Natural and invariant quantizations

P. Mathonet

University of Liège Department of Mathematics

Bedlewo, 25 August 2007

Outline

The setting

Densities, differential operators and symbols

Projective structures

Natural and invariant quantizations

2 Link with previous works

Equivariant quantizations

History

3 Cartan connections

In general

Projective connections

Conformal connections

Projectively invariant quantizations made easy

A first step

Correcting terms

The results

6 Arbitrary tensor fields

The setting

Tensor Densities

Let M be a smooth manifold of dim n In coordinates, a density F of weight λ writes

$$F(x) = f(x^1, \dots, x^n) |dx^1 \wedge \dots \wedge dx^n|^{\lambda},$$

where f is a function.

The bundle of λ -densities is denoted by $F_{\lambda}(M)$, while $\mathcal{F}_{\lambda}(M)$ is the space of sections.

Tensor Densities

Let M be a smooth manifold of dim nIn coordinates, a density F of weight λ writes

$$F(x) = f(x^1, \dots, x^n) | dx^1 \wedge \dots \wedge dx^n |^{\lambda},$$

where f is a function.

The bundle of λ -densities is denoted by $F_{\lambda}(M)$, while $\mathcal{F}_{\lambda}(M)$ is the space of sections.

• $F_{\lambda}(M) = P^1 M \times_{\alpha_{\lambda}} \Delta^{\lambda}(\mathbb{R}^n)$. where P^1M is the linear frame bundle of M and

$$\left\{ \begin{array}{l} \dim \Delta^{\lambda}(\mathbb{R}^{n}) = 1 \\ \rho_{\lambda}(A)e = |\det A|^{-\lambda}e, \quad \forall A \in \mathit{GL}(n,\mathbb{R}) \end{array} \right.$$

- $\mathcal{F}_{\lambda}(M)$: $C^{\infty}(P^{1}M, \Delta^{\lambda}(R^{n}))_{G(n,\mathbb{R})}$
- $\forall f \in \mathcal{F}_{\lambda}(M)$.

$$\rho_{\lambda}(\varphi)(F)(x) = F \circ \varphi^{-1}(x) |\det D_x \varphi|^{-\lambda}.$$

Differential operators

- $\mathcal{D}_{\lambda\mu}(M)$: linear diff. operators from $\mathcal{F}_{\lambda}(M)$ to $\mathcal{F}_{\mu}(M)$.
- There is a filtration

$$\mathcal{D}_{\lambda\mu} = \bigcup_{k \in \mathbb{N}} \mathcal{D}_{\lambda\mu}^k.$$

Differential operators

- $\mathcal{D}_{\lambda\mu}(M)$: linear diff. operators from $\mathcal{F}_{\lambda}(M)$ to $\mathcal{F}_{\mu}(M)$.
- There is a filtration

$$\mathcal{D}_{\lambda\mu} = \bigcup_{\mathbf{k}\in\mathbb{N}} \mathcal{D}_{\lambda\mu}^{\mathbf{k}}.$$

• In coordinates, if $D \in \mathcal{D}_{\lambda u}^{k}$:

$$D = \sum_{|\alpha|=0}^{k} A_{\alpha}(x) \left(\frac{\partial}{\partial x}\right)^{\alpha}, \quad A_{\alpha} \in \mathcal{F}_{\mu-\lambda}.$$

Action of Diff(M):

$$\rho_{\lambda\mu}(\varphi)D = \rho_{\mu}(\varphi) \circ D \circ \rho_{\lambda}(\varphi^{-1}).$$

Natural and invariant quantizations

Symbols

The space of symbols

We set
$$S'_{\delta}(\mathbb{R}^n) = S'\mathbb{R}^n \otimes \Delta^{\delta}(\mathbb{R}^n)$$
.

We set

$$S'_{\delta}(M) \to M := P^1 M \times_{\rho} S'_{\delta}(\mathbb{R}^n) \to M,$$

$$\mathcal{S}'_{\delta}(M) = C^{\infty}(P^{1}M, S'_{\delta}(\mathbb{R}^{n}))_{GL(n,\mathbb{R})}$$

and

$$\mathcal{S}_{\delta}(M) = \bigoplus_{l=0}^{\infty} \mathcal{S}_{\delta}^{l}(M).$$

Symbols

The space of symbols

We set
$$S'_{\delta}(\mathbb{R}^n) = S'\mathbb{R}^n \otimes \Delta^{\delta}(\mathbb{R}^n)$$
.

We set

$$S'_{\delta}(M) \to M := P^1 M \times_{\rho} S'_{\delta}(\mathbb{R}^n) \to M,$$

$$\mathcal{S}_{\delta}^{I}(M) = C^{\infty}(P^{1}M, \mathcal{S}_{\delta}^{I}(\mathbb{R}^{n}))_{GL(n,\mathbb{R})}$$

and

$$S_{\delta}(M) = \bigoplus_{l=0}^{\infty} S_{\delta}^{l}(M).$$

Remark

As symmetric tensor fields identify with functions on T^*M that reduce to polynomials along the fibers, we identify symbols with such functions (with values in spaces of densities)

