Nonholonomic constraints: a comparison of mechanical and variational systems

Witold Respondek

Laboratory of Mathematics, INSA de Rouen FRANCE

Będlewo, August 19-26, 2007

Aim

- To discuss systems subject to nonholonomic constraints
- To overview two methods of obtaining equations via: illustrative examples, discussing differences, and providing geometric interpretations
- A large (but non-smooth) variety of contributions: Bloch, Lewis, Bullo, Marsden, Ratiu, Koon, Crouch, Montgomery, Koiler, Vershik, Gershkovich, Fadeev, Bates, Sniatycki, Cardin, Favretti, Marmo, Tulczyjew, Cantrijn, Carinena, Cortes, de Leon, de Diego, Martinez, vdSchaft, Maschke, Marle, Kupka, Oliva.
- Pictures are from A.M. Bloch, Nonholonomic Mechanics and Control, Springer, 2003.

Plan

- Nonholonomic constraints
- Mechanical nonholonomic equations MNH
- Variational nonholonomic equations VNH
- Examples (rolling disk, knife edge, Chaplygin sleigh)
- Poisson geometry of MNH systems
- Projected connection for MNH
- VNH systems and sub-Riemannian geometry
- Conclusions

Notations

Q $L: TQ \times \mathbb{R} \longrightarrow \mathbb{R}$ $C^{2}(q_{1}, q_{2}, [T_{0}, T_{1}])$

 $C^2(q_1, q_2, [T_0, T_1], \mathcal{D})$

- a smooth *n*-dimensional configuration manifold
- lagrangian
- the space of C² curves with the end points q₁ and q₂
 the space of C² - horizontal curves (i.e., tangent to D,
 - with the end points q_1 and q_2
- $J: C^2(q_1, q_2, [T_0, T_1]) \longrightarrow \mathbb{R}$ functional

 $c \mapsto J(c) = \int_{T_0}^{T_1} L(c(t), \dot{c}(t), t) dt.$

Hamilton's principle

A curve $c \in C^2(q_1, q_2, [T_0, T_1])$ describes a motion if it is a critical point of J, i.e.,

$$\mathrm{d}J(c)\cdot u = 0$$

for every $u \in T_c C^2(q_1, q_2, [T_0, T_1])$, the tangent space at c, consisting of

- $u: [T_0, T_1] \longrightarrow TQ$
- $\pi_Q(u) = c$
- $\pi(T_0) = \pi(T_1) = 0$

Equivalently, c = q(t) satisfies

EL)
$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0 \ (=F_{ext}).$$

Constraints

Problem: How does the picture change if a system is subject to constraints?

- General constraints (on velocities) are represented by $\mathcal{D} \subset TQ$ (subset, submanifold);
- Throughout the talk: \mathcal{D} is a distribution, i.e., a subbundle of TQ of constant rank m.
- The annihilator of \mathcal{D} is a co-distribution, of rank k = n m,

$$I = \operatorname{span} \left\{ \omega^1, \dots, \omega^k \right\}$$

- The system moves such that along any its trajectory c, the velocity \dot{c} remains in \mathcal{D} , i.e., $\dot{c}(t) \in \mathcal{D}(c(t))$; c is horizontal.
- Equivalently $\omega^a(\dot{q}) = 0$, for $1 \le a \le k$.

Example: unicycle, knife edge

The instantaneous velocity of the point of contact is parallel to the unicycle, i.e.,

 $\omega = \sin\theta \,\mathrm{d}x - \cos\theta \mathrm{d}y$

annihilates the velocity $(\dot{x}, \dot{y}, \dot{\theta})^T$, that is,

 $\sin\theta \, \dot{x} = \cos\theta \, \dot{y}.$

The configuration manifold $Q = \mathbb{R}^2 \times S^1$ is of dimension 3, the space $\mathcal{D}(q)$ of admissible velocities at each $q \in Q$ is of dimension 2.

Holonomic and nonholonomic constraints

• Constraints are called holonomic if, locally, there exists a \mathbb{R}^k -valued function $h = (h^1, \dots, h^k)$ such that $\omega^a(\dot{q}) = 0$ is equivalent to

$$\frac{\partial h}{\partial q} \cdot \dot{q} = 0$$

(which foliates Q into the integral leaves of \mathcal{D});

- Otherwise, the constraints are called nonholonomic;
- The distinction of the two categories and the names were proposed by Herz in 1894:

όλοξ (whole, integral) νομοξ (law, principle)

How to derive equations?

