inequality

〈ρ(u), v〉 6
√
〈ρ(u), u〉

√
〈ρ(v), v〉 (62)

applied to the pair of vectors u = ρ−1(f) and v. If 〈f, ρ−1(f)〉 6 1, then

〈f, v〉 6
√
〈ρ(v), v〉. (63)

Hence, f ∈ S.
The constitutive set of the system is the set

S =
{
f ∈ T∗Q; 〈f, ρ−1(f)〉 6 1

}
. (64)

N

Example 2. Let a material point with configuration q in the Euclidean affine space Q be tied with a
rigid rod of length a to a point with configuration q0. The configuration q is constrained to the sphere

C0 = {q ∈ Q; ‖q − q0‖ = a} . (65)

This is a system with holonomic bilateral constraints. The set

V = {(q, δq) ∈ Q × W ; ‖q − q0‖ = a, 〈g(q − q0), δq〉 = 0} (66)

of admissible virtual displacements is the tangent set TC0 of the holonomic constraint C0. With the
work form ϑ = 0 the constitutive set is the set

S =
{

(q, f) ∈ Q × W∗; ‖q − q0‖ = a, f = a−2〈f, q − q0〉g(q − q0)
}

. (67)

N

Example 3. Let Q = X × D be the configuration space of a skate. The space X is an affine plane
modeled on a vector space W and D is the projective space of directions in X . We use a Euclidean
metric in X represented by a mapping g: W → W∗ to identify the space D with the unit circle

D = {ϕ ∈ W ; 〈g(ϕ), ϕ〉 = 1} . (68)

This is the only use we make of the metric. The tangent bundle TQ is identified with X × W × TD,
where

TD = {(ϕ, δϕ) ∈ D × W ; 〈g(ϕ), δϕ〉 = 0} . (69)

The skate is a system with non holonomic constraints. The set C0 is the entire space Q. The constraint
consists in restricting virtual displacements in X to those parallel to the direction specified by an
element of D. Thus

V =
{

(x, δx, ϕ, δϕ) ∈ X × W × TD; ∃k∈R
δx = kϕ

}
. (70)

The cotangent bundle T∗Q is the product X × W∗ × T∗D. For each ϕ ∈ D the fibre TϕD is a subset
of W . Hence, the cotangent bundle T∗D can be specified as the set of pairs (ϕ, τ), where ϕ ∈ D and
τ is in the quotient space W∗/

T◦ϕD. The set

S =
{

(x, f, ϕ, τ) ∈ T∗Q; 〈f, ξ〉 + 〈τ, δϕ〉 = 0 foreach (x, δx, ϕ, δϕ) ∈ V
}

=
{

(x, f, ϕ, τ) ∈ T∗Q; 〈f, ϕ〉 = 0, τ = 0
} (71)
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is the constitutive set of the system. N

Example 4. Let Q be the Euclidean affine space of Newtonian mechanics. The model space for
Q is a vector space W of dimension 3. The Euclidean structure is represented by a metric tensor
g : W → W∗.

The example gives a formal description of experiments performed by Coulomb in his study of
static friction. Let a material point be constrained to the set

C0 = {q ∈ Q; 〈g(k), q − q0〉>0} , (72)

where q0 is a point in Q and k ∈ W is a unit vector. The boundary

∂C0 = {q ∈ Q; 〈g(k), q − q0〉 = 0} (73)

is a plane passing through q0 and orthogonal to k. In its displacements on the boundary the point
encounters friction proportional to the component of the external force pressing the point against
the boundary. The system is characterized by the virtual work function ϑ = 0 defined on the non
holonomic constraints

V =
{

(q, δq) ∈ TQ; 〈g(k), q − q0〉>0, 〈g(k), δq)〉 ≥ ν
√
‖δq‖2 − 〈g(k), δq)〉2

if 〈g(k), q − q0〉 = 0
}

.
(74)

The principle of virtual work states that (q, f) is in the constitutive set S if and only if the
inequality

