Diana Sosa

dnsosa@ull.es

University of La Laguna

XXIInd International Workshop on Differential Geometric Methods in Theoretical Mechanics Bedlewo, August 2007

D. IGLESIAS, J.C. MARRERO, D. MARTÍN DE DIEGO AND D. SOSA: Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Preprint arXiv:0706.2789

Motivation

- A. Weinstein
 Lagrangian Mechanics and groupoids
 Fields Inst. Comm. 7 (1996), 207-231.
- E. Martínez
 Lagrangian Mechanics on Lie algebroids *Acta Appl. Math.* 67 (2001), 295-320.
- M. de León, J.C. Marrero and E. Martínez Lagrangian submanifolds and dynamics on Lie algebroids *J.Phys.A: Math.Gen.* **38** (2005), 241-308.
- K. Grabowska, P. Urbański, J. Grabowski Geometrical mechanics on algebroids Int. J. Geom. Methods Mod. Phys. 3 (3) (2006), 559-575.
- J. Cortés, M. de León, J.C. Marrero and E. Martínez Nonholonomic Lagrangian systems on Lie algebroids Preprint arXiv:math-ph/0512003 (2005).

Scheme of the talk

- Lie algebroids
- The prolongation of a Lie algebroid over a fibration
- Lagrangian mechanics on Lie algebroids
- Constraint algorithm for presymplectic Lie algebroids
- Vakonomic mechanics on Lie algebroids
 - Vakonomic equations and vakonomic bracket
 - 2 The variational point of view

Definition

E vector bundle of rank n over Q, dimQ = m

 $\tau: E \rightarrow Q$ the vector bundle projection

A Lie algebroid structure on E:

$$\llbracket \cdot, \cdot \rrbracket : \Gamma(E) \times \Gamma(E) \to \Gamma(E)$$
 Lie bracket

 $\rho: E \rightarrow TQ$ bundle map, the *anchor map*

 $(\rho: \Gamma(E) \to TQ$ homomorphism of $C^{\infty}(Q)$ -modules)

such that

$$[X, fY] = f[X, Y] + \rho(X)(f)Y$$

for $X, Y \in \Gamma(E)$ and $f \in C^{\infty}(Q)$

 $(E, \llbracket \cdot, \cdot \rrbracket, \rho)$ Lie algebroid over $Q \Rightarrow \rho$ is a homomorphism between the Lie algebras $(\Gamma(E), \llbracket \cdot, \cdot \rrbracket)$ and $(\mathcal{X}(Q), [\cdot, \cdot])$

Examples

- $\tau_Q: TQ \to Q, \ Q$ a differentiable manifold $\Rightarrow (TQ, [\cdot, \cdot], Id)$
- **2** A real Lie algebra \mathfrak{g} of finite dimension $\Rightarrow (\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, 0)$
- **3** $\pi: Q \rightarrow M = Q/G$ principal bundle with structural group G
 - TQ/G is a vector bundle over M = Q/G $\tau_Q|G:TQ/G \to Q/G$ the vector bundle projection $\Gamma(TQ/G) \equiv \{X \in \mathcal{X}(Q) | X \text{ is } G - \text{invariant}\}$
 - $\tau_Q|G:TQ/G\to Q/G$ is a Lie algebroid $X,Y\in\Gamma(TQ/G)\Rightarrow [X,Y]\in\Gamma(TQ/G)$ $X\in\Gamma(TQ/G)\Rightarrow X$ is π -projectable $\rho:\Gamma(TQ/G)\to\mathcal{X}(M)$

 $au_{ extsf{Q}}| extsf{\textit{G}}: extsf{\textit{TQ}}/ extsf{\textit{G}}
ightarrow extsf{\textit{Q}}/ extsf{\textit{G}}$ the Atiyah Lie algebroid associated with π

 $\triangleright (E, \llbracket \cdot, \cdot \rrbracket, \rho)$ Lie algebroid

• the differential of E $d^E : \Gamma(\wedge^k E^*) \longrightarrow \Gamma(\wedge^{k+1} E^*)$

$$(d^{E}\mu)(X_{0},...,X_{k}) = \sum_{i=0}^{k} (-1)^{i}\rho(X_{i})(\mu(X_{0},...,\widehat{X}_{i},...,X_{k})) + \sum_{i< j} (-1)^{i+j}\mu([X_{i},X_{j}],X_{0},...,\widehat{X}_{i},...,\widehat{X}_{j},...,X_{k})$$

$$\mu \in \Gamma(\wedge^k E^*), X_0, \dots, X_k \in \Gamma(E)$$
 $(d^E)^2 = 0$

• $X \in \Gamma(E)$, the Lie derivate with respect to X

$$\mathcal{L}_X^E : \Gamma(\wedge^k E^*) \longrightarrow \Gamma(\wedge^k E^*)$$
$$\mathcal{L}_X^E = i_X \circ d^E + d^E \circ i_X$$

• E* admits a linear Poisson structure

$$\{\cdot,\cdot\}_{E^*}:C^\infty(E^*) imes C^\infty(E^*) o C^\infty(E^*)$$
 \mathbb{R} -bilinear map

- i) Skew-symmetry: $\{F,G\}_{E^*} = -\{G,F\}_{E^*}$
- ii) The Leibniz rule: $\{FF',G\}_{E^*}=F\{F',G\}_{E^*}+F'\{F,G\}_{E^*}$
- iii) The Jacobi identity:

$$\{F,\{G,H\}_{E^*}\}_{E^*}+\{G,\{H,F\}_{E^*}\}_{E^*}+\{H,\{F,G\}_{E^*}\}_{E^*}=0$$

for $F, F', G, H \in C^{\infty}(E^*)$ and, in addition,

P, P' linear functions on $E^* \Rightarrow \{P, P'\}_{F^*}$ linear function on E^*