- How to describe motions of a system subject to nonholonomic constraints, in other words, how to modify (E-L)?
- Two basic methods leading to, respectively, Mechanical Nonholonomic equations MNH and Variational Nonholonomic equations VNH
- MNH based on d'Alambert principle of virtual work: Constraint forces do not work on all motions allowed by the constraints. It follows that the constraint force $F_{constr} = \lambda_a \omega^a$, for some functions $\lambda_a = \lambda_a(t)$.

Mechanical nonholonomic problem: formulation

Definition 1 A horizontal curve $c \in C^2(q_1, q_2, [T_0, T_1], \mathcal{D})$ solves the mechanical nonholonomic problem MNH if

 $\mathrm{d}J(c)\cdot u = 0$

for every $u \in X_c(q_1, q_2, [T_0, T_1], \mathcal{D})$, where X_c consists of

- $u: [T_0, T_1] \longrightarrow TQ$
- $\pi_Q(u) = c$
- $\pi(T_0) = \pi(T_1) = 0$
- $u(t) \in \mathcal{D}(c(t))$

i.e., u is an element of the tangent space $T_c C^2(q_1, q_2, [T_0, T_1])$ and is horizontal.

Mechanical nonholonomic problem: characterization

Proposition 1 The following conditions are equivalent:

(i) a curve c solves the MNH problem;

(ii) c satisfies

$$\left[\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} - \frac{\partial l}{\partial q}\right]u = 0,$$

for every $u \in X_c(q_1, q_2, [T_0, T_1], \mathcal{D});$ (iii) c satisfies

$$(MNH - EL) \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \lambda_a \omega^a,$$

where $\mathcal{D} = \ker\{\omega^1(q), \ldots, \omega^{n-k}(q)\}.$

• We apply the constraints *after* making J stationary.

Variational nonholonomic problem: formulation

VNH method based on the following minimization problem:

minimize J on the space $c \in C^2(q_1, q_2, [T_0, T_1], \mathcal{D})$.

Definition 2 A horizontal curve $c \in C^2(q_1, q_2, [T_0, T_1], \mathcal{D})$ solves the variational nonholonomic problem VNH if c is a critical point of the restriction $J|_{C^2(q_1, q_2, [T_0, T_1], \mathcal{D})}$.

The method of Lagrange multipliers: put

$$\mathcal{L}(q, \dot{q}, t) = L(q, \dot{q}, t) - \mu_a \omega^a(\dot{q}).$$

Like in minimizing $F: Q \longrightarrow \mathbb{R}$ subject to $q \in M = \{g = 0\}, M$ a submanifold, we form $\mathcal{F} = F - \mu_a g^a$.

Variational nonholonomic problem: characterization

Proposition 2 The following conditions are equivalent:

- (i) a curve c solves the VNH problem;
- (ii) c satisfies

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial \mathcal{L}}{\partial q} = 0;$$

(iii) c satisfies

- $(VNH EL) \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} \frac{\partial L}{\partial q} = \dot{\mu}_a \omega^a \mu_a (\dot{q} \lrcorner \mathrm{d}\omega^a).$
- We apply the constraints *before* making J stationary.

Problems

- Do (MNH-EL) and (VNH-EL) give the same solutions?
 It does not seem to be case: (VNH-EL) involves the derivatives μ_a of the multipliers.
- If not, which does describe physical systems?
- What are geometric interpretations of (MNH-EL) and (VNH-EL)?

FIGURE 1.4.1. The geometry of the rolling disk.

Rolling disk

- $Q = SE(2) \times S^1 = \mathbb{R}^2 \times S^1 \times S^1$ the configuration manifold Q is the group of planar rigid motions times the circle
- $L = T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + \frac{1}{2}I\dot{\theta}^2 + \frac{1}{2}J\dot{\phi}^2$, where *m* is the mass, *I* and *J* are inertia momenta.
- nonholonomic constraints:

 $\dot{x} = R(\cos \phi)\dot{\theta}$ $\dot{y} = R(\sin \phi)\dot{\theta}.$

Nonholonomic constraints

The nonholonomic constraints:

$$\dot{x} = R(\cos \phi)\dot{\theta}$$
$$\dot{y} = R(\sin \phi)\dot{\theta}$$

define, respectively, the differential 1-forms

$$\omega^{1} = \mathrm{d}x - R\cos\phi \,\mathrm{d}\theta$$
$$\omega^{2} = \mathrm{d}y - R\sin\phi \,\mathrm{d}\theta,$$

yielding the constraint distribution

$$\mathcal{D} = \operatorname{span} \left\{ \frac{\partial}{\partial \theta} + R \cos \phi \frac{\partial}{\partial x} + R \sin \phi \frac{\partial}{\partial y}, \frac{\partial}{\partial \phi} \right\}.$$

