## Vakonomic Mechanics on Lie algebroids

## Diana Sosa

dnsosa@ull.es
University of La Laguna
XXIInd International Workshop on Differential Geometric Methods in Theoretical Mechanics

Bedlewo, August 2007
D. Iglesias, J.C. Marrero, D. Martín de Diego and D. Sosa: Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Preprint arXiv:0706.2789

## Motivation

嗇 A．Weinstein
Lagrangian Mechanics and groupoids
Fields Inst．Comm． 7 （1996），207－231．
圊 E．Martínez
Lagrangian Mechanics on Lie algebroids Acta Appl．Math． 67 （2001），295－320．
（in M．de León，J．C．Marrero and E．Martínez
Lagrangian submanifolds and dynamics on Lie algebroids J．Phys．A：Math．Gen． 38 （2005），241－308．

围 K．Grabowska，P．Urbański，J．Grabowski
Geometrical mechanics on algebroids Int．J．Geom．Methods Mod．Phys． 3 （3）（2006），559－575．

囲 J．Cortés，M．de León，J．C．Marrero and E．Martínez Nonholonomic Lagrangian systems on Lie algebroids Preprint arXiv：math－ph／0512003（2005）．
(1) Lie algebroids
(2) The prolongation of a Lie algebroid over a fibration
(3) Lagrangian mechanics on Lie algebroids
(4) Constraint algorithm for presymplectic Lie algebroids
(5) Vakonomic mechanics on Lie algebroids
(1) Vakonomic equations and vakonomic bracket
(2) The variational point of view

## Lie algebroids

## Definition

$E$ vector bundle of rank $n$ over $Q, \quad \operatorname{dim} Q=m$
$\tau: E \rightarrow Q$ the vector bundle projection
A Lie algebroid structure on $E$ :
$\llbracket \cdot, \cdot \rrbracket: \Gamma(E) \times \Gamma(E) \rightarrow \Gamma(E)$ Lie bracket
$\rho: E \rightarrow T Q$ bundle map, the anchor map
$\left(\rho: \Gamma(E) \rightarrow T Q\right.$ homomorphism of $C^{\infty}(Q)$-modules)
such that

$$
\llbracket X, f Y \rrbracket=f \llbracket X, Y \rrbracket+\rho(X)(f) Y
$$

for $X, Y \in \Gamma(E)$ and $f \in C^{\infty}(Q)$
$(E, \llbracket \cdot, \rrbracket \rrbracket, \rho)$ Lie algebroid over $Q \Rightarrow \rho$ is a homomorphism between the Lie algebras $(\Gamma(E), \llbracket \cdot, \cdot \rrbracket)$ and $(\mathcal{X}(Q),[\cdot, \cdot])$

## Lie algebroids

## Examples

(1) $\tau_{Q}: T Q \rightarrow Q, Q$ a differentiable manifold $\Rightarrow(T Q,[\cdot, \cdot], I d)$
(2) A real Lie algebra $\mathfrak{g}$ of finite dimension $\Rightarrow\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, 0\right)$
(3) $\pi: Q \rightarrow M=Q / G$ principal bundle with structural group $G$

- $T Q / G$ is a vector bundle over $M=Q / G$

$$
\begin{aligned}
& \tau_{Q} \mid G: T Q / G \rightarrow Q / G \text { the vector bundle projection } \\
& \Gamma(T Q / G) \equiv\{X \in \mathcal{X}(Q) \mid X \text { is } G \text { - invariant }\}
\end{aligned}
$$

- $\tau_{Q} \mid G: T Q / G \rightarrow Q / G$ is a Lie algebroid
$X, Y \in \Gamma(T Q / G) \Rightarrow[X, Y] \in \Gamma(T Q / G)$
$X \in \Gamma(T Q / G) \Rightarrow X$ is $\pi$-projectable
$\rho: \Gamma(T Q / G) \rightarrow \mathcal{X}(M)$
$\tau_{Q} \mid G: T Q / G \rightarrow Q / G$ the Atiyah Lie algebroid associated with $\pi$
$\triangleright(E, \llbracket \cdot, \cdot \rrbracket, \rho)$ Lie algebroid
- the differential of $E \quad d^{E}: \Gamma\left(\wedge^{k} E^{*}\right) \longrightarrow \Gamma\left(\wedge^{k+1} E^{*}\right)$
$\left(d^{E} \mu\right)\left(X_{0}, \ldots, X_{k}\right)=\sum_{i=0}^{k}(-1)^{i} \rho\left(X_{i}\right)\left(\mu\left(X_{0}, \ldots, \widehat{X}_{i}, \ldots, X_{k}\right)\right)$
$+\sum_{i<j}(-1)^{i+j} \mu\left(\llbracket X_{i}, X_{j} \rrbracket, X_{0}, \ldots, \widehat{X}_{i}, \ldots, \widehat{X}_{j}, \ldots, X_{k}\right)$
$\mu \in \Gamma\left(\wedge^{k} E^{*}\right), X_{0}, \ldots, X_{k} \in \Gamma(E) \quad\left(d^{E}\right)^{2}=0$
- $X \in \Gamma(E)$, the Lie derivate with respect to $X$

$$
\begin{aligned}
& \mathcal{L}_{X}^{E}: \Gamma\left(\wedge^{k} E^{*}\right) \longrightarrow \Gamma\left(\wedge^{k} E^{*}\right) \\
& \mathcal{L}_{X}^{E}=i_{X} \circ d^{E}+d^{E} \circ i_{X}
\end{aligned}
$$

- E* admits a linear Poisson structure
$\{\cdot, \cdot\}_{E^{*}}: C^{\infty}\left(E^{*}\right) \times C^{\infty}\left(E^{*}\right) \rightarrow C^{\infty}\left(E^{*}\right) \quad \mathbb{R}$-bilinear map
i) Skew-symmetry: $\{F, G\}_{E^{*}}=-\{G, F\}_{E^{*}}$
ii) The Leibniz rule: $\left\{F F^{\prime}, G\right\}_{E^{*}}=F\left\{F^{\prime}, G\right\}_{E^{*}}+F^{\prime}\{F, G\}_{E^{*}}$
iii) The Jacobi identity:
$\left\{F,\{G, H\}_{E^{*}}\right\}_{E^{*}}+\left\{G,\{H, F\}_{E^{*}}\right\}_{E^{*}}+\left\{H,\{F, G\}_{E^{*}}\right\}_{E^{*}}=0$
for $F, F^{\prime}, G, H \in C^{\infty}\left(E^{*}\right)$ and, in addition,
$P, P^{\prime}$ linear functions on $E^{*} \Rightarrow\left\{P, P^{\prime}\right\}_{E^{*}}$ linear function on $E^{*}$


## Lie algebroids

- ( $x^{i}$ ) local coordinates on $Q$ $\left\{e_{\alpha}\right\}$ local basis of $\Gamma(E)$
$\Downarrow$
$\left(x^{i}, y^{\alpha}\right)$ local coordinates on $E$
the structure functions of the Lie algebroid $\mathcal{C}_{\alpha \beta}^{\gamma}, \rho_{\alpha}^{i} \in C^{\infty}(Q)$

$$
\llbracket e_{\alpha}, e_{\beta} \rrbracket=\mathcal{C}_{\alpha \beta}^{\gamma} e_{\gamma} \quad \rho\left(e_{\alpha}\right)=\rho_{\alpha}^{i} \frac{\partial}{\partial x^{i}}
$$

satisfy the structure equations

$$
\begin{gathered}
\rho_{\alpha}^{j} \frac{\partial \rho_{\beta}^{i}}{\partial x^{j}}-\rho_{\beta}^{j} \frac{\partial \rho_{\alpha}^{i}}{\partial x^{j}}=\rho_{\gamma}^{i} \mathcal{C}_{\alpha \beta}^{\gamma} \\
\sum_{\text {cyclic }(\alpha, \beta, \gamma)}\left(\rho_{\alpha}^{i} \frac{\partial \mathcal{C}_{\beta \gamma}^{\nu}}{\partial x^{i}}+\mathcal{C}_{\alpha \mu}^{\nu} \mathcal{C}_{\beta \gamma}^{\mu}\right)=0
\end{gathered}
$$

