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Lie algebroids

Definition
E vector bundle of rank nover Q, dimQ = m
7 : E — Q the vector bundle projection
A Lie algebroid structure on E:

[-,-]:T(E) xT(E) — T (E) Lie bracket

p: E — TQ bundle map, the anchor map

(p:T(E) — TQ homomorphism of C>°(Q)-modules)
such that

[X, Y] = fIX, Y] + p(X)(F) Y

for X,YeTl(E)and fe C®(Q)

(E,[,], p) Lie algebroid over Q = p is a homomorphism
between the Lie algebras (I'(E), [, -]) and (X(Q),[-,])
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Lie algebroids

Examples
Q@ o: TQ — Q, Q adifferentiable manifold = (TQ, [, ], Id)
© Areal Lie algebra g of finite dimension = (g, [+, ]4,0)

Q 7: Q— M= Q/G principal bundle with structural group G
- TQ/G is a vector bundle over M = Q/G
TqlG: TQ/G — Q/G the vector bundle projection
N(7TQ/G) ={X € X(Q)| Xis G — invariant}
-179|G: TQ/G — Q/G is a Lie algebroid
X, Y el(TQ/G) = [X,Y] e (TQ/G)
X e I(TQ/G) = X is w-projectable
p:T(TQ/G) — X (M)
Q|G : TQ/G — Q/G the Atiyah Lie algebroid associated with
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Lie algebroids

> (E, [, -], p) Lie algebroid

o the differential of E  df : T(AKE*) — T(AKH1E¥)
k [ A~
(dE,UJ)(XO;...,Xk) = Z(_-l)l ( )(N(XO7--.,)(,',..,,XK))

+ Z Y u(IX, X Xos - Xis o3 X Xi)

i<j

e T(AKE*), Xo, ..., Xk € T(E) (df)2 =0

e X € ['(E), the Lie derivate with respect to X
LE :T(NKE*) — T(AKE¥)

L8 =ixodf + dE-ix
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Lie algebroids

e £E* admits a linear Poisson structure
{-,-}g : C®(E*) x C*(E*) — C>*(E*) R-bilinear map
i) Skew-symmetry: {F,G}g- = —{G, F}g-
ii) The Leibniz rule: {FF',G}g- = F{F',G}g- + F'{F, G}g-
iii) The Jacobi identity:
{F.{G, H}g-}p + {G,{H, F}e}e- + {H,{F,G}e}g- =0
for F,F',G,H € C*°(E*) and, in addition,

P, P’ linear functions on E* = {P, P'}g- linear function on E*
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Lie algebroids

e (x") local coordinates on Q

{e,} local basis of I'(E)
4

(x', y) local coordinates on E
the structure functions of the Lie algebroid CJg, pl, € C®(Q)

o,
[ea. 5] = Cz,gev p(€a) = pIaW

satisfy the structure equations

8pﬁ apa iy
P g oxI oo ox P 1Cag

acy
Z (paa 7t Cg,y>:0
cyclic(c,3,y)
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Lie algebroids

of
a i
where {e*} is the dual basis of {e,}

>feC®Q): dff=—"—/ e

o, |

’
>0 =0, € (E): dEe_(alﬂ 5

~0aC5,)e" N &

>F,Ge C®(E*): (x,y,) local coordinates on E*

- (OF 0G  OF 0G oF 0G
Al - = _ - = 7 . _ =
{F7 G}E* - pa <8XI 8}/& 8ya axl) aﬁy’}/aya 8yﬁ
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Lie algebroids

o (E,[-,-1,p) (E'.T,I'.p') Lie algebroids over Q and @/
F

(F, f) morphism of vector bundles E E’'
1, F

f /

Q Q

¢' € T(NK(E")") = (F,f)*¢' € T(A\"E¥)
((F,H)*¢")x(a1,...,ak) = ¢}(X)(F(a1), ..., F(ak))
xeQ, ay,...,ac € Ey
(F,f)is a Lie algebroid morphism iff
df((F,f)*¢) = (F.0)(d5'¢), ¢ € T(\(E)")
e (F, ) Lie algebroid morphism, f injective immersion and
Fig, : Ex — E;(X) injective

U
(E,[',-]E, pe) is said to be a Lie subalgebroid of (E', [-, ] e, pe’)
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The prolongation of a Lie algebroid over a fibration

(E.[-,-],p) Lie algebroid, 7 : E — Q rankE =n, dmQ=m
7 : P — Qfibration, dimP =nm'

Ep _ E .
TEP=|J Ty PCExTP:
peP
Ty P ={(b,vp) € Ex(p) x ToP| p(b) = (Tpm)(vp)}
where Tw : TP — TQ is the tangent map to =
T TEP - P, 77(b,vp) = 1p(Vp) = p

7p : TP — P being the canonical projection

4

TEP is a vector bundle over P of rank n+ m’ — m with vector
bundle projection 7™ : TEP — P
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The prolongation of a Lie algebroid over a fibration

o X € T(TEP) is said to be projectable if
I X el(E),3 U e X(P) r-projectable to p(X) s.t.