Rolling disk MNH-solutions

Solutions of $J\ddot{\phi} = 0$ $(I+mR^2)\ddot{\theta}=0$ $\dot{x} = R\cos\phi \,\,\dot{\theta}$ $\dot{y} = R\cos\phi \ \dot{\theta},$ $\phi = \omega t + \phi_0$ are $\theta = \Omega t + \theta_0$ $x = \frac{\Omega}{\omega} R \sin(\omega t + \phi_0) + x_0$ $y = \frac{\Omega}{\omega} R \cos(\omega t + \phi_0) + y_0.$

Rolling disk: VNH-equations

$$(VNH - EL) \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \mu_a \omega^a - \mu_a (\dot{q} \lrcorner \mathrm{d}\omega^a).$$

applied to the lagrangian

$$\mathcal{L} = L + \mu_1 (\dot{x} - R\dot{\theta}\cos\phi) + \mu_2 (\dot{y} - R\dot{\theta}\sin\phi)$$

gives the following equations

$$\begin{split} m\ddot{x} &= -\dot{\mu}_1 \ (\Rightarrow \mu_1 = -mR\cos\phi + A) \\ m\ddot{y} &= -\dot{\mu}_2 \ (\Rightarrow \mu_2 = -mR\sin\phi + B) \\ J\ddot{\phi} &= R\dot{\theta}(A\sin\phi - B\cos\phi) \\ (I + mR^2)\ddot{\theta} &= R\dot{\phi}(-A\sin\phi + B\cos\phi). \end{split}$$

A comparison of solutions

VNH $J\ddot{\phi} = R\dot{\theta}(A\sin\phi - B\cos\phi)$ $(I + mR^2)\ddot{\theta} = R\dot{\phi}(-A\sin\phi + B\cos\phi),$ MNH $J\ddot{\phi}=0$ $(I + mR^2)\ddot{\theta} = 0,$ constraints (the same for both) $\dot{x} = R\cos\phi \,\dot{\theta}$ $\dot{y} = R\cos\phi \ \dot{\theta}.$

A comparison of solutions - cont.

- For $A \neq 0$, $B \neq 0$ the trajectories of the VNH rolling disk are not solutions of the MNH rolling disk;
- A and B are determined neither by the nonholonomic constraints nor be the initial condition (velocity and configuration) of the system: there are many trajectories issued by the same initial condition. They are determined by μ₁(0) and μ₂(0).
- We are tempted to believe that real physical systems realize the trajectories of MNH (and *not* those of VNH);
- Not always the MNH-trajectories form a proper subset of the VNH-trajectories.

FIGURE 1.6.1. Motion of a knife edge on an inclined plane.

Knife edge (skate) on inclined plane

- $Q = \mathbb{R}^2 \times S^1$
- $L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + \frac{1}{2}J\dot{\phi}^2 + mgy\sin\alpha$, where *m* is the mass, *J* the inertia moment (about the vertical axis through the point of contact)
- nonholonomic constraint: $\dot{y}\sin\phi = \dot{x}\cos\phi$ defines the differential 1-form

$$\omega = \sin \phi \, \mathrm{d}y - \cos \phi \, \mathrm{d}x$$

yielding the constraint distribution

$$\mathcal{D} = \operatorname{span} \{ \cos \phi \frac{\partial}{\partial y} + \sin \phi \frac{\partial}{\partial x}, \frac{\partial}{\partial \phi} \}.$$

$$\begin{array}{ll} \textbf{Knife edge: MNH-equations} \\ (MNH-EL) & \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \lambda_a \omega^a, \\ \text{gives the following equations} \\ & m\ddot{x} = -\lambda\cos\phi \\ & m\ddot{y} = \lambda\sin\phi + yg\sin\alpha \\ & J\ddot{\phi} = 0, \\ \text{together with the constraint} \\ & \dot{y}\sin\phi = \dot{x}\cos\phi. \\ \text{How does the contact point } x(t), y(t) \text{ move assuming that } \dot{x}(0) = \\ & \dot{y}(0) = \phi(0) = 0 \text{ and } \dot{\phi}(0) = \omega? \end{array}$$

