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Aim

• To discuss systems subject to nonholonomic constraints

• To overview two methods of obtaining equations via: illustrative

examples, discussing differences, and providing geometric interpre-

tations

• A large (but non-smooth) variety of contributions: Bloch, Lewis,

Bullo, Marsden, Ratiu, Koon, Crouch, Montgomery, Koiler, Ver-

shik, Gershkovich, Fadeev, Bates, Sniatycki, Cardin, Favretti, Marmo,

Tulczyjew, Cantrijn, Carinena, Cortes, de Leon, de Diego, Mar-

tinez, vdSchaft, Maschke, Marle, Kupka, Oliva.

• Pictures are from A.M. Bloch, Nonholonomic Mechanics and Con-

trol, Springer, 2003.
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Plan

• Nonholonomic constraints

• Mechanical nonholonomic equations MNH

• Variational nonholonomic equations VNH

• Examples (rolling disk, knife edge, Chaplygin sleigh)

• Poisson geometry of MNH systems

• Projected connection for MNH

• VNH systems and sub-Riemannian geometry

• Conclusions
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Notations

Q - a smooth n-dimensional

configuration manifold

L : TQ × R −→ R - lagrangian

C2(q1, q2, [T0, T1]) - the space of C2 − curves

with the end points q1 and q2

C2(q1, q2, [T0, T1],D) - the space of C2 − horizontal curves

(i.e., tangent to D,

with the end points q1 and q2

J : C2(q1, q2, [T0, T1]) −→ R - functional

c 7→ J(c) =
∫ T1

T0

L(c(t), ċ(t), t)dt.
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Hamilton’s principle

A curve c ∈ C2(q1, q2, [T0, T1]) describes a motion if it is a critical point

of J , i.e.,

dJ(c) · u = 0

for every u ∈ TcC
2(q1, q2, [T0, T1]), the tangent space at c, consisting

of

• u : [T0, T1] −→ TQ

• πQ(u) = c

• π(T0) = π(T1) = 0

Equivalently, c = q(t) satisfies

(EL)
d

dt

∂L

∂q̇
−

∂L

∂q
= 0 (= Fext).
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Constraints

Problem: How does the picture change if a system is subject to

constraints?

• General constraints (on velocities) are represented by D ⊂ TQ

(subset, submanifold);

• Throughout the talk: D is a distribution, i.e., a subbundle of TQ

of constant rank m.

• The annihilator of D is a co-distribution, of rank k = n − m,

I = span {ω1, . . . , ωk}

• The system moves such that along any its trajectory c, the velocity

ċ remains in D, i.e., ċ(t) ∈ D(c(t)); c is horizontal.

• Equivalently ωa(q̇) = 0, for 1 ≤ a ≤ k.
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Example: unicycle, knife edge

The instantaneous velocity of the point of contact is parallel to the

unicycle, i.e.,

ω = sin θ dx − cos θdy

annihilates the velocity (ẋ, ẏ, θ̇)T , that is,

sin θ ẋ = cos θ ẏ.

The configuration manifold Q = R
2 × S1 is of dimension 3, the space

D(q) of admissible velocities at each q ∈ Q is of dimension 2.
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Holonomic and nonholonomic constraints

• Constraints are called holonomic if, locally, there exists a R
k-

valued function h = (h1, . . . , hk) such that ωa(q̇) = 0 is equivalent

to
∂h

∂q
· q̇ = 0

(which foliates Q into the integral leaves of D);

• Otherwise, the constraints are called nonholonomic;

• The distinction of the two categories and the names were proposed

by Herz in 1894:

óλoξ (whole, integral) νoµoξ (law, principle)
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How to derive equations?

• How to describe motions of a system subject to nonholonomic

constraints, in other words, how to modify (E-L)?