Natural and invariant quantizations

The principal symbol operator

Definition

If
$$\delta = \mu - \lambda$$
 we set $\sigma_{(I)} : \mathcal{D}_{\lambda,\mu}^I(M) \to \mathcal{S}_{\delta}^I(M)$:

$$D = \sum_{|\alpha|=0}^{l} A_{\alpha}(x) \left(\frac{\partial}{\partial x}\right)^{\alpha} \mapsto \sigma(D)(x,\xi) = \sum_{|\alpha|=l} A_{\alpha}(x) \xi^{\alpha}.$$

The principal symbol operator

Definition

If
$$\delta = \mu - \lambda$$
 we set $\sigma_{(I)} : \mathcal{D}_{\lambda,\mu}^I(M) \to \mathcal{S}_{\delta}^I(M)$:

$$D = \sum_{|\alpha|=0}^{l} A_{\alpha}(x) \left(\frac{\partial}{\partial x}\right)^{\alpha} \mapsto \sigma(D)(x,\xi) = \sum_{|\alpha|=l} A_{\alpha}(x) \xi^{\alpha}.$$

Properties

The operator σ commutes with the actions of local diffeomorphisms. It induces a bijection from the graded space associated to differential operators to the space of symbols.

Projective structures

- Denote by C_M the space of torsion-free linear connections on M.
- Two such connections are *Projectively equivalent* if they define the same geodesics up to parametrization.
- An equivalent condition : $\nabla \sim \nabla' \Leftrightarrow \exists \alpha \in \Omega^1(M)$:

$$\nabla_X'Y = \nabla_XY + \alpha(X)Y + \alpha(Y)X.$$

(This formulation was given by H. Weyl).

 A class of equivalent torsion free linear connections defines a projective structure on M.

Projective structures

- Denote by C_M the space of torsion-free linear connections on M.
- Two such connections are *Projectively equivalent* if they define the same geodesics up to parametrization.
- An equivalent condition : $\nabla \sim \nabla' \Leftrightarrow \exists \alpha \in \Omega^1(M)$:

$$\nabla_X'Y = \nabla_XY + \alpha(X)Y + \alpha(Y)X.$$

(This formulation was given by H. Weyl).

- A class of equivalent torsion free linear connections defines a projective structure on M.
- To a projective structure on M is associated :
 - A Thomas-Whitehead connection $\tilde{\nabla}$ on \tilde{M}
 - A Cartan connection ω on a Cartan bundle $P \to M$.

Quantizations

Definition

A quantization on M is a linear bijection $Q_M: \mathcal{S}_{\delta}(M) \to \mathcal{D}_{\lambda,\mu}(M)$ s.t.

$$\sigma(Q_M(S)) = S, \quad \forall S \in \mathcal{S}^k_{\delta}(M), \ \forall k \in \mathbb{N}.$$

Quantizations

Definition

A quantization on M is a linear bijection $Q_M: \mathcal{S}_{\delta}(M) \to \mathcal{D}_{\lambda,\mu}(M)$ s.t.

$$\sigma(Q_M(S)) = S, \quad \forall S \in \mathcal{S}^k_{\delta}(M), \ \forall k \in \mathbb{N}.$$

A Trivial example: The affine quantization map

Take $M = \mathbb{R}^n$.

If $S(x,\xi) = \sum_{|\alpha|=k} C_{\alpha}(x)\xi^{\alpha}$, then set

$$Q_{Aff}(S) = \sum_{|\alpha|=k} C_{\alpha}(x) \circ (\frac{\partial}{\partial x})^{\alpha}.$$

 Q_{Aff} is the so-called Standard ordering.

Natural and projectively invariant quantizations

Natural quantizations

A natural quantization is a collection of maps (defined for every manifold M)

$$Q_M: \mathcal{C}_M imes \mathcal{S}_\delta(M) o \mathcal{D}_{\lambda,\mu}(M)$$

such that

- For all ∇ in \mathcal{C}_M , $Q_M(\nabla)$ is a quantization,
- If $\phi: M \to N$ is a local diffeomorphism, one has

$$Q_{\mathcal{M}}(\phi^*\nabla)(\phi^*S) = \phi^*(Q_{\mathcal{N}}(\nabla)(S)), \quad \forall \nabla \in \mathcal{C}_{\mathcal{N}}, \forall S \in \mathcal{S}_{\delta}(\mathcal{N}).$$

Natural and projectively invariant quantizations

Natural quantizations

A natural quantization is a collection of maps (defined for every manifold M)

$$Q_M: \mathcal{C}_M imes \mathcal{S}_\delta(M) o \mathcal{D}_{\lambda,\mu}(M)$$

such that

- For all ∇ in \mathcal{C}_M , $Q_M(\nabla)$ is a quantization,
- If $\phi: M \to N$ is a local diffeomorphism, one has

$$Q_{M}(\phi^{*}\nabla)(\phi^{*}S) = \phi^{*}(Q_{N}(\nabla)(S)), \quad \forall \nabla \in \mathcal{C}_{N}, \forall S \in \mathcal{S}_{\delta}(N).$$

Projective invariance

A quantization Q_M is projectively invariant if one has $Q_M(\nabla) = Q_M(\nabla')$ whenever ∇ and ∇' are projectively equivalent torsion-free linear connections on M.

