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To discuss systems subject to nonholonomic constraints

To overview two methods of obtaining equations via: illustrative
examples, discussing differences, and providing geometric interpre-

tations

A large (but non-smooth) variety of contributions: Bloch, Lewis,
Bullo, Marsden, Ratiu, Koon, Crouch, Montgomery, Koiler, Ver-
shik, Gershkovich, Fadeev, Bates, Sniatycki, Cardin, Favretti, Marma
Tulczyjew, Cantrijn, Carinena, Cortes, de Leon, de Diego, Mar-
tinez, vdSchaft, Maschke, Marle, Kupka, Oliva.

Pictures are from A.M. Bloch, Nonholonomic Mechanics and Con-

trol, Springer, 2003.
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Mechanical nonholonomic equations MNH
Variational nonholonomic equations VNH

Examples (rolling disk, knife edge, Chaplygin sleigh)
Poisson geometry of MNH systems

Projected connection for MNH
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Notations I

Q

L:TQxR—R
CQ(Ql? q2, [TO7T1])

02(6117 q2, [T07 Tl]a D)

J : C2(Q17Q27 [T07T1]) — R

c— J(c) = ;;1

L(c(t), &(t), t)dt.

- a smooth n-dimensional
configuration manifold

- lagrangian

- the space of C? — curves
with the end points ¢; and g9

- the space of C? — horizontal curves
(i.e., tangent to D,
with the end points ¢; and g9

- functional
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Hamilton’s principle I

A curve c € C?(q1, g2, [To, T1]) describes a motion if it is a critical point
of J, i.e.,

dJ(c)-u=0

for every u € T.C?(q1, q2, [To, T1]), the tangent space at c, consisting
of

o u: [Ty, Ti] — TQ

o To(u) =c

o 7(Th) =n(T1) =0
Equivalently, ¢ = ¢(t) satisfies

(EL) _—_—:O<: Fea;t)-

N /
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Problem: How does the picture change if a system is subject to
constraints?

~

Constraints I

General constraints (on velocities) are represented by D C TQ
(subset, submanifold);

Throughout the talk: D is a distribution, i.e., a subbundle of T'()

of constant rank m.
The annihilator of D is a co-distribution, of rank k = n — m,

I =span {w!,..., w"}

The system moves such that along any its trajectory c, the velocity
¢ remains in D, i.e., ¢(t) € D(c(t)); c is horizontal.

Equivalently w®(¢) = 0, for 1 <a < k.
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unicycle, i.e.,

N

Example: unicycle, knife edge'

The instantaneous velocity of the point of contact is parallel to the

w = sin # dax — cos fdy

annihilates the velocity (&, v, Q)T, that is,

sinf & = cos 6 y.

The configuration manifold QQ = R? x S! is of dimension 3, the space

D(q) of admissible velocities at each ¢ € @) is of dimension 2.
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Holonomic and nonholonomic constraints'

Constraints are called holonomic if, locally, there exists a R*-
valued function h = (h!,..., h¥) such that w?(¢) = 0 is equivalent

to

(which foliates @) into the integral leaves of D);
Otherwise, the constraints are called nonholonomic;

The distinction of the two categories and the names were proposed
by Herz in 1894:

6o€ (whole, integral) vouof (law, principle)




How to derive equations?'

How to describe motions of a system subject to nonholonomic

constraints, in other words, how to modify (E-L)?

Two basic methods leading to, respectively, Mechanical Nonholo-

nomic equations MNH and Variational Nonholonomic equations
VNH

MNH based on d’Alambert principle of virtual work: Constraint
forces do not work on all motions allowed by the constraints. It

follows that the constraint force Fi. st = Aqw®, for some functions

Ao = Aa(t).
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Mechanical nonholonomic problem: formulation'

Definition 1 A horizontal curve ¢ € C?(q1, q2, [To, T1], D) solves the
mechanical nonholonomic problem MNH if

dJ(c)-u=0
for every u € X.(q1,q2,[To,T1], D), where X, consists of
o u: [Ty, Ti] — TQ
o To(u) =c
o w(Ty) =n(T1) =0
o u(t) € D(c(t))

i.e., u is an element of the tangent space T.C?(q1, q2, [Ty, T1]) and is
horizontal.

N /
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Mechanical nonholonomic problem: characterization'

Proposition 1 The following conditions are equivalent:

(i) @ curve ¢ solves the MNH problem;

doL o .
dt 0¢ Oq “=5

fOT EVETY U ~ XC(QI? q2, [T())Tl]ap);

(iii) ¢ satisfies

(ii) ¢ satisfies

d 0L OL
MNH — EL ——— — — = A\ w?,
( ) dt 9¢ Oq “

where D = ker{w'(q),...,w" *(q)}.

e We apply the constraints after making J stationary.

