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1. The Inverse Problem in the Calculus

of Variations

“When are the solutions of

ẍa = F a(t, xb, ẋb)a, b = 1, . . . , n

the solutions of

∂2L

∂ẋa∂ẋb
ẍb +

∂2L

∂xb∂ẋa
ẋb +

∂2L

∂t∂ẋa
=

∂L

∂xa

for some L(t, xa, . . . xa)?”

So, find regular gab (and L) so that

gab(ẍ
b − F b) ≡ d

dt

(
∂L

∂ẋa

)
− ∂L

∂ẋa

- The multiplier problem.



Helmholtz conditions (Douglas 1941, Sarlet

1982)

necessary and sufficient conditions on gab:

gab = gab,Γ(gab) = gacΓ
c
b + gbcΓ

c
a

gacΦ
c
b = gbcΦ

c
a,

∂gab

∂ẋc
=

∂gac

∂ẋb

where

Γa
b : =

−1

2

∂F a

∂ẋb
,Φa

b := −∂F a

∂xb
− Γc

bΓ
a
c − Γ(Γa

b)

Γ : =
∂

∂t
+ ua ∂

∂xa
+ F a ∂

∂ua

Helmholtz conditions: 1st order linear alge-

braic/differential equations for gab with data

fa,Γa
b ,Φa

b .



Two approaches/problems:

• For given F a find all g’s

e.g.

ẍ + ẏ = 0

ÿ + y = 0

admits no multipliers.

• For given n classify 2nd order ode’s ac-

cording to existence and multiplicity of solu-

tions of the Helmholtz condition.

Done by Douglas for n = 2.

Still not done for n = 3.



Fields’ medallist Jesse Douglas (1941):

“the problem ...... is one of the most impor-

tant hitherto unsolved problems of the cal-

culus of variations”.

Douglas solved the problem for the n = 2 :

he does this by a painstaking study of four

main cases and many subcases. In most of

the cases Douglas decides the existence ques-

tion and gives all the possible Lagrangians; in

the remaining cases the problem becomes a

question of the closure of a certain 1-form.

Douglas’s method is not easily generalizable

to higher dimension and for this reason the

problem has not been solved in Douglas’s

sense for n = 3 or higher.



Example 1. Non-existence.

ẍ = ẏ, ÿ = y.

The only non-zero components of Γa
b and

Φa
b are:

Γ1
2 = −1, Φ2

2 = −1.

The third of the Helmholtz conditions gives

only g12 = 0 and the first then gives g21 = 0.

Now the second gives

Γ(g11) = 0 = Γ(g22),

Γ(g12) = −g11 = Γ(g21).

Γ =
∂

∂t
+ ẋa ∂

∂xa
+ ẏ

∂

∂ẋ
+ y

∂

∂ẏ

Hence g11 = 0 and the multiplier matrix must

be singular if it exists in violation of the initial

assumption.



Example 2. Non-uniqueness.

ẍ = y, ÿ = 0.

Γ =
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ y

∂

∂ẏ

Γa
b = 0; Φ1

2 = −1; Φa
b = 0, a 6= 1, b 6= 2.

The symmetry condition gacΦc
b = gbcΦ

c
a leads

immediately to g11 = 0 and the last of the
Helmholtz conditions yields

0 =
∂g11

∂ẏ
=

∂g12

∂ẋ
,

∂g21

∂ẏ
=

∂g22

∂ẋ
.

Using the first of these in the second condi-
tion, Γ(g12) = 0:

∂g12

∂t
+ ẋ

∂g12

∂x
+ ẏ

∂g12

∂y
= 0,

and
∂g12

∂ẋ
= 0 implies

∂g12

∂t
+ ẏ

∂g12

∂y
= 0,

∂g12

∂x
= 0.

Hence

g12 = G1(ẏ, y − ẏt).



More work with u := y − ẏt, v := ẏ :

g11 = 0, g12 = g21 = G1(u, v),

g22 =
(

∂G1

∂v
− t

∂G1

∂u

)
ẋ

+
∂G1

∂u
x− ∂G1

∂v
ut +

t2

2

(
v
∂G1

∂v
− u

∂G1

∂u

)

− t3

3
v
∂G1

∂u
+ G4(u, v).

So

ẍ = y, ÿ = 0

is variational and (gab) is determined up to 2

arbitrary functions of two variables. To find

all possible regular Lagrangians, integrate

gab =
∂2L

∂ẋa∂ẋb
.



For example

L1 := xyẏ +
1

2
(x− t2

2
y)ẏ2 − 1

2
tẋẏ2 +

1

36
t3ẏ3

(G1 := u, G4 := 0)

L2 :=
1

2
ẋẏ2 − 1

2
tyẏ2 +

1

4
t2ẏ3

(G1 := v, G4 := 0)



Significance

• Non-existence.

No Lagrangian → No Hamiltonian → No

Quantisation.

No Lagrangian → No Mechanics Theo-

rems → Hard Work.

• Non-uniqueness.

Too many Lagrangians→ Too many Hamil-

tonians→ Ambiguous Quantum Mechan-

ics.