## Lie algebroids

$\triangleright f \in C^{\infty}(Q): \quad d^{E} f=\frac{\partial f}{\partial x^{i}} \rho_{\alpha}^{i} e^{\alpha}$
where $\left\{e^{\alpha}\right\}$ is the dual basis of $\left\{e_{\alpha}\right\}$
$\triangleright \theta=\theta_{\gamma} e^{\gamma} \in \Gamma\left(E^{*}\right): \quad d^{E} \theta=\left(\frac{\partial \theta_{\gamma}}{\partial x^{i}} \rho_{\beta}^{i}-\frac{1}{2} \theta_{\alpha} \mathcal{C}_{\beta \gamma}^{\alpha}\right) e^{\beta} \wedge e^{\gamma}$
$\triangleright F, G \in C^{\infty}\left(E^{*}\right): \quad\left(x^{i}, y_{\alpha}\right)$ local coordinates on $E^{*}$

$$
\{F, G\}_{E^{*}}=\rho_{\alpha}^{i}\left(\frac{\partial F}{\partial x^{i}} \frac{\partial G}{\partial y_{\alpha}}-\frac{\partial F}{\partial y_{\alpha}} \frac{\partial G}{\partial x^{i}}\right)-\mathcal{C}_{\alpha \beta}^{\gamma} y_{\gamma} \frac{\partial F}{\partial y_{\alpha}} \frac{\partial G}{\partial y_{\beta}}
$$

## Lie algebroids

$\bullet(E, \llbracket \cdot, \cdot \rrbracket, \rho)\left(E^{\prime}, \llbracket \cdot, \cdot \rrbracket^{\prime}, \rho^{\prime}\right)$ Lie algebroids over $Q$ and $Q^{\prime}$
$(F, f)$ morphism of vector bundles

$\phi^{\prime} \in \Gamma\left(\wedge^{k}\left(E^{\prime}\right)^{*}\right) \Rightarrow(F, f)^{*} \phi^{\prime} \in \Gamma\left(\wedge^{k} E^{*}\right)$ $\left((F, f)^{*} \phi^{\prime}\right)_{x}\left(a_{1}, \ldots, a_{k}\right)=\phi_{f(x)}^{\prime}\left(F\left(a_{1}\right), \ldots, F\left(a_{k}\right)\right)$ $x \in Q, a_{1}, \ldots, a_{k} \in E_{x}$
$(F, f)$ is a Lie algebroid morphism iff

$$
d^{E}\left((F, f)^{*} \phi^{\prime}\right)=(F, f)^{*}\left(d^{E^{\prime}} \phi^{\prime}\right), \quad \phi^{\prime} \in \Gamma\left(\wedge^{k}\left(E^{\prime}\right)^{*}\right)
$$

- $(F, f)$ Lie algebroid morphism, $f$ injective immersion and $F_{\mid E_{x}}: E_{x} \rightarrow E_{f(x)}^{\prime}$ injective
$\left(E, \mathbb{I} \cdot, \cdot \rrbracket_{E}, \rho_{E}\right)$ is said to be a Lie subalgebroid of $\left(E^{\prime}, \llbracket \cdot, \cdot \rrbracket_{E^{\prime}}, \rho_{E^{\prime}}\right)$


## The prolongation of a Lie algebroid over a fibration

$(E, \llbracket \cdot, \cdot \rrbracket, \rho)$ Lie algebroid, $\tau: E \rightarrow Q \quad$ rank $E=n, \quad \operatorname{dim} Q=m$ $\pi: P \rightarrow Q$ fibration, $\quad \operatorname{dim} P=m^{\prime}$
$\mathcal{T}^{E} P=\bigcup_{p \in P} \mathcal{T}_{p}^{E} P \subset E \times T P:$

$$
\mathcal{T}_{p}^{E} P=\left\{\left(b, v_{p}\right) \in E_{\pi(p)} \times T_{p} P \mid \rho(b)=\left(T_{p} \pi\right)\left(v_{p}\right)\right\}
$$

where $T \pi: T P \rightarrow T Q$ is the tangent map to $\pi$
$\tau^{\pi}: \mathcal{T}^{E} P \rightarrow P, \quad \tau^{\pi}\left(b, v_{p}\right)=\tau_{P}\left(v_{p}\right)=p$
$\tau_{P}: T P \rightarrow P$ being the canonical projection
$\Downarrow$
$\mathcal{T}^{E} P$ is a vector bundle over $P$ of rank $n+m^{\prime}-m$ with vector bundle projection $\tau^{\pi}: \mathcal{T}^{E} P \rightarrow P$

## The prolongation of a Lie algebroid over a fibration

- $\tilde{X} \in \Gamma\left(\mathcal{T}^{E} P\right)$ is said to be projectable if

$$
\exists X \in \Gamma(E), \exists U \in \mathcal{X}(P) \pi \text {-projectable to } \rho(X) \text { s.t. }
$$

$$
\tilde{X}(p)=(X(\pi(p)), U(p)), \quad \forall p \in P
$$

$\tilde{X} \equiv(X, U)$
$\tau^{\pi}: \mathcal{T}^{E} P \rightarrow P$ admits a Lie algebroid structure $\left(\llbracket \cdot, \cdot \rrbracket^{\pi}, \rho^{\pi}\right):$

$$
\begin{aligned}
\llbracket\left(X_{1}, U_{1}\right),\left(X_{2}, U_{2}\right) \rrbracket^{\pi} & =\left(\llbracket X_{1}, X_{2} \rrbracket,\left[U_{1}, U_{2}\right]\right) \\
\rho^{\pi}\left(X_{1}, U_{1}\right) & =U_{1}
\end{aligned}
$$

$\left(\mathcal{T}^{E} P, \llbracket \cdot, \cdot \rrbracket^{\pi}, \rho^{\pi}\right)$ is called the prolongation of $E$ over $\pi$ or the $E$-tangent bundle to $P$

## The prolongation of a Lie algebroid over a fibration

## PARTICULAR CASE 1: $\quad(E, \llbracket \cdot, \cdot \rrbracket, \rho)$ Lie algebroid

$$
\begin{gathered}
\tau: E \rightarrow Q \text { the vector bundle projection } \\
\Downarrow
\end{gathered}
$$

the $E$-tangent bundle to $E$ :

$$
\mathcal{T}^{E} E=\{(e, v) \in E \times T E \mid \rho(e)=(T \tau)(v)\}
$$

$\left(\mathcal{T}^{E} E, \llbracket^{\prime}, \rrbracket^{\tau}, \rho^{\tau}\right)$ Lie algebroid over $E$ of rank $2 n$

- ( $x^{i}$ ) local coordinates on $Q$ and $\left\{e_{\alpha}\right\}$ local basis of $\Gamma(E)$ $\Downarrow$

$$
\begin{aligned}
& \left\{\mathcal{X}_{\alpha}, \mathcal{V}_{\alpha}\right\} \text { local basis of } \tau^{\tau}: \mathcal{T}^{E} E \rightarrow E: \\
& \mathcal{X}_{\alpha}(e)=\left(e_{\alpha}(\tau(e)), \rho_{\alpha}^{i} \frac{\partial}{\partial x^{i} \mid e}\right) \quad \mathcal{V}_{\alpha}(e)=\left(0, \frac{\partial}{\partial y^{\alpha}}{ }_{\mid e}\right)
\end{aligned}
$$

$$
\begin{array}{rlrl}
\llbracket \mathcal{X}_{\alpha}, \mathcal{X}_{\beta} \rrbracket^{\tau} & =\mathcal{C}_{\alpha \beta}^{\gamma} \mathcal{X}_{\gamma} & \llbracket \mathcal{X}_{\alpha}, \mathcal{V}_{\beta} \rrbracket^{\tau}=\llbracket \mathcal{V}_{\alpha}, \mathcal{V}_{\beta} \rrbracket^{\tau}=0 \\
\rho^{\tau}\left(\mathcal{X}_{\alpha}\right) & =\rho_{\alpha}^{i} \frac{\partial}{\partial x^{i}} & \rho^{\tau}\left(\mathcal{V}_{\alpha}\right) & =\frac{\partial}{\partial y^{\alpha}}
\end{array}
$$