N /
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Variational nonholonomic problem: formulation'

VNH method based on the following minimization problem:

minimize J on the space ¢ € C?%(q1, g2, [Ty, T1], D).

Definition 2 A horizontal curve ¢ € C?(q1, q2, [To, T1], D) solves the
variational nonholonomic problem VNH if c is a critical point of the

restriction J ‘C’Q(ql,qg,[To,Tl],D)'

The method of Lagrange multipliers: put
L(Qa q.v t) — L(Qa q.v t) o :uawa(q.)°

Like in minimizing F' : ) — R subject to g € M = {g = 0}, M a
submanifold, we form F = F — u,9°.

N /
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Variational nonholonomic problem: characterization'

Proposition 2 The following conditions are equivalent:

(i) a curve c solves the VNH problem;

(ii) ¢ satisfies

doL oL 0.
dto¢ 0Oq
(iii) ¢ satisfies
doL oL . . 1 a
(VNH — EL) 197 90 frow® — g (Gadw®).

e We apply the constraints before making J stationary.

N /
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Problems '

e Do (MNH-EL) and (VNH-EL) give the same solutions?

It does not seem to be case: (VNH-EL) involves the derivatives fi,

of the multipliers.

e If not, which does describe physical systems?

e What are geometric interpretations of (MNH-EL) and (VNH-EL)?
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FIGURE 1.4.1. The geometry of the rolling disk.



Rolling disk I

e Q=SE(2) x S! =R? x S! x S! the configuration manifold Q is
the group of planar rigid motions times the circle

o [ =T = %m(:i:2 +9?) + %[92 + %J@Q, where m is the mass, I and
J are inertia momenta.

e nonholonomic constraints:
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Nonholonomic constraints I

The nonholonomic constraints:
i = R(cos ¢)6
y = R(sin ¢)0
define, respectively, the differential 1-forms
w! =dx — Rcos o db
w? = dy — Rsin ¢ dé,
yielding the constraint distribution

0 0 ., 0 0
D = span{% —|—Rcosg/5% —|—Rsmqﬁa—y, 95}

N
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Rolling disk MNH—equationsI

d oL OL

(MNH — EL) &ETQ_@—Q:)\QMG’
gives, via eliminating A\; and A5, the following equations
b= vg
Jg =0 (= uyp)
0 = vy
(I +mR*)ig =0 (= uyp)
xr = Rcos¢ 0
y = Rcoso 0,
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Rolling disk MNH—solutionsI

Solutions of Jb =0

(I +mR?)6 =0
T = Rcosqbé
y = Rcos¢ 0,
are ¢ = wt + ¢g
0 = Qt + 0

Q
r = ;Rsin(wt + ¢o) + xg

Q
= ;Rcos(wt + ¢0) + Yo-
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Rolling disk: VNH—equationsI

d oL JL
dt 0q Oq

(VNH — FL) = fow® — pa(godw®).

applied to the lagrangian
L =L+ pi (& — ROcos @) + us(y — ROsin )
gives the following equations
mt = —f1 (= pu = —mRcos¢p+ A)
miy = —fiz (= e = —mRsingp + B)
Jo = RO(Asin ¢ — B cos )
(I +mR?*)0 = Rp(—Asin ¢ + B cos ).
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A comparison of solutions'

VNH
J¢ = RO(Asin ¢ — B cos ¢)
(I +mR?)0 = Rp(—Asin ¢ + B cos ¢),

MNH
Jb =0
(I +mR?*)6 =0,
constraints (the same for both)
r = Rcos¢ Z

y = Rcoso 0.
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A comparison of solutions - cont.'

For A # 0, B # 0 the trajectories of the VNH rolling disk are not
solutions of the MNH rolling disk;

A and B are determined neither by the nonholonomic constraints
nor be the initial condition (velocity and configuration) of the sys-
tem: there are many trajectories issued by the same initial condi-
tion. They are determined by w1(0) and wu2(0).

We are tempted to believe that real physical systems realize the
trajectories of MNH (and not those of VNH);

Not always the MNH-trajectories form a proper subset of the
VNH-trajectories.

/
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FIGURE 1.6.1. Motion of a knife edge on an inclined plane.



4 )

Knife edge (skate) on inclined plane'

e Q=R?x 5!

o [ = %m(a’cz + 9?%) + %Jg.bz + mgysin a, where m is the mass, J
the inertia moment (about the vertical axis through the point of

contact)

e nonholonomic constraint: ysin¢ = x cos ¢ defines the differential
1-form

w =sinpdy — cospdx

yielding the constraint distribution

D = span {cos gbﬁ + Slngba8 (‘fgb

N /
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Knife edge: MNH—equationsI

d oL OL
MNH — EL — o — = AW,
( ) dt 9¢ Oq “
gives the following equations
mi = —ACOS @

miy = Asin ¢ + ygsin «
Jb =0,
together with the constraint
Y sin ¢ = & cos ¢.