The solution is

$$\begin{split} \phi(t) &= \omega t, \\ x(t) &= \frac{g}{2\omega^2} \sin \alpha (\omega t - \frac{1}{2} \sin 2\omega t) \\ y(t) &= \frac{g}{2\omega^2} \sin \alpha \sin^2 \omega t; \end{split}$$

The point of contact undergoes a *cycloid* motion, in particular, does not (in average) slide down the plane;

$$0 \le |y(t)| \le \frac{g}{2\omega^2} \sin \alpha.$$

Knife edge: VNH-equations

The constrained Lagrangian

$$\mathcal{L} = L - \mu\omega(\dot{q}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + \frac{1}{2}J\dot{\phi}^2 + mgy\sin\alpha - \mu(\dot{y}\sin\phi - \dot{x}\cos\phi)$$

leads, via

$$(VNH - EL) \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \mu_a \omega^a - \mu_a (\dot{q} \lrcorner \mathrm{d}\omega^a),$$

to the equations (assuming $\dot{\phi}(0) = \omega$ and $p_x(0) = p_y(0) = 0$, where the momenta are defined by $p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}}$ and $p_y = \frac{\partial \mathcal{L}}{\partial y}$):

Knife edge: VNH-solutions

$$\dot{x} = (mg\sin\alpha\sin\phi\cos\phi)t$$
$$\dot{y} = (mg\sin\alpha\cos^2\phi)t$$
$$\ddot{\phi} = (\frac{m}{J}g\sin^2\alpha\sin\phi\cos\phi)t^2.$$

We can observe that $\phi(t)$ converges to $\frac{\pi}{2}$ and the point of contact slides monotonically down the plane.

Which solutions correspond to real physically realizable trajectories?

MNH- or VNH-trajectories are realizable physically?

• Korteweg 1899: real mechanical systems satisfy the d'Alambert principle and thus follow the trajectories of

$$(MNH - EL) \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \lambda_a \omega^a;$$

- paradoxically, MNH-EL means $\frac{d}{ds}J(c_s)|_{s=0}=0$, where the variations c_s , in general, do not satisfy $c_s(t) \in \mathcal{D}(c_s)$ (but only $u = \frac{\partial c_s}{\partial s}|_{s=0} \in \mathcal{D}(c)$);
- What are the VNH-trajectories modelling?
- How to interpret the MNH- and VNH-trajectories?

IGURE 1.7.1. The Chaplygin sleigh is a rigid body moving on two sliding post ne knife edge.

Chaplygin sleigh

- $Q = \mathbb{R}^2 \times S^1$
- $L = \frac{1}{2}m(\dot{x}_{mc}^2 + \dot{y}_{mc}^2) + \frac{1}{2}I\dot{\theta}^2$, where *m* is the mass, (x_{mc}, y_{mc}) the mass center, *I* the inertia moment (about the center of mass), (x, y) is the point of contact, where $x = x_{mc} a\cos\theta$, $y = y_{mc} a\sin\theta$.
- nonholonomic constraint:

$$\dot{x}\sin\phi = \dot{y}\cos\phi.$$

• The angular velocity

$$\omega = \dot{\theta}$$

and the velocity in the direction of motion

$$v = \dot{x}\cos\theta + \dot{y}\sin\theta$$

satisfy the momentum equation

$$\dot{v} = a\omega^2,$$

$$\dot{\omega} = -\frac{ma}{I + ma^2}v\omega.$$

- In the absence of nonholonomic constraints, this equation would give conservation of angular momentum
- The equilibria form the curve $\{\omega = 0\}$ and the eigenvalues of the linearization around any of these equilibria are $\lambda_1 = 0, \lambda_2 \neq 0$ showing a "dissipative" nature of nonholonomic systems: integral curves are ellipses along which the system converges towards positive *v*-axis.
- Are MNH systems hamiltonian?

Hamiltonian description of MNH systems

Consider

$$(MNH - EL) \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \lambda_a \omega^a,$$

together with constraints

$$\omega^a(\dot{q}) = 0.$$

Define the hamiltonian $H : T^*Q \longrightarrow \mathbb{R}$ by H = (p,q) - L and the Legendre transformation $\mathcal{LT} : TQ \longrightarrow T^*Q$ by $p = \mathcal{LT}(v_q) = \frac{\partial L}{\partial \dot{q}}$.