X(p) = (X(r(p)). U(p)), Ype P
X = (X,U)
7™ : TEP — P admits a Lie algebroid structure ([-, -], p™):
[(X1, Ur), (Xz, U2)]™ = ([ X1, Xa], [Us, L))
pﬂ(XM U1) = U

(TEP,[-,]", p7) is called the prolongation of E over r or the
E-tangent bundle to P
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The prolongation of a Lie algebroid over a fibration

PARTICULAR CASE 1: (E, [, -], p) Lie algebroid
7 : E — Q the vector bundle projection

\
the E-tangent bundle to E:

TEE={(e,v) € Ex TE| p(e) = (T7)(v)}
(TEE,[.,-]",p") Lie algebroid over E of rank 2n

e (x") local coordinates on Q and {e,} local basis of ['(E)

()
{X,,V.} local basis of 77 : TFE — E:
Xa(€) = (ea(r(€)) /-l ) Vale) = (0, -2 )
« — « 7paaxi‘e fe — 7aya‘e
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The prolongation of a Lie algebroid over a fibration

[Xa, Xs]™ = Cgﬁ/l’7 [Xa, V5]™ = [Va, Vs]" =0

| 0
T | T - =
pT(Xy) = ' " (Va) ayo

- Two canonical objects on TEE:
e the Euler section A € T(TEE): A =y*V,
e the vertical endomorphism S c T((TEE) ® (TEE)*):
S=X*®V,
{Xx, v} is the dual basis of {X,, V,}

o £cT(TEFE)is said to be a second order differential equation
(SODE) on E if

S(6) = A



The prolongation of a Lie algebroid over a fibration

PARTICULAR CASE 2: (E,[-, ], p) Lie algebroid
7. E* — Q the dual vector bundle projection

\’
the E-tangent bundle to E*:

TEE* = {(e,v) € E x TE*| p(e) = (T7*)(v)}
(TEE*[-,-]7,p7") Lie algebroid over E* of rank 2n

e (x') local coordinates on Q, {e,} local basis of ['(E) and {e"}
dual basis = (x', y,,) local coordinates on E*

()
{Va, Uy} local basis of 77" : TEE* — E*:
Vo(e") = (ealr (€ -l ) (€)= (0, 0 )
COX! |ex W (e~
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The prolongation of a Lie algebroid over a fibration

Hyavyﬁ]r - Cwﬁyv ﬂy&’uﬁ]r* = [[Umuﬂllf* =

P (Va) P (Un) = -

= PLW

- Two canonical objects on 7 E*:

o the Liouville section \g € T((TEE*)*): A\e(€*)(8,v) =<e*, &>
Ae(X, Vo) = YaI°

e the canonical symplectic section Qg € T(A2(TEE*)*):

Qp = —d7F )\

1
Qe = Y AU+ 5C0a0 Y% A Vo

{y, U} the dual basis of {V,,U,}
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Lagrangian Mechanics on Lie algebroids

(E,[',-], p) Lie algebroid, 7: E — Q the bundle projection
(TEE,[.,-]", p") the E-tangent bundle to E
L: E — R a Lagrangian function

e the Cartan 1-section 6, € T((TEE)*): 6, = S*(d”"EL)
oL

= Ty
oy«

o the Cartan 2-section w; € T(NX(TEE)*): w, = —d7 Ep,

®L ,  PL , oL,
, - — +— XONXP
(6x’6ya Ps = axigysle 8yvcaﬁ) "

0,

L 1
= — XAV~
W Byady? N4 t5

e the Lagrangian energy E, € C®(E): E, =L EL—L
o
= oy
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Lagrangian Mechanics on Lie algebroids

e Acurve t — c(t) on E is a solution of the Euler-Lagrange
equations for L if

- cis admissible (i.e., (c(t),¢(t)) € cht)E, for all t)
- i amwe(e(®) — dT EE(c(t) = 0, for all t.