How does the contact point x(t),y(t) move assuming that #(0) =
7(0) = ¢(0) = 0 and gb(()) — Ww?

N /
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The solution is

o(t) = wt,

x(t) = I_in a(wt — = sin 2wt)
2w? 2

y(t) = 2”’# sin arsin® wt;

The point of contact undergoes a cycloid motion, in particular, does

not (in average) slide down the plane;

0 <| y(t) |< Q%Sm@

24



Knife edge: VNH—equationsI

The constrained Lagrangian

1 1 _.
L=L—-puw(g) = §m(:i:2—|—g)2)—|—§J¢2—I—mgysina—,u(ysin¢—j;cos¢)

leads, via

d oL OL

NH — EL —
v ) dt 0¢ Oq

= paw” — fha (quwa)a

the momenta are defined by p, = % and p, = %):

N /
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Knife edge: VNH-solutionSI

T = (mgsin asin ¢ cos @)t

i = (mgsin acos® )t
b = (?g sin? o sin ¢ cos ¢)t2.

We can observe that ¢(t) converges to 5 and the point of contact slides

monotonically down the plane.

Which solutions correspond to real physically realizable trajectories?

N /
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MNH- or VNH-trajectories are realizable physicallyi'

o Korteweg 1899: real mechanical systems satisfy the d’Alambert

principle and thus follow the trajectories of

d 0L OL
dt 0¢ Oq

(MNH — EL) = AW
e paradoxically, MNH-EL means L .J(c;) |s—o= 0, where the vari-
ations cg, in general, do not satisfy cs(t) € D(cs) (but only u =

%CSS s=0€ D(C) ) :

e What are the VNH-trajectories modelling?

e How to interpret the MNH- and VNH-trajectories?

27



IGURE 1.7.1. The Chaplygin sleigh is a rigid body moving on two sliding post
1e knife edge.
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Chaplygin sleigh I

L=1im(i2,.+9%.) + %IQQ, where m is the mass, (T, Yme) the

Q=R?x St

mass center, I the inertia moment (about the center of mass),
(x,y) is the point of contact, where x = T, — acos 8, Yy = Yme —
asin f.

nonholonomic constraint:
2 sin ¢ = 1 cos ¢.
The angular velocity
w=>0

and the velocity in the direction of motion

v =2acosf + ysinb /

28



satisfy the momentum equation

_I I ma,2 VW.

e In the absence of nonholonomic constraints, this equation would

give conservation of angular momentum

e The equilibria form the curve {w = 0} and the eigenvalues of the
linearization around any of these equilibria are A\ = 0, Ay # 0
showing a ”dissipative” nature of nonholonomic systems: integral
curves are ellipses along which the system converges towards pos-

1tive v-axis.

e Are MNH systems hamiltonian?

N /
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Hamiltonian description of MNH systems'

Consider
d oL OL
(MNH — EL) —— — — = AW,
dt 0¢ Oq
together with constraints
w*(q) = 0.

Define the hamiltonian H : T — R by H = (p,q) — L and the

Legendre transformation £7 : TQ — T*Q by p = LT (v,) = %—éf.

The constraints w®(¢) = 0 define

OH

M ={(g,p) : w“(ﬁ—p) =0} CT7Q.

N /
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Restrict the hamiltonian system from T*() to M:

Denote by Th(T*Q) the restriction of T(T*Q) to M C T*Q);
Represent Ty (T*Q) = TM @V, where V is the vertical bundle;

Decompose the hamiltonian vector filed Xy on 17 () restricted to

M as
Xu |Mm=XMm+ Xy,

where the vector fields X s and X, are smooth sections of, re-
spectively, T M and V.

Project the Poisson tensor A on T*() onto M and denote it A .

Define {F, G}y = Apq(dF,dG), for any smooth functions F' and
G on M.

/
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Proposition 3 The bracket {-,-} pm

(i) s skew symmetric;
(ii) satisfies the Leibniz identity;
(iii) satisfies the Jacobi identity if and only if the constraint distri-

bution D 1s involutive.

Moreover, X p = Ag\/l(dHM) and H nq is its first integral.

Theorem 1 The MNH-EL equation s equivalent to the hamailtonian

vector field X pq via the Legendre transformation.

N /
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Back to Newton’s laW'

(MNH — EL) —— — — = AW,
can be rewritten as
qu — Z )\CLWCL?

where the vector fields W, are defined by < W,, ¢ >= w*(¢) = 0. The
constraint distribution defines a submanifold A" C T'Q by

N(q) ={f(q) = w*(f) =0}

N /
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Back to Newton’s lawI

e Define V, the projection of the covariant derivative V on A/. Then
c = q(t) is a motion of MNH if and only if

V=0

e Geometry of MNH: Motions of MINH are the ”straightest” curves

with respect to the (non-metric) connection V (Herz, 1894).

e What is a (the?) geometry of VNH?