- Two canonical objects on $\mathcal{T}^{E} E$ :
- the Euler section $\Delta \in \Gamma\left(\mathcal{T}^{E} E\right): \quad \Delta=y^{\alpha} \mathcal{V}_{\alpha}$
- the vertical endomorphism $S \in \Gamma\left(\left(\mathcal{T}^{E} E\right) \otimes\left(\mathcal{T}^{E} E\right)^{*}\right)$ :

$$
S=\mathcal{X}^{\alpha} \otimes \mathcal{V}_{\alpha}
$$

$\left\{\mathcal{X}^{\alpha}, \mathcal{V}^{\alpha}\right\}$ is the dual basis of $\left\{\mathcal{X}_{\alpha}, \mathcal{V}_{\alpha}\right\}$

- $\xi \in \Gamma\left(\mathcal{T}^{E} E\right)$ is said to be a second order differential equation (SODE) on $E$ if

$$
S(\xi)=\Delta
$$

## The prolongation of a Lie algebroid over a fibration

PARTICULAR CASE 2: $(E, \llbracket \cdot, \cdot \rrbracket, \rho)$ Lie algebroid $\tau^{*}: E^{*} \rightarrow Q$ the dual vector bundle projection the $E$-tangent bundle to $E^{*}$ :

$$
\mathcal{T}^{E} E^{*}=\left\{(e, v) \in E \times T E^{*} \mid \rho(e)=\left(T \tau^{*}\right)(v)\right\}
$$

$\left(\mathcal{T}^{E} E^{*}, \llbracket \cdot, \cdot \rrbracket^{\tau^{*}}, \rho^{\tau^{*}}\right)$ Lie algebroid over $E^{*}$ of rank $2 n$

- $\left(x^{i}\right)$ local coordinates on $Q,\left\{e_{\alpha}\right\}$ local basis of $\Gamma(E)$ and $\left\{e^{\alpha}\right\}$ dual basis $\Rightarrow\left(x^{i}, y_{\alpha}\right)$ local coordinates on $E^{*}$
$\Downarrow$
$\left\{\mathcal{Y}_{\alpha}, \mathcal{U}_{\alpha}\right\}$ local basis of $\tau^{\tau^{*}}: \mathcal{T}^{E} E^{*} \rightarrow E^{*}$ :

$$
\mathcal{Y}_{\alpha}\left(e^{*}\right)=\left(e_{\alpha}\left(\tau^{*}\left(e^{*}\right)\right), \rho_{\alpha}^{i} \frac{\partial}{\partial x^{i} \mid e^{*}}\right) \quad \mathcal{U}_{\alpha}\left(e^{*}\right)=\left(0, \frac{\partial}{\partial y_{\alpha} \mid e^{*}}\right)
$$

## The prolongation of a Lie algebroid over a fibration

$$
\begin{array}{rlrl}
\llbracket \mathcal{Y}_{\alpha}, \mathcal{Y}_{\beta} \rrbracket \tau^{\tau^{*}} & =\mathcal{C}_{\alpha \beta}^{\gamma} \mathcal{Y}_{\gamma} & \left.\llbracket \mathcal{Y}_{\alpha}, \mathcal{U}_{\beta} \rrbracket \rrbracket^{*^{*}}=\llbracket \mathcal{U}_{\alpha}, \mathcal{U}_{\beta} \rrbracket\right\rceil^{*^{*}}=0 \\
\rho^{\tau^{*}}\left(\mathcal{Y}_{\alpha}\right) & =\rho_{\alpha}^{i} \frac{\partial}{\partial x^{i}} & \rho^{\tau^{*}}\left(\mathcal{U}_{\alpha}\right) & =\frac{\partial}{\partial y_{\alpha}}
\end{array}
$$

- Two canonical objects on $\mathcal{T}^{E} E^{*}$ :
- the Liouville section $\lambda_{E} \in \Gamma\left(\left(\mathcal{T}^{E} E^{*}\right)^{*}\right): \lambda_{E}\left(e^{*}\right)(\tilde{e}, v)=<e^{*}, \tilde{e}>$

$$
\lambda_{E}\left(x^{i}, y_{\alpha}\right)=y_{\alpha} \mathcal{Y}^{\alpha}
$$

- the canonical symplectic section $\Omega_{E} \in \Gamma\left(\wedge^{2}\left(\mathcal{T}^{E} E^{*}\right)^{*}\right)$ :

$$
\begin{gathered}
\Omega_{E}=-d^{\mathcal{T}^{E} E^{*}} \lambda_{E} \\
\Omega_{E}=\mathcal{Y}^{\alpha} \wedge \mathcal{U}^{\alpha}+\frac{1}{2} \mathcal{C}_{\alpha \beta}^{\gamma} y_{\gamma} \mathcal{Y}^{\alpha} \wedge \mathcal{Y}^{\beta}
\end{gathered}
$$

$\left\{\mathcal{Y}^{\alpha}, \mathcal{U}^{\alpha}\right\}$ the dual basis of $\left\{\mathcal{Y}_{\alpha}, \mathcal{U}_{\alpha}\right\}$
$(E, \llbracket \cdot, \cdot \rrbracket, \rho)$ Lie algebroid, $\tau: E \rightarrow Q$ the bundle projection $\left(\mathcal{T}^{E} E, \llbracket \cdot, \cdot \rrbracket^{\tau}, \rho^{\tau}\right)$ the $E$-tangent bundle to $E$
$L: E \rightarrow \mathbb{R}$ a Lagrangian function

- the Cartan 1-section $\theta_{L} \in \Gamma\left(\left(\mathcal{T}^{E} E\right)^{*}\right): \quad \theta_{L}=S^{*}\left(d^{\mathcal{T}^{E}}{ }^{E} L\right)$

$$
\theta_{L}=\frac{\partial L}{\partial y^{\alpha}} \mathcal{X}^{\alpha}
$$

- the Cartan 2-section $\omega_{L} \in \Gamma\left(\wedge^{2}\left(\mathcal{T}^{E} E\right)^{*}\right): \omega_{L}=-d^{\mathcal{T}^{E}}{ }^{\theta_{L}}$ $\omega_{L}=\frac{\partial^{2} L}{\partial y^{\alpha} \partial y^{\beta}} \mathcal{X}^{\alpha} \wedge \mathcal{V}^{\beta}+\frac{1}{2}\left(\frac{\partial^{2} L}{\partial x^{i} \partial y^{\alpha}} \rho_{\beta}^{i}-\frac{\partial^{2} L}{\partial x^{i} \partial y^{\beta}} \rho_{\alpha}^{i}+\frac{\partial L}{\partial y^{\gamma}} \mathcal{C}_{\alpha \beta}^{\gamma}\right) \mathcal{X}^{\alpha} \wedge \mathcal{X}^{\beta}$
- the Lagrangian energy $E_{L} \in C^{\infty}(E): \quad E_{L}=\mathcal{L}_{\Delta}^{\mathcal{T}^{E} E} L-L$

$$
E_{L}=\frac{\partial L}{\partial y^{\alpha}} y^{\alpha}-L
$$

- A curve $t \rightarrow c(t)$ on $E$ is a solution of the Euler-Lagrange equations for $L$ if
- $c$ is admissible (i.e., $(c(t), \dot{c}(t)) \in \mathcal{T}_{c(t)}^{E} E$, for all $t$ )
- $i_{(c(t), \dot{c}(t))} \omega_{L}(c(t))-d^{\mathcal{T}^{E}} E E_{L}(c(t))=0$, for all $t$.
or, locally, if $c(t)=\left(x^{i}(t), y^{\alpha}(t)\right)$

$$
\left\{\begin{array}{l}
\dot{x}^{i}=\rho_{\alpha}^{i} y^{\alpha} \\
\frac{d}{d t}\left(\frac{\partial L}{\partial y^{\alpha}}\right)+\frac{\partial L}{\partial y^{\gamma}} \mathcal{C}_{\alpha \beta}^{\gamma} y^{\beta}-\rho_{\alpha}^{i} \frac{\partial L}{\partial x^{i}}=0
\end{array}\right.
$$

- L is said to be regular if $\omega_{L}$ is a symplectic section $\Downarrow$ there exists a unique solution $\Gamma_{L}$ verifying

$$
\begin{gathered}
i_{\Gamma_{L}} \omega_{L}-d^{\mathcal{T}^{E} E} E_{L}=0 \\
\Downarrow
\end{gathered}
$$

$\Gamma_{L}$ is a SODE section
Thus, the integral curves of $\Gamma_{L}$ (that is, the integral curves of the vector field $\left.\rho^{\tau}\left(\Gamma_{L}\right)\right)$ are solutions of the Euler-Lagrange equations for $L . \Gamma_{L}$ is called the Euler-Lagrange section associated with $L$.