or, locally, if ¢(t) = (x/(t), y*(1))

X'=poy®
dooLy oL . . ;oL
i (5ye) + 5y st~ g =
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Lagrangian Mechanics on Lie algebroids

e [ is said to be regularif w; is a symplectic section
\’
there exists a unique solution I'; verifying
irw, — dT EE =0
\
', is a SODE section

Thus, the integral curves of I'; (that is, the integral curves of the
vector field p7(I';)) are solutions of the Euler-Lagrange
equations for L. ', is called the Euler-Lagrange section
associated with L.
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Lagrangian Mechanics on Lie algebroids

Locally, o2

Lis regular & (W,5) = (W) is regular

The local expression of I'; is

. wal i 0L 2L , oL
Me=y*Xoa+ W ﬁ(ﬂ/’gﬁ - ﬂfy}ﬂW +y767587y1,>va

(Wa5) being the inverse matrix of (W,z)

2

oy«dyP )
the Lagrangian is called singular or degenerate Lagrangian

e If w; is not symplectic (i.e. (W,3) = ( is non regular)
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Constraint algorithm for presymplectic Lie algebroids

(r: E— Q,[],p) Lie algebroid

- Q € I(A\2E*) presymplectic 2-section (dEQ = 0)
- a € T(E*) closed 1-section (dfa = 0)
- the kernel of Q vector subbundle of E

bq : E — E* vector bundle morphism over the identity of Q
ha(e) = i(e)2(x)
Fx a subspace of Ey, with x € Q,
Fi ={e e Ex| Q(x)(e,f) =0,Vf € Fy}
> ba,(Fx) = (F5)°, where bg, = bo g, and (F;")° is the

annihilator of the subspace F-
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Constraint algorithm for presymplectic Lie algebroids

» The dynamics of the presymplectic system defined by (2, «)
is given by a section X € I'(E) satisfying the dynamical
equation

ixQ =«
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Constraint algorithm for presymplectic Lie algebroids

> Qr={xeQ|Jec Ex: i(e)x) =a(x)}
= {x € Q|a(x)(e) =0, Ve € KerQ(x) = E;}
If Q; is an embedded submanifold of Q

I
3X:Qy — Easectionof 7: E— Qalong Qi: ixQ =«

But p(X) is not, in general, tangent to Q4
Thus, we have that to restrict to E; = p~ ' (TQ4)

If E4 is a manifold and 7y = 7jg, : Ey — Q is a vector bundle

U
71 : Ey — Qq is a Lie subalgebroid of 7: E — Q
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Constraint algorithm for presymplectic Lie algebroids

> Qo = {x € Q1| a(x) € ba,((E1)x) = ba,(p " (TxQx))}
={x e Qila(x)(e) =0, Ve (E1)y = (p " (TxQ))*"}
If Qo is an embedded submanifold of Qy

4

X :Q — Ejasectionof r1 : E; — Qq along Qo: ixQ = «
But, p(X) is not, in general, tangent to Q»
Thus, we have that to restrict to E» = p~ ' (TQy)

If E> is a manifold and 2 = 7jg, : E2 — ( is a vector bundle

4

7o : Eo — @ is a Lie subalgeborid of 71 : By — Q4
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Constraint algorithm for presymplectic Lie algebroids

If we repeat the process, we obtain a sequence of Lie

subalgebroids: o Q1 o Qe o Qe = O —Q = Q

TV SO A A
oo =By —mEf —...—E —Ey —Ey=E
where

Qi1 = {x € Qcla(x)(e) =0, Ve € (p(TQx))"}
Exs1=p ' (TQus1)

If 3 k € N: Qx = Q.1 = we say that the sequence stabilizes

g
Q= Qk+1 = Qx Ef = Ek+1 =Ex = ,0_1(TOK)

7t = 7¢ : Ef — Qyis a Lie subalgebroid of 7 : E — Q
\’
IAXel(E): ix2=a
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Constraint algorithm for presymplectic Lie algebroids

Moreover, every arbitrary solution is of the form
X =X+Y, YeTl(E)and Y(x) € kerQ(x), x € Qs
In addition, if we denote by Q; and « the restriction of Q and «,
respectively, to the Lie algebroid E; — Qy, we have that:
- Q is a presymplectic 2-section
-Xe€ F(Ef): ixQ=a = ixQr=as

but in principle, there are solutions of ixQ; = oy which are not
solutions of ixQ2 = o (since ker QN Ef C ker Q)
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Vakonomic Mechanics on Lie algebroids