• Two basic methods leading to, respectively, Mechanical Nonholo-

nomic equations MNH and Variational Nonholonomic equations

VNH

• MNH based on d’Alambert principle of virtual work: Constraint

forces do not work on all motions allowed by the constraints. It

follows that the constraint force Fconstr = λaωa, for some functions

λa = λa(t).
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Mechanical nonholonomic problem: formulation

Definition 1 A horizontal curve c ∈ C2(q1, q2, [T0, T1],D) solves the

mechanical nonholonomic problem MNH if

dJ(c) · u = 0

for every u ∈ Xc(q1, q2, [T0, T1],D), where Xc consists of

• u : [T0, T1] −→ TQ

• πQ(u) = c

• π(T0) = π(T1) = 0

• u(t) ∈ D(c(t))

i.e., u is an element of the tangent space TcC
2(q1, q2, [T0, T1]) and is

horizontal.
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Mechanical nonholonomic problem: characterization

Proposition 1 The following conditions are equivalent:

(i) a curve c solves the MNH problem;

(ii) c satisfies
[

d

dt

∂L

∂q̇
−

∂l

∂q

]

u = 0,

for every u ∈ Xc(q1, q2, [T0, T1],D);

(iii) c satisfies

(MNH − EL)
d

dt

∂L

∂q̇
−

∂L

∂q
= λaωa,

where D = ker{ω1(q), . . . , ωn−k(q)}.

• We apply the constraints after making J stationary.
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Variational nonholonomic problem: formulation

VNH method based on the following minimization problem:

minimize J on the space c ∈ C2(q1, q2, [T0, T1],D).

Definition 2 A horizontal curve c ∈ C2(q1, q2, [T0, T1],D) solves the

variational nonholonomic problem VNH if c is a critical point of the

restriction J |C2(q1,q2,[T0,T1],D).

The method of Lagrange multipliers: put

L(q, q̇, t) = L(q, q̇, t) − µaωa(q̇).

Like in minimizing F : Q −→ R subject to q ∈ M = {g = 0}, M a

submanifold, we form F = F − µaga.
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Variational nonholonomic problem: characterization

Proposition 2 The following conditions are equivalent:

(i) a curve c solves the VNH problem;

(ii) c satisfies

d

dt

∂L

∂q̇
−

∂L

∂q
= 0;

(iii) c satisfies

(V NH − EL)
d

dt

∂L

∂q̇
−

∂L

∂q
= µ̇aωa − µa(q̇ydωa).

• We apply the constraints before making J stationary.
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Problems

• Do (MNH-EL) and (VNH-EL) give the same solutions?

It does not seem to be case: (VNH-EL) involves the derivatives µ̇a

of the multipliers.

• If not, which does describe physical systems?

• What are geometric interpretations of (MNH-EL) and (VNH-EL)?
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Rolling disk

• Q = SE(2) × S1 = R
2 × S1 × S1 the configuration manifold Q is

the group of planar rigid motions times the circle

• L = T = 1
2m(ẋ2 + ẏ2) + 1

2Iθ̇2 + 1
2Jφ̇2, where m is the mass, I and

J are inertia momenta.

• nonholonomic constraints:

ẋ = R(cos φ)θ̇

ẏ = R(sinφ)θ̇.
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Nonholonomic constraints

The nonholonomic constraints:

ẋ = R(cos φ)θ̇

ẏ = R(sinφ)θ̇

define, respectively, the differential 1-forms

ω1 = dx − R cos φ dθ

ω2 = dy − R sinφ dθ,

yielding the constraint distribution

D = span {
∂

∂θ
+ R cos φ

∂

∂x
+ R sinφ

∂

∂y
,

∂

∂φ
}.
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Rolling disk MNH-equations

(MNH − EL)
d

dt

∂L

∂q̇
−

∂L

∂q
= λaωa,

gives, via eliminating λ1 and λ2, the following equations

φ̇ = vφ

Jv̇φ = 0 (= uφ)

θ̇ = vθ

(I + mR2)v̇θ = 0 (= uθ)

ẋ = R cos φ θ̇

ẏ = R cos φ θ̇,
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Rolling disk MNH-solutions

Solutions of Jφ̈ = 0

(I + mR2)θ̈ = 0

ẋ = R cos φ θ̇

ẏ = R cos φ θ̇,

are φ = ωt + φ0

θ = Ωt + θ0

x =
Ω

ω
R sin(ωt + φ0) + x0

y =
Ω

ω
R cos(ωt + φ0) + y0.
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Rolling disk: VNH-equations

(V NH − EL)
d

dt

∂L

∂q̇
−

∂L

∂q
= µaωa − µa(q̇ydωa).