## Lagrangian Mechanics on Lie algebroids

Locally,
$L$ is regular $\Leftrightarrow\left(W_{\alpha \beta}\right)=\left(\frac{\partial^{2} L}{\partial y^{\alpha} \partial y^{\beta}}\right)$ is regular
$\Downarrow$
The local expression of $\Gamma_{L}$ is
$\Gamma_{L}=y^{\alpha} \mathcal{X}_{\alpha}+W^{\alpha \beta}\left(\rho_{\beta}^{i} \frac{\partial L}{\partial x^{i}}-\rho_{\gamma}^{i} y^{\gamma} \frac{\partial^{2} L}{\partial x^{i} \partial y^{\beta}}+y^{\gamma} \mathcal{C}_{\gamma \beta}^{\nu} \frac{\partial L}{\partial y^{\nu}}\right) \mathcal{V}_{\alpha}$
( $W^{\alpha \beta}$ ) being the inverse matrix of $\left(W_{\alpha \beta}\right)$

- If $\omega_{L}$ is not symplectic (i.e. $\left(W_{\alpha \beta}\right)=\left(\frac{\partial^{2} L}{\partial y^{\alpha} \partial y^{\beta}}\right)$ is non regular) the Lagrangian is called singular or degenerate Lagrangian


## Constraint algorithm for presymplectic Lie algebroids

$$
(\tau: E \rightarrow Q, \llbracket \cdot, \cdot \rrbracket, \rho) \text { Lie algebroid }
$$

## Assume that:

- $\Omega \in \Gamma\left(\wedge^{2} E^{*}\right)$ presymplectic 2-section ( $d^{E} \Omega=0$ )
$-\alpha \in \Gamma\left(E^{*}\right)$ closed 1-section ( $d^{E} \alpha=0$ )
- the kernel of $\Omega$ vector subbundle of $E$
$b_{\Omega}: E \rightarrow E^{*}$ vector bundle morphism over the identity of $Q$

$$
b_{\Omega}(e)=i(e) \Omega(x)
$$

$F_{x}$ a subspace of $E_{x}$, with $x \in Q$,

$$
F_{x}^{\perp}=\left\{e \in E_{x} \mid \Omega(x)(e, f)=0, \forall f \in F_{x}\right\}
$$

$\triangleright b_{\Omega_{x}}\left(F_{x}\right)=\left(F_{x}^{\perp}\right)^{\circ}$, where $b_{\Omega_{x}}=b_{\Omega \mid E_{x}}$ and $\left(F_{x}^{\perp}\right)^{\circ}$ is the annihilator of the subspace $F_{X}^{\perp}$

## Constraint algorithm for presymplectic Lie algebroids

- The dynamics of the presymplectic system defined by $(\Omega, \alpha)$ is given by a section $X \in \Gamma(E)$ satisfying the dynamical equation

$$
i_{X} \Omega=\alpha
$$

## Constraint algorithm for presymplectic Lie algebroids

$$
\begin{aligned}
\triangleright Q_{1} & =\left\{x \in Q \mid \exists e \in E_{x}: i(e) \Omega(x)=\alpha(x)\right\} \\
& =\left\{x \in Q \mid \alpha(x)(e)=0, \forall e \in \operatorname{Ker} \Omega(x)=E_{x}^{\perp}\right\}
\end{aligned}
$$

If $Q_{1}$ is an embedded submanifold of $Q$
$\exists X: Q_{1} \rightarrow E$ a section of $\tau: E \rightarrow Q$ along $Q_{1}: \quad i_{X} \Omega=\alpha$
But $\rho(X)$ is not, in general, tangent to $Q_{1}$
Thus, we have that to restrict to $E_{1}=\rho^{-1}\left(T Q_{1}\right)$
If $E_{1}$ is a manifold and $\tau_{1}=\tau_{\mid E_{1}}: E_{1} \rightarrow Q_{1}$ is a vector bundle $\Downarrow$
$\tau_{1}: E_{1} \rightarrow Q_{1}$ is a Lie subalgebroid of $\tau: E \rightarrow Q$

$$
\begin{aligned}
& \triangleright Q_{2}=\left\{x \in Q_{1} \mid \alpha(x) \in b_{\Omega_{x}}\left(\left(E_{1}\right)_{x}\right)=b_{\Omega_{x}}\left(\rho^{-1}\left(T_{x} Q_{1}\right)\right)\right\} \\
&=\left\{x \in Q_{1} \mid \alpha(x)(e)=0, \forall \boldsymbol{e} \in\left(E_{1}\right) \frac{1}{x}=\left(\rho^{-1}\left(T_{x} Q_{1}\right)\right)^{\perp}\right\} \\
& \text { If } Q_{2} \text { is an embedded submanifold of } Q_{1} \\
& \Downarrow
\end{aligned}
$$

$\exists X: Q_{2} \rightarrow E_{1}$ a section of $\tau_{1}: E_{1} \rightarrow Q_{1}$ along $Q_{2}: i_{X} \Omega=\alpha$ But, $\rho(X)$ is not, in general, tangent to $Q_{2}$
Thus, we have that to restrict to $E_{2}=\rho^{-1}\left(T Q_{2}\right)$
If $E_{2}$ is a manifold and $\tau_{2}=\tau_{\mid E_{2}}: E_{2} \rightarrow \boldsymbol{Q}_{2}$ is a vector bundle $\Downarrow$
$\tau_{2}: E_{2} \rightarrow Q_{2}$ is a Lie subalgeborid of $\tau_{1}: E_{1} \rightarrow Q_{1}$

## Constraint algorithm for presymplectic Lie algebroids

If we repeat the process, we obtain a sequence of Lie subalgebroids:

\[

\]

where

$$
\begin{aligned}
& Q_{k+1}=\left\{x \in Q_{k} \mid \alpha(x)(e)=0, \forall e \in\left(\rho^{-1}\left(T_{x} Q_{k}\right)\right)^{\perp}\right\} \\
& E_{k+1}=\rho^{-1}\left(T Q_{k+1}\right)
\end{aligned}
$$

If $\exists k \in \mathbb{N}: Q_{k}=Q_{k+1} \Rightarrow$ we say that the sequence stabilizes $\Downarrow$

$$
Q_{f}=Q_{k+1}=Q_{k} \quad E_{f}=E_{k+1}=E_{k}=\rho^{-1}\left(T Q_{k}\right)
$$

$$
\tau_{f}=\tau_{k}: E_{f} \rightarrow Q_{f} \text { is a Lie subalgebroid of } \tau: E \longrightarrow Q
$$

$\Downarrow$

$$
\exists X \in \Gamma\left(E_{f}\right): \quad i_{X} \Omega=\alpha
$$

## Constraint algorithm for presymplectic Lie algebroids

Moreover, every arbitrary solution is of the form

$$
X^{\prime}=X+Y, \quad Y \in \Gamma\left(E_{f}\right) \text { and } Y(x) \in \operatorname{ker} \Omega(x), x \in Q_{f}
$$

In addition, if we denote by $\Omega_{f}$ and $\alpha_{f}$ the restriction of $\Omega$ and $\alpha$, respectively, to the Lie algebroid $E_{f} \longrightarrow Q_{f}$, we have that:
$-\Omega_{f}$ is a presymplectic 2 -section
$-X \in \Gamma\left(E_{f}\right): \quad i_{X} \Omega=\alpha \Rightarrow i_{X} \Omega_{f}=\alpha_{f}$
but in principle, there are solutions of $i_{X} \Omega_{f}=\alpha_{f}$ which are not solutions of $i_{X} \Omega=\alpha$ (since $\operatorname{ker} \Omega \cap E_{f} \subset \operatorname{ker} \Omega_{f}$ )