〈f, δq〉 6 0 (75)

is satisfied for each (q, δq) ∈ V .
If 〈g(k), q − q0〉 > 0, then a pair (q, f) ∈ T∗Q is in the constitutive set S if and only if f = 0.
We consider pairs (q, f) with 〈g(k), q − q0〉 = 0. If f = −‖f‖k, then (q, f) is in the constitutive

set and ‖f‖2 − 〈f, k〉2 = 0. Let (q, f) be in the constitutive set and let ‖f‖2 − 〈f, k〉2 6= 0. The virtual
displacement (q, δq) with

δq = g−1(f) − 〈f, k〉k + ν
√
‖f‖2 − 〈f, k〉2k (76)

is in V since
〈g(k), δq〉 = ν

√
‖f‖2 − 〈f, k〉2. (77)

From the principle of virtual work and

〈f, δq〉 = ‖f‖2 − 〈f, k〉2 +
√
‖f‖2 − 〈f, k〉2〈f, k〉 (78)

it follows that
‖f‖2 − 〈f, k〉2 +

√
‖f‖2 − 〈f, k〉2〈f, k〉 6 0 (79)

and √
‖f‖2 − 〈f, k〉2〉 + ν〈f, k〉 6 0 (80)

since ‖f‖2 − 〈f, k〉2〉 > 0.
The Schwarz inequality

〈g(u), v〉 − 〈g(k), u〉〈g(k), v〉 6
√
‖u‖2 − 〈g(k), u〉2

√
‖v‖2 − 〈g(k), v〉2 (81)

for the bilinear symmetric form

(u, v) 7→ 〈g(u), v〉 − 〈g(k), u〉〈g(k), v〉 (82)
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applied to the pair (g−1(f), δq) leads to the inequality

〈f, δq〉 − 〈f, δq〉〈g(k), δq〉 6
√
‖f‖2 − 〈f, k〉2

√
‖δq‖2 − 〈g(k), δq〉2. (83)

If 〈g(k), q − q0〉 = 0,
√
‖f‖2 − 〈f, k〉2〉 + ν〈f, k〉 6 0, and 〈g(k), δq)〉 ≥ ν

√
‖δq‖2 − 〈g(k), δq)〉2, then

〈f, δq〉 6 0. Hence, (q, f) is in the constitutive set S.
We have shown that the set

S =
{

(q, f) ∈ T∗Q; 〈g(k), q − q0〉>0, f = 0 if 〈g(k), q − q0〉 > 0

and
√
‖f‖2 − 〈f, k〉2〉 + ν〈f, k〉 6 0 if 〈g(k), q − q0〉 = 0

} (84)

is the constitutive set of the system. N

B. Autonomous dynamic systems with constraints.

16. Motions, processes.
A motion is a differentiable mapping

ξ : [t0, t1] → Q (85)

of a closed time interval [t0, t1] ⊂ R in the configuration space Q. The configuration space is a
differential manifold. The space of motions defined on an interval [t0, t1] will be denoted by Q[t0,t1]. A
process is an oriented arc c in Q[t0,t1] differentiable in the sense that it is the image of a mapping

η : [0, a] → Q[t0,t1] : s 7→ χ(s, · ) (86)

derived from a differentiable mapping

χ : [0, a] × [t0, t1] → Q. (87)

For each s ∈ [0, a] the motion η(s) is the mapping

η(s) : [t0, t1] → Q : t 7→ χ(s, t). (88)

A process does not change the time interval [t0, t1]. For each t ∈ [t0, t1] the mapping

ζ = χ( · , t) : [0, a] → Q : s 7→ χ(s, t) (89)

is an embedding. The mapping η is a parameterization of the process. Different mappings η may be
parameterizations of the same process. A process has an initial motion ξ0 and a terminal motion ξ1

assumed to be distinct. A parameterization η is said to be compatible with the orientation of a process
if ξ0 = η(0). Compatibility will be required. The symbol (c, ξ0) wil be used to denote a process.

Definitions of Section 2 are applied to processes in the space of motions. Motions within a process
are ordered in terms of any compatible parameterization. Subprocesses and unions of processes are
defined.

The space of processes will be denoted by PQ[t0,t1].

