Nonholonomic constraints: a comparison of mechanical and variational systems

Witold Respondek
Laboratory of Mathematics, INSA de Rouen
France

Bȩdlewo, August 19-26, 2007

Aim

- To discuss systems subject to nonholonomic constraints
- To overview two methods of obtaining equations via: illustrative examples, discussing differences, and providing geometric interpretations
- A large (but non-smooth) variety of contributions: Bloch, Lewis, Bullo, Marsden, Ratiu, Koon, Crouch, Montgomery, Koiler, Vershik, Gershkovich, Fadeev, Bates, Sniatycki, Cardin, Favretti, Marmo, Tulczyjew, Cantrijn, Carinena, Cortes, de Leon, de Diego, Martinez, vdSchaft, Maschke, Marle, Kupka, Oliva.
- Pictures are from A.M. Bloch, Nonholonomic Mechanics and Control, Springer, 2003.

Plan

- Nonholonomic constraints
- Mechanical nonholonomic equations MNH
- Variational nonholonomic equations VNH
- Examples (rolling disk, knife edge, Chaplygin sleigh)
- Poisson geometry of MNH systems
- Projected connection for MNH
- VNH systems and sub-Riemannian geometry
- Conclusions

Notations

Q

- a smooth n-dimensional configuration manifold
$L: T Q \times \mathbb{R} \longrightarrow \mathbb{R}$
$C^{2}\left(q_{1}, q_{2},\left[T_{0}, T_{1}\right]\right)$
$C^{2}\left(q_{1}, q_{2},\left[T_{0}, T_{1}\right], \mathcal{D}\right)$
- lagrangian
- the space of C^{2} - curves with the end points q_{1} and q_{2}
- the space of C^{2} - horizontal curves (i.e., tangent to \mathcal{D}, with the end points q_{1} and q_{2}
$J: C^{2}\left(q_{1}, q_{2},\left[T_{0}, T_{1}\right]\right) \longrightarrow \mathbb{R}$
$c \mapsto J(c)=\int_{T_{0}}^{T_{1}} L(c(t), \dot{c}(t), t) d t$.
- functional

Hamilton's principle

A curve $c \in C^{2}\left(q_{1}, q_{2},\left[T_{0}, T_{1}\right]\right)$ describes a motion if it is a critical point of J, i.e.,

$$
\mathrm{d} J(c) \cdot u=0
$$

for every $u \in T_{c} C^{2}\left(q_{1}, q_{2},\left[T_{0}, T_{1}\right]\right)$, the tangent space at c, consisting of

- $u:\left[T_{0}, T_{1}\right] \longrightarrow T Q$
- $\pi_{Q}(u)=c$
- $\pi\left(T_{0}\right)=\pi\left(T_{1}\right)=0$

Equivalently, $c=q(t)$ satisfies
$(E L)$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=0\left(=F_{e x t}\right)
$$

Constraints

Problem: How does the picture change if a system is subject to constraints?

- General constraints (on velocities) are represented by $\mathcal{D} \subset T Q$ (subset, submanifold);
- Throughout the talk: \mathcal{D} is a distribution, i.e., a subbundle of $T Q$ of constant rank m.
- The annihilator of \mathcal{D} is a co-distribution, of rank $k=n-m$,

$$
I=\operatorname{span}\left\{\omega^{1}, \ldots, \omega^{k}\right\}
$$

- The system moves such that along any its trajectory c, the velocity \dot{c} remains in \mathcal{D}, i.e., $\dot{c}(t) \in \mathcal{D}(c(t)) ; c$ is horizontal.
- Equivalently $\omega^{a}(\dot{q})=0$, for $1 \leq a \leq k$.

Example: unicycle, knife edge

The instantaneous velocity of the point of contact is parallel to the unicycle, i.e.,

$$
\omega=\sin \theta \mathrm{d} x-\cos \theta \mathrm{d} y
$$

annihilates the velocity $(\dot{x}, \dot{y}, \dot{\theta})^{T}$, that is,

$$
\sin \theta \dot{x}=\cos \theta \dot{y}
$$

The configuration manifold $Q=\mathbb{R}^{2} \times S^{1}$ is of dimension 3 , the space $\mathcal{D}(q)$ of admissible velocities at each $q \in Q$ is of dimension 2 .