• (x^i) local coordinates on Q $\{e_{\alpha}\}$ local basis of $\Gamma(E)$ \downarrow (x^i, y^{α}) local coordinates on E

the structure functions of the Lie algebroid $\ \mathcal{C}_{lphaeta}^{\gamma},\
ho_{lpha}^{i}\in C^{\infty}(Q)$

$$\llbracket \mathbf{e}_{\alpha}, \mathbf{e}_{\beta} \rrbracket = \mathcal{C}_{\alpha\beta}^{\gamma} \mathbf{e}_{\gamma} \qquad \rho(\mathbf{e}_{\alpha}) = \rho_{\alpha}^{i} \frac{\partial}{\partial x^{i}}$$

satisfy the structure equations

$$egin{aligned}
ho_{lpha}^{j} rac{\partial
ho_{eta}^{j}}{\partial x^{j}} -
ho_{eta}^{j} rac{\partial
ho_{lpha}^{i}}{\partial x^{j}} =
ho_{\gamma}^{i} \mathcal{C}_{lphaeta}^{\gamma} \ & \sum_{egin{aligned} \mathcal{C}(lpha,eta,\gamma) \\ \partial x^{i} \end{aligned}} \left(
ho_{lpha}^{i} rac{\partial \mathcal{C}_{eta\gamma}^{
u}}{\partial x^{i}} + \mathcal{C}_{lpha\mu}^{
u} \mathcal{C}_{eta\gamma}^{\mu}
ight) = \mathbf{0} \end{aligned}$$

$$\triangleright f \in C^{\infty}(Q)$$
: $d^{E}f = \frac{\partial f}{\partial x^{i}} \rho_{\alpha}^{i} \mathbf{e}^{\alpha}$

where $\{e^{\alpha}\}$ is the dual basis of $\{e_{\alpha}\}$

$$\rhd \theta = \theta_{\gamma} e^{\gamma} \in \Gamma(E^*): \quad d^{E}\theta = (\frac{\partial \theta_{\gamma}}{\partial x^{i}} \rho^{i}_{\beta} - \frac{1}{2} \theta_{\alpha} C^{\alpha}_{\beta \gamma}) e^{\beta} \wedge e^{\gamma}$$

$$\rhd F, G \in C^{\infty}(E^*)$$
: (x^i, y_{α}) local coordinates on E^*

$$\{F,G\}_{E^*} = \rho_{\alpha}^i \left(\frac{\partial F}{\partial x^i} \frac{\partial G}{\partial y_{\alpha}} - \frac{\partial F}{\partial y_{\alpha}} \frac{\partial G}{\partial x^i} \right) - C_{\alpha\beta}^{\gamma} y_{\gamma} \frac{\partial F}{\partial y_{\alpha}} \frac{\partial G}{\partial y_{\beta}}$$

• $(E, [\![\cdot, \cdot]\!], \rho)$ $(E', [\![\cdot, \cdot]\!]', \rho')$ Lie algebroids over Q and Q'

$$(F, f) \text{ morphism of vector bundles} \qquad E \xrightarrow{F} E'$$

$$\downarrow \tau \downarrow \qquad \qquad \downarrow \tau'$$

$$\phi' \in \Gamma(\wedge^k(E')^*) \Rightarrow (F, f)^* \phi' \in \Gamma(\wedge^k E^*)$$

$$((F, f)^* \phi')_X(a_1, \dots, a_k) = \phi'_{f(X)}(F(a_1), \dots, F(a_k))$$

$$x \in Q, a_1, \dots, a_k \in E_x$$

(F, f) is a Lie algebroid morphism iff

$$d^{E}((F,f)^*\phi') = (F,f)^*(d^{E'}\phi'), \quad \phi' \in \Gamma(\wedge^k(E')^*)$$

• (F, f) Lie algebroid morphism, f injective immersion and $F_{|E_x}: E_x \to E'_{f(x)}$ injective

 $(E, \llbracket \cdot, \cdot \rrbracket_E, \rho_E)$ is said to be a *Lie subalgebroid* of $(E', \llbracket \cdot, \cdot \rrbracket_{E'}, \rho_{E'})$

$$(E, \llbracket \cdot, \cdot
rbracket,
ho)$$
 Lie algebroid, $au: E o Q$ $rank E = n$, $dim Q = m$ $\pi: P o Q$ fibration, $dim P = m'$ $\mathcal{T}^E P = \bigcup_{p \in P} \mathcal{T}^E_p P \subset E \times TP$:
$$\mathcal{T}^E_p P = \{(b, v_p) \in E_{\pi(p)} \times \mathcal{T}_p P \mid \rho(b) = (\mathcal{T}_p \pi)(v_p)\}$$
 where $T\pi: TP o TQ$ is the tangent map to π $\mathcal{T}^\pi: \mathcal{T}^E P o P$, $\mathcal{T}^\pi(b, v_p) = \mathcal{T}_P(v_p) = p$ $\mathcal{T}_P: TP o P$ being the canonical projection

 $\mathcal{T}^E P$ is a vector bundle over P of rank n+m'-m with vector bundle projection $\tau^\pi: \mathcal{T}^E P \to P$

• $\tilde{X} \in \Gamma(T^EP)$ is said to be *projectable* if $\exists X \in \Gamma(E), \exists U \in \mathcal{X}(P) \pi$ -projectable to $\rho(X)$ s.t. $\tilde{X}(p) = (X(\pi(p)), U(p)), \forall p \in P$ $\tilde{X} \equiv (X, U)$ $\tau^{\pi} : T^EP \to P \text{ admits a Lie algebroid structure } (\llbracket \cdot, \cdot \rrbracket^{\pi}, \rho^{\pi}) \colon \llbracket (X_1, U_1), (X_2, U_2) \rrbracket^{\pi} = (\llbracket X_1, X_2 \rrbracket, [U_1, U_2])$ $\rho^{\pi}(X_1, U_1) = U_1$

 $(\mathcal{T}^E P, [\![\cdot,\cdot]\!]^\pi, \rho^\pi)$ is called *the prolongation of E over* π or *the E-tangent bundle to P*

PARTICULAR CASE 1: $(E, \llbracket \cdot, \cdot \rrbracket, \rho)$ Lie algebroid $\tau : E \to Q$ the vector bundle projection \Downarrow

the *E*-tangent bundle to *E*:

$$\mathcal{T}^{E}E = \{(e, v) \in E \times TE \mid \rho(e) = (T\tau)(v)\}$$
$$(\mathcal{T}^{E}E, \llbracket \cdot, \cdot \rrbracket^{\tau}, \rho^{\tau}) \text{ Lie algebroid over } E \text{ of rank } 2n$$

• (x^i) local coordinates on Q and $\{e_\alpha\}$ local basis of $\Gamma(E)$

$$\{\mathcal{X}_{\alpha}, \mathcal{V}_{\alpha}\}$$
 local basis of $\tau^{\tau}: \mathcal{T}^{E}E \to E$:

$$\mathcal{X}_{\alpha}(\mathbf{e}) = (\mathbf{e}_{\alpha}(\tau(\mathbf{e})), {\rho}_{\alpha}^{i} \frac{\partial}{\partial x^{i}}_{|\mathbf{e}}) \qquad \mathcal{V}_{\alpha}(\mathbf{e}) = (0, \frac{\partial}{\partial y^{\alpha}}_{|\mathbf{e}})$$

$$[\![\mathcal{X}_{\alpha}, \mathcal{X}_{\beta}]\!]^{\tau} = \mathcal{C}_{\alpha\beta}^{\gamma} \mathcal{X}_{\gamma} \qquad [\![\mathcal{X}_{\alpha}, \mathcal{V}_{\beta}]\!]^{\tau} = [\![\mathcal{V}_{\alpha}, \mathcal{V}_{\beta}]\!]^{\tau} = \mathbf{0}$$

$$\rho^{\tau}(\mathcal{X}_{\alpha}) = \rho_{\alpha}^{i} \frac{\partial}{\partial x^{i}} \qquad \qquad \rho^{\tau}(\mathcal{V}_{\alpha}) = \frac{\partial}{\partial y^{\alpha}}$$