applied to the lagrangian

L = L + µ1(ẋ − Rθ̇ cos φ) + µ2(ẏ − Rθ̇ sinφ)

gives the following equations

mẍ = −µ̇1 (⇒ µ1 = −mR cos φ + A)

mÿ = −µ̇2 (⇒ µ2 = −mR sinφ + B)

Jφ̈ = Rθ̇(A sinφ − B cos φ)

(I + mR2)θ̈ = Rφ̇(−A sinφ + B cos φ).
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A comparison of solutions

V NH

Jφ̈ = Rθ̇(A sinφ − B cos φ)

(I + mR2)θ̈ = Rφ̇(−A sinφ + B cos φ),

MNH

Jφ̈ = 0

(I + mR2)θ̈ = 0,

constraints (the same for both)

ẋ = R cos φ θ̇

ẏ = R cos φ θ̇.
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A comparison of solutions - cont.

• For A 6= 0, B 6= 0 the trajectories of the VNH rolling disk are not

solutions of the MNH rolling disk;

• A and B are determined neither by the nonholonomic constraints

nor be the initial condition (velocity and configuration) of the sys-

tem: there are many trajectories issued by the same initial condi-

tion. They are determined by µ1(0) and µ2(0).

• We are tempted to believe that real physical systems realize the

trajectories of MNH (and not those of VNH);

• Not always the MNH-trajectories form a proper subset of the

VNH-trajectories.
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Knife edge (skate) on inclined plane

• Q = R
2 × S1

• L = 1
2m(ẋ2 + ẏ2) + 1

2Jφ̇2 + mgy sinα, where m is the mass, J

the inertia moment (about the vertical axis through the point of

contact)

• nonholonomic constraint: ẏ sinφ = ẋ cos φ defines the differential

1-form

ω = sinφ dy − cos φ dx

yielding the constraint distribution

D = span {cos φ
∂

∂y
+ sinφ

∂

∂x
,

∂

∂φ
}.
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Knife edge: MNH-equations

(MNH − EL)
d

dt

∂L

∂q̇
−

∂L

∂q
= λaωa,

gives the following equations

mẍ = −λ cos φ

mÿ = λ sinφ + yg sinα

Jφ̈ = 0,

together with the constraint

ẏ sinφ = ẋ cos φ.

How does the contact point x(t), y(t) move assuming that ẋ(0) =

ẏ(0) = φ(0) = 0 and φ̇(0) = ω?
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The solution is

φ(t) = ωt,

x(t) =
g

2ω2
sinα(ωt −

1

2
sin 2ωt)

y(t) =
g

2ω2
sinα sin2 ωt;

The point of contact undergoes a cycloid motion, in particular, does

not (in average) slide down the plane;

0 ≤| y(t) |≤
g

2ω2
sinα.
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Knife edge: VNH-equations

The constrained Lagrangian

L = L−µω(q̇) =
1

2
m(ẋ2 + ẏ2)+

1

2
Jφ̇2 +mgy sinα−µ(ẏ sinφ− ẋ cos φ)

leads, via

(V NH − EL)
d

dt

∂L

∂q̇
−

∂L

∂q
= µaωa − µa(q̇ydωa),

to the equations (assuming φ̇(0) = ω and px(0) = py(0) = 0, where

the momenta are defined by px = ∂L
∂ẋ

and py = ∂L
∂y

):

25



�

�

�

�

Knife edge: VNH-solutions

ẋ = (mg sinα sinφ cos φ)t

ẏ = (mg sinα cos2 φ)t

φ̈ = (
m

J
g sin2 α sinφ cos φ)t2.

We can observe that φ(t) converges to π
2 and the point of contact slides

monotonically down the plane.

Which solutions correspond to real physically realizable trajectories?
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MNH- or VNH-trajectories are realizable physically?

• Korteweg 1899: real mechanical systems satisfy the d’Alambert

principle and thus follow the trajectories of

(MNH − EL)
d

dt

∂L

∂q̇
−

∂L

∂q
= λaωa;

• paradoxically, MNH-EL means d
ds

J(cs) |s=0= 0, where the vari-

ations cs, in general, do not satisfy cs(t) ∈ D(cs) (but only u =
∂cs

∂s
|s=0∈ D(c));

• What are the VNH-trajectories modelling?