17. Admissible processes.
Admissible processes are a subset C[t0,t1] ⊂ PQ[t0,t1]. We say that constraints are present if not

all processes are admissible. Constraints are holonomic if there is submanifold C(0,0) ∈ Q and all
processes within this submanifold are admissible. The following conditions are again satisfied.
(1) A subprocess of an admissible process is admissible.
(2) The union of admissible processes is admissible.
(3) If a process can be approximated with admissible processes, then it is admissible.
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The symbol (cξ|, q0) denotes the subprocess of (c, ξ0) with ξ ∈ c as the terminal configuration. It
is based on the arc

cξ| = {ξ′ ∈ c; ξ′ 6 ξ} . (90)

18. The action.
An autonomous dynamic system is characterized by a function

A[t0,t1] : C[t0,t1] → R (91)

associating with each admissible process (c, ξ0) the action A(c, ξ0) of the process. Since subprocesses of
admissible processes are admissible we can associate with each admissible process (c, ξ0) the function

a(c,ξ0) : c → R : q 7→

{
A(cq|, q0) if ξ 6= ξ0

0 if ξ = ξ0.
(92)

The action will be assumed to satisfy the following conditions.
(1) Action is additive in the sense that if (c, q0) is the union of admissible processes

(c0, ξ0
0), (c1, ξ1

0), . . . , (cn, ξn
0 ) (93)

such that for i = 0, 1, . . . , n− 1 the terminal configuration of (ci, ξi
0) is the initial configuration of

(ci+1, ξi+1
0 ), then

A(c, ξ0) =

n∑

i=0

A(ci, ξi
0). (94)

(2) For each admissible process (c, ξ0) the function a(c,ξ0) is differentiable.

19. Stable local equilibrium motions.
Let C(0,0) ⊂ Q[t0,t1] be the set of initial motions of all admissible processes for an autonomous

dynamic system. A motion ξ0 ∈ C(0,0) is called a stable local equilibrium motion of the system if for
each admissible process (c, ξ0) initiating at ξ0 the function a[t0, t1](c, ξ0) has a local minimum at ξ0.

20. Composition of systems and control.
Systems can be composed if they share the same space of motions. Let two systems be character-

ized by actions A1 : C1 → R and A2 : C2 → R defined on sets C1 and C2 of admissible processes in the
same space of motions Q[t0,t1]. The set C = C1∩C2 is the set of admissible processes of the composed
system and the action is the function A = A1|C + A2|C. Coupling the system to other systems is a
form of control. The function A is used to find the equilibrium motions of the controlled system.

21. Realistic constraints.

21.1. Jets of processes
In order to simplify the discussion we consider each process parameterized by a mapping

η : [0, a] → Q[t0,t1] : s 7→ χ(s, · ) (95)

derived from a differentiable mapping

χ : [0, a] × [t0, t1] → Q. (96)

The mapping χ is in a sense a parameterization of the process. With each (s, t) ∈ [0, a] × [t0, t1] we
associate an element w of the iterated tangent bundle TlTkQ. This vector is the l-tangent vector

w = tlγ(s) (97)

where γ is the mapping
γ : [0, a] → TkQ : s 7→ tkχ(s, · )(t). (98)
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The element w will be denoted by t(l,k)χ(s, t).

21.2. Constraints determined by differential equations.
Let C be the set of admissible processes represented by mappings (96). We introduce sets C(l,k) ⊂

TlTkQ. A jet t(l,k)χ(s, t) is in C(l,k) if χ represents an admissible process. Each set C(l,k) is a differential
equation for mappings (96) representing processes. Let C(l,k) denote the set of processes represented
by solutions of C(l,k). It may happen that C = C(l′,k′) holds for (l′, k′) = (l, k) and not if l′ < l or
k′ < k. In this case, the set C is said to represent constraints of order (l, k).

Constraints encountered in analytical mechanics are of order (1, 1). The differences between
vaconomic mechanics [1] and the d’Alembert principle have to be analysed in terms of the set C(1,1).
See [2] for this analysis applied to autonomous systems with scleronomic constraints in an affine
framework.
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