- Two canonical objects on $T^E E$:
 - the Euler section $\Delta \in \Gamma(\mathcal{T}^E E)$: $\Delta = y^{\alpha} \mathcal{V}_{\alpha}$
 - the vertical endomorphism $S \in \Gamma((T^E E) \otimes (T^E E)^*)$:

$$S = \mathcal{X}^{\alpha} \otimes \mathcal{V}_{\alpha}$$

 $\{\mathcal{X}^{\alpha}, \mathcal{V}^{\alpha}\}$ is the dual basis of $\{\mathcal{X}_{\alpha}, \mathcal{V}_{\alpha}\}$

• $\xi \in \Gamma(\mathcal{T}^E E)$ is said to be a *second order differential equation* (SODE) on E if

$$S(\xi) = \Delta$$

PARTICULAR CASE 2: $(E, [\cdot, \cdot], \rho)$ Lie algebroid

 $au^*: E^* o Q$ the dual vector bundle projection

the *E*-tangent bundle to *E**:

$$\mathcal{T}^{E}E^{*} = \{(e, v) \in E \times TE^{*} \mid \rho(e) = (T\tau^{*})(v)\}$$

 $(\mathcal{T}^{E}E^{*}, \llbracket \cdot, \cdot \rrbracket^{\tau^{*}}, \rho^{\tau^{*}})$ Lie algebroid over E^{*} of rank $2n$

• (x^i) local coordinates on Q, $\{e_\alpha\}$ local basis of $\Gamma(E)$ and $\{e^\alpha\}$ dual basis $\Rightarrow (x^i, y_\alpha)$ local coordinates on E^*

$$\Downarrow$$

 $\{\mathcal{Y}_{\alpha},\mathcal{U}_{\alpha}\}$ local basis of $\tau^{\tau^*}:\mathcal{T}^{\mathsf{E}}\mathsf{E}^*\to\mathsf{E}^*$:

$$\mathcal{Y}_{lpha}(m{e}^*) = (m{e}_{lpha}(au^*(m{e}^*)),
ho_{lpha}^i rac{\partial}{\partial m{x}^i}|_{m{e}^*}) ~~ \mathcal{U}_{lpha}(m{e}^*) = (m{0}, rac{\partial}{\partial m{y}_{lpha}|_{m{e}^*}})$$

- Two canonical objects on $T^E E^*$:
- the Liouville section $\lambda_E \in \Gamma((\mathcal{T}^E E^*)^*)$: $\lambda_E(e^*)(\tilde{e}, v) = \langle e^*, \tilde{e} \rangle$ $\lambda_E(x^i, y_\alpha) = y_\alpha \mathcal{Y}^\alpha$
- the canonical symplectic section $\Omega_E \in \Gamma(\wedge^2(\mathcal{T}^E E^*)^*)$:

$$egin{aligned} \Omega_{ extbf{\textit{E}}} &= - extbf{\textit{d}}^{\mathcal{T}^{ extbf{\textit{E}}} *} \lambda_{ extbf{\textit{E}}} \ \Omega_{ extbf{\textit{E}}} &= \mathcal{Y}^{lpha} \wedge \mathcal{U}^{lpha} + rac{1}{2} \mathcal{C}_{lphaeta}^{\gamma} extbf{\textit{y}}_{\gamma} \mathcal{Y}^{lpha} \wedge \mathcal{Y}^{eta} \end{aligned}$$

 $\{\mathcal{Y}^{lpha},\mathcal{U}^{lpha}\}$ the dual basis of $\{\mathcal{Y}_{lpha},\mathcal{U}_{lpha}\}$

 $(E, \llbracket \cdot, \cdot
rbracket,
ho)$ Lie algebroid, $\tau : E \to Q$ the bundle projection $(\mathcal{T}^E E, \llbracket \cdot, \cdot
rbracket^{\tau},
ho^{\tau})$ the E-tangent bundle to E $L : E \to \mathbb{R}$ a Lagrangian function

- the Cartan 1-section $\theta_L \in \Gamma((\mathcal{T}^E E)^*)$: $\theta_L = S^*(d^{\mathcal{T}^E E} L)$ $\theta_L = \frac{\partial L}{\partial y^{\alpha}} \mathcal{X}^{\alpha}$
- the Cartan 2-section $\omega_L \in \Gamma(\wedge^2(T^E E)^*)$: $\omega_L = -d^{T^E E} \theta_L$

$$\omega_{L} = \frac{\partial^{2} L}{\partial y^{\alpha} \partial y^{\beta}} \mathcal{X}^{\alpha} \wedge \mathcal{V}^{\beta} + \frac{1}{2} \left(\frac{\partial^{2} L}{\partial x^{i} \partial y^{\alpha}} \rho_{\beta}^{i} - \frac{\partial^{2} L}{\partial x^{i} \partial y^{\beta}} \rho_{\alpha}^{i} + \frac{\partial L}{\partial y^{\gamma}} \mathcal{C}_{\alpha\beta}^{\gamma} \right) \mathcal{X}^{\alpha} \wedge \mathcal{X}^{\beta}$$

• the Lagrangian energy $E_L \in C^{\infty}(E)$: $E_L = \mathcal{L}_{\Delta}^{\mathcal{T}^E} L - L$ $E_L = \frac{\partial L}{\partial v^{\alpha}} y^{\alpha} - L$

- A curve $t \rightarrow c(t)$ on E is a solution of the *Euler-Lagrange* equations for L if
 - c is admissible (i.e., $(c(t), \dot{c}(t)) \in \mathcal{T}^{E}_{c(t)} E$, for all t)
 - $i_{(c(t),\dot{c}(t))}\omega_L(c(t)) d^{T^EE}E_L(c(t)) = 0$, for all t.

or, locally, if
$$c(t) = (x^i(t), y^{\alpha}(t))$$

$$\begin{cases} \dot{x}^i = \rho^i_{\alpha} y^{\alpha} \\ \frac{d}{dt} \left(\frac{\partial L}{\partial y^{\alpha}} \right) + \frac{\partial L}{\partial y^{\gamma}} \mathcal{C}^{\gamma}_{\alpha\beta} y^{\beta} - \rho^i_{\alpha} \frac{\partial L}{\partial x^i} = 0 \end{cases}$$

• L is said to be regular if ω_L is a symplectic section

there exists a unique solution Γ_L verifying

$$i_{\Gamma_L}\omega_L - d^{\mathcal{T}^E}E_L = 0$$
 \downarrow

 Γ_L is a SODE section

Thus, the integral curves of Γ_L (that is, the integral curves of the vector field $\rho^{\tau}(\Gamma_L)$) are solutions of the Euler-Lagrange equations for L. Γ_L is called the *Euler-Lagrange section* associated with L.