Holonomic and nonholonomic constraints

- Constraints are called holonomic if, locally, there exists a \mathbb{R}^{k} valued function $h=\left(h^{1}, \ldots, h^{k}\right)$ such that $\omega^{a}(\dot{q})=0$ is equivalent to

$$
\frac{\partial h}{\partial q} \cdot \dot{q}=0
$$

(which foliates Q into the integral leaves of \mathcal{D});

- Otherwise, the constraints are called nonholonomic;
- The distinction of the two categories and the names were proposed by Herz in 1894:
ó $\lambda o \xi$ (whole, integral) $\nu \circ \mu \circ \xi$ (law, principle)

How to derive equations?

- How to describe motions of a system subject to nonholonomic constraints, in other words, how to modify (E-L)?
- Two basic methods leading to, respectively, Mechanical Nonholonomic equations MNH and Variational Nonholonomic equations VNH
- MNH based on d'Alambert principle of virtual work: Constraint forces do not work on all motions allowed by the constraints. It follows that the constraint force $F_{\text {constr }}=\lambda_{a} \omega^{a}$, for some functions $\lambda_{a}=\lambda_{a}(t)$.

Mechanical nonholonomic problem: formulation

Definition 1 A horizontal curve $c \in C^{2}\left(q_{1}, q_{2},\left[T_{0}, T_{1}\right], \mathcal{D}\right)$ solves the mechanical nonholonomic problem MNH if

$$
\mathrm{d} J(c) \cdot u=0
$$

for every $u \in X_{c}\left(q_{1}, q_{2},\left[T_{0}, T_{1}\right], \mathcal{D}\right)$, where X_{c} consists of

- $u:\left[T_{0}, T_{1}\right] \longrightarrow T Q$
- $\pi_{Q}(u)=c$
- $\pi\left(T_{0}\right)=\pi\left(T_{1}\right)=0$
- $u(t) \in \mathcal{D}(c(t))$
i.e., u is an element of the tangent space $T_{c} C^{2}\left(q_{1}, q_{2},\left[T_{0}, T_{1}\right]\right)$ and is horizontal.

Mechanical nonholonomic problem: characterization

Proposition 1 The following conditions are equivalent:
(i) a curve c solves the MNH problem;
(ii) c satisfies

$$
\left[\frac{\mathrm{d}}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial l}{\partial q}\right] u=0
$$

for every $u \in X_{c}\left(q_{1}, q_{2},\left[T_{0}, T_{1}\right], \mathcal{D}\right)$;
(iii) c satisfies

$$
(M N H-E L) \quad \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\lambda_{a} \omega^{a}
$$

where $\mathcal{D}=\operatorname{ker}\left\{\omega^{1}(q), \ldots, \omega^{n-k}(q)\right\}$.

- We apply the constraints after making J stationary.

Variational nonholonomic problem: formulation

VNH method based on the following minimization problem: minimize J on the space $c \in C^{2}\left(q_{1}, q_{2},\left[T_{0}, T_{1}\right], \mathcal{D}\right)$.

Definition 2 A horizontal curve $c \in C^{2}\left(q_{1}, q_{2},\left[T_{0}, T_{1}\right], \mathcal{D}\right)$ solves the variational nonholonomic problem VNH if c is a critical point of the restriction $\left.J\right|_{C^{2}\left(q_{1}, q_{2},\left[T_{0}, T_{1}\right], \mathcal{D}\right)}$.

The method of Lagrange multipliers: put

$$
\mathcal{L}(q, \dot{q}, t)=L(q, \dot{q}, t)-\mu_{a} \omega^{a}(\dot{q}) .
$$

Like in minimizing $F: Q \longrightarrow \mathbb{R}$ subject to $q \in M=\{g=0\}, M$ a submanifold, we form $\mathcal{F}=F-\mu_{a} g^{a}$.

Variational nonholonomic problem: characterization

Proposition 2 The following conditions are equivalent:
(i) a curve c solves the VNH problem;
(ii) c satisfies

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial \mathcal{L}}{\partial \dot{q}}-\frac{\partial \mathcal{L}}{\partial q}=0
$$

(iii) c satisfies

$$
\left.(V N H-E L) \quad \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\dot{\mu}_{a} \omega^{a}-\mu_{a}(\dot{q}\lrcorner \mathrm{d} \omega^{a}\right) .
$$

- We apply the constraints before making J stationary.

Problems

- Do (MNH-EL) and (VNH-EL) give the same solutions?