7 : E — Q Lie algebroid of rank n, dimQ=m

L : E — R Lagrangian function on E

M c E embedded submanifold, the constraint submanifold

™ = Tjm : M — Q surjective submersion, dimM=n+m—m

E*®E Wo = pry '(M) = E* xq M
2
E* E E* M
US| :(pﬁ)\Wo 7T2:(pr2)\Wo

v: Wy = E* xqg M — Q the canonical projection
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Vakonomic Mechanics on Lie algebroids

Ty
TEW, TEE*
(Tm,m) Lie algebroid morphism Vl 0 l TE
T T

Tm = (Id, Tmy) s

Wo

E*

Qo = (T, m)"*QE is a presymplectic section on 7E W,
Qf being the canonical symplectic section on 7EE*

e The Pontryagin Hamiltonian  Hy, : Wo = E* xgM — R
Hw,(e*, &) = (e*,&) — L(8), L= Ly
4

(TEWp, Qp, d7"Wo Huw,) is a presymplectic hamiltonian system J
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Vakonomic Mechanics on Lie algebroids

Definition
The vakonomic problem on Lie algebroids is find the solutions
for the equation

] E
Ixﬂo = dT WOHW0

i.e., to solve the constraint algorithm for (7€ W, Qg, d7" % Hy, )

V.
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Vakonomic Mechanics on Lie algebroids

e (x") local coordinates on an open subset U of Q

{e,} local basis of '(E) on U
Mnr=1(U) = {(xX,y*) e = (U) | dA(X',y*) =0,A=1,....m}
where ¢4 are the local independent constraint functions for the submanifold M

(y*) = (A yd), 1<a<n 1<A<m m+1<a<n

\’
3 open subset V of r—1(U), open subset W C R™"~7 and
smooth real functions WA: W — R, A=1,...,m, st
MNV={(x,y*) e V|yA=VA(xy3), A=1,....m}
\’
(x', y?) are local coordinates on M
4

(X", ¥a, y?) local coordinates for Wy = E* xq M
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Vakonomic Mechanics on Lie algebroids

{Va, U, Va} local basis of I'(7TEW):

0
X1 o )

0 0
=2 ,0)  Va(e", &) =(0,0,—
Voo ) a(e”, é) = (

where (e*, &) € Wy and v(e*, &) = x

Vo(€*,8) = (en(X), Pl

U.(e*,8)=(0

([, -J%, »*) the Lie algebroid structure on 7& Wy:
[[yavyﬂ]]y = C:xyﬁyv

0 0 0

Py(ya) = paﬁ 1Y (ua) = 53 P (Va) = —
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Vakonomic Mechanics on Lie algebroids

{y* U*,va} the dual basis of { Vs, Uy, Va}:
1
Qo = VAU + 5Csy, Y A Vo
Hwy (X', Yo, ¥2) = Yay@ + yaWA(X, y2) — L(x', y?)

e owA oL o aA owA oL
a7 Huy = (Va7 = 5y ey +V Uy Ut Tatynga =5

e

> If we apply the constraint algorithm
Wy = {w € E* xq M| dT"MoHy, (w)(Y) =0, VY € Ker Qo(w)}

Ker Qo = span{V,} = W is locally characterized by
oL WA

Ya=
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Vakonomic Mechanics on Lie algebroids

A solution of the vakonomic problem is of the form

oL ovA
X = yaya—F‘l’AyA‘i'[(W—YA X

)=y Chays WA pys| et TV,

Therefore, the vakonomic equations are

(X' = y2pl+ W),
_ oL owBy k
YA = <% VB oxi )P'A — Y3Cha¥s — VECogys
d [ oL OWA oL VAN s A3
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Vakonomic Mechanics on Lie algebroids

There exist solution sections X of 75 W, along W;, but they
may not be sections of (o)~ (TW;) = TEW,

4

we obtain a sequence of embedded submanifolds
..<—>Wk+1 — Wk‘—>...<—>W2‘—>W~| ‘—>W0:E* XQM

e If the algorithm stabilizes

4

3 a final constraint submanifold W;

IX e [(TEWY): (ixQ = d7 WoHu,)
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Vakonomic Mechanics on Lie algebroids