Locally,

$$L$$
 is regular \Leftrightarrow $(W_{\alpha\beta}) = \left(\frac{\partial^2 L}{\partial y^{\alpha} \partial y^{\beta}}\right)$ is regular

The local expression of Γ_L is

$$\Gamma_{L} = y^{\alpha} \mathcal{X}_{\alpha} + W^{\alpha\beta} \Big(\rho_{\beta}^{i} \frac{\partial L}{\partial x^{i}} - \rho_{\gamma}^{i} y^{\gamma} \frac{\partial^{2} L}{\partial x^{i} \partial y^{\beta}} + y^{\gamma} \mathcal{C}_{\gamma\beta}^{\nu} \frac{\partial L}{\partial y^{\nu}} \Big) \mathcal{V}_{\alpha}$$

$$(W^{\alpha\beta}) \text{ being the inverse matrix of } (W_{\alpha\beta})$$

• If ω_L is not symplectic (i.e. $(W_{\alpha\beta}) = \left(\frac{\partial^2 L}{\partial y^\alpha \partial y^\beta}\right)$ is non regular) the Lagrangian is called *singular* or *degenerate Lagrangian*

$$(\tau: E \to Q, \llbracket \cdot, \cdot \rrbracket, \rho)$$
 Lie algebroid

Assume that:

- $\Omega \in \Gamma(\wedge^2 E^*)$ presymplectic 2-section $(d^E \Omega = 0)$
- $\alpha \in \Gamma(E^*)$ closed 1-section $(d^E\alpha = 0)$
- the kernel of Ω vector subbundle of E

 $b_{\Omega}: E \to E^*$ vector bundle morphism over the identity of Q $b_{\Omega}(e) = i(e)\Omega(x)$

 F_x a subspace of E_x , with $x \in Q$,

$$F_x^{\perp} = \{ e \in E_x \mid \Omega(x)(e, f) = 0, \forall f \in F_x \}$$

 $ho \ \ \flat_{\Omega_X}(F_X) = (F_X^\perp)^\circ$, where $\flat_{\Omega_X} = \flat_{\Omega|E_X}$ and $(F_X^\perp)^\circ$ is the annihilator of the subspace F_X^\perp

▶ The dynamics of the presymplectic system defined by (Ω, α) is given by a section $X \in \Gamma(E)$ satisfying the dynamical equation

$$i_X\Omega = \alpha$$

$$\triangleright Q_1 = \{x \in Q \mid \exists e \in E_x : i(e)\Omega(x) = \alpha(x)\}$$
$$= \{x \in Q \mid \alpha(x)(e) = 0, \forall e \in Ker\Omega(x) = E_x^{\perp}\}$$

If Q_1 is an embedded submanifold of Q

 $\exists X : Q_1 \to E$ a section of $\tau : E \to Q$ along $Q_1 : i_X \Omega = \alpha$

But $\rho(X)$ is not, in general, tangent to Q_1

Thus, we have that to restrict to $E_1 = \rho^{-1}(TQ_1)$

If E_1 is a manifold and $au_1 = au_{|E_1} : E_1 o Q_1$ is a vector bundle

 $\tau_1: E_1 \to Q_1$ is a Lie subalgebroid of $\tau: E \to Q$

$$\triangleright Q_2 = \{ x \in Q_1 \mid \alpha(x) \in \flat_{\Omega_x}((E_1)_x) = \flat_{\Omega_x}(\rho^{-1}(T_xQ_1)) \}$$

= \{ x \in Q_1 \cong \alpha(x)(e) = 0, \forall e \in (E_1)_x^\perp = (\rho^{-1}(T_xQ_1))^\perp \}

If Q_2 is an embedded submanifold of Q_1

 $\exists X: Q_2 \to E_1 \text{ a section of } \tau_1: E_1 \to Q_1 \text{ along } Q_2: i_X \Omega = \alpha$

But, $\rho(X)$ is not, in general, tangent to Q_2

Thus, we have that to restrict to $E_2 = \rho^{-1}(TQ_2)$

If E_2 is a manifold and $\tau_2 = \tau_{|E_2} : E_2 \to Q_2$ is a vector bundle

 \Downarrow

 $au_2: E_2 o Q_2$ is a Lie subalgeborid of $au_1: E_1 o Q_1$

If we repeat the process, we obtain a sequence of Lie subalgebroids:

where

$$Q_{k+1} = \{ x \in Q_k \, | \, \alpha(x)(e) = 0, \, \forall e \in (\rho^{-1}(T_x Q_k))^{\perp} \}$$

$$E_{k+1} = \rho^{-1}(TQ_{k+1})$$

Moreover, every arbitrary solution is of the form

$$X' = X + Y$$
, $Y \in \Gamma(E_f)$ and $Y(x) \in \ker \Omega(x)$, $x \in Q_f$

In addition, if we denote by Ω_f and α_f the restriction of Ω and α , respectively, to the Lie algebroid $E_f \longrightarrow Q_f$, we have that:

- Ω_f is a presymplectic 2-section

$$-X \in \Gamma(E_f)$$
: $i_X\Omega = \alpha \Rightarrow i_X\Omega_f = \alpha_f$

but in principle, there are solutions of $i_X\Omega_f = \alpha_f$ which are not solutions of $i_X\Omega = \alpha$ (since $\ker \Omega \cap E_f \subset \ker \Omega_f$)

 $\tau: E \to Q$ Lie algebroid of rank n, $\dim Q = m$

 $L: E \to \mathbb{R}$ Lagrangian function on E

 $M \subset E$ embedded submanifold, the constraint submanifold

 $au_{\it M} = au_{\it |M}: \it M
ightarrow \it Q$ surjective submersion, $\it dim\,\it M = \it n + \it m - \bar{\it m}$

 $\nu: W_0 = E^* \times_Q M \to Q$ the canonical projection

$$(\mathcal{T}\pi_1,\pi_1)$$
 Lie algebroid morphism $\mathcal{T}\pi_1=(\emph{Id},T\pi_1)$

$$\begin{array}{ccc}
\mathcal{T}^{E}W_{0} & \xrightarrow{\mathcal{T}\pi_{1}} & \mathcal{T}^{E}E^{*} \\
\tau^{\nu} \downarrow & & \downarrow \tau^{\tau^{*}} \\
W_{0} & \xrightarrow{\pi_{1}} & E^{*}
\end{array}$$