It does not seem to be case: (VNH-EL) involves the derivatives $\dot{\mu}_{a}$ of the multipliers.

- If not, which does describe physical systems?
- What are geometric interpretations of (MNH-EL) and (VNH-EL)?

Figure 1.4.1. The geometry of the rolling disk.

Rolling disk

- $Q=S E(2) \times S^{1}=\mathbb{R}^{2} \times S^{1} \times S^{1}$ the configuration manifold Q is the group of planar rigid motions times the circle
- $L=T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I \dot{\theta}^{2}+\frac{1}{2} J \dot{\phi}^{2}$, where m is the mass, I and J are inertia momenta.
- nonholonomic constraints:

$$
\begin{aligned}
& \dot{x}=R(\cos \phi) \dot{\theta} \\
& \dot{y}=R(\sin \phi) \dot{\theta}
\end{aligned}
$$

Nonholonomic constraints

The nonholonomic constraints:

$$
\begin{aligned}
\dot{x} & =R(\cos \phi) \dot{\theta} \\
\dot{y} & =R(\sin \phi) \dot{\theta}
\end{aligned}
$$

define, respectively, the differential 1-forms

$$
\begin{aligned}
& \omega^{1}=\mathrm{d} x-R \cos \phi \mathrm{~d} \theta \\
& \omega^{2}=\mathrm{d} y-R \sin \phi \mathrm{~d} \theta,
\end{aligned}
$$

yielding the constraint distribution

$$
\mathcal{D}=\operatorname{span}\left\{\frac{\partial}{\partial \theta}+R \cos \phi \frac{\partial}{\partial x}+R \sin \phi \frac{\partial}{\partial y}, \frac{\partial}{\partial \phi}\right\} .
$$

Rolling disk MNH-equations

$$
(M N H-E L)
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\lambda_{a} \omega^{a},
$$

gives, via eliminating λ_{1} and λ_{2}, the following equations

$$
\begin{aligned}
\dot{\phi} & =v_{\phi} \\
J \dot{v}_{\phi} & =0\left(=u_{\phi}\right) \\
\dot{\theta} & =v_{\theta} \\
\left(I+m R^{2}\right) \dot{v}_{\theta} & =0\left(=u_{\theta}\right) \\
\dot{x} & =R \cos \phi \dot{\theta} \\
\dot{y} & =R \cos \phi \dot{\theta},
\end{aligned}
$$

Rolling disk MNH-solutions

Solutions of $\quad J \ddot{\phi}=0$

$$
\begin{aligned}
\left(I+m R^{2}\right) \ddot{\theta} & =0 \\
\dot{x} & =R \cos \phi \dot{\theta} \\
\dot{y} & =R \cos \phi \dot{\theta}, \\
\phi & =\omega t+\phi_{0} \\
\theta & =\Omega t+\theta_{0} \\
x & =\frac{\Omega}{\omega} R \sin \left(\omega t+\phi_{0}\right)+x_{0} \\
y & =\frac{\Omega}{\omega} R \cos \left(\omega t+\phi_{0}\right)+y_{0} .
\end{aligned}
$$

Rolling disk: VNH-equations

$$
\left.(V N H-E L) \quad \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\mu_{a} \omega^{a}-\mu_{a}(\dot{q}\lrcorner \mathrm{d} \omega^{a}\right) .
$$

applied to the lagrangian

$$
\mathcal{L}=L+\mu_{1}(\dot{x}-R \dot{\theta} \cos \phi)+\mu_{2}(\dot{y}-R \dot{\theta} \sin \phi)
$$

gives the following equations

$$
\begin{aligned}
m \ddot{x} & =-\dot{\mu}_{1}\left(\Rightarrow \mu_{1}=-m R \cos \phi+A\right) \\
m \ddot{y} & =-\dot{\mu}_{2}\left(\Rightarrow \mu_{2}=-m R \sin \phi+B\right) \\
J \ddot{\phi} & =R \dot{\theta}(A \sin \phi-B \cos \phi) \\
\left(I+m R^{2}\right) \ddot{\theta} & =R \dot{\phi}(-A \sin \phi+B \cos \phi) .
\end{aligned}
$$

A comparison of solutions

VNH

$$
\begin{aligned}
& J \ddot{\phi}=R \dot{\theta}(A \sin \phi-B \cos \phi) \\
&\left(I+m R^{2}\right) \ddot{\theta}=R \dot{\phi}(-A \sin \phi+B \cos \phi), \\
& M N H
\end{aligned}
$$

$$
J \ddot{\phi}=0
$$

$$
\left(I+m R^{2}\right) \ddot{\theta}=0,
$$

constraints (the same for both)

$$
\begin{aligned}
\dot{x} & =R \cos \phi \dot{\theta} \\
\dot{y} & =R \cos \phi \dot{\theta} .
\end{aligned}
$$

A comparison of solutions - cont.