## Vakonomic Mechanics on Lie algebroids

$\tau: E \rightarrow Q$ Lie algebroid of rank $\mathrm{n}, \quad \operatorname{dim} Q=m$
$L: E \rightarrow \mathbb{R}$ Lagrangian function on $E$
$M \subset E$ embedded submanifold, the constraint submanifold
$\tau_{M}=\tau_{\mid M}: M \rightarrow Q$ surjective submersion, $\quad \operatorname{dim} M=n+m-\bar{m}$

$\nu: W_{0}=E^{*} \times{ }_{Q} M \rightarrow Q$ the canonical projection

## Vakonomic Mechanics on Lie algebroids

$\left(\mathcal{T} \pi_{1}, \pi_{1}\right)$ Lie algebroid morphism

$$
\mathcal{T} \pi_{1}=\left(I d, T \pi_{1}\right)
$$


$\Omega_{0}=\left(\mathcal{T} \pi_{1}, \pi_{1}\right)^{*} \Omega_{E}$ is a presymplectic section on $\mathcal{T}^{E} W_{0}$
$\Omega_{E}$ being the canonical symplectic section on $\mathcal{T}^{E} E^{*}$

- The Pontryagin Hamiltonian $\quad H_{W_{0}}: W_{0}=E^{*} \times_{Q} M \rightarrow \mathbb{R}$

$$
\begin{aligned}
& H_{W_{0}}\left(e^{*}, \check{e}\right)=\left\langle e^{*}, \check{e}\right\rangle-\tilde{L}(\check{e}), \quad \tilde{L}=L_{\mid M} \\
& \quad \Downarrow
\end{aligned}
$$

$\left(\mathcal{T}^{E} W_{0}, \Omega_{0}, d^{\mathcal{T}^{E}} W_{0} H_{W_{0}}\right)$ is a presymplectic hamiltonian system

## Vakonomic Mechanics on Lie algebroids

## Definition

The vakonomic problem on Lie algebroids is find the solutions for the equation

$$
i_{X} \Omega_{0}=d^{\mathcal{T}^{E}} W_{0} H_{W_{0}}
$$

i.e., to solve the constraint algorithm for $\left(\mathcal{T}^{E} W_{0}, \Omega_{0}, d^{\mathcal{T}^{E}} W_{0} H_{W_{0}}\right)$

## Vakonomic Mechanics on Lie algebroids

- $\left(x^{i}\right)$ local coordinates on an open subset $U$ of $Q$ $\left\{e_{\alpha}\right\}$ local basis of $\Gamma(E)$ on $U$

$$
M \cap \tau^{-1}(U) \equiv\left\{\left(x^{i}, y^{\alpha}\right) \in \tau^{-1}(U) \mid \Phi^{A}\left(x^{i}, y^{\alpha}\right)=0, A=1, \ldots, \bar{m}\right\}
$$

where $\Phi^{A}$ are the local independent constraint functions for the submanifold $M$

$$
\left(y^{\alpha}\right)=\left(y^{A}, y^{a}\right), \quad 1 \leqslant \alpha \leqslant n, \quad 1 \leqslant A \leqslant \bar{m}, \quad \bar{m}+1 \leqslant a \leqslant n
$$ $\Downarrow$

$\exists$ open subset $\widetilde{V}$ of $\tau^{-1}(U)$, open subset $W \subseteq \mathbb{R}^{m+n-\bar{m}}$ and smooth real functions $\psi^{A}: W \rightarrow \mathbb{R}, A=1, \ldots, \bar{m}$, s.t

$$
\begin{gathered}
M \cap \widetilde{V} \equiv\left\{\left(x^{i}, y^{\alpha}\right) \in \widetilde{V} \mid y^{A}=\Psi^{A}\left(x^{i}, y^{a}\right), A=1, \ldots, \bar{m}\right\} \\
\Downarrow
\end{gathered}
$$

$\left(x^{i}, y^{a}\right)$ are local coordinates on $M$ $\left(x^{i}, y_{\alpha}, y^{a}\right)$ local coordinates for $W_{0}=E^{*} \times_{Q} M$

## Vakonomic Mechanics on Lie algebroids

$\left\{\mathcal{Y}_{\alpha}, \mathcal{U}_{\alpha}, \mathcal{V}_{a}\right\}$ local basis of $\Gamma\left(\mathcal{T}^{E} W_{0}\right)$ :

$$
\begin{gathered}
\mathcal{Y}_{\alpha}\left(e^{*}, \check{e}\right)=\left(e_{\alpha}(x), \rho_{\alpha}^{i} \frac{\partial}{\partial x^{i} \mid e^{*}}, 0\right) \\
\mathcal{U}_{\alpha}\left(e^{*}, \check{e}\right)=\left(0, \frac{\partial}{\partial y_{\alpha} \mid e^{*}}, 0\right) \quad \mathcal{V}_{a}\left(e^{*}, \check{e}\right)=\left(0,0, \frac{\partial}{\partial y^{a}}{ }_{\mid \check{e}}\right)
\end{gathered}
$$

where $\left(e^{*}, \check{e}\right) \in W_{0}$ and $\nu\left(e^{*}, \check{e}\right)=x$
$\left(\llbracket \cdot, \cdot \rrbracket^{\nu}, \rho^{\nu}\right)$ the Lie algebroid structure on $\mathcal{T}^{E} W_{0}$ :

$$
\begin{gathered}
\llbracket \mathcal{Y}_{\alpha}, \mathcal{Y}_{\beta} \rrbracket^{\nu}=\mathcal{C}_{\alpha \beta}^{\gamma} \mathcal{Y}_{\gamma} \\
\rho^{\nu}\left(\mathcal{Y}_{\alpha}\right)=\rho_{\alpha}^{i} \frac{\partial}{\partial x^{i}} \quad \rho^{\nu}\left(\mathcal{U}_{\alpha}\right)=\frac{\partial}{\partial y_{\alpha}} \quad \rho^{\nu}\left(\mathcal{V}_{a}\right)=\frac{\partial}{\partial y^{a}}
\end{gathered}
$$

## Vakonomic Mechanics on Lie algebroids

$\left\{\mathcal{Y}^{\alpha}, \mathcal{U}^{\alpha}, \mathcal{V}^{a}\right\}$ the dual basis of $\left\{\mathcal{Y}_{\alpha}, \mathcal{U}_{\alpha}, \mathcal{V}_{a}\right\}$ :

$$
\begin{gathered}
\Omega_{0}=\mathcal{Y}^{\alpha} \wedge \mathcal{U}^{\alpha}+\frac{1}{2} \mathcal{C}_{\alpha \beta}^{\gamma} y_{\gamma} \mathcal{Y}^{\alpha} \wedge \mathcal{Y}^{\beta} \\
H_{W_{0}}\left(x^{i}, y_{\alpha}, y^{a}\right)=y_{a} y^{a}+y_{A} \Psi^{A}\left(x^{i}, y^{a}\right)-\tilde{L}\left(x^{i}, y^{a}\right) \\
d^{\mathcal{T}^{E}} W_{0} H_{W_{0}}=\left(y_{A} \frac{\partial \Psi^{A}}{\partial x^{i}}-\frac{\partial \tilde{L}}{\partial x^{i}}\right) \rho_{\alpha}^{i} \mathcal{Y}^{\alpha}+\Psi^{A} \mathcal{U}^{A}+y^{a} \mathcal{U}^{a}+\left(y_{a}+y_{A} \frac{\partial \Psi^{A}}{\partial y^{a}}-\frac{\partial \tilde{L}}{\partial y^{a}}\right) \mathcal{V}^{a}
\end{gathered}
$$

$\triangleright$ If we apply the constraint algorithm

$$
W_{1}=\left\{w \in E^{*} \times_{Q} M \mid d^{T^{E}} W_{0} H_{W_{0}}(w)(Y)=0, \forall Y \in \operatorname{Ker} \Omega_{0}(w)\right\}
$$