2. Geometric Formulation

E := R× TM (t, xa, ua)

↙ t ↓ π dim(E) = 2n + 1

R ←−
t

R×M (t, xa)

ẍa = F a(t, xb, ẋb)

→ Γ =
∂

∂t
+ ua ∂

∂xa
+ F a ∂

∂ua
∈ X(E)

E is equipped with

• vertical dist’n V (E) = sp{Va := ∂
∂ua}

• contact dist’n
Θ(E) = sp{θa := dxa − uadt}

• vertical endomorphism S = Va
⊗

θa



Semispray:

Γ =
∂

∂t
+ ua ∂

∂xa
+ F a ∂

∂ua
S = Va

⊗
θa

︸ ︷︷ ︸
LΓS

TE = Sp{Γ}
⊕

H(E)
⊕

V (F )

Projectors:

PΓ = Γ
⊗

dt, PH = Ha
⊗

θa, PV = Va
⊗

φa




Ha := ∂
∂xa − Γb

a
∂

∂ub, φ
a := dua − F adt + Γa

bθb

[Ha, Hb] = Rd
abVd






Jacobi endomorphism:

Φ := PV ◦ LΓPH

Φ =

(
−∂F b

∂xa
− Γb

cΓ
c
a − Γ(Γb

a)

)
Vb ⊗ θa,

Va(Φ
c
b)− Vb(Φ

c
a) = 3Rc

ab

In the autoparallel case

Γa
b = Γa

bcu
c, Rc

ab = Rc
dabu

d,

Φa
b = Ra

cdbu
cud



When ẍa = F a(t, xb, ẋb) are (normalized) Euler-

Lagrange equations, then Γ is the unique vec-

tors field on E s.t.

Γ dθL = 0, dt(Γ) = 1

where

θL := Ldt + dL ◦ S = Ldt +
∂L

∂ua
θa

dθL =
∂2L

∂ua∂ub
ψa ∧ θb



Theorem (CPT 1984) Given a SODE Γ,

necessary and sufficient conditions for the ex-

istence of a Lagrangian whose E − L field is

Γ are that there exists Ω ∈ Λ2(E) :

1. Ω has max’l rank

2. Ω(V1, V2) = 0 ∀V1, V2 ∈ V (E)

3. Γ Ω = 0

4. dΩ = 0



Usually begin the search for Ω by assuming

1, 2, 3 i.e.

Ω = gabψ
aΛθb, |gab| 6= 0

and requiring

dΩ = 0.

dΩ(X, Y, Z) = 0 give the Helmholtz condi-

tions e.g.

dΩ(Γ, Va, Hb) = 0 ⇔ Γ(gab)− gbcΓ
c
a − gacΓ

c
b = 0

dΩ(Γ, Va, Vb) = 0 ⇔ gab = gba

dΩ(Γ, Ha, Hb) = 0 ⇔ gacΦ
c
b = gbcΦ

c
a

etc.



3. EDS and the Inverse Problem.

EDS reference Bryant, Chern et al 1991.

IP reference Anderson and Thompson 1992.

In EDS terms, the I.P. is

“Find all closed, maximal rank 2-forms in
Σ := Sp{ψaΛθb} ⊂ Λ2(E)”

3 steps

1. Find the largest differential ideal gener-
ated by Σ.

2. Create a Pfaffian system from the closure
condition on this ideal.

3. Apply Cartan-Kähler to determine the gen-
erality of the solution of this Pfaffian sys-
tem.



The differential ideal step.

Q. Set Σ0 := Σ = Sp{φaΛθb}.

Is 〈Σ0〉 closed?

A. Yes - done!

No - define Σ1 := {ω ∈ Σ0 : dω ∈ 〈Σ0〉}

Q. Is 〈Σ1〉 closed?

etc.

This process terminates for some (possibly

empty) Σfinal.

If Σfinal 6= φ go to step 2.

Otherwise go home (yours not mine).



Notes

1. The differential ideal steps

Σ0 → Σ1 → · · · → Σfinal

generate hierarchies of algebraic condi-
tions on the multiplier, eg if ω ∈ Σk then

ω(XV , Y H) = ω(Y V , XH)

ω(Φ(X)V , Y H) = ω(Φ(Y )V , XH)

. . .

ω((∇kΦ(X))V , Y H) = ω((∇kΦ(Y ))V , XH)

There is a similar hierarchy of curvature
conditions.

2. If Σk is a differential ideal then we get
conditions on Φ, eg, Φ = λI.

3. If Σk is a differential ideal and contains
closed 2 forms then we get differential
conditions on the multiplier (EDS step
2).



Question Are there further independent al-

gebraic conditions on the multiplier (at the

differential ideal step)? For example,
∑

(XY Z)

dΩ(Φ(X)V ,Φ(Y )V , ZH) = 0

gives an apparently new algebraic condition

at the Σ1 step.

More concretely:

Question Can we find necessary and suffi-

cient algebraic conditions defining

Σk := {ω ∈ Σk−1 : dω ∈ 〈Σk−1〉}?

Answer Yes, if we can give necessary and

sufficient conditions on the adapted basis com-

ponents of three forms in 〈Σk−1〉. This can

be done for Σ0.



Example 3. (n=3)

Σ1 = sp{ω11, ω22, ω33}

(ωaa := ψa ∧ θb)

Σ2 = sp{ω1 := ω11+r13ω33, ω2 := ω22+r23ω33}

For ω = ω1 + pω2 ∈ Σ3, ∃ λ1,2 :

dω ∈ 〈Σ2〉 ⇐⇒

dω1 + pdω2 = λ1 ∧ ω1 + λ2 ∧ ω2 (1)

Now we use dω1, dω2 ∈ 〈Σ1〉 and

ω1 := ω11 + r13ω33, ω2 := ω22 + r23ω33

to get (1) in terms of ω11, ω22.



We get a linear system of 4 equations in 5

unknowns (p and 4 components of λ1, λ2)

whose rank depends on r13, r23.

The differential ideal step generates all

the necessary and sufficient conditions in

a basis calculation.



Open Questions

1. n = 3

2. nature of classification for arbitrary n.

Probably by Φ:

(a) Φ diag’ble distinct e’vals: p e’spaces

integrable (n− p) are not integrable

(b) Φ diag’ble repeated e’vals and integra-

bility again.

(c) then Jordan normal forms but possible

subclassification by differential ideal step.

3. The rest of the EDS process !!