Natural quantizations (conformal case)

In the conformal sense, a *natural quantization* is a collection of quantizations Q_M depending on a pseudo-Riemannian metric such that

- For all pseudo-Riemannian metric g on M, $Q_M(g)$ is a quantization,
- If ϕ is a local diffeomorphism from M to N, then one has

$$Q_{\mathsf{M}}(\phi^*g)(\phi^*S) = \phi^*(Q_{\mathsf{N}}(g)(S)),$$

for all pseudo-Riemannian metrics g on N, and all $S \in \mathcal{S}_{\delta}(N)$.

Natural and conformally equivariant quantizations

Natural quantizations (conformal case)

In the conformal sense, a *natural quantization* is a collection of quantizations Q_M depending on a pseudo-Riemannian metric such that

- For all pseudo-Riemannian metric g on M, $Q_M(g)$ is a quantization,
- If ϕ is a local diffeomorphism from M to N, then one has

$$Q_M(\phi^*g)(\phi^*S) = \phi^*(Q_N(g)(S)),$$

for all pseudo-Riemannian metrics g on N, and all $S \in \mathcal{S}_{\delta}(N)$.

Conformal invariance

A quantization Q_M is conformally invariant if one has $Q_M(g) = Q_M(g')$ whenever g and g' are conformally equivalent.

$\mathfrak{sl}(n+1)$ -equivariant quantizations

A remark

Suppose $\{Q_M\}$ is natural and projectively invariant. Then $Q_{\mathbb{R}^n}(\nabla_0)$ is a quantization over \mathbb{R}^n and commutes with transformations of \mathbb{R}^n that take ∇_0 into a projectively equivalent connection.

At the infinitesimal level, $Q_{\mathbb{R}^n}(\nabla_0)$ is an $\mathfrak{sl}(n+1,\mathbb{R})$ -equivariant quantization : it commutes with the action of

$$\mathfrak{sl}(n+1,\mathbb{R}) = span\{\partial_k, x^j \partial_k, x^j \sum_{k=1}^m x^k \partial_k\}.$$

$\mathfrak{sl}(n+1)$ -equivariant quantizations

A remark

Suppose $\{Q_M\}$ is natural and projectively invariant. Then $Q_{\mathbb{R}^n}(\nabla_0)$ is a quantization over \mathbb{R}^n and commutes with transformations of \mathbb{R}^n that take ∇_0 into a projectively equivalent connection.

At the infinitesimal level, $Q_{\mathbb{R}^n}(\nabla_0)$ is an $\mathfrak{sl}(n+1,\mathbb{R})$ -equivariant quantization : it commutes with the action of

$$\mathfrak{sl}(n+1,\mathbb{R}) = span\{\partial_k, x^j \partial_k, x^j \sum_{k=1}^m x^k \partial_k\}.$$

The explicit formula (Duval Ovsienko, 2001)

$$Q_{proj}(T) = Q_{Aff}(\sum_{l=0}^{k} \frac{(\lambda + \frac{k-1}{n+1}) \cdots (\lambda + \frac{k-l}{n+1})}{\gamma_{2k-1} \cdots \gamma_{2k-l}} \begin{pmatrix} k \\ l \end{pmatrix} Div^{l}T),$$

where
$$\gamma_r = \frac{n+r-(n+1)\delta}{n+1}$$

History of the subject

The flat situation

- Existence and uniqueness of $\mathfrak{sl}(n+1,\mathbb{R})$ -equivariant quantization for $\delta=0$: Lecomte, Ovsienko (1999)
- Existence, explicit formulae for arbitrary δ : Lecomte (2000) and Duval, Ovsienko (2001)
- The conformal case, arbitrary δ : Duval, Lecomte, Ovsienko (2000)
- Other algebras : Boniver, M. (2001,2006)
- Diff. ops; acting on forms: Boniver, Hansoul, M., Poncin (2002)

History of the subject

The flat situation

- Existence and uniqueness of $\mathfrak{sl}(n+1,\mathbb{R})$ -equivariant quantization for $\delta=0$: Lecomte, Ovsienko (1999)
- Existence, explicit formulae for arbitrary δ : Lecomte (2000) and Duval, Ovsienko (2001)
- The conformal case, arbitrary δ : Duval, Lecomte, Ovsienko (2000)
- Other algebras : Boniver, M. (2001,2006)
- Diff. ops; acting on forms: Boniver, Hansoul, M., Poncin (2002)

Natural quantizations

- Bouarroudj wrote Q_{proj} using connections (2001)
- Lecomte : The exact setting (2001)
- Bordemann: Existence (2002) and Hansoul (2004)
- M. and Radoux : Existence using Cartan connections (2005)

The ingredients

We need a manifold M, a group G, a closed subgoup H s.t. dimM = dimG/H and $Q \rightarrow M$: a principal H-bundle.

The ingredients

We need a manifold M, a group G, a closed subgoup H s.t. dim M = dim G/H and $Q \rightarrow M$: a principal H-bundle.

The definition

A Cartan connection ω on Q is a 1-form on Q with values in $\mathfrak g$ such that

The ingredients

We need a manifold M, a group G, a closed subgoup H s.t. dimM = dimG/H and $Q \rightarrow M$: a principal H-bundle.

The definition

A Cartan connection ω on Q is a 1-form on Q with values in $\mathfrak g$ such that

• There holds $R_a^*\omega = Ad(a^{-1})\omega$, $\forall a \in H$,

The ingredients

We need a manifold M, a group G, a closed subgoup H s.t. dimM = dimG/H and $Q \rightarrow M$: a principal H-bundle.