$\operatorname{Ker} \Omega_{0}=\operatorname{span}\left\{\mathcal{V}_{a}\right\} \Rightarrow W_{1}$ is locally characterized by

$$
y_{a}=\frac{\partial \tilde{L}}{\partial y^{a}}-y_{A} \frac{\partial \Psi^{A}}{\partial y^{a}}, \quad \bar{m}+1 \leq a \leq n
$$

## Vakonomic Mechanics on Lie algebroids

A solution of the vakonomic problem is of the form

$$
X=y^{a} \mathcal{Y}_{a}+\Psi^{A} \mathcal{Y}_{A}+\left[\left(\frac{\partial \tilde{L}}{\partial x^{i}}-y_{A} \frac{\partial \Psi^{A}}{\partial x^{i}}\right) \rho_{\alpha}^{i}-y^{a} \mathcal{C}_{\alpha a}^{\beta} y_{\beta}-\Psi^{A} \mathcal{C}_{\alpha A}^{\beta} y_{\beta}\right] \mathcal{U}_{\alpha}+\Upsilon^{a} \mathcal{V}_{a}
$$

Therefore, the vakonomic equations are

$$
\left\{\begin{array}{l}
\dot{x}^{i}=y^{a} \rho_{a}^{i}+\Psi^{A} \rho_{A}^{i} \\
\dot{y}_{A}=\left(\frac{\partial \tilde{L}}{\partial x^{i}}-y_{B} \frac{\partial \Psi^{B}}{\partial x^{i}}\right) \rho_{A}^{i}-y^{a} \mathcal{C}_{A a}^{\beta} y_{\beta}-\Psi^{B} \mathcal{C}_{A B}^{\beta} y_{\beta} \\
\frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial y^{a}}-y_{A} \frac{\partial \Psi^{A}}{\partial y^{a}}\right)=\left(\frac{\partial \tilde{L}}{\partial x^{i}}-y_{A} \frac{\partial \Psi^{A}}{\partial x^{i}}\right) \rho_{a}^{i}-y^{b} \mathcal{C}_{a b}^{\beta} y_{\beta}-\Psi^{A} \mathcal{C}_{a A}^{\beta} y_{\beta}
\end{array}\right.
$$

## Vakonomic Mechanics on Lie algebroids

There exist solution sections $X$ of $\mathcal{T}^{E} W_{0}$ along $W_{1}$, but they may not be sections of $\left(\rho^{\nu}\right)^{-1}\left(T W_{1}\right)=\mathcal{T}^{E} W_{1}$ $\Downarrow$
we obtain a sequence of embedded submanifolds
$\ldots \hookrightarrow W_{k+1} \hookrightarrow W_{k} \hookrightarrow \ldots \hookrightarrow W_{2} \hookrightarrow W_{1} \hookrightarrow W_{0}=E^{*} \times_{Q} M$

- If the algorithm stabilizes $\Downarrow$
$\exists$ a final constraint submanifold $W_{f}$
$\exists X \in \Gamma\left(\mathcal{T}^{E} W_{f}\right): \quad\left(i_{X} \Omega_{0}=d^{\mathcal{T}^{E}} W_{0} H_{W_{0}}\right)_{\mid W_{t}}$


## Vakonomic Mechanics on Lie algebroids

$\triangleright$ We analyze the case $W_{f}=W_{1}$
Denote $\Omega_{1}$ the restriction of $\Omega_{0}$ to $\mathcal{T}^{E} W_{1}$

## Theorem

If $\Omega_{1}$ is a symplectic 2 -section on the Lie algebroid $\mathcal{T}^{E} W_{1} \rightarrow W_{1}$ then there exists a unique section $\xi_{1}$ of $\mathcal{T}^{E} W_{1} \rightarrow W_{1}$ whose integral curves are solutions of the vakonomic equations for the system $(L, M)$. In fact, if $H_{W_{1}}$ is the restriction to $W_{1}$ of the Pontryagin Hamiltonian $H_{W_{0}}$ then $\xi_{1}$ is the Hamiltonian section of $H_{W_{1}}$ with respect to the symplectic section $\Omega_{1}$, that is,

$$
i_{\xi_{1}} \Omega_{1}=d^{\mathcal{T}^{E} W_{1}} H_{W_{1}}
$$

## Vakonomic Mechanics on Lie algebroids

## Definition

The vakonomic system $(L, M)$ on the Lie algebroid $\tau: E \rightarrow Q$ is said to be regular if $\Omega_{1}$ is a symplectic 2 -section of the Lie algebroid $\mathcal{T}^{E} W_{1} \rightarrow W_{1}$.

## Vakonomic Mechanics on Lie algebroids

## Definition

The vakonomic system $(L, M)$ on the Lie algebroid $\tau: E \rightarrow Q$ is said to be regular if $\Omega_{1}$ is a symplectic 2 -section of the Lie algebroid $\mathcal{T}^{E} W_{1} \rightarrow W_{1}$.

## Proposition

$\Omega_{1}$ is a symplectic section of the Lie algebroid $\mathcal{T}^{E} W_{1}$ if and only if for any system of coordinates $\left(x^{i}, y_{\alpha}, y^{a}\right)$ on $W_{0}$ we have that

$$
\operatorname{det}\left(\frac{\partial^{2} \tilde{L}}{\partial y^{a} \partial y^{b}}-y_{A} \frac{\partial^{2} \Psi^{A}}{\partial y^{a} \partial y^{b}}\right) \neq 0, \text { for all point in } W_{1} .
$$

Denote

$$
\mathcal{R}_{a b}=\frac{\partial \tilde{L}}{\partial y^{a} \partial y^{b}}-y_{A} \frac{\partial^{2} \psi^{A}}{\partial y^{a} \partial y^{b}}, \quad \text { for all } a \text { and } b
$$

## Vakonomic Mechanics on Lie algebroids

- If the vakonomic system $(L, M)$ is regular

$$
\begin{gathered}
\Downarrow \\
\operatorname{det}\left(\mathcal{R}_{a b}\right) \neq 0 \\
\Downarrow
\end{gathered}
$$

( $x^{i}, y_{\alpha}, y^{a}$ ) are local coordinates on an open subset of $W_{0}$ s.t.
$\left(x^{i}, y_{\alpha}\right)$ are local coordinates on $W_{1} \quad\left(y^{a}=\mu^{a}\left(x^{i}, y_{\alpha}\right)\right)$
$\left\{\mathcal{Y}_{\alpha 1}, \mathcal{U}_{\alpha 1}\right\}$ is a local basis of $\Gamma\left(\mathcal{T}^{E} W_{1}\right)$
If $\nu_{1}: W_{1} \rightarrow Q$ is the canonical projection and $\left(\llbracket \cdot, \cdot \rrbracket^{\nu_{1}}, \rho^{\nu_{1}}\right)$ is the Lie algebroid structure on $\mathcal{T}^{E} W_{1} \rightarrow W_{1}$ :

$$
\begin{gathered}
\llbracket \mathcal{Y}_{\alpha 1}, \mathcal{Y}_{\beta 1} \rrbracket \rrbracket^{\nu_{1}}=\mathcal{C}_{\alpha \beta}^{\gamma} \mathcal{Y}_{\gamma 1} \\
\rho^{\nu_{1}}\left(\mathcal{Y}_{\alpha 1}\right)=\rho_{\alpha}^{i} \frac{\partial}{\partial x^{i}} \quad \rho^{\nu_{1}}\left(\mathcal{U}_{\alpha 1}\right)=\frac{\partial}{\partial y_{\alpha}}
\end{gathered}
$$