 $\Omega_0 = (\mathcal{T}\pi_1, \pi_1)^*\Omega_E$ is a presymplectic section on $\mathcal{T}^E W_0$ Ω_E being the canonical symplectic section on $\mathcal{T}^E E^*$

ullet The Pontryagin Hamiltonian $H_{W_0}:W_0=E^* imes_QM o\mathbb{R}$ $H_{W_0}(e^*,\check{e})=\langle e^*,\check{e}
angle- ilde{L}(\check{e}),\ \ ilde{L}=L_{|M|}$

 $(\mathcal{T}^E W_0, \Omega_0, d^{\mathcal{T}^E W_0} H_{W_0})$ is a presymplectic hamiltonian system

Definition

The *vakonomic problem on Lie algebroids* is find the solutions for the equation

$$i_X\Omega_0=d^{T^EW_0}H_{W_0}$$

i.e., to solve the constraint algorithm for $(\mathcal{T}^E W_0, \Omega_0, d^{\mathcal{T}^E W_0} H_{W_0})$

(xⁱ) local coordinates on an open subset U of Q
 {e_α} local basis of Γ(E) on U

$$M \cap \tau^{-1}(U) \equiv \{(x^i, y^{\alpha}) \in \tau^{-1}(U) \mid \Phi^A(x^i, y^{\alpha}) = 0, A = 1, \dots, \bar{m}\}$$

where Φ^A are the local independent constraint functions for the submanifold M

$$(y^{\alpha}) = (y^{A}, y^{a}), \quad 1 \leqslant \alpha \leqslant n, \quad 1 \leqslant A \leqslant \overline{m}, \quad \overline{m} + 1 \leqslant a \leqslant n$$

 \exists open subset \widetilde{V} of $\tau^{-1}(U)$, open subset $W \subseteq \mathbb{R}^{m+n-\bar{m}}$ and smooth real functions $\Psi^A: W \to \mathbb{R}, \ A = 1, \dots, \bar{m}$, s.t

$$M \cap \widetilde{V} \equiv \{(x^i, y^\alpha) \in \widetilde{V} \mid y^A = \Psi^A(x^i, y^a), A = 1, \dots, \overline{m}\}$$

 (x^i, y^a) are local coordinates on M

$$(x^i, y_\alpha, y^a)$$
 local coordinates for $W_0 = E^* \times_Q M$

 $\{\mathcal{Y}_{\alpha},\mathcal{U}_{\alpha},\mathcal{V}_{a}\}$ local basis of $\Gamma(\mathcal{T}^{E}W_{0})$:

$$\begin{split} \mathcal{Y}_{\alpha}(\boldsymbol{e}^{*},\check{\boldsymbol{e}}) &= (\boldsymbol{e}_{\alpha}(\boldsymbol{x}),\rho_{\alpha}^{i}\frac{\partial}{\partial\boldsymbol{x^{i}}_{\mid\boldsymbol{e}^{*}}},0)\\ \mathcal{U}_{\alpha}(\boldsymbol{e}^{*},\check{\boldsymbol{e}}) &= (0,\frac{\partial}{\partial\boldsymbol{y_{\alpha}}_{\mid\boldsymbol{e}^{*}}},0) \qquad \mathcal{V}_{\boldsymbol{a}}(\boldsymbol{e}^{*},\check{\boldsymbol{e}}) = (0,0,\frac{\partial}{\partial\boldsymbol{y^{a}}_{\mid\boldsymbol{e}}}) \end{split}$$

where $(e^*, \check{e}) \in W_0$ and $\nu(e^*, \check{e}) = x$

 $(\llbracket \cdot, \cdot \rrbracket^{\nu}, \rho^{\nu})$ the Lie algebroid structure on $\mathcal{T}^{E} W_{0}$:

$$\begin{split} \{\mathcal{Y}^{\alpha},\mathcal{U}^{\alpha},\mathcal{V}^{a}\} \text{ the dual basis of } \{\mathcal{Y}_{\alpha},\mathcal{U}_{\alpha},\mathcal{V}_{a}\} \colon \\ \Omega_{0} &= \mathcal{Y}^{\alpha} \wedge \mathcal{U}^{\alpha} + \frac{1}{2}\mathcal{C}_{\alpha\beta}^{\gamma}y_{\gamma}\mathcal{Y}^{\alpha} \wedge \mathcal{Y}^{\beta} \\ H_{W_{0}}(x^{i},y_{\alpha},y^{a}) &= y_{a}y^{a} + y_{A}\Psi^{A}(x^{i},y^{a}) - \tilde{L}(x^{i},y^{a}) \\ d^{\mathcal{T}^{E}W_{0}}H_{W_{0}} &= (y_{A}\frac{\partial\Psi^{A}}{\partial x^{i}} - \frac{\partial\tilde{L}}{\partial x^{i}})\rho_{\alpha}^{i}\mathcal{Y}^{\alpha} + \Psi^{A}\mathcal{U}^{A} + y^{a}\mathcal{U}^{a} + (y_{a} + y_{A}\frac{\partial\Psi^{A}}{\partial v^{a}} - \frac{\partial\tilde{L}}{\partial v^{a}})\mathcal{V}^{a} \end{split}$$

$$egin{aligned} W_1 &= \{ w \in E^* imes_Q M \, | \, d^{\mathcal{T}^EW_0} H_{W_0}(w)(Y) = 0, \ orall Y \in \textit{Ker} \, \Omega_0(w) \} \end{aligned}$$
 $egin{aligned} \textit{Ker} \, \Omega_0 &= \textit{span} \{ \mathcal{V}_a \} \Rightarrow W_1 \ \text{is locally characterized by} \end{aligned}$ $y_a &= rac{\partial ilde{L}}{\partial v^a} - y_A rac{\partial \Psi^A}{\partial v^a}, \quad ar{m} + 1 \leq a \leq n \end{aligned}$

A solution of the vakonomic problem is of the form

$$X = y^{a} \mathcal{Y}_{a} + \Psi^{A} \mathcal{Y}_{A} + \left[\left(\frac{\partial \tilde{L}}{\partial x^{i}} - y_{A} \frac{\partial \Psi^{A}}{\partial x^{i}} \right) \rho_{\alpha}^{i} - y^{a} \mathcal{C}_{\alpha a}^{\beta} y_{\beta} - \Psi^{A} \mathcal{C}_{\alpha A}^{\beta} y_{\beta} \right] \mathcal{U}_{\alpha} + \Upsilon^{a} \mathcal{V}_{a}$$