The constraints $\omega^a(\dot{q}) = 0$ define

$$\mathcal{M} = \{(q, p) : \omega^a(\frac{\partial H}{\partial p}) = 0\} \subset T^*Q.$$

Restrict the hamiltonian system from T^*Q to \mathcal{M} :

- Denote by $T_{\mathcal{M}}(T^*Q)$ the restriction of $T(T^*Q)$ to $\mathcal{M} \subset T^*Q$;
- Represent $T_{\mathcal{M}}(T^*Q) = T\mathcal{M} \bigoplus \mathcal{V}$, where \mathcal{V} is the vertical bundle;
- Decompose the hamiltonian vector filed X_H on T^*Q restricted to \mathcal{M} as

$$X_H \mid_{\mathcal{M}} = X_{\mathcal{M}} + X_{\mathcal{V}},$$

where the vector fields $X_{\mathcal{M}}$ and $X_{\mathcal{V}}$ are smooth sections of, respectively, $T\mathcal{M}$ and \mathcal{V} .

- Project the Poisson tensor Λ on T^*Q onto \mathcal{M} and denote it $\Lambda_{\mathcal{M}}$.
- Define $\{F, G\}_{\mathcal{M}} = \Lambda_{\mathcal{M}}(\mathrm{d}F, \mathrm{d}G)$, for any smooth functions F and G on \mathcal{M} .

Proposition 3 The bracket $\{\cdot, \cdot\}_{\mathcal{M}}$

- (i) *is skew symmetric;*
- (ii) satisfies the Leibniz identity;
- (iii) satisfies the Jacobi identity if and only if the constraint distribution \mathcal{D} is involutive.

Moreover, $X_{\mathcal{M}} = \Lambda_{\mathcal{M}}^{\sharp}(\mathrm{d}H_{\mathcal{M}})$ and $H_{\mathcal{M}}$ is its first integral.

Theorem 1 The MNH-EL equation is equivalent to the hamiltonian vector field $X_{\mathcal{M}}$ via the Legendre transformation.

Back to Newton's law

$$(MNH - EL) \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \lambda_a \omega^a,$$

can be rewritten as

$$\nabla_{\dot{q}}\dot{q} = \sum \lambda_a W_a,$$

where the vector fields W_a are defined by $\langle W_a, \dot{q} \rangle = \omega^a(\dot{q}) = 0$. The constraint distribution defines a submanifold $\mathcal{N} \subset TQ$ by

$$\mathcal{N}(q) = \{ f(q) : \omega^a(f) = 0 \}.$$

Back to Newton's law

• Define $\tilde{\nabla}$, the projection of the covariant derivative ∇ on \mathcal{N} . Then c = q(t) is a motion of MNH if and only if

$$\tilde{\nabla}_{\dot{q}}\dot{q}=0$$

- Geometry of MNH: Motions of MNH are the "straightest" curves with respect to the (non-metric) connection $\tilde{\nabla}$ (Herz, 1894).
- What is a (the?) geometry of VNH?

Introducing controls

• How to parameterize $C^2(q_1, q_2, [T_0, T_1], \mathcal{D})$? Choose, locally, m vector fields f_i such that $\mathcal{D} = \text{span} \{f_1, ..., f_m\}$. Then c = q(t) is horizontal, i.e., $\dot{c} \in \mathcal{D}(c(t))$ if, in coordinates,

$$\dot{q}(t) = \sum_{i=1}^{m} u_i(t) f_i(q(t)),$$

where $u_i(t)$, for $1 \le i \le m$, are called controls.

Geometry of VNH

- Assume that L = T, i.e., $L(q, \dot{q}) = g(\dot{q}, \dot{q})$, where g is the bilinear form on TQ given by the Riemannian metric defining T. Choose the vector fields f_i to be orthonormal with respect to g, i.e., $g(f_i, f_j) = \delta_{ij}$.
- The energy of a curve c = q(t) joining $q_1 = q(T_1)$ and $q_2 = q(T_2)$ is $(I = [T_1, T_2])$

$$E(c) = \frac{1}{2} \int_{I} \|\dot{c}(t)\|^{2} dt = \frac{1}{2} \int_{I} g(\dot{q}(t), \dot{q}(t)) dt = \frac{1}{2} \int_{I} \sum_{i=1}^{m} u_{i}^{2}(t) dt$$

• With the help of g we can also define the length of a curve c

$$l(c) = \int_{I} \|\dot{c}(t)\| dt = \int_{I} (g(\dot{q}(t), \dot{q}(t)))^{\frac{1}{2}} dt$$