The definition

A Cartan connection ω on Q is a 1-form on Q with values in $\mathfrak g$ such that

- There holds $R_a^*\omega = Ad(a^{-1})\omega$, $\forall a \in H$,
- One has $\omega(k^*) = k \quad \forall k \in \mathfrak{h}$,

The ingredients

We need a manifold M, a group G, a closed subgoup H s.t. dimM = dimG/H and $Q \rightarrow M$: a principal H-bundle.

The definition

A Cartan connection ω on Q is a 1-form on Q with values in $\mathfrak g$ such that

- There holds $R_a^*\omega = Ad(a^{-1})\omega$, $\forall a \in H$,
- One has $\omega(k^*) = k \quad \forall k \in \mathfrak{h}$,
- $\forall u \in Q$, $\omega_u : T_uQ \to \mathfrak{g}$ is a linear bijection.

The ingredients

We need a manifold M, a group G, a closed subgoup H s.t. dimM = dimG/H and $Q \rightarrow M$: a principal H-bundle.

The definition

A Cartan connection ω on Q is a 1-form on Q with values in $\mathfrak g$ such that

- There holds $R_a^*\omega = Ad(a^{-1})\omega$, $\forall a \in H$,
- One has $\omega(k^*) = k \quad \forall k \in \mathfrak{h}$,
- $\forall u \in Q$, $\omega_u : T_uQ \to \mathfrak{g}$ is a linear bijection.

The curvature Ω is defined as usual by

$$\Omega = d\omega + \frac{1}{2}[\omega, \omega].$$

A trivial example

The flat case.

Example

- G: a Lie group
- *H* : a closed subgroup
- M = G/H and ω : the Maurer Cartan form of G
- The curvature is zero, due to Maurer-Cartan equations.

A trivial example

The flat case.

Example

- G: a Lie group
- *H* : a closed subgroup
- M = G/H and ω : the Maurer Cartan form of G
- The curvature is zero, due to Maurer-Cartan equations.

Normal Cartan connections

A Cartan connection is normal if its curvature fulfills some trace free conditions.

The group *G*

The group G is $PGL(n+1,\mathbb{R}) = GL(n+1,\mathbb{R})/\mathbb{R}_0 Id$ It acts on $\mathbb{R}P^n$.

The group *G*

The group G is $PGL(n+1,\mathbb{R}) = GL(n+1,\mathbb{R})/\mathbb{R}_0 Id$ It acts on $\mathbb{R}P^n$.

The group *H*

The group H is the stabilizer of $[e_{n+1}]$ in $\mathbb{R}P^n$, that is,

$$H = \left\{ \left(\begin{array}{cc} A & 0 \\ \xi & a \end{array} \right) : A \in \xi \in \mathbb{R}^{n*}, a \neq 0 \right\} / \mathbb{R}_0 \text{Id}$$

Therefore $H \cong G_0 \rtimes G_1$, where G_0 is isomorphic to $GL(n,\mathbb{R})$ and G_1 is isomorphic to \mathbb{R}^{n*} .

The algebras

We have $\mathfrak{g} \cong \mathfrak{sl}(n+1,\mathbb{R}) \cong \mathbb{R}^n \oplus \mathfrak{gl}(n,\mathbb{R}) \oplus \mathbb{R}^{n*} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$. We have $\mathfrak{h} \cong \mathfrak{g}_0 \oplus \mathfrak{g}_1$

The algebras

We have $\mathfrak{g} \cong \mathfrak{sl}(n+1,\mathbb{R}) \cong \mathbb{R}^n \oplus \mathfrak{gl}(n,\mathbb{R}) \oplus \mathbb{R}^{n*} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$. We have $\mathfrak{h} \cong \mathfrak{g}_0 \oplus \mathfrak{g}_1$

$$H \hookrightarrow G_n^2$$

The group H acts locally on \mathbb{R}^n by projective transformations that leave the origin fixed. Such a transformation is characterized by its second order jet.

We may consider reductions of P^2M to H.

Results of Kobayashi and Nagano

Theorem (Kobayashi, Nagano (1960))

There is a 1-1 correspondence between projective structures on M and reductions P of P^2M to H.

This association is natural.

Results of Kobayashi and Nagano

Theorem (Kobayashi, Nagano (1960))

There is a 1-1 correspondence between projective structures on M and reductions P of P^2M to H.

This association is natural.

Theorem (Kobayashi, Nagano (1960))

On each bundle P as above there exists a canonical normal Cartan connection ω with values in \mathfrak{g} .

Results of Kobayashi and Nagano

Theorem (Kobayashi, Nagano (1960))

There is a 1-1 correspondence between projective structures on M and reductions P of P^2M to H.

This association is natural.

Theorem (Kobayashi, Nagano (1960))

On each bundle P as above there exists a canonical normal Cartan connection ω with values in \mathfrak{g} .

To summarize

There is a natural association $(M, [\nabla]) \longleftrightarrow (P \to M, \omega)$

Results of Kobayashi and Nagano

Theorem (Kobayashi, Nagano (1960))

There is a 1-1 correspondence between projective structures on M and reductions P of P^2M to H.