Therefore, the vakonomic equations are

$$\begin{cases} \dot{x}^{i} = y^{a} \rho_{a}^{i} + \Psi^{A} \rho_{A}^{i} \\ \dot{y}_{A} = \left(\frac{\partial \tilde{L}}{\partial x^{i}} - y_{B} \frac{\partial \Psi^{B}}{\partial x^{i}}\right) \rho_{A}^{i} - y^{a} C_{Aa}^{\beta} y_{\beta} - \Psi^{B} C_{AB}^{\beta} y_{\beta} \\ \frac{d}{dt} \left(\frac{\partial \tilde{L}}{\partial y^{a}} - y_{A} \frac{\partial \Psi^{A}}{\partial y^{a}}\right) = \left(\frac{\partial \tilde{L}}{\partial x^{i}} - y_{A} \frac{\partial \Psi^{A}}{\partial x^{i}}\right) \rho_{a}^{i} - y^{b} C_{ab}^{\beta} y_{\beta} - \Psi^{A} C_{aA}^{\beta} y_{\beta} \end{cases}$$

There exist solution sections X of $\mathcal{T}^E W_0$ along W_1 , but they may not be sections of $(\rho^{\nu})^{-1}(TW_1) = \mathcal{T}^E W_1$

we obtain a sequence of embedded submanifolds

$$\ldots \hookrightarrow \textit{W}_{k+1} \hookrightarrow \textit{W}_{k} \hookrightarrow \ldots \hookrightarrow \textit{W}_{2} \hookrightarrow \textit{W}_{1} \hookrightarrow \textit{W}_{0} = \textit{E}^{*} \times_{\textit{Q}} \textit{M}$$

If the algorithm stabilizes

 \exists a final constraint submanifold W_f

$$\exists X \in \Gamma(\mathcal{T}^E W_f)$$
: $(i_X \Omega_0 = d^{\mathcal{T}^E W_0} H_{W_0})_{|W_f}$

 \triangleright We analyze the case $W_f = W_1$ Denote Ω_1 the restriction of Ω_0 to $\mathcal{T}^E W_1$

Theorem

If Ω_1 is a symplectic 2-section on the Lie algebroid $\mathcal{T}^EW_1 \to W_1$ then there exists a unique section ξ_1 of $\mathcal{T}^EW_1 \to W_1$ whose integral curves are solutions of the vakonomic equations for the system (L,M). In fact, if H_{W_1} is the restriction to W_1 of the Pontryagin Hamiltonian H_{W_0} then ξ_1 is the Hamiltonian section of H_{W_1} with respect to the symplectic section Ω_1 , that is,

$$i_{\xi_1}\Omega_1=d^{T^EW_1}H_{W_1}$$

Definition

The vakonomic system (L, M) on the Lie algebroid $\tau : E \to Q$ is said to be *regular* if Ω_1 is a symplectic 2-section of the Lie algebroid $\mathcal{T}^EW_1 \to W_1$.

Proposition

 Ω_1 is a symplectic section of the Lie algebroid \mathcal{T}^EW_1 if and only if for any system of coordinates (x^i,y_lpha,y^a) on W_0 we have that

$$\det\left(\frac{\partial^2 \tilde{L}}{\partial y^a \partial y^b} - y_A \frac{\partial^2 \Psi^A}{\partial y^a \partial y^b}\right) \neq 0, \text{ for all point in } W_1.$$

Denote

$$\mathcal{R}_{ab} = rac{\partial \tilde{L}}{\partial v^a \partial v^b} - y_A rac{\partial^2 \psi^A}{\partial v^a \partial v^b}, \quad ext{for all } a ext{ and } b$$

Definition

The vakonomic system (L, M) on the Lie algebroid $\tau : E \to Q$ is said to be *regular* if Ω_1 is a symplectic 2-section of the Lie algebroid $\mathcal{T}^E W_1 \to W_1$.

Proposition

 Ω_1 is a symplectic section of the Lie algebroid \mathcal{T}^EW_1 if and only if for any system of coordinates (x^i,y_α,y^a) on W_0 we have that

$$\det\left(\frac{\partial^2 \tilde{L}}{\partial y^a \partial y^b} - y_A \frac{\partial^2 \Psi^A}{\partial y^a \partial y^b}\right) \neq 0, \text{ for all point in } W_1.$$

Denote

$$\mathcal{R}_{ab} = \frac{\partial \tilde{L}}{\partial v^a \partial v^b} - y_A \frac{\partial^2 \Psi^A}{\partial v^a \partial v^b}, \quad \text{for all } a \text{ and } b$$

• If the vakonomic system (L, M) is regular

$$\det \left(\mathcal{R}_{ab}\right) \neq 0$$

 (x^i,y_α,y^a) are local coordinates on an open subset of W_0 s.t. (x^i,y_α) are local coordinates on W_1 $(y^a=\mu^a(x^i,y_\alpha))$ $\{\mathcal{Y}_{\alpha 1},\mathcal{U}_{\alpha 1}\}$ is a local basis of $\Gamma(\mathcal{T}^EW_1)$

If $\nu_1:W_1\to Q$ is the canonical projection and $(\llbracket\cdot,\cdot\rrbracket^{\nu_1},\rho^{\nu_1})$ is the Lie algebroid structure on $\mathcal{T}^EW_1\to W_1$:

$$\begin{split} \llbracket \mathcal{Y}_{\alpha 1}, \mathcal{Y}_{\beta 1} \rrbracket^{\nu_{1}} &= \mathcal{C}_{\alpha \beta}^{\gamma} \mathcal{Y}_{\gamma 1} \\ \rho^{\nu_{1}}(\mathcal{Y}_{\alpha 1}) &= \rho_{\alpha}^{i} \frac{\partial}{\partial x^{i}} \qquad \rho^{\nu_{1}}(\mathcal{U}_{\alpha 1}) = \frac{\partial}{\partial y_{\alpha}} \end{split}$$