• How to interpret the MNH- and VNH-trajectories?
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Chaplygin sleigh

• Q = R
2 × S1

• L = 1
2m(ẋ2

mc + ẏ2
mc) + 1

2Iθ̇2, where m is the mass, (xmc, ymc) the

mass center, I the inertia moment (about the center of mass),

(x, y) is the point of contact, where x = xmc − a cos θ, y = ymc −

a sin θ.

• nonholonomic constraint:

ẋ sinφ = ẏ cos φ.

• The angular velocity

ω = θ̇

and the velocity in the direction of motion

v = ẋ cos θ + ẏ sin θ
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satisfy the momentum equation

v̇ = aω2,

ω̇ = −
ma

I + ma2
vω.

• In the absence of nonholonomic constraints, this equation would

give conservation of angular momentum

• The equilibria form the curve {ω = 0} and the eigenvalues of the

linearization around any of these equilibria are λ1 = 0, λ2 6= 0

showing a ”dissipative” nature of nonholonomic systems: integral

curves are ellipses along which the system converges towards pos-

itive v-axis.

• Are MNH systems hamiltonian?
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Hamiltonian description of MNH systems

Consider

(MNH − EL)
d

dt

∂L

∂q̇
−

∂L

∂q
= λaωa,

together with constraints

ωa(q̇) = 0.

Define the hamiltonian H : T ∗Q −→ R by H = (p, q) − L and the

Legendre transformation LT : TQ −→ T ∗Q by p = LT (vq) = ∂L
∂q̇

.

The constraints ωa(q̇) = 0 define

M = {(q, p) : ωa(
∂H

∂p
) = 0} ⊂ T ∗Q.
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Restrict the hamiltonian system from T ∗Q to M:

• Denote by TM(T ∗Q) the restriction of T (T ∗Q) to M ⊂ T ∗Q;

• Represent TM(T ∗Q) = TM
⊕

V, where V is the vertical bundle;

• Decompose the hamiltonian vector filed XH on T ∗Q restricted to

M as

XH |M= XM + XV ,

where the vector fields XM and XV are smooth sections of, re-

spectively, TM and V.

• Project the Poisson tensor Λ on T ∗Q onto M and denote it ΛM.

• Define {F, G}M = ΛM(dF, dG), for any smooth functions F and

G on M.
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Proposition 3 The bracket {·, ·}M

(i) is skew symmetric;

(ii) satisfies the Leibniz identity;

(iii) satisfies the Jacobi identity if and only if the constraint distri-

bution D is involutive.

Moreover, XM = Λ♯
M

(dHM) and HM is its first integral.

Theorem 1 The MNH-EL equation is equivalent to the hamiltonian

vector field XM via the Legendre transformation.
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Back to Newton’s law

(MNH − EL)
d

dt

∂L

∂q̇
−

∂L

∂q
= λaωa,

can be rewritten as

∇q̇ q̇ =
∑

λaWa,

where the vector fields Wa are defined by < Wa, q̇ >= ωa(q̇) = 0. The

constraint distribution defines a submanifold N ⊂ TQ by

N (q) = {f(q) : ωa(f) = 0}.
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Back to Newton’s law

• Define ∇̃, the projection of the covariant derivative ∇ on N . Then

c = q(t) is a motion of MNH if and only if

∇̃q̇ q̇ = 0

• Geometry of MNH: Motions of MNH are the ”straightest” curves

with respect to the (non-metric) connection ∇̃ (Herz, 1894).

• What is a (the?) geometry of VNH?
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Introducing controls

• How to parameterize C2(q1, q2, [T0, T1],D)? Choose, locally, m

vector fields fi such that D = span {f1, ..., fm}. Then c = q(t) is

horizontal, i.e., ċ ∈ D(c(t)) if, in coordinates,

q̇(t) =

m
∑

i=1

ui(t)fi(q(t)),

where ui(t), for 1 ≤ i ≤ m, are called controls.
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Geometry of VNH

• Assume that L = T , i.e., L(q, q̇) = g(q̇, q̇), where g is the bi-

linear form on TQ given by the Riemannian metric defining T .

Choose the vector fields fi to be orthonormal with respect to g,

i.e., g(fi, fj) = δij .