- For $A \neq 0, B \neq 0$ the trajectories of the VNH rolling disk are not solutions of the MNH rolling disk;
- A and B are determined neither by the nonholonomic constraints nor be the initial condition (velocity and configuration) of the system: there are many trajectories issued by the same initial condition. They are determined by $\mu_{1}(0)$ and $\mu_{2}(0)$.
- We are tempted to believe that real physical systems realize the trajectories of MNH (and not those of VNH);
- Not always the MNH-trajectories form a proper subset of the VNH-trajectories.

Figure 1.6.1. Motion of a knife edge on an inclined plane.

Knife edge (skate) on inclined plane

- $Q=\mathbb{R}^{2} \times S^{1}$
- $L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} J \dot{\phi}^{2}+m g y \sin \alpha$, where m is the mass, J the inertia moment (about the vertical axis through the point of contact)
- nonholonomic constraint: $\dot{y} \sin \phi=\dot{x} \cos \phi$ defines the differential 1-form

$$
\omega=\sin \phi \mathrm{d} y-\cos \phi \mathrm{d} x
$$

yielding the constraint distribution

$$
\mathcal{D}=\operatorname{span}\left\{\cos \phi \frac{\partial}{\partial y}+\sin \phi \frac{\partial}{\partial x}, \frac{\partial}{\partial \phi}\right\} .
$$

Knife edge: MNH-equations

$$
(M N H-E L)
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\lambda_{a} \omega^{a},
$$

gives the following equations

$$
\begin{aligned}
m \ddot{x} & =-\lambda \cos \phi \\
m \ddot{y} & =\lambda \sin \phi+y g \sin \alpha \\
J \ddot{\phi} & =0
\end{aligned}
$$

together with the constraint

$$
\dot{y} \sin \phi=\dot{x} \cos \phi
$$

How does the contact point $x(t), y(t)$ move assuming that $\dot{x}(0)=$ $\dot{y}(0)=\phi(0)=0$ and $\dot{\phi}(0)=\omega$?

The solution is

$$
\begin{aligned}
& \phi(t)=\omega t, \\
& x(t)=\frac{g}{2 \omega^{2}} \sin \alpha\left(\omega t-\frac{1}{2} \sin 2 \omega t\right) \\
& y(t)=\frac{g}{2 \omega^{2}} \sin \alpha \sin ^{2} \omega t ;
\end{aligned}
$$

The point of contact undergoes a cycloid motion, in particular, does not (in average) slide down the plane;

$$
0 \leq|y(t)| \leq \frac{g}{2 \omega^{2}} \sin \alpha .
$$

Knife edge: VNH-equations

The constrained Lagrangian
$\mathcal{L}=L-\mu \omega(\dot{q})=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} J \dot{\phi}^{2}+m g y \sin \alpha-\mu(\dot{y} \sin \phi-\dot{x} \cos \phi)$ leads, via

$$
\left.(V N H-E L) \quad \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\mu_{a} \omega^{a}-\mu_{a}(\dot{q}\lrcorner \mathrm{d} \omega^{a}\right)
$$

to the equations (assuming $\dot{\phi}(0)=\omega$ and $p_{x}(0)=p_{y}(0)=0$, where the momenta are defined by $p_{x}=\frac{\partial \mathcal{L}}{\partial \dot{x}}$ and $\left.p_{y}=\frac{\partial \mathcal{L}}{\partial y}\right)$:

$$
\begin{aligned}
& \text { Knife edge: VNH-solutions } \\
& \\
& \dot{x}=(m g \sin \alpha \sin \phi \cos \phi) t \\
& \dot{y}=\left(m g \sin \alpha \cos ^{2} \phi\right) t \\
& \ddot{\phi}=\left(\frac{m}{J} g \sin ^{2} \alpha \sin \phi \cos \phi\right) t^{2}
\end{aligned}
$$

We can observe that $\phi(t)$ converges to $\frac{\pi}{2}$ and the point of contact slides monotonically down the plane.