 $\{\mathcal{Y}_1^{\alpha},\mathcal{U}_1^{\alpha}\}$ the dual basis of $\{\mathcal{Y}_{\alpha 1},\mathcal{U}_{\alpha 1}\}$:

$$\begin{split} \Omega_{1} &= \mathcal{Y}_{1}^{\alpha} \wedge \mathcal{U}_{1}^{\alpha} + \frac{1}{2} \mathcal{C}_{\alpha\beta}^{\gamma} y_{\gamma} \mathcal{Y}_{1}^{\alpha} \wedge \mathcal{Y}_{1}^{\beta} \\ & \downarrow \\ \xi_{1}(x^{j}, y_{\beta}) &= \mu^{a}(x^{j}, y_{\beta}) \mathcal{Y}_{a1} + \Psi^{A}(x^{j}, \mu^{a}(x^{j}, y_{\beta})) \mathcal{Y}_{A1} \\ &- \Big[\mathcal{C}_{\alpha a}^{b} y_{b} \mu^{a}(x^{j}, y_{\beta}) + \mathcal{C}_{\alpha A}^{b} y_{b} \Psi^{A}(x^{j}, \mu^{a}(x^{j}, y_{\beta})) \\ &+ \rho_{\alpha}^{i} \Big(y_{A} \frac{\partial \Psi^{A}}{\partial x^{i}}_{|(x^{j}, \mu^{a}(x^{j}, y_{\beta}))} - \frac{\partial \tilde{L}}{\partial x^{i}}_{|(x^{j}, \mu^{a}(x^{j}, y_{\beta}))} \Big) \Big] \mathcal{U}_{\alpha 1} \end{split}$$

The vakonomic bracket associated with the system (L, M)

$$\{\cdot,\cdot\}_{(L,M)}: C^{\infty}(W_1) \times C^{\infty}(W_1) \to C^{\infty}(W_1)$$

 $\{F_1, G_1\}_{(L,M)} = \Omega_1(\mathcal{H}_{F_1}^{\Omega_1}, \mathcal{H}_{G_1}^{\Omega_1}) = \rho^{\nu_1}(\mathcal{H}_{G_1}^{\Omega_1})(F_1)$

 $\mathcal{H}_{F_1}^{\Omega_1}$ being the Hamiltonian section of F_1 with respect to Ω_1

Theorem

The vakonomic bracket $\{\cdot,\cdot\}_{(L,M)}$ associated with a regular vakonomic system is a Poisson bracket on W_1 . Moreover, if $F_1 \in C^\infty(W_1)$ then the temporal evolution of F_1 , \dot{F}_1 , is given by

$$\dot{F}_1 = \{F_1, H_{W_1}\}_{(L,M)}$$

Note that
$$\xi_1 = \mathcal{H}^{\Omega_1}_{H_{W_1}}$$

Locally,

$$\{F_1, G_1\}_{(L,M)} = \rho_{\alpha}^i \left(\frac{\partial F_1}{\partial x^i} \frac{\partial G_1}{\partial y_{\alpha}} - \frac{\partial F_1}{\partial y_{\alpha}} \frac{\partial G_1}{\partial x^i} \right) - C_{\alpha\beta}^{\gamma} y_{\gamma} \frac{\partial F_1}{\partial y_{\alpha}} \frac{\partial G_1}{\partial y_{\beta}}$$

Corollary

If (L,M) is a regular vakonomic system on a Lie algebroid E then the restriction $(\pi_1)_{|W_1}:W_1\to E^*$ of $\pi_1:W_0\to E^*$ to W_1 is a local Poisson isomorphism.

Moreover, if $\mathcal{T}(\pi_1)_{|W_1}: \mathcal{T}^EW_1 \to \mathcal{T}^EE^*$ is the corresponding prolongation then the pair $(\mathcal{T}(\pi_1)_{|W_1}, (\pi_1)_{|W_1})$ is a local symplectomorphism between the symplectic Lie algebroids $(\mathcal{T}^EW_1, \Omega_1)$ and $(\mathcal{T}^EE^*, \Omega_E)$.

Vakonomic Mechanics on Lie algebroids from a variational point of view

 $\tau: E \to Q$ a Lie algebroid and $L: E \to \mathbb{R}$ a Lagrangian function

E. Martínez, preprint arXiv:math-ph/0603028.

$$Adm([t_0, t_1], E) = \{a : [t_0, t_1] \to E \mid \rho \circ a = \frac{d}{dt}(\tau \circ a)\}$$

• a_0 , $a_1 \in Adm([t_0, t_1], E)$ are E-homotopic if there exists a Lie algebroid morphism

$$\Phi: T[0,1] \times T[t_0,t_1] \rightarrow E$$

such that if $a(s,t) = \Phi(\partial_t|_{(s,t)})$ and $b(s,t) = \Phi(\partial_s|_{(s,t)})$, then

$$a(0,t) = a_0(t), \ a(1,t) = a_1(t), \ b(s,t_0) = 0, \ b(s,t_1) = 0$$

 $\mathcal{P}([t_0, t_1], E) \equiv \mathcal{A}dm([t_0, t_1], E)$ with the second differentiable Banach manifold structure induced by the *E*-homotopy classes

For $a \in \mathcal{P}([t_0, t_1], E)$:

$$T_a \mathcal{P}([t_0, t_1], E) = \{ \eta^c \in T_a \mathcal{A} dm([t_0, t_1], E) \, | \, \eta(t_0) = 0, \, \, \eta(t_1) = 0 \}$$

• If $\{e_{\alpha}\}$ is a local basis of $\Gamma(E)$ and η is a time-dependent section locally given by $\eta = \eta^{\alpha}e_{\alpha}$, then the complete lift of η

$$\eta^{c} = \eta^{\alpha} \rho_{\alpha}^{i} \frac{\partial}{\partial x^{i}} + (\rho_{\beta}^{i} \frac{\partial \eta^{\gamma}}{\partial x^{i}} - \eta^{\alpha} C_{\alpha\beta}^{\gamma}) y^{\beta} \frac{\partial}{\partial y^{\gamma}}$$

Fix $x, y \in Q$:

$$\mathcal{P}([t_0,t_1],E)_x^y = \{a \in \mathcal{P}([t_0,t_1],E) \mid \tau(a(t_0)) = x, \ \tau(a(t_1)) = y\}$$

▶ The action functional $\delta S : \mathcal{P}([t_0, t_1], E) \rightarrow \mathbb{R}$

$$\delta S(a) = \int_{t_0}^{t_1} L(a(t)) dt$$

Vakonomic Mechanics on Lie algebroids from a variational point of view

• (L, M) vakonomic system on the Lie algebroid $\tau : E \rightarrow Q$

infinitesimal variations are complete lifts η^c tangent to M

$$\Downarrow$$
 (*M* locally defined by $y^A - \Psi^A(x^i, y^a) = 0$)

$$\eta^c(y^A - \Psi^A(x^i, y^a)) = 0$$

or, equivalently,

$$\frac{d\eta^{A}}{dt} = \rho_{\alpha}^{i} \eta^{\alpha} \frac{\partial \Psi^{A}}{\partial x^{i}} + \frac{d\eta^{a}}{dt} \frac{\partial \Psi^{A}}{\partial y^{a}} + C_{\beta\alpha}^{a} y^{\beta} \eta^{\alpha} \frac{\partial \Psi^{A}}{\partial y^{a}} - C_{\beta\alpha}^{A} y^{\beta} \eta^{\alpha}$$

$$\mathcal{P}(M) = \{ a : I \to M \mid a(t) = (x^{i}(t), y^{A}(t)) \text{ s.t. } \dot{x}^{i}(t) = \rho_{A}^{i} y^{A}(t) \}$$