> We analyze the case W; = W,
Denote  the restriction of Qg to 7€ W,

Theorem

If Q4 is a symplectic 2-section on the Lie algebroid 76 W; — W,
then there exists a unique section &4 of 7E Wy — W, whose
integral curves are solutions of the vakonomic equations for the
system (L, M). In fact, if Hy, is the restriction to W; of the
Pontryagin Hamiltonian Hy, then &; is the Hamiltonian section
of Hw, with respect to the symplectic section Q4, that is,

e,y = dTEW1 Hw,
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Vakonomic Mechanics on Lie algebroids

Definition

The vakonomic system (L, M) on the Lie algebroid 7 : E — Qs
said to be regular if Q4 is a symplectic 2-section of the Lie
algebroid TE Wy, — W;.
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Vakonomic Mechanics on Lie algebroids

Definition
The vakonomic system (L, M) on the Lie algebroid 7 : E — Qs

said to be regular if Q4 is a symplectic 2-section of the Lie
algebroid TE Wy, — W;.

Proposition

Q4 is a symplectic section of the Lie algebroid TE W, if and only
if for any system of coordinates (x', y., y%) on W, we have that

&L 52 WA -
det (aya(‘)yb - yAayaayb> # O, fOI’ a” pOIn’[ In W1 .

Denote .
oL A
= ayaoyb  VAgyagyb’
dy2dy Oy2dy
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Vakonomic Mechanics on Lie algebroids

o If the vakonomic system (L, M) is regular

4
det (Rab) #0

4

(x', ya, y?) are local coordinates on an open subset of W, s.t.
(x', y.) are local coordinates on Wy (y2 = 13(X', v,))
{Va1,Uaq1} is a local basis of (75 W)

If v : Wi — Qs the canonical projection and ([, -]**, p**) is

the Lie algebroid structure on TEW; — W;:

[Yot, Vo]t = Cop¥i
0 0

o ) = 5

v _
p1(ya1)_po¢ aya
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Vakonomic Mechanics on Lie algebroids

{5, U} the dual basis of {V,1,Ua1}:

Q1 = V§ AU+ ZCL0 0 A D
\
610, ¥5) = 12, Y3)Var + VA, 12X y5)) Vi
~ |CEayon(X, y3) + CEAY WA, 12, )

o a1
OXT |l pa(xlys))  OXT (e ys))/ 1

+phy <}’A
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Vakonomic Mechanics on Lie algebroids

e The vakonomic bracket associated with the system (L, M)
{+ Hemy + C(Wh) x C= (W) — C=(Ws)
{F1,Gi}m = (H%,Hg:) = p¥ (H‘é})(ﬁ)

H% being the Hamiltonian section of Fy with respect to Q4

The vakonomic bracket {-, -}, v associated with a regular
vakonomic system is a Poisson bracket on W;. Moreover, if
Fi1 € C>(W;) then the temporal evolution of Fy, Fq, is given by

Fr = {F1, Hw, }Lm)

Q
Note that §; = H,wa1
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Vakonomic Mechanics on Lie algebroids

Locally,

{F1, Gi}m = Pl <

OF1 0Gi  OF19Gi\ .,  OF 0Gy
OX" OYa  OYa OX' aﬂy”aya oys

Corollary

If (L, M) is a regular vakonomic system on a Lie algebroid E
then the restriction (1), : Wy — E* of 7y : Wo — E* to Wj is
a local Poisson isomorphism.

Moreover, if 7 (my)w, : 75 Wy — TEE* is the corresponding
prolongation then the pair (7 (1) w,, (71)w,) is a local
symplectomorphism between the symplectic Lie algebroids
(TE Wj, Q1) and (TEE*, QE)
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Vakonomic Mechanics on Lie algebroids from a variational point of view

7: E — Qalie algebroid and L : E — R a Lagrangian function
[@ E. Martinez, preprint arXiv:math-ph/0603028.
> The set of E-paths:

Adm([f, 1], E) ={a: [to, ] — E|pca= %(Toa)}

e gy, ay € Adm([ty, t1], E) are E-homotopic if there exists a Lie

algebroid morphism
®:T[0,1] x T[to, 4] — E

such that if a(s, t) = ®(0|(s,r)) and b(s, t) = ®(9s|(s,1)), then
a(0,t) = ap(t), a(1,t)=a(t), b(s,lh) =0, b(s,ty) =0

P([to, 1], E) = Adm([ly, t1], E) with the second differentiable
Banach manifold structure induced by the E-homotopy classes
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Vakonomic Mechanics on Lie algebroids from a variational point of view

