Exterior Differential Systems and the Inverse Problem

Geoff Prince

Bedlewo

August 21st 2007.

EDS and the Inverse Problem joint with
 J. Aldridge, W. Sarlet, G. Thompson

1. The inverse problem
2. Geometric formulation
3. EDS and the inverse problem
(EDS - Exterior Differential Systems)

1. The Inverse Problem in the Calculus of Variations

"When are the solutions of

$$
\ddot{x}^{a}=F^{a}\left(t, x^{b}, \dot{x}^{b}\right) a, b=1, \ldots, n
$$

the solutions of

$$
\frac{\partial^{2} L}{\partial \dot{x}^{a} \partial \dot{x}^{b}} \ddot{x}^{b}+\frac{\partial^{2} L}{\partial x^{b} \partial \dot{x}^{a}} \dot{x}^{b}+\frac{\partial^{2} L}{\partial t \partial \dot{x}^{a}}=\frac{\partial L}{\partial x^{a}}
$$

for some $L\left(t, x^{a}, \ldots x^{a}\right)$?'

So, find regular $g_{a b}$ (and L) so that

$$
g_{a b}\left(\ddot{x}^{b}-F^{b}\right) \equiv \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}^{a}}\right)-\frac{\partial L}{\partial \dot{x}^{a}}
$$

- The multiplier problem.

Helmholtz conditions (Douglas 1941, Sarlet 1982)
necessary and sufficient conditions on $g_{a b}$:

$$
\begin{aligned}
g_{a b} & =g_{a b}, \Gamma\left(g_{a b}\right)=g_{a c} \Gamma_{b}^{c}+g_{b c} \Gamma_{a}^{c} \\
g_{a c} \Phi_{b}^{c} & =g_{b c} \Phi_{a}^{c}, \frac{\partial g_{a b}}{\partial \dot{x}^{c}}=\frac{\partial g_{a c}}{\partial \dot{x}^{b}}
\end{aligned}
$$

where

$$
\begin{aligned}
\Gamma_{b}^{a}: & =\frac{-1}{2} \frac{\partial F^{a}}{\partial \dot{x}^{b}}, \Phi_{b}^{a}:=-\frac{\partial F^{a}}{\partial x^{b}}-\Gamma_{b}^{c} \Gamma_{c}^{a}-\Gamma\left(\Gamma_{b}^{a}\right) \\
\Gamma: & =\frac{\partial}{\partial t}+u^{a} \frac{\partial}{\partial x^{a}}+F^{a} \frac{\partial}{\partial u^{a}}
\end{aligned}
$$

Helmholtz conditions: 1st order linear algebraic/differential equations for $g_{a b}$ with data $f^{a}, \Gamma_{b}^{a}, \Phi_{b}^{a}$.

Two approaches/problems:

- For given F^{a} find all g 's
e.g.

$$
\begin{aligned}
& \ddot{x}+\dot{y}=0 \\
& \ddot{y}+y=0
\end{aligned}
$$

admits no multipliers.

- For given n classify 2 nd order ode's according to existence and multiplicity of solutions of the Helmholtz condition.

Done by Douglas for $n=2$. Still not done for $n=3$.

Fields' medallist Jesse Douglas (1941):
"the problem is one of the most important hitherto unsolved problems of the calculus of variations'.

Douglas solved the problem for the $n=2$: he does this by a painstaking study of four main cases and many subcases. In most of the cases Douglas decides the existence question and gives all the possible Lagrangians; in the remaining cases the problem becomes a question of the closure of a certain 1-form.

Douglas's method is not easily generalizable to higher dimension and for this reason the problem has not been solved in Douglas's sense for $n=3$ or higher.

Example 1. Non-existence.

$$
\ddot{x}=\dot{y}, \quad \ddot{y}=y
$$

The only non-zero components of Γ_{b}^{a} and Φ_{b}^{a} are:

$$
\Gamma_{2}^{1}=-1, \quad \Phi_{2}^{2}=-1
$$

The third of the Helmholtz conditions gives only $g_{12}=0$ and the first then gives $g_{21}=0$. Now the second gives

$$
\begin{aligned}
& \Gamma\left(g_{11}\right)=0=\Gamma\left(g_{22}\right) \\
& \Gamma\left(g_{12}\right)=-g_{11}=\Gamma\left(g_{21}\right) . \\
& \Gamma=\frac{\partial}{\partial t}+\dot{x}^{a} \frac{\partial}{\partial x^{a}}+\dot{y} \frac{\partial}{\partial \dot{x}}+y \frac{\partial}{\partial \dot{y}}
\end{aligned}
$$

Hence $g_{11}=0$ and the multiplier matrix must be singular if it exists in violation of the initial assumption.