Which solutions correspond to real physically realizable trajectories?

MNH- or VNH-trajectories are realizable physically?

- Korteweg 1899: real mechanical systems satisfy the d'Alambert principle and thus follow the trajectories of

$$
(M N H-E L) \quad \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\lambda_{a} \omega^{a} ;
$$

- paradoxically, MNH-EL means $\left.\frac{\mathrm{d}}{d s} J\left(c_{s}\right)\right|_{s=0}=0$, where the variations c_{s}, in general, do not satisfy $c_{s}(t) \in \mathcal{D}\left(c_{s}\right)$ (but only $u=$ $\left.\left.\frac{\partial c_{s}}{\partial s}\right|_{s=0} \in \mathcal{D}(c)\right)$;
- What are the VNH-trajectories modelling?
- How to interpret the MNH- and VNH-trajectories?

IGURE 1.7.1. The Chaplygin sleigh is a rigid body moving on two sliding post re knife edge.

Chaplygin sleigh

- $Q=\mathbb{R}^{2} \times S^{1}$
- $L=\frac{1}{2} m\left(\dot{x}_{m c}^{2}+\dot{y}_{m c}^{2}\right)+\frac{1}{2} I \dot{\theta}^{2}$, where m is the mass, $\left(x_{m c}, y_{m c}\right)$ the mass center, I the inertia moment (about the center of mass), (x, y) is the point of contact, where $x=x_{m c}-a \cos \theta, y=y_{m c}-$ $a \sin \theta$.
- nonholonomic constraint:

$$
\dot{x} \sin \phi=\dot{y} \cos \phi .
$$

- The angular velocity

$$
\omega=\dot{\theta}
$$

and the velocity in the direction of motion

$$
v=\dot{x} \cos \theta+\dot{y} \sin \theta
$$

satisfy the momentum equation

$$
\begin{aligned}
\dot{v} & =a \omega^{2} \\
\dot{\omega} & =-\frac{m a}{I+m a^{2}} v \omega
\end{aligned}
$$

- In the absence of nonholonomic constraints, this equation would give conservation of angular momentum
- The equilibria form the curve $\{\omega=0\}$ and the eigenvalues of the linearization around any of these equilibria are $\lambda_{1}=0, \lambda_{2} \neq 0$ showing a "dissipative" nature of nonholonomic systems: integral curves are ellipses along which the system converges towards positive v-axis.
- Are MNH systems hamiltonian?

Hamiltonian description of MNH systems

Consider

$$
(M N H-E L) \quad \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\lambda_{a} \omega^{a}
$$

together with constraints

$$
\omega^{a}(\dot{q})=0
$$

Define the hamiltonian $H: T^{*} Q \longrightarrow \mathbb{R}$ by $H=(p, q)-L$ and the Legendre transformation $\mathcal{L T}: T Q \longrightarrow T^{*} Q$ by $p=\mathcal{L} \mathcal{T}\left(v_{q}\right)=\frac{\partial L}{\partial \dot{q}}$. The constraints $\omega^{a}(\dot{q})=0$ define

$$
\mathcal{M}=\left\{(q, p): \omega^{a}\left(\frac{\partial H}{\partial p}\right)=0\right\} \subset T^{*} Q
$$

Restrict the hamiltonian system from $T^{*} Q$ to \mathcal{M} :

- Denote by $T_{\mathcal{M}}\left(T^{*} Q\right)$ the restriction of $T\left(T^{*} Q\right)$ to $\mathcal{M} \subset T^{*} Q$;
- Represent $T_{\mathcal{M}}\left(T^{*} Q\right)=T \mathcal{M} \oplus \mathcal{V}$, where \mathcal{V} is the vertical bundle;
- Decompose the hamiltonian vector filed X_{H} on $T^{*} Q$ restricted to \mathcal{M} as

$$
\left.X_{H}\right|_{\mathcal{M}}=X_{\mathcal{M}}+X_{\mathcal{V}},
$$

where the vector fields $X_{\mathcal{M}}$ and $X_{\mathcal{V}}$ are smooth sections of, respectively, $T \mathcal{M}$ and \mathcal{V}.

- Project the Poisson tensor Λ on $T^{*} Q$ onto \mathcal{M} and denote it $\Lambda_{\mathcal{M}}$.
- Define $\{F, G\}_{\mathcal{M}}=\Lambda_{\mathcal{M}}(\mathrm{d} F, \mathrm{~d} G)$, for any smooth functions F and G on \mathcal{M}.