▶ The action $\delta S : \mathcal{P}(M) \to \mathbb{R}$

$$a(t) \mapsto \int L(a(t))dt$$

We look for the critical points of the action δS :

$$\frac{d}{ds}_{|s=0}\int L(a_s(t))dt=0$$

$$\downarrow$$

$$\begin{cases} \dot{x}^{i} = y^{a} \rho_{a}^{i} + \Psi^{A} \rho_{A}^{i} \\ \dot{y}_{A} = \left(\frac{\partial \tilde{L}}{\partial x^{i}} - y_{B} \frac{\partial \Psi^{B}}{\partial x^{i}}\right) \rho_{A}^{i} - y^{a} \mathcal{C}_{Aa}^{\beta} y_{\beta} - \Psi^{B} \mathcal{C}_{AB}^{\beta} y_{\beta} \\ \frac{d}{dt} \left(\frac{\partial \tilde{L}}{\partial y^{a}} - y_{A} \frac{\partial \Psi^{A}}{\partial y^{a}}\right) = \left(\frac{\partial \tilde{L}}{\partial x^{i}} - y_{A} \frac{\partial \Psi^{A}}{\partial x^{i}}\right) \rho_{a}^{i} - y^{b} \mathcal{C}_{ab}^{\beta} y_{\beta} - \Psi^{A} \mathcal{C}_{aA}^{\beta} y_{\beta} \end{cases}$$

with $y_a = \frac{\partial \tilde{L}}{\partial y^a} - y_A \frac{\partial \Psi^A}{\partial y^a}$, that is, the vakonomic equations for the vakonomic system (L, M) on the Lie algebroid $\tau : E \to Q$

Example (The tangent bundle to a manifold)

Q a differentiable manifold

 $au_Q: \mathit{TQ} \to \mathit{Q}$ is a Lie algebroid with the structure $([\cdot,\cdot],\mathit{Id})$

$$(q^i)$$
 local coordinates on Q $\{rac{\partial}{\partial q^i}\}$ local basis of $au_Q: TQ o Q$

$$\rho_j^i = \delta_{ij} \quad \text{and} \quad \mathcal{C}_{ij}^k = 0$$

$$\downarrow \downarrow$$

The classical vakonomic equations

$$\begin{cases} \dot{q}^{A} &= \Psi^{A}(q^{i}, \dot{q}^{a}) \\ \dot{p}_{A} &= \frac{\partial \tilde{L}}{\partial q^{A}} - p_{B} \frac{\partial \Psi^{B}}{\partial q^{A}} \\ \frac{d}{dt} \left(\frac{\partial \tilde{L}}{\partial \dot{q}^{a}} - p_{A} \frac{\partial \Psi^{A}}{\partial \dot{q}^{a}} \right) &= \frac{\partial \tilde{L}}{\partial q^{a}} - p_{B} \frac{\partial \Psi^{B}}{\partial q^{a}} \end{cases}$$

Example (Lie algebras of finite dimension)

 $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, 0)$, being \mathfrak{g} a Lie algebra of dimension n \mathfrak{C} affine subspace of \mathfrak{g} modelled over the vector space C $\dim C = n - \bar{m}$ and $e_0 \in \mathfrak{C}, e_0 \neq 0$

•
$$\{e_{\alpha}\} = \{e_a, e_0, e_{\bar{a}}\} = \{e_a, e_A\}$$
 basis of \mathfrak{g} such that $\{e_a\}$ basis of C and $[e_{\alpha}, e_{\beta}] = \mathcal{C}_{\alpha\beta}^{\gamma} e_{\gamma}$

$$(y^a, y^0, y^{\bar{a}}) = (y^a, y^A)$$
 coordinates on \mathfrak{g}
 \mathfrak{C} given by the equations: $y^0 = 1$, $y^{\bar{a}} = 0$
 $(y_a, y_0, y_{\bar{a}}) = (y_a, y_A)$ dual coordinates on \mathfrak{g}^*

 $L: \mathfrak{g} \to \mathbb{R}$ Lagrangian function

 $\tilde{L}:\mathfrak{C}\to\mathbb{R}$ the restriction of L to \mathfrak{C}

Example (Lie algebras of finite dimension)

 $\sigma: t \mapsto (y^a(t), y^0(t), y^{\bar{a}}(t)) = (y^a(t), 1, 0, \dots, 0)$ a curve in $\mathfrak C$ is a solution of the constrained system $(L, \mathfrak C)$ if and only if

$$\begin{cases} \frac{d}{dt} \left(\frac{\partial \tilde{L}}{\partial y^{a}} \right) = -\frac{\partial \tilde{L}}{\partial y^{c}} (y^{b} \mathcal{C}_{ab}^{c} + \mathcal{C}_{a0}^{c}) - y_{B} (y^{b} \mathcal{C}_{ab}^{B} + \mathcal{C}_{a0}^{B}) \\ \dot{y}_{A} = -\frac{\partial \tilde{L}}{\partial y^{c}} (y^{b} \mathcal{C}_{Ab}^{c} + \mathcal{C}_{A0}^{c}) - y_{B} (y^{b} \mathcal{C}_{Ab}^{B} + \mathcal{C}_{A0}^{B}) \end{cases}$$

The curve in
$$\mathfrak{g}^*$$
 $\gamma: t \mapsto (\frac{\partial \tilde{L}}{\partial y^a}_{|\sigma(t)}, y_A(t)) = \frac{\partial \tilde{L}}{\partial y}(\sigma(t)) + \lambda(t)$
$$\lambda(t) = (0, y_A(t)) \in \mathcal{C}^{\circ}$$

Then γ satisfies the Euler-Poincaré equations

$$rac{d}{dt}\Big(rac{\partial ilde{L}}{\partial extbf{y}} + \lambda\Big) = ad_{\sigma}^*\Big(rac{\partial ilde{L}}{\partial extbf{y}} + \lambda\Big)$$

"Optimization Theorem for Nonholonomic Systems on Lie groups" W-S. Koon, J.E. Marsden, SIAM J. Control Optim. **35** (1997) 901-929.

Example (Atiyah Lie algebroids)

 $\pi: Q \rightarrow M$ principal bundle with structural group G

 $\tau_{Q|G}: TQ/G \rightarrow M$ the associated Atiyah Lie algebroid

"The reduced Lagrangian Optimization Theorem for Nonholonomic Systems"

W-S. Koon, J.E. Marsden, SIAM J. Control Optim. 35 (1997) 901-929.