For a € P([to, t1], E):

Tap([to, t1]./ E) = {’r]c S TaAdm([to, t1], E) | T}(fo) = 0, 7/(1’1) = 0}
e If {€,} is a local basis of ['(E) and n is a time-dependent
section locally given by n = n“e,, then the complete lift of

0
oy

9 - O
c_a b Y i _ B_Y
n°=n paax,+(pgax, n“Cop)y

Fixx,y € Q:

P([to, 1], E)x = {a € P([to, t1], E) | (a(to)) = x, T(a(tr)) = y}

» The action functional S : P([ty, 1], E) — R
t

5S(a)= | L(a(t))dt

)
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Vakonomic Mechanics on Lie algebroids from a variational point of view

e (L, M) vakonomic system on the Lie algebroid 7 : E — Q

4

infinitesimal variations are complete lifts n° tangent to M
| (M locally defined by yA — WA(x!, y@) = 0)

n°(y* = WA y?)) =0

or, equivalently,
dn?  ovA dpfowA L OuA
Tt TP okt T dr aya T Y Gy

P(M)={a:1— M|a(t) = (xX'(1), yA(t)) s.t. X'(t) = phy? (1)}
» The action 6S:P(M)— R
a(t) / L(a(t))dt

_ Céoz yﬁ n®
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Vakonomic Mechanics on Lie algebroids from a variational point of view

We look for the critical points of the action §S:

d
Feo / L(js(t))dt—

X' = y2pl + Vi),

. oL owBy .
Ya= <W — VB X )Pfé\ - yacﬁa}’ﬁ - WBCfBYﬁ

d /oL owA oL owA b3
E(Tﬁ_yAﬁyé’) (8x’ yA@x’) : — Y CapYs — \IJCaAyg

7 A
with y, = 8yL 7 %ya , that is, the vakonomic equations for the

vakonomic system (L, M) on the Lie algebroid 7 : E — Q
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Vakonomic Mechanics on Lie algebroids

Example (The tangent bundle to a manifold)

Q a differentiable manifold
Tq: TQ — Qs a Lie algebroid with the structure ([, |, Id)

(g") local coordinates on Q
{a%'} local basis of 7 : TQ — Q

4
pj=26;j and Cf =0

The classical vakonomic equations
¢t = VA(d. )

. oL owvB
pa = 87(:]'4 - PBTqA
d /oL OWA oL owB
&((Tqa —PAaqa) = g2 PBoge
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Vakonomic Mechanics on Lie algebroids

Example (Lie algebras of finite dimension)

(9,[,-14,0), being g a Lie algebra of dimension n
¢ affine subspace of g modelled over the vector space C
dmC=n—mandey ¢, e #£0
e {e,} ={ea €0, €3} = {€a,ea} basis of g such that
{ea} basis of C and [e,, €3] = C]ze,
(y3,y°, y?) = (y2, y*) coordinates on g
¢ given by the equations: y° =1, y@=0
(Vas Yo, ¥a) = (Va, ya) dual coordinates on g*
L : g — R Lagrangian function
[ : ¢ — R the restriction of L to &

Diana Sosa Vakonomic Mechanics on Lie algebroids



Vakonomic Mechanics on Lie algebroids

Example (Lie algebras of finite dimension)

ot (Ya(1), ¥y (1), y3(t)) = (y3(1),1,0,...,0) acurve in Cis a
solution of the constrained system (L, €) if and only if

dsoly c

E(Tya’) = 8yc(y Cap +Cap) — ya(yPCg, +C)
. oL
Ya= “ay° —(yPCs, + CAO) ya(Y°Chy + Ca)

oL
 Ya(t)) = @(U(t)) +A(1)
A(t) = (0,ya(t)) € C°
Then ~ satisfies the Euler-Poincaré equations

d /oL oL
= ad; (— A)
dt (8y +2) = oy

“Optimization Theorem for Nonholonomic Systems on Lie groups”

W-S. Koon, J.E. Marsden, SIAM J. Control Optim. 35 (1997) 901-929.
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The curveing* ~:t— (—
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Vakonomic Mechanics on Lie algebroids

Example (Atiyah Lie algebroids)

7 : Q — M principal bundle with structural group G
gl : TQ/G — M the associated Atiyah Lie algebroid
4
“The reduced Lagrangian Optimization Theorem for Nonholonomic

Systems”
W-S. Koon, J.E. Marsden, SIAM J. Control Optim. 35 (1997) 901-929.
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