34




Introducing controls I

e How to parameterize C?(q1,q2, [Ty, T1],D)? Choose, locally, m
vector fields f; such that D = span{fi,..., fm}. Then ¢ = ¢(t) is
horizontal, i.e., ¢ € D(c(t)) if, in coordinates,

i(t) = > uilt)fila()

where u;(t), for 1 < i < m, are called controls.

35
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Geometry of VNHI

e Assume that L = T, i.e., L(q,q) = ¢g(q,q), where g is the bi-
linear form on 7'(Q) given by the Riemannian metric defining 7.

Choose the vector fields f; to be orthonormal with respect to g,

e The energy of a curve ¢ = ¢(t) joining q; = q(T1) and g2 = q(715)
18 (I = [Tl,TQ])

1 1 1 [
E(c :—/ é(t 2dt:—/gcjt,q't dt:—/ w? (t)dt
(© = | lelPde =5 [ ata.dtd =5 [ 3 u2e
e With the help of g we can also define the length of a curve c

Z@zﬁwww:[@mmwm%t
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e We can thus endow () with a metric d: the sub-Riemannian dis-
tance d(q1,q2) between two pints ¢; and ¢o is the infimum of [(~)
over all horizontal curves joining g; and go; provided that D, to-
gether with all its iterated Lie brackets, spans T,Q at each ¢ (D is
bracket generating, completely nonholonomic, the system is con-
trollable, Rashevsky-Chow theorem).

e Sub-Riemannian geometry problem: find horizontal curves mini-

mizing the length [(v), i.e. find sub-Riemannian geodesics.

e As in Riemannian geometry, due to Cauchy-Schwartz inequality,
the minimizers of both problems coincide. Namely, a horizontal
curve ¢ minimizes the energy E' among all horizontal curves joining
¢1 and ¢o in time 7' if and only if it minimizes the length [ among

all horizontal curves joining ¢; and ¢» and is parameterized to have

constant speed ¢ = d(q1,q2)/T.

N /
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What is the VINH problem?'

The following are equivalent:

e Solve the VNH problem (with L =1T).

e Solve the Sub-Riemannian geometry problem: find horizontal curves
minimizing the length [(), i.e. find the sub-Riemannian geodesics.

e Find horizontal curves minimizing the energy F(7).

e Solve the optimal control problem:

1 m
minimize 5 / Zu?(t)dt
Ii=1

subject to

i(t) = > uilt)fila(®).

38
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Sub-Riemannian problem: an example'

Consider the differential form o = % (zdy — ydz). Then a|g = 0
on any ray R through the origin and da = dx A dy

The area A enclosed by a curve v and a ray R is

The length of ~ is

I(y) = / (#2(t) + (1)) dt.

1

Problem: Minimize [(v) subject to A(vy) = a=const.

Dual Problem (Dido): Maximize A() subject to [(y) = [=const.

/
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Add z satisfying
. 1 ( . . )
z = —(xy — yt).
5 y—y

Let ¢ be a lift of v (all lifts being parameterized by z(0)). Define
l(c) = l(m(c)) = (7).
If 2(0) = 0, then

Define 5 1 0 5 1 9
hi= g gvs fom gt en

and

D = span{ fi, fa}.

f1 and fy and f3 = [f1, f2] span the Heisenberg Lie algebra (the
simplest model of a non-involutive rank 2 distribution in R?). D

40



Dido meets Heisenberg'

The following problems are equivalent

e Minimize [(), among all curves « joining (0,0) and (x,y), subject
to A(y) = a=fixed;

e Minimize I(c) = l(7(c)) = I(y), among all curves ¢ joining (0,0, 0)
and (x,y, z) (where z = a, subject to ¢(t) = D(c(t)).

e Minimize /(c), among all curves ¢ joining (0,0,0) and (x,y, z) sub-
ject to ¢(t) = D(c(t), where f1 and fo are orthonormal.
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Optimal solutions I

e The VNH equations give

i =2\y
i = —2\i
A=0

2=1/2(zxy — yi)

whose solutions are circles, passing through (0,0,0), formed by
(x(t),y(t)) together with

t 21t
2(t) = ?a, — ta®sin %

The Heisenberg sphere of radius r looks like an apple!

\ e MNH solutions are straight lines corresponding to A = 0. /
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Conclusions I

MNH VNH

d’Alembert principle min of J on horiz. curves

describe real systems do not
involve A involve p and [
determined underdetermined
the straightest the shortest
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