This association is natural.

Theorem (Kobayashi, Nagano (1960))

On each bundle P as above there exists a canonical normal Cartan connection ω with values in \mathfrak{g} .

To summarize

There is a natural association $(M, [\nabla]) \longleftrightarrow (P \to M, \omega)$

For extensions of these results, see Cap, Slovack, Soucek (1997)

Consider the bilinear symmetric form g of signature (p+1,q+1) on \mathbb{R}^{n+2} (p+q=n) defined by

$$S = \left(\begin{array}{ccc} 0 & 0 & -1 \\ 0 & J & 0 \\ -1 & 0 & 0 \end{array}\right).$$

where

$$J = \left(\begin{array}{cc} I_p & 0\\ 0 & -I_q \end{array}\right)$$

(J represents a nondegenerate symmetric bilinear form g_0 on \mathbb{R}^n) The Möbius space is the projection of the light cone associated to g on the projective space $\mathbb{R}P^{n+1}$.

The group G

The group G is made of linear transformations that leave B invariant, modulo its center, that is,

$$G = \{X \in GL(n+2,\mathbb{R}) : {}^{t}XSX = S\}/\{\pm Id\}.$$

It acts transitively on the Möbius space S^n .

The group G

The group G is made of linear transformations that leave B invariant, modulo its center, that is,

$$G = \{X \in GL(n+2,\mathbb{R}) : {}^{t}XSX = S\}/\{\pm Id\}.$$

It acts transitively on the Möbius space S^n .

The group *H*

H is the stabilizer of $[e_{n+2}]$ of the Möbius space :

$$H = \left\{ \begin{pmatrix} a^{-1} & 0 & 0 \\ a^{-1}A\xi^{\flat} & A & 0 \\ \frac{1}{2a}|\xi|^2 & \xi & a \end{pmatrix} : A \in O(p,q), a \in \mathbb{R}_0, \xi \in \mathbb{R}^{n*} \right\} / \{\pm \mathrm{Id} \}.$$

The group *G*

The group G is made of linear transformations that leave B invariant, modulo its center, that is,

$$G = \{X \in GL(n+2,\mathbb{R}) : {}^{t}XSX = S\}/\{\pm Id\}.$$

It acts transitively on the Möbius space S^n .

The group *H*

H is the stabilizer of $[e_{n+2}]$ of the Möbius space :

$$H = \left\{ \begin{pmatrix} a^{-1} & 0 & 0 \\ a^{-1}A\xi^{\flat} & A & 0 \\ \frac{1}{2a}|\xi|^2 & \xi & a \end{pmatrix} : A \in O(p,q), a \in \mathbb{R}_0, \xi \in \mathbb{R}^{n*} \right\} / \{\pm \mathrm{Id}\}.$$

The results about the algebras, P and ω are exactly the same.

Invariant quantization and Cartan connections

Joint work with F. Radoux (Letters in mathematical physics, 2005)

Lift of equivariant functions

There is a projection $p: P \to P^1M$. Let (V, ρ) be a rep. of $GL(n, \mathbb{R})$. If $f \in C^{\infty}(P^1M, V)_{GL(n, \mathbb{R})}$, then $p^*f \in C^{\infty}(P, V)_H$, where the action of H is given by

$$\rho'(\left(\begin{array}{cc}A&0\\\xi&a\end{array}\right))=\rho(\frac{A}{a})$$

(the part G_1 does not act).

Invariant quantization and Cartan connections

Joint work with F. Radoux (Letters in mathematical physics, 2005)

Lift of equivariant functions

There is a projection $p: P \to P^1M$. Let (V, ρ) be a rep. of $GL(n, \mathbb{R})$. If $f \in C^{\infty}(P^1M, V)_{GL(n, \mathbb{R})}$, then $p^*f \in C^{\infty}(P, V)_H$, where the action of H is given by

$$\rho'(\left(\begin{array}{cc}A&0\\\xi&a\end{array}\right))=\rho(\frac{A}{a})$$

(the part G_1 does not act).

A consequence

The map p^* is a 1-1 correspondence. Hence we can lift densities and symbols to H-equivariant functions on P.

Invariant differentiation and Q_{ω}

The definition (Ehresman, Cap, Slovack, Soucek)

Let (V, ρ) be a representation of H. If $f \in C^{\infty}(P, V)$, then the invariant differential of f with respect to ω is the function $\nabla^{\omega} f \in C^{\infty}(P, \mathbb{R}^{n*} \otimes V)$ defined by

$$abla^{\omega}f(u)(X) = L_{\omega^{-1}(X)}f(u) \quad \forall u \in P, \quad \forall X \in \mathbb{R}^n \subset \mathfrak{g}.$$

Invariant differentiation and Q_{ω}

The definition (Ehresman, Cap, Slovack, Soucek)

Let (V, ρ) be a representation of H. If $f \in C^{\infty}(P, V)$, then the invariant differential of f with respect to ω is the function $\nabla^{\omega} f \in C^{\infty}(P, \mathbb{R}^{n*} \otimes V)$ defined by

$$abla^{\omega} f(u)(X) = L_{\omega^{-1}(X)} f(u) \quad \forall u \in P, \quad \forall X \in \mathbb{R}^n \subset \mathfrak{g}.$$

The iterated symmetrized version

If $f \in C^\infty(P,V)$ then $(\nabla^\omega)^k f \in C^\infty(P,S^k\mathbb{R}^{n*}\otimes V)$ is defined by

$$(\nabla^{\omega})^{k} f(u)(X_{1}, \ldots, X_{k}) = \frac{1}{k!} \sum_{\nu} L_{\omega^{-1}(X_{\nu_{1}})} \circ \ldots \circ L_{\omega^{-1}(X_{\nu_{k}})} f(u)$$

for $X_1, \ldots, X_k \in \mathbb{R}^n$.