• The energy of a curve c = q(t) joining q1 = q(T1) and q2 = q(T2)

is (I = [T1, T2])

E(c) =
1

2

∫

I

‖ċ(t)‖2dt =
1

2

∫

I

g(q̇(t), q̇(t))dt =
1

2

∫

I

m
∑

i=1

u2
i (t)dt

• With the help of g we can also define the length of a curve c

l(c) =

∫

I

‖ċ(t)‖dt =

∫

I

(g(q̇(t), q̇(t)))
1

2 dt
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• We can thus endow Q with a metric d: the sub-Riemannian dis-

tance d(q1, q2) between two pints q1 and q2 is the infimum of l(γ)

over all horizontal curves joining q1 and q2; provided that D, to-

gether with all its iterated Lie brackets, spans TqQ at each q (D is

bracket generating, completely nonholonomic, the system is con-

trollable, Rashevsky-Chow theorem).

• Sub-Riemannian geometry problem: find horizontal curves mini-

mizing the length l(γ), i.e. find sub-Riemannian geodesics.

• As in Riemannian geometry, due to Cauchy-Schwartz inequality,

the minimizers of both problems coincide. Namely, a horizontal

curve c minimizes the energy E among all horizontal curves joining

q1 and q2 in time T if and only if it minimizes the length l among

all horizontal curves joining q1 and q2 and is parameterized to have

constant speed c = d(q1, q2)/T .
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What is the VNH problem?

The following are equivalent:

• Solve the VNH problem (with L = T ).

• Solve the Sub-Riemannian geometry problem: find horizontal curves

minimizing the length l(γ), i.e. find the sub-Riemannian geodesics.

• Find horizontal curves minimizing the energy E(γ).

• Solve the optimal control problem:

minimize
1

2

∫

I

m
∑

i=1

u2
i (t)dt

subject to

q̇(t) =

m
∑

i=1

ui(t)fi(q(t)).
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Sub-Riemannian problem: an example

• Consider the differential form α = 1
2 (xdy − ydx). Then α|R = 0

on any ray R through the origin and dα = dx ∧ dy

• The area A enclosed by a curve γ and a ray R is

A(γ) =

∫

γ

α.

• The length of γ is

l(γ) =

∫

I

(ẋ2(t) + ẏ2(t))
1

2 dt.

• Problem: Minimize l(γ) subject to A(γ) = a=const.

• Dual Problem (Dido): Maximize A(γ) subject to l(γ) = l=const.
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• Add z satisfying

ż =
1

2
(xẏ − yẋ).

• Let c be a lift of γ (all lifts being parameterized by z(0)). Define

l(c) = l(π(c)) = l(γ).

• If z(0) = 0, then

z(T ) = z(T ) − z(0) =
1

2

∫

γ

(xdy − ydx) = A(γ).

• Define

f1 =
∂

∂x
−

1

2
y

∂

∂z
f2 =

∂

∂y
+

1

2
x

∂

∂z

and

D = span {f1, f2}.

f1 and f2 and f3 = [f1, f2] span the Heisenberg Lie algebra (the

simplest model of a non-involutive rank 2 distribution in R
3).
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Dido meets Heisenberg

The following problems are equivalent

• Minimize l(γ), among all curves γ joining (0, 0) and (x, y), subject

to A(γ) = a=fixed;

• Minimize l(c) = l(π(c)) = l(γ), among all curves c joining (0, 0, 0)

and (x, y, z) (where z = a, subject to ċ(t) = D(c(t)).

• Minimize l(c), among all curves c joining (0, 0, 0) and (x, y, z) sub-

ject to ċ(t) = D(c(t), where f1 and f2 are orthonormal.
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Optimal solutions

• The VNH equations give

ẍ = 2λẏ

ÿ = −2λẋ

λ̇ = 0

ż = 1/2(xẏ − yẋ)

whose solutions are circles, passing through (0, 0, 0), formed by

(x(t), y(t)) together with

z(t) =
ta

T
− ta2 sin

2πt

T
.

The Heisenberg sphere of radius r looks like an apple!

• MNH solutions are straight lines corresponding to λ = 0.
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Conclusions

MNH V NH

d’Alembert principle min of J on horiz. curves

describe real systems do not

involve λ involve µ and µ̇

determined underdetermined

the straightest the shortest
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