- We can thus endow Q with a metric d: the sub-Riemannian distance $d(q_1, q_2)$ between two pints q_1 and q_2 is the infimum of $l(\gamma)$ over all horizontal curves joining q_1 and q_2 ; provided that \mathcal{D} , together with all its iterated Lie brackets, spans T_qQ at each q (\mathcal{D} is bracket generating, completely nonholonomic, the system is controllable, Rashevsky-Chow theorem).
- Sub-Riemannian geometry problem: find horizontal curves minimizing the length $l(\gamma)$, i.e. find sub-Riemannian geodesics.
- As in Riemannian geometry, due to Cauchy-Schwartz inequality, the minimizers of both problems coincide. Namely, a horizontal curve c minimizes the energy E among all horizontal curves joining q_1 and q_2 in time T if and only if it minimizes the length l among all horizontal curves joining q_1 and q_2 and is parameterized to have constant speed $c = d(q_1, q_2)/T$.

What is the VNH problem?

The following are equivalent:

- Solve the VNH problem (with L = T).
- Solve the Sub-Riemannian geometry problem: find horizontal curves minimizing the length $l(\gamma)$, i.e. find the sub-Riemannian geodesics.
- Find horizontal curves minimizing the energy $E(\gamma)$.
- Solve the optimal control problem:

minimize
$$\frac{1}{2} \int_{I} \sum_{i=1}^{m} u_i^2(t) dt$$

subject to

$$\dot{q}(t) = \sum_{i=1}^{m} u_i(t) f_i(q(t)).$$

Sub-Riemannian problem: an example

- Consider the differential form $\alpha = \frac{1}{2}(xdy ydx)$. Then $\alpha|_R = 0$ on any ray R through the origin and $d\alpha = dx \wedge dy$
- The area A enclosed by a curve γ and a ray R is

$$A(\gamma) = \int_{\gamma} \alpha.$$

• The length of γ is

$$l(\gamma) = \int_{I} (\dot{x}^{2}(t) + \dot{y}^{2}(t))^{\frac{1}{2}} dt.$$

- **Problem:** Minimize $l(\gamma)$ subject to $A(\gamma) = a = \text{const.}$
- **Dual Problem (Dido)**: Maximize $A(\gamma)$ subject to $l(\gamma) = l$ =const.

• Add z satisfying

$$\dot{z} = \frac{1}{2}(x\dot{y} - y\dot{x}).$$

- Let c be a lift of γ (all lifts being parameterized by z(0)). Define $l(c) = l(\pi(c)) = l(\gamma)$.
- If z(0) = 0, then

$$z(T) = z(T) - z(0) = \frac{1}{2} \int_{\gamma} (x dy - y dx) = A(\gamma).$$

• Define

$$f_1 = \frac{\partial}{\partial x} - \frac{1}{2}y\frac{\partial}{\partial z}$$
 $f_2 = \frac{\partial}{\partial y} + \frac{1}{2}x\frac{\partial}{\partial z}$

and

$$\mathcal{D} = \operatorname{span} \{ f_1, f_2 \}.$$

 f_1 and f_2 and $f_3 = [f_1, f_2]$ span the Heisenberg Lie algebra (the simplest model of a non-involutive rank 2 distribution in \mathbb{R}^3).

Dido meets Heisenberg

The following problems are equivalent

- Minimize $l(\gamma)$, among all curves γ joining (0,0) and (x,y), subject to $A(\gamma) = a =$ fixed;
- Minimize $l(c) = l(\pi(c)) = l(\gamma)$, among all curves c joining (0, 0, 0)and (x, y, z) (where z = a, subject to $\dot{c}(t) = \mathcal{D}(c(t))$.
- Minimize l(c), among all curves c joining (0, 0, 0) and (x, y, z) subject to $\dot{c}(t) = \mathcal{D}(c(t))$, where f_1 and f_2 are orthonormal.

Optimal solutions

• The VNH equations give

$$\ddot{x} = 2\lambda\dot{y}$$

 $\ddot{y} = -2\lambda\dot{x}$
 $\dot{\lambda} = 0$
 $\dot{z} = 1/2(x\dot{y} - y\dot{x})$

whose solutions are circles, passing through (0,0,0), formed by (x(t), y(t)) together with

$$z(t) = \frac{ta}{T} - ta^2 \sin \frac{2\pi t}{T}.$$

The Heisenberg sphere of radius r looks like an apple!

• MNH solutions are straight lines corresponding to $\lambda = 0$.