Standard ordering associated to ω

The map Q_{ω}

It associates to $S \in C^{\infty}(P, S^k \mathbb{R}^n \otimes \Delta^{\delta}(\mathbb{R}^n))$ and $f \in C^{\infty}(P, \Delta^{\lambda}(\mathbb{R}^n))$ $((\nabla^{\omega})^k f \in C^{\infty}(P, S^k \mathbb{R}^{n*} \otimes \Delta^{\lambda}(\mathbb{R}^n)))$ the function

$$Q_{\omega}(S)(f) := \langle S, (\nabla^{\omega})^k f \rangle.$$

Standard ordering associated to ω

The map Q_{ω}

It associates to $S \in C^{\infty}(P, S^k \mathbb{R}^n \otimes \Delta^{\delta}(\mathbb{R}^n))$ and $f \in C^{\infty}(P, \Delta^{\lambda}(\mathbb{R}^n))$ $((\nabla^{\omega})^k f \in C^{\infty}(P, S^k \mathbb{R}^{n*} \otimes \Delta^{\lambda}(\mathbb{R}^n)))$ the function

$$Q_{\omega}(S)(f) := \langle S, (\nabla^{\omega})^k f \rangle.$$

The problem

If $S \in C^{\infty}(P, S^k \mathbb{R}^n \otimes \Delta^{\delta}(\mathbb{R}^n))_H$ and $f \in C^{\infty}(P, \Delta^{\lambda}(\mathbb{R}^n))_H$, we just have $Q_{\omega}(S)(f) \in C^{\infty}(P, \Delta^{\lambda}(\mathbb{R}^n))_{G_0}$.

Standard ordering associated to ω

The map Q_{ω}

It associates to $S \in C^{\infty}(P, S^k \mathbb{R}^n \otimes \Delta^{\delta}(\mathbb{R}^n))$ and $f \in C^{\infty}(P, \Delta^{\lambda}(\mathbb{R}^n))$ $((\nabla^{\omega})^k f \in C^{\infty}(P, S^k \mathbb{R}^{n*} \otimes \Delta^{\lambda}(\mathbb{R}^n)))$ the function

$$Q_{\omega}(S)(f) := \langle S, (\nabla^{\omega})^k f \rangle.$$

The problem

If $S \in C^{\infty}(P, S^k \mathbb{R}^n \otimes \Delta^{\delta}(\mathbb{R}^n))_H$ and $f \in C^{\infty}(P, \Delta^{\lambda}(\mathbb{R}^n))_H$, we just have $Q_{\omega}(S)(f) \in C^{\infty}(P, \Delta^{\lambda}(\mathbb{R}^n))_{G_0}$.

The solution

Measure the default to G_1 -equivariance and add lower degree correcting terms to S.

Default of equivariance and divergence

The G_0 and G_1 equivariances

If $f \in \mathcal{C}^{\infty}(P, \Delta^{\lambda}\mathbb{R}^n)_H$, then

- $(\nabla^{\omega})^k f$ belongs to $\mathcal{C}^{\infty}(P, S^k \mathbb{R}^{n*} \otimes \Delta^{\lambda} \mathbb{R}^n)_{G_0}$,
- there holds

$$L_{h^*}(\nabla^{\omega})^k f = -k((n+1)\lambda + k - 1)((\nabla^{\omega})^{k-1} f \vee h),$$

for every $h \in \mathbb{R}^{n*} \cong \mathfrak{g}_1$.

Default of equivariance and divergence

The G_0 and G_1 equivariances

If $f \in \mathcal{C}^{\infty}(P, \Delta^{\lambda}\mathbb{R}^n)_H$, then

- $(\nabla^{\omega})^k f$ belongs to $\mathcal{C}^{\infty}(P, S^k \mathbb{R}^{n*} \otimes \Delta^{\lambda} \mathbb{R}^n)_{G_0}$,
- there holds

$$L_{h^*}(\nabla^{\omega})^k f = -k((n+1)\lambda + k - 1)((\nabla^{\omega})^{k-1}f \vee h),$$

for every $h \in \mathbb{R}^{n*} \cong \mathfrak{g}_1$.