## Vakonomic Mechanics on Lie algebroids

$\left\{\mathcal{Y}_{1}^{\alpha}, \mathcal{U}_{1}^{\alpha}\right\}$ the dual basis of $\left\{\mathcal{Y}_{\alpha 1}, \mathcal{U}_{\alpha 1}\right\}$ :

$$
\begin{aligned}
& \Omega_{1}=\mathcal{Y}_{1}^{\alpha} \wedge \mathcal{U}_{1}^{\alpha}+\frac{1}{2} \mathcal{C}_{\alpha \beta}^{\gamma} y_{\gamma} \mathcal{Y}_{1}^{\alpha} \wedge \mathcal{Y}_{1}^{\beta} \\
& \Downarrow \\
& \xi_{1}\left(x^{j}, y_{\beta}\right)=\mu^{a}\left(x^{j}, y_{\beta}\right) \mathcal{Y}_{a 1}+\Psi^{A}\left(x^{j}, \mu^{a}\left(x^{j}, y_{\beta}\right)\right) \mathcal{Y}_{A 1} \\
&-\left[\mathcal{C}_{\alpha a}^{b} y_{b} \mu^{a}\left(x^{j}, y_{\beta}\right)+\mathcal{C}_{\alpha A}^{b} y_{b} \Psi^{A}\left(x^{j}, \mu^{a}\left(x^{j}, y_{\beta}\right)\right)\right. \\
&\left.+\rho_{\alpha}^{i}\left(y_{A} \frac{\partial \Psi^{A}}{\partial x^{i}}{ }_{\mid\left(x^{j}, \mu^{a}\left(x x^{j}, y_{\beta}\right)\right)}-\frac{\partial \tilde{L}}{\partial x^{i}}{ }_{\left.\mid\left(x^{j}, \mu^{a}(x), y_{\beta}\right)\right)}\right)\right] \mathcal{U}_{\alpha 1}
\end{aligned}
$$

## Vakonomic Mechanics on Lie algebroids

- The vakonomic bracket associated with the system $(L, M)$

$$
\begin{aligned}
& \{\cdot, \cdot\}_{(L, M)}: C^{\infty}\left(W_{1}\right) \times C^{\infty}\left(W_{1}\right) \rightarrow C^{\infty}\left(W_{1}\right) \\
& \left\{F_{1}, G_{1}\right\}_{(L, M)}=\Omega_{1}\left(\mathcal{H}_{F_{1}}^{\Omega_{1}}, \mathcal{H}_{G_{1}}^{\Omega_{1}}\right)=\rho^{\nu_{1}}\left(\mathcal{H}_{G_{1}}^{\Omega_{1}}\right)\left(F_{1}\right)
\end{aligned}
$$

$\mathcal{H}_{F_{1}}^{\Omega_{1}}$ being the Hamiltonian section of $F_{1}$ with respect to $\Omega_{1}$

## Theorem

The vakonomic bracket $\{\cdot, \cdot\}_{(L, M)}$ associated with a regular vakonomic system is a Poisson bracket on $W_{1}$. Moreover, if $F_{1} \in C^{\infty}\left(W_{1}\right)$ then the temporal evolution of $F_{1}, \dot{F}_{1}$, is given by

$$
\dot{F}_{1}=\left\{F_{1}, H_{W_{1}}\right\}_{(L, M)}
$$

Note that $\xi_{1}=\mathcal{H}_{H_{w_{1}}}^{\Omega_{1}}$

## Vakonomic Mechanics on Lie algebroids

Locally,

$$
\left\{F_{1}, G_{1}\right\}_{(L, M)}=\rho_{\alpha}^{i}\left(\frac{\partial F_{1}}{\partial x^{i}} \frac{\partial G_{1}}{\partial y_{\alpha}}-\frac{\partial F_{1}}{\partial y_{\alpha}} \frac{\partial G_{1}}{\partial x^{i}}\right)-\mathcal{C}_{\alpha \beta}^{\gamma} y_{\gamma} \frac{\partial F_{1}}{\partial y_{\alpha}} \frac{\partial G_{1}}{\partial y_{\beta}}
$$

## Corollary

If $(L, M)$ is a regular vakonomic system on a Lie algebroid $E$ then the restriction $\left(\pi_{1}\right)_{\mid W_{1}}: W_{1} \rightarrow E^{*}$ of $\pi_{1}: W_{0} \rightarrow E^{*}$ to $W_{1}$ is a local Poisson isomorphism.
Moreover, if $\mathcal{T}\left(\pi_{1}\right)_{\mid W_{1}}: \mathcal{T}^{E} W_{1} \rightarrow \mathcal{T}^{E} E^{*}$ is the corresponding prolongation then the pair $\left(\mathcal{T}\left(\pi_{1}\right)_{\mid W_{1}},\left(\pi_{1}\right)_{\mid W_{1}}\right)$ is a local symplectomorphism between the symplectic Lie algebroids $\left(\mathcal{T}^{E} W_{1}, \Omega_{1}\right)$ and ( $\left.\mathcal{T}^{E} E^{*}, \Omega_{E}\right)$.

## Vakonomic Mechanics on Lie algebroids from a variational point of view

$\tau: E \rightarrow Q$ a Lie algebroid and $L: E \rightarrow \mathbb{R}$ a Lagrangian function
E. E. Martínez, preprint arXiv:math-ph/0603028.
$\triangleright$ The set of $E$-paths:

$$
\mathcal{A d m}\left(\left[t_{0}, t_{1}\right], E\right)=\left\{\boldsymbol{a}:\left[t_{0}, t_{1}\right] \rightarrow E \left\lvert\, \rho \circ \boldsymbol{a}=\frac{d}{d t}(\tau \circ \boldsymbol{a})\right.\right\}
$$

- $a_{0}, a_{1} \in \mathcal{A d m}\left(\left[t_{0}, t_{1}\right], E\right)$ are $E$-homotopic if there exists a Lie algebroid morphism

$$
\Phi: T[0,1] \times T\left[t_{0}, t_{1}\right] \rightarrow E
$$

such that if $a(s, t)=\Phi\left(\left.\partial_{t}\right|_{(s, t)}\right)$ and $b(s, t)=\Phi\left(\left.\partial_{s}\right|_{(s, t)}\right)$, then

$$
a(0, t)=a_{0}(t), \quad a(1, t)=a_{1}(t), \quad b\left(s, t_{0}\right)=0, \quad b\left(s, t_{1}\right)=0
$$

$\mathcal{P}\left(\left[t_{0}, t_{1}\right], E\right) \equiv \mathcal{A d m}\left(\left[t_{0}, t_{1}\right], E\right)$ with the second differentiable Banach manifold structure induced by the $E$-homotopy classes

For $a \in \mathcal{P}\left(\left[t_{0}, t_{1}\right], E\right):$

$$
T_{a} \mathcal{P}\left(\left[t_{0}, t_{1}\right], E\right)=\left\{\eta^{c} \in T_{a} \mathcal{A} d m\left(\left[t_{0}, t_{1}\right], E\right) \mid \eta\left(t_{0}\right)=0, \eta\left(t_{1}\right)=0\right\}
$$

- If $\left\{e_{\alpha}\right\}$ is a local basis of $\Gamma(E)$ and $\eta$ is a time-dependent section locally given by $\eta=\eta^{\alpha} \boldsymbol{e}_{\alpha}$, then the complete lift of $\eta$

$$
\eta^{c}=\eta^{\alpha} \rho_{\alpha}^{i} \frac{\partial}{\partial \boldsymbol{x}^{i}}+\left(\rho_{\beta}^{i} \frac{\partial \eta^{\gamma}}{\partial \boldsymbol{x}^{i}}-\eta^{\alpha} \mathcal{C}_{\alpha \beta}^{\gamma}\right) y^{\beta} \frac{\partial}{\partial \boldsymbol{y}^{\gamma}}
$$

Fix $x, y \in Q$ :
$\mathcal{P}\left(\left[t_{0}, t_{1}\right], E\right)_{x}^{y}=\left\{a \in \mathcal{P}\left(\left[t_{0}, t_{1}\right], E\right) \mid \tau\left(a\left(t_{0}\right)\right)=x, \tau\left(a\left(t_{1}\right)\right)=y\right\}$