Proposition 3 The bracket $\{\cdot, \cdot\}_{\mathcal{M}}$
(i) is skew symmetric;
(ii) satisfies the Leibniz identity;
(iii) satisfies the Jacobi identity if and only if the constraint distribution \mathcal{D} is involutive.
Moreover, $X_{\mathcal{M}}=\Lambda_{\mathcal{M}}^{\sharp}\left(\mathrm{d} H_{\mathcal{M}}\right)$ and $H_{\mathcal{M}}$ is its first integral.
Theorem 1 The MNH-EL equation is equivalent to the hamiltonian vector field $X_{\mathcal{M}}$ via the Legendre transformation.

Back to Newton's law

$$
(M N H-E L) \quad \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\lambda_{a} \omega^{a},
$$

can be rewritten as

$$
\nabla_{\dot{q}} \dot{q}=\sum \lambda_{a} W_{a}
$$

where the vector fields W_{a} are defined by $\left\langle W_{a}, \dot{q}\right\rangle=\omega^{a}(\dot{q})=0$. The constraint distribution defines a submanifold $\mathcal{N} \subset T Q$ by

$$
\mathcal{N}(q)=\left\{f(q): \omega^{a}(f)=0\right\} .
$$

Back to Newton's law

- Define $\tilde{\nabla}$, the projection of the covariant derivative ∇ on \mathcal{N}. Then $c=q(t)$ is a motion of MNH if and only if

$$
\tilde{\nabla}_{\dot{q}} \dot{q}=0
$$

- Geometry of MNH: Motions of MNH are the "straightest" curves with respect to the (non-metric) connection $\tilde{\nabla}$ (Herz, 1894).
- What is a (the?) geometry of VNH?

Introducing controls

- How to parameterize $C^{2}\left(q_{1}, q_{2},\left[T_{0}, T_{1}\right], \mathcal{D}\right)$? Choose, locally, m vector fields f_{i} such that $\mathcal{D}=\operatorname{span}\left\{f_{1}, \ldots, f_{m}\right\}$. Then $c=q(t)$ is horizontal, i.e., $\dot{c} \in \mathcal{D}(c(t))$ if, in coordinates,

$$
\dot{q}(t)=\sum_{i=1}^{m} u_{i}(t) f_{i}(q(t)),
$$

where $u_{i}(t)$, for $1 \leq i \leq m$, are called controls.

Geometry of VNH

- Assume that $L=T$, i.e., $L(q, \dot{q})=g(\dot{q}, \dot{q})$, where g is the bilinear form on $T Q$ given by the Riemannian metric defining T. Choose the vector fields f_{i} to be orthonormal with respect to g, i.e., $g\left(f_{i}, f_{j}\right)=\delta_{i j}$.
- The energy of a curve $c=q(t)$ joining $q_{1}=q\left(T_{1}\right)$ and $q_{2}=q\left(T_{2}\right)$ is $\left(I=\left[T_{1}, T_{2}\right]\right)$

$$
E(c)=\frac{1}{2} \int_{I}\|\dot{c}(t)\|^{2} d t=\frac{1}{2} \int_{I} g(\dot{q}(t), \dot{q}(t)) d t=\frac{1}{2} \int_{I} \sum_{i=1}^{m} u_{i}^{2}(t) d t
$$

- With the help of g we can also define the length of a curve c

$$
l(c)=\int_{I}\|\dot{c}(t)\| d t=\int_{I}(g(\dot{q}(t), \dot{q}(t)))^{\frac{1}{2}} d t
$$

- We can thus endow Q with a metric d : the sub-Riemannian distance $d\left(q_{1}, q_{2}\right)$ between two pints q_{1} and q_{2} is the infimum of $l(\gamma)$ over all horizontal curves joining q_{1} and q_{2}; provided that \mathcal{D}, together with all its iterated Lie brackets, spans $T_{q} Q$ at each $q(\mathcal{D}$ is bracket generating, completely nonholonomic, the system is controllable, Rashevsky-Chow theorem).
- Sub-Riemannian geometry problem: find horizontal curves minimizing the length $l(\gamma)$, i.e. find sub-Riemannian geodesics.
- As in Riemannian geometry, due to Cauchy-Schwartz inequality, the minimizers of both problems coincide. Namely, a horizontal curve c minimizes the energy E among all horizontal curves joining q_{1} and q_{2} in time T if and only if it minimizes the length l among all horizontal curves joining q_{1} and q_{2} and is parameterized to have constant speed $c=d\left(q_{1}, q_{2}\right) / T$.