Example 2. Non-uniqueness.

$$
\begin{gathered}
\ddot{x}=y, \quad \ddot{y}=0 \\
\Gamma=\frac{\partial}{\partial t}+\dot{x} \frac{\partial}{\partial x}+\dot{y} \frac{\partial}{\partial y}+y \frac{\partial}{\partial \dot{y}} \\
\Gamma_{b}^{a}=0 ; \quad \Phi_{2}^{1}=-1 ; \quad \Phi_{b}^{a}=0, a \neq 1, \quad b \neq 2 .
\end{gathered}
$$

The symmetry condition $g_{a c} \Phi_{b}^{c}=g_{b c} \Phi_{a}^{c}$ leads immediately to $g_{11}=0$ and the last of the Helmholtz conditions yields

$$
0=\frac{\partial g_{11}}{\partial \dot{y}}=\frac{\partial g_{12}}{\partial \dot{x}}, \frac{\partial g_{21}}{\partial \dot{y}}=\frac{\partial g_{22}}{\partial \dot{x}}
$$

Using the first of these in the second condition, $\Gamma\left(g_{12}\right)=0$:

$$
\frac{\partial g_{12}}{\partial t}+\dot{x} \frac{\partial g_{12}}{\partial x}+\dot{y} \frac{\partial g_{12}}{\partial y}=0
$$

and $\frac{\partial g_{12}}{\partial \dot{x}}=0$ implies

$$
\frac{\partial g_{12}}{\partial t}+\dot{y} \frac{\partial g_{12}}{\partial y}=0, \frac{\partial g_{12}}{\partial x}=0
$$

Hence

$$
g_{12}=G_{1}(\dot{y}, y-\dot{y} t)
$$

More work with $u:=y-\dot{y} t, v:=\dot{y}$:

$$
\begin{aligned}
g_{11} & =0, \quad g_{12}=g_{21}=G_{1}(u, v) \\
g_{22} & =\left(\frac{\partial G_{1}}{\partial v}-t \frac{\partial G_{1}}{\partial u}\right) \dot{x} \\
& +\frac{\partial G_{1}}{\partial u} x-\frac{\partial G_{1}}{\partial v} u t+\frac{t^{2}}{2}\left(v \frac{\partial G_{1}}{\partial v}-u \frac{\partial G_{1}}{\partial u}\right) \\
& -\frac{t^{3}}{3} v \frac{\partial G_{1}}{\partial u}+G_{4}(u, v)
\end{aligned}
$$

So

$$
\ddot{x}=y, \quad \ddot{y}=0
$$

is variational and $\left(g_{a b}\right)$ is determined up to 2 arbitrary functions of two variables. To find all possible regular Lagrangians, integrate

$$
g_{a b}=\frac{\partial^{2} L}{\partial \dot{x}^{a} \partial \dot{x}^{b}}
$$

For example

$$
\begin{aligned}
& L_{1}:=x y \dot{y}+\frac{1}{2}\left(x-\frac{t^{2}}{2} y\right) \dot{y}^{2}-\frac{1}{2} t \dot{x} \dot{y}^{2}+\frac{1}{36} t^{3} \dot{y}^{3} \\
& \left(G_{1}:=u, G_{4}:=0\right) \\
& L_{2}:=\frac{1}{2} \dot{x} \dot{y}^{2}-\frac{1}{2} t y \dot{y}^{2}+\frac{1}{4} t^{2} \dot{y}^{3} \\
& \left(G_{1}:=v, G_{4}:=0\right)
\end{aligned}
$$

Significance

- Non-existence.

No Lagrangian \rightarrow No Hamiltonian \rightarrow No Quantisation.

No Lagrangian \rightarrow No Mechanics Theorems \rightarrow Hard Work.

- Non-uniqueness.

Too many Lagrangians \rightarrow Too many Hamiltonians \rightarrow Ambiguous Quantum Mechanics.

2. Geometric Formulation

$$
\begin{gathered}
E:=\mathbb{R} \times T M \quad\left(t, x^{a}, u^{a}\right) \\
\swarrow t \quad \downarrow \pi \quad \operatorname{dim}(E)=2 n+1 \\
\mathbb{R} \overleftarrow{t} \mathbb{R} \times M \quad\left(t, x^{a}\right) \\
\ddot{x}^{a}=F^{a}\left(t, x^{b}, \dot{x}^{b}\right) \\
\rightarrow \quad \Gamma=\frac{\partial}{\partial t}+u^{a} \frac{\partial}{\partial x^{a}}+F^{a} \frac{\partial}{\partial u^{a}} \in \mathfrak{X}(E)
\end{gathered}
$$