The divergence operator

We fix dual bases (e_j) in \mathbb{R}^n and (e^j) in \mathbb{R}^{n*} and

$$\operatorname{\it div}^\omega:C^\infty(P,S^k_\delta(\mathbb{R}^n)) o C^\infty(P,S^{k-1}_\delta(\mathbb{R}^n)):S\mapsto \sum_{j=1}^n i(\epsilon^j)
abla^\omega_{e_j} S,$$

Results

Lie derivative of divergence

For every $S \in C^{\infty}(P, S^k_{\delta}(\mathbb{R}^n))_H$,

- the function $(div^{\omega})^l S$ belongs to $C^{\infty}(P, S^{k-l}_{\delta}(\mathbb{R}^n))_{G_0}$,
- there holds, for $h \in \mathbb{R}^{n*} \cong \mathfrak{g}_1$ and $\gamma_r = \frac{n+r-(n+1)\delta}{n+1}$

$$L_{h^*}(div^{\omega})^l S = (n+1)l\gamma_{2k-l}i(h)(div^{\omega})^{l-1}S,$$

Results

Lie derivative of divergence

For every $S \in C^{\infty}(P, S^k_{\delta}(\mathbb{R}^n))_H$,

- the function $(div^{\omega})^l S$ belongs to $C^{\infty}(P, S^{k-l}_{\delta}(\mathbb{R}^n))_{G_0}$,
- there holds, for $h \in \mathbb{R}^{n*} \cong \mathfrak{g}_1$ and $\gamma_r = rac{n+r-(n+1)\delta}{n+1}$

$$L_{h^*}(div^{\omega})^{l}S=(n+1)l\gamma_{2k-l}i(h)(div^{\omega})^{l-1}S,$$

The formula

If δ is not critical, $Q_M:\mathcal{C}_M imes\mathcal{S}_\delta(M) o\mathcal{D}_{\lambda,\mu}(M)$:

$$Q_{\mathcal{M}}(\nabla,S) = {p^*}^{-1} \circ Q_{\omega}(\sum_{l=0}^k C_{k,l} div^{\omega^l} p^*S) \circ p^*, \quad \forall S \in \mathcal{S}^k_{\delta}(M)$$

defines a projectively invariant natural quantization.

Further results

F. Radoux : Explicit formulae on the base manifold M(Lett. Math Phys.)

2007)

F. Radoux : Analysis of the uniqueness (Submitted)

Arbitrary tensors: the material

Joint work with F.Radoux (London Math Soc 2007), see also S. Hansoul.

"Tensors"

Let (V, ρ_D) be the representation of $GL(n, \mathbb{R})$ corresponding to a Young diagram Y_D of depth m < n. Fix $\lambda \in \mathbb{R}$ and $z \in \mathbb{Z}$ and set

$$\rho(A)u = |\det(A)|^{\lambda}(\det(A))^{z}\rho_{D}(A)u, \quad \forall A \in GL(n,\mathbb{R}), u \in V.$$

Also set

$$V(M) = P^1 M \times_{\rho} V$$
 and $V(M) = C^{\infty}(P^1 M, V)_{GL(n,\mathbb{R})}$

Arbitrary tensors: the material

Joint work with F.Radoux (London Math Soc 2007), see also S. Hansoul.

"Tensors"

Let (V, ρ_D) be the representation of $GL(n, \mathbb{R})$ corresponding to a Young diagram Y_D of depth m < n. Fix $\lambda \in \mathbb{R}$ and $z \in \mathbb{Z}$ and set

$$\rho(A)u = |\det(A)|^{\lambda}(\det(A))^{z}\rho_{D}(A)u, \quad \forall A \in GL(n,\mathbb{R}), u \in V.$$

Also set

$$V(M) = P^1 M \times_{\rho} V$$
 and $V(M) = C^{\infty}(P^1 M, V)_{GL(n,\mathbb{R})}$

Differential operators

 $\mathcal{D}(\mathcal{V}_1(M), \mathcal{V}_2(M))$ (or simply by $\mathcal{D}(M)$) is the space of linear differential operators from $\mathcal{V}_1(M)$ to $\mathcal{V}_2(M)$.

Symbols and quantizations

Symbols

We set $S'_{V_1,V_2} = S' \mathbb{R}^n \otimes V_1^* \otimes V_2$ and

$$S_{V_1,V_2}^I(M) o M := P^1 M imes_{
ho} S_{V_1,V_2}^I o M.$$

Symbols of degree I belong to $\mathcal{S}_{V_1,V_2}^I(M)=C^\infty(P^1M,S_{V_1,V_2}^I)_{GL(n,\mathbb{R})}$ and

$$\mathcal{S}(M) = \bigoplus_{l=0}^{\infty} \mathcal{S}'_{V_1,V_2}(M).$$

Symbols and quantizations

Symbols

We set $S_{V_1,V_2}^I=S^I\mathbb{R}^n\otimes V_1^*\otimes V_2$ and

$$S'_{V_1,V_2}(M) \rightarrow M := P^1 M \times_{\rho} S'_{V_1,V_2} \rightarrow M.$$

Symbols of degree I belong to $\mathcal{S}^I_{V_1,V_2}(M)=C^\infty(P^1M,S^I_{V_1,V_2})_{GL(n,\mathbb{R})}$ and

$$S(M) = \bigoplus_{l=0}^{\infty} S_{V_1,V_2}^l(M).$$

Natural and projectively invariant quantizations

It is a collection of maps

$$Q_M: \mathcal{C}(M) \times \mathcal{S}(M) \rightarrow \mathcal{D}(\mathcal{V}_1(M), \mathcal{V}_2(M))$$

s.t. for every ∇ , $Q_M(\nabla)$ is a quantization + diffeo + invariance

We look at $M = \mathbb{R}^n$.