- The action functional $\delta S: \mathcal{P}\left(\left[t_{0}, t_{1}\right], E\right) \rightarrow \mathbb{R}$

$$
\delta S(a)=\int_{t_{0}}^{t_{1}} L(a(t)) d t
$$

- $(L, M)$ vakonomic system on the Lie algebroid $\tau: E \rightarrow Q$ $\Downarrow$ infinitesimal variations are complete lifts $\eta^{c}$ tangent to $M$

$$
\begin{aligned}
& \forall\left(M \text { locally defined by } y^{A}-\Psi^{A}\left(x^{i}, y^{a}\right)=0\right) \\
& \eta^{C}\left(y^{A}-\Psi^{A}\left(x^{i}, y^{a}\right)\right)=0
\end{aligned}
$$

or, equivalently,

$$
\frac{d \eta^{A}}{d t}=\rho_{\alpha}^{i} \eta^{\alpha} \frac{\partial \Psi^{A}}{\partial x^{i}}+\frac{d \eta^{a}}{d t} \frac{\partial \Psi^{A}}{\partial y^{a}}+\mathcal{C}_{\beta \alpha}^{a} y^{\beta} \eta^{\alpha} \frac{\partial \Psi^{A}}{\partial y^{a}}-\mathcal{C}_{\beta \alpha}^{A} y^{\beta} \eta^{\alpha}
$$

$$
\mathcal{P}(M)=\left\{a: I \rightarrow M \mid a(t)=\left(x^{i}(t), y^{A}(t)\right) \text { s.t. } \dot{x}^{i}(t)=\rho_{A}^{i} y^{A}(t)\right\}
$$

- The action $\quad \delta S: \mathcal{P}(M) \rightarrow \mathbb{R}$

$$
a(t) \mapsto \int L(a(t)) d t
$$

We look for the critical points of the action $\delta S$ :

$$
\left.\begin{array}{c}
\left.\frac{d}{d s} \right\rvert\, s=0
\end{array} \int \begin{array}{c}
L\left(a_{s}(t)\right) d t=0 \\
\Downarrow
\end{array}\right\} \begin{aligned}
& \dot{x}^{i}=y^{a} \rho_{a}^{i}+\Psi^{A} \rho_{A}^{i} \\
& \dot{y}_{A}=\left(\frac{\partial \tilde{L}}{\partial x^{i}}-y_{B} \frac{\partial \Psi^{B}}{\partial x^{i}}\right) \rho_{A}^{i}-y^{a} \mathcal{C}_{A a}^{\beta} y_{\beta}-\Psi^{B} \mathcal{C}_{A B}^{\beta} y_{\beta} \\
& \frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial y^{a}}-y_{A} \frac{\partial \Psi^{A}}{\partial y^{a}}\right)=\left(\frac{\partial \tilde{L}}{\partial x^{i}}-y_{A} \frac{\partial \Psi^{A}}{\partial x^{i}}\right) \rho_{a}^{i}-y^{b} \mathcal{C}_{a b}^{\beta} y_{\beta}-\Psi^{A} \mathcal{C}_{a A}^{\beta} y_{\beta} \\
& \text { with } y_{a}=\frac{\partial \tilde{L}}{\partial y^{a}}-y_{A} \frac{\partial \Psi^{A}}{\partial y^{a}}, \text { that is, the vakonomic equations for the } \\
& \text { vakonomic system }(L, M) \text { on the Lie algebroid } \tau: E \rightarrow Q
\end{aligned}
$$

## Vakonomic Mechanics on Lie algebroids

## Example (The tangent bundle to a manifold)

$Q$ a differentiable manifold
$\tau_{Q}: T Q \rightarrow Q$ is a Lie algebroid with the structure $([\cdot, \cdot], I d)$ ( $q^{i}$ ) local coordinates on $Q$
$\left\{\frac{\partial}{\partial q^{\prime}}\right\}$ local basis of $\tau_{Q}: T Q \rightarrow Q$
$\Downarrow$

$$
\rho_{j}^{i}=\delta_{i j} \text { and } \mathcal{C}_{i j}^{k}=0
$$

$\Downarrow$
The classical vakonomic equations

$$
\left\{\begin{aligned}
\dot{q}^{A} & =\Psi^{A}\left(q^{i}, \dot{q}^{a}\right) \\
\dot{p}_{A} & =\frac{\partial \tilde{L}}{\partial q^{A}}-p_{B} \frac{\partial \Psi^{B}}{\partial q^{A}} \\
\frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial \dot{q}^{a}}-p_{A} \frac{\partial \Psi^{A}}{\partial \dot{q}^{a}}\right) & =\frac{\partial \tilde{L}}{\partial q^{a}}-p_{B} \frac{\partial \Psi^{B}}{\partial q^{a}}
\end{aligned}\right.
$$

## Vakonomic Mechanics on Lie algebroids

## Example (Lie algebras of finite dimension)

( $\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, 0$ ), being $\mathfrak{g}$ a Lie algebra of dimension $n$
$\mathfrak{C}$ affine subspace of $\mathfrak{g}$ modelled over the vector space $C$

$$
\operatorname{dim} C=n-\bar{m} \text { and } e_{0} \in \mathfrak{C}, e_{0} \neq 0
$$

- $\left\{e_{\alpha}\right\}=\left\{e_{a}, e_{0}, e_{\bar{a}}\right\}=\left\{e_{a}, e_{A}\right\}$ basis of $\mathfrak{g}$ such that $\left\{e_{a}\right\}$ basis of $C$ and $\left[e_{\alpha}, e_{\beta}\right]=\mathcal{C}_{\alpha \beta}^{\gamma} e_{\gamma}$
$\left(y^{a}, y^{0}, y^{\bar{a}}\right)=\left(y^{a}, y^{A}\right)$ coordinates on $\mathfrak{g}$
$\mathfrak{C}$ given by the equations: $y^{0}=1, \quad y^{\bar{a}}=0$
$\left(y_{a}, y_{0}, y_{\bar{a}}\right)=\left(y_{a}, y_{A}\right)$ dual coordinates on $\mathfrak{g}^{*}$
$L: \mathfrak{g} \rightarrow \mathbb{R}$ Lagrangian function
$\tilde{L}: \mathfrak{C} \rightarrow \mathbb{R}$ the restriction of $L$ to $\mathfrak{C}$


## Vakonomic Mechanics on Lie algebroids

## Example (Lie algebras of finite dimension)

$\sigma: t \mapsto\left(y^{a}(t), y^{0}(t), y^{\bar{a}}(t)\right)=\left(y^{a}(t), 1,0, \ldots, 0\right)$ a curve in $\mathfrak{C}$ is a solution of the constrained system $(L, \mathfrak{C})$ if and only if

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial y^{a}}\right)=-\frac{\partial \tilde{L}}{\partial y^{c}}\left(y^{b} \mathcal{C}_{a b}^{c}+\mathcal{C}_{a 0}^{c}\right)-y_{B}\left(y^{b} \mathcal{C}_{a b}^{B}+\mathcal{C}_{a 0}^{B}\right) \\
\dot{y}_{A}=-\frac{\partial \tilde{L}}{\partial y^{c}}\left(y^{b} \mathcal{C}_{A b}^{c}+\mathcal{C}_{A 0}^{c}\right)-y_{B}\left(y^{b} \mathcal{C}_{A b}^{B}+\mathcal{C}_{A 0}^{B}\right)
\end{array}\right.
$$

The curve in $\mathfrak{g}^{*} \quad \gamma: t \mapsto\left(\frac{\partial \tilde{L}}{\partial y^{a}}{ }_{\mid \sigma(t)}, y_{A}(t)\right)=\frac{\partial \tilde{L}}{\partial y}(\sigma(t))+\lambda(t)$

$$
\lambda(t)=\left(0, y_{A}(t)\right) \in C^{\circ}
$$

Then $\gamma$ satisfies the Euler-Poincaré equations

$$
\frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial y}+\lambda\right)=a d_{\sigma}^{*}\left(\frac{\partial \tilde{L}}{\partial y}+\lambda\right)
$$

"Optimization Theorem for Nonholonomic Systems on Lie groups" W-S. Koon, J.E. Marsden, SIAM J. Control Optim. 35 (1997) 901-929.

## Vakonomic Mechanics on Lie algebroids

## Example (Atiyah Lie algebroids)

$\pi: Q \rightarrow M$ principal bundle with structural group $G$
$\tau_{Q \mid G}: T Q / G \rightarrow M$ the associated Atiyah Lie algebroid
$\Downarrow$
"The reduced Lagrangian Optimization Theorem for Nonholonomic Systems"
W-S. Koon, J.E. Marsden, SIAM J. Control Optim. 35 (1997) 901-929.