E is equipped with

- vertical dist'n $V(E)=s p\left\{V_{a}:=\frac{\partial}{\partial u^{a}}\right\}$
- contact dist' n

$$
\Theta(E)=\operatorname{sp}\left\{\theta^{a}:=d x^{a}-u^{a} d t\right\}
$$

- vertical endomorphism $S=V_{a} \otimes \theta^{a}$

Semispray:

$$
\begin{gathered}
\underbrace{\left\ulcorner=\frac{\partial}{\partial t}+u^{a} \frac{\partial}{\partial x^{a}}+F^{a} \frac{\partial}{\partial u^{a}} \quad S=V_{a} \bigotimes \theta^{a}\right.}_{\mathcal{L}_{\Gamma} S} \\
T E=S p\{\Gamma\} \bigoplus H(E) \bigoplus V(F)
\end{gathered}
$$

Projectors:

$$
\begin{gathered}
P_{\ulcorner }=\left\ulcorner\otimes d t, P_{H}=H_{a} \otimes \theta^{a}, P_{V}=V_{a} \otimes \phi^{a}\right. \\
\binom{H_{a}:=\frac{\partial}{\partial x^{a}}-\Gamma_{a}^{b} \frac{\partial}{\partial u^{b}}, \phi^{a}:=d u^{a}-F^{a} d t+\Gamma_{b}^{a} \theta^{b}}{\left[H_{a}, H_{b}\right]=R_{a b}^{d} V_{d}}
\end{gathered}
$$

Jacobi endomorphism:

$$
\begin{gathered}
\Phi:=P_{V} \circ \mathcal{L}_{\Gamma} P_{H} \\
\Phi=\left(-\frac{\partial F^{b}}{\partial x^{a}}-\Gamma_{c}^{b} \Gamma_{a}^{c}-\Gamma\left(\Gamma_{a}^{b}\right)\right) V_{b} \otimes \theta^{a} \\
V_{a}\left(\Phi_{b}^{c}\right)-V_{b}\left(\Phi_{a}^{c}\right)=3 R_{a b}^{c}
\end{gathered}
$$

In the autoparallel case

$$
\begin{gathered}
\Gamma_{b}^{a}=\Gamma_{b c}^{a} u^{c}, \quad R_{a b}^{c}=R_{d a b}^{c} u^{d} \\
\Phi_{b}^{a}=R_{c d b}^{a} u^{c} u^{d}
\end{gathered}
$$

When $\ddot{x}^{a}=F^{a}\left(t, x^{b}, \dot{x}^{b}\right)$ are (normalized) EulerLagrange equations, then Γ is the unique vectors field on E s.t.

$$
\Gamma\lrcorner d \theta_{L}=0, d t(\Gamma)=1
$$

where

$$
\begin{gathered}
\theta_{L}:=L d t+d L \circ S=L d t+\frac{\partial L}{\partial u^{a}} \theta^{a} \\
d \theta_{L}=\frac{\partial^{2} L}{\partial u^{a} \partial u^{b}} \psi^{a} \wedge \theta^{b}
\end{gathered}
$$

Theorem (CPT 1984) Given a SODE 「, necessary and sufficient conditions for the existence of a Lagrangian whose $E-L$ field is Γ are that there exists $\Omega \in \Lambda^{2}(E)$:

1. Ω has max'l rank
2. $\Omega\left(V_{1}, V_{2}\right)=0 \forall V_{1}, V_{2} \in V(E)$
3. $\Gamma\lrcorner \Omega=0$
4. $d \Omega=0$

Usually begin the search for Ω by assuming 1, 2, 3 i.e.

$$
\Omega=g_{a b} \psi^{a} \wedge \theta^{b},\left|g_{a b}\right| \neq 0
$$

and requiring

$$
d \Omega=0
$$

$d \Omega(X, Y, Z)=0$ give the Helmholtz conditions e.g.

$$
\begin{aligned}
& d \Omega\left(\Gamma, V_{a}, H_{b}\right)=0 \Leftrightarrow \Gamma\left(g_{a b}\right)-g_{b c} \Gamma_{a}^{c}-g_{a c} \Gamma_{b}^{c}=0 \\
& d \Omega\left(\Gamma, V_{a}, V_{b}\right)=0 \Leftrightarrow g_{a b}=g_{b a} \\
& d \Omega\left(\Gamma, H_{a}, H_{b}\right)=0 \Leftrightarrow g_{a c} \Phi_{b}^{c}=g_{b c} \Phi_{a}^{c} \\
& \text { etc. }
\end{aligned}
$$

3. EDS and the Inverse Problem.

EDS reference Bryant, Chern et al 1991.
IP reference Anderson and Thompson 1992.
In EDS terms, the I.P. is
"Find all closed, maximal rank 2-forms in $\Sigma:=S p\left\{\psi^{a} \wedge \theta^{b}\right\} \subset \wedge^{2}(E) "$

3 steps

1. Find the largest differential ideal generated by Σ.
2. Create a Pfaffian system from the closure condition on this ideal.
3. Apply Cartan-Kähler to determine the generality of the solution of this Pfaffian system.