What is the VNH problem?

The following are equivalent:

- Solve the VNH problem (with $L=T$).
- Solve the Sub-Riemannian geometry problem: find horizontal curves minimizing the length $l(\gamma)$, i.e. find the sub-Riemannian geodesics.
- Find horizontal curves minimizing the energy $E(\gamma)$.
- Solve the optimal control problem:

$$
\operatorname{minimize} \frac{1}{2} \int_{I} \sum_{i=1}^{m} u_{i}^{2}(t) d t
$$

subject to

$$
\dot{q}(t)=\sum_{i=1}^{m} u_{i}(t) f_{i}(q(t))
$$

Sub-Riemannian problem: an example

- Consider the differential form $\alpha=\frac{1}{2}(x \mathrm{~d} y-y \mathrm{~d} x)$. Then $\left.\alpha\right|_{R}=0$ on any ray R through the origin and $\mathrm{d} \alpha=\mathrm{d} x \wedge \mathrm{~d} y$
- The area A enclosed by a curve γ and a ray R is

$$
A(\gamma)=\int_{\gamma} \alpha
$$

- The length of γ is

$$
l(\gamma)=\int_{I}\left(\dot{x}^{2}(t)+\dot{y}^{2}(t)\right)^{\frac{1}{2}} d t .
$$

- Problem: Minimize $l(\gamma)$ subject to $A(\gamma)=a=$ const.
- Dual Problem (Dido): Maximize $A(\gamma)$ subject to $l(\gamma)=l=$ const.
- Add z satisfying

$$
\dot{z}=\frac{1}{2}(x \dot{y}-y \dot{x}) .
$$

- Let c be a lift of γ (all lifts being parameterized by $z(0))$. Define $l(c)=l(\pi(c))=l(\gamma)$.
- If $z(0)=0$, then

$$
z(T)=z(T)-z(0)=\frac{1}{2} \int_{\gamma}(x \mathrm{~d} y-y \mathrm{~d} x)=A(\gamma) .
$$

- Define

$$
f_{1}=\frac{\partial}{\partial x}-\frac{1}{2} y \frac{\partial}{\partial z} \quad f_{2}=\frac{\partial}{\partial y}+\frac{1}{2} x \frac{\partial}{\partial z}
$$

and

$$
\mathcal{D}=\operatorname{span}\left\{f_{1}, f_{2}\right\} .
$$

f_{1} and f_{2} and $f_{3}=\left[f_{1}, f_{2}\right]$ span the Heisenberg Lie algebra (the simplest model of a non-involutive rank 2 distribution in \mathbb{R}^{3}).

Dido meets Heisenberg

The following problems are equivalent

- Minimize $l(\gamma)$, among all curves γ joining $(0,0)$ and (x, y), subject to $A(\gamma)=a=$ fixed;
- Minimize $l(c)=l(\pi(c))=l(\gamma)$, among all curves c joining $(0,0,0)$ and (x, y, z) (where $z=a$, subject to $\dot{c}(t)=\mathcal{D}(c(t))$.
- Minimize $l(c)$, among all curves c joining $(0,0,0)$ and (x, y, z) subject to $\dot{c}(t)=\mathcal{D}\left(c(t)\right.$, where f_{1} and f_{2} are orthonormal.

Optimal solutions

- The VNH equations give

$$
\begin{aligned}
\ddot{x} & =2 \lambda \dot{y} \\
\ddot{y} & =-2 \lambda \dot{x} \\
\dot{\lambda} & =0 \\
\dot{z} & =1 / 2(x \dot{y}-y \dot{x})
\end{aligned}
$$

whose solutions are circles, passing through $(0,0,0)$, formed by $(x(t), y(t))$ together with

$$
z(t)=\frac{t a}{T}-t a^{2} \sin \frac{2 \pi t}{T}
$$

The Heisenberg sphere of radius r looks like an apple!

- MNH solutions are straight lines corresponding to $\lambda=0$.

Conclusions

MNH	$V N H$
d'Alembert principle	min of J on horiz. curves
describe real systems	do not
involve λ	involve μ and $\dot{\mu}$
determined	underdetermined
the straightest	the shortest

the straightest the shortest