The differential ideal step.

Q. Set $\Sigma^{0}:=\Sigma=\operatorname{Sp}\left\{\phi^{a} \wedge \theta^{b}\right\}$.

$$
\text { Is }\left\langle\Sigma^{0}\right\rangle \text { closed? }
$$

A. Yes - done!

No - define $\Sigma^{1}:=\left\{\omega \in \Sigma^{0}: d \omega \in\left\langle\Sigma^{0}\right\rangle\right\}$
Q. Is $\left\langle\Sigma^{1}\right\rangle$ closed?
etc.

This process terminates for some (possibly empty) $\Sigma^{\text {final. }}$

If $\Sigma^{\text {final }} \neq \phi$ go to step 2.
Otherwise go home (yours not mine).

Notes

1. The differential ideal steps

$$
\Sigma^{0} \rightarrow \Sigma^{1} \rightarrow \cdots \rightarrow \Sigma^{\text {final }}
$$

generate hierarchies of algebraic conditions on the multiplier, eg if $\omega \in \Sigma^{k}$ then
$\omega\left(X^{V}, Y^{H}\right)=\omega\left(Y^{V}, X^{H}\right)$
$\omega\left(\Phi(X)^{V}, Y^{H}\right)=\omega\left(\Phi(Y)^{V}, X^{H}\right)$
$\omega\left(\left(\nabla^{k} \Phi(X)\right)^{V}, Y^{H}\right)=\omega\left(\left(\nabla^{k} \Phi(Y)\right)^{V}, X^{H}\right)$
There is a similar hierarchy of curvature conditions.
2. If Σ^{k} is a differential ideal then we get conditions on Φ, eg, $\Phi=\lambda I$.
3. If Σ^{k} is a differential ideal and contains closed 2 forms then we get differential conditions on the multiplier (EDS step 2).

Question Are there further independent algebraic conditions on the multiplier (at the differential ideal step)? For example,

$$
\sum_{(X Y Z)} d \Omega\left(\Phi(X)^{V}, \Phi(Y)^{V}, Z^{H}\right)=0
$$

gives an apparently new algebraic condition at the Σ^{1} step.

More concretely:

Question Can we find necessary and sufficient algebraic conditions defining

$$
\Sigma^{k}:=\left\{\omega \in \Sigma^{k-1}: d \omega \in\left\langle\Sigma^{k-1}\right\rangle\right\} ?
$$

Answer Yes, if we can give necessary and sufficient conditions on the adapted basis components of three forms in $\left\langle\Sigma^{k-1}\right\rangle$. This can be done for Σ^{0}.

Example 3. $(\mathrm{n}=3)$

$$
\Sigma^{1}=\operatorname{sp}\left\{\omega^{11}, \omega^{22}, \omega^{33}\right\}
$$

$$
\left(\omega^{a a}:=\psi^{a} \wedge \theta^{b}\right)
$$

$$
\Sigma^{2}=\operatorname{sp}\left\{\omega^{1}:=\omega^{11}+r_{3}^{1} \omega^{33}, \omega^{2}:=\omega^{22}+r_{3}^{2} \omega^{33}\right\}
$$

For $\omega=\omega^{1}+p \omega^{2} \in \Sigma^{3}, \exists \lambda_{1,2}$:

$$
\begin{gather*}
d \omega \in\left\langle\Sigma^{2}\right\rangle \Longleftrightarrow \\
d \omega^{1}+p d \omega^{2}=\lambda_{1} \wedge \omega^{1}+\lambda_{2} \wedge \omega^{2} \tag{1}
\end{gather*}
$$

Now we use $d \omega^{1}, d \omega^{2} \in\left\langle\Sigma^{1}\right\rangle$ and

$$
\omega^{1}:=\omega^{11}+r \frac{1}{3} \omega^{33}, \omega^{2}:=\omega^{22}+r_{3}^{2} \omega^{33}
$$

to get (1) in terms of ω^{11}, ω^{22}.

We get a linear system of 4 equations in 5 unknowns (p and 4 components of λ_{1}, λ_{2}) whose rank depends on r_{3}^{1}, r_{3}^{2}.

The differential ideal step generates all the necessary and sufficient conditions in a basis calculation.

Open Questions

1. $n=3$
2. nature of classification for arbitrary n. Probably by Φ :
(a) Φ diag'ble distinct e'vals: p e'spaces integrable $(n-p)$ are not integrable
(b) Φ diag'ble repeated e'vals and integrability again.
(c) then Jordan normal forms but possible subclassification by differential ideal step.
3. The rest of the EDS process !!