Identifications

$$\begin{array}{rcl}
\mathcal{V}_{1}(\mathbb{R}^{n}) & \cong & C^{\infty}(\mathbb{R}^{n}, V_{1}), \\
\mathcal{S}_{V_{1}, V_{2}}^{k}(\mathbb{R}^{n}) & \cong & C^{\infty}(\mathbb{R}^{n}, S_{V_{1}, V_{2}}^{k}). \\
(L_{X}S)(x) = X.S(x) - \rho_{*}(D_{x}X)S(x) & X \in Vect(\mathbb{R}^{n}), S \in C^{\infty}(\mathbb{R}^{n}, S_{V_{1}, V_{2}}^{k}) \\
\mathcal{L}_{X}D = [L_{X}, D] & \forall D \in \mathcal{D}(\mathcal{V}_{1}(\mathbb{R}^{n}), \mathcal{V}_{2}(\mathbb{R}^{n}))
\end{array}$$

We look at $M = \mathbb{R}^n$.

Identifications

$$\mathcal{V}_1(\mathbb{R}^n) \cong C^{\infty}(\mathbb{R}^n, V_1),$$
 $\mathcal{S}^k_{V_1, V_2}(\mathbb{R}^n) \cong C^{\infty}(\mathbb{R}^n, S^k_{V_1, V_2}).$

$$(L_X S)(x) = X.S(x) - \rho_*(D_x X)S(x) \quad X \in Vect(\mathbb{R}^n), S \in C^{\infty}(\mathbb{R}^n, S_{V_1, V_2}^k)$$

$$\mathcal{L}_X D = [L_X, D] \quad \forall D \in \mathcal{D}(\mathcal{V}_1(\mathbb{R}^n), \mathcal{V}_2(\mathbb{R}^n))$$

The map
$$Q_{\mathbb{R}^n}(\nabla_0)$$
 : (if it exists)

We look at $M = \mathbb{R}^n$.

Identifications

$$\begin{array}{rcl}
\mathcal{V}_{1}(\mathbb{R}^{n}) & \cong & C^{\infty}(\mathbb{R}^{n}, V_{1}), \\
\mathcal{S}_{V_{1}, V_{2}}^{k}(\mathbb{R}^{n}) & \cong & C^{\infty}(\mathbb{R}^{n}, S_{V_{1}, V_{2}}^{k}).
\end{array}$$

$$(L_{X}S)(x) = X.S(x) - \rho_{*}(D_{x}X)S(x) \quad X \in Vect(\mathbb{R}^{n}), S \in C^{\infty}(\mathbb{R}^{n}, S_{V_{1}, V_{2}}^{k})$$

$$\mathcal{L}_{X}D = [L_{X}, D] \quad \forall D \in \mathcal{D}(\mathcal{V}_{1}(\mathbb{R}^{n}), \mathcal{V}_{2}(\mathbb{R}^{n}))$$

The map $Q_{\mathbb{R}^n}(\nabla_0)$: (if it exists)

• It is quantization over \mathbb{R}^n

We look at $M = \mathbb{R}^n$.

Identifications

$$\begin{array}{ccc} \mathcal{V}_1(\mathbb{R}^n) & \cong & C^{\infty}(\mathbb{R}^n, V_1), \\ \mathcal{S}^k_{V_1, V_2}(\mathbb{R}^n) & \cong & C^{\infty}(\mathbb{R}^n, \mathcal{S}^k_{V_1, V_2}). \end{array}$$

$$(L_X S)(x) = X.S(x) - \rho_*(D_x X)S(x) \quad X \in Vect(\mathbb{R}^n), \ S \in C^{\infty}(\mathbb{R}^n, S^k_{V_1, V_2})$$
$$\mathcal{L}_X D = [L_X, D] \quad \forall D \in \mathcal{D}(\mathcal{V}_1(\mathbb{R}^n), \mathcal{V}_2(\mathbb{R}^n))$$

The map $Q_{\mathbb{R}^n}(\nabla_0)$: (if it exists)

- It is quantization over \mathbb{R}^n
- It is projectively equivariant i.e.

$$Q_{\mathbb{R}^n}(\nabla_0)\circ L_X=\mathcal{L}_X\circ Q_{\mathbb{R}^n}(\nabla_0)\quad orall X\in\mathfrak{sl}(n+1,\mathbb{R}).$$

The algebra $\mathfrak{sl}(n+1,\mathbb{R})$

The decomposition

It is isomorphic to the sum of 3 subalgebras

$$\mathfrak{gl}(n+1,\mathbb{R})/\mathbb{R}\mathsf{Id} \to \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 : \left[\left(egin{array}{cc} A & v \ \xi & a \end{array} \right) \right] \mapsto (v,A-a\,ld,\xi),$$

where $A \in gl(n, \mathbb{R})$, $a \in \mathbb{R}$, $v \in \mathbb{R}^n$ and $\xi \in \mathbb{R}^{n*}$.

The decomposition

It is isomorphic to the sum of 3 subalgebras

$$\mathfrak{gl}(n+1,\mathbb{R})/\mathbb{R}\mathsf{Id} \to \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 : \left[\left(\begin{array}{cc} A & v \\ \xi & a \end{array} \right) \right] \mapsto (v,A-a\,\mathsf{Id},\xi),$$

where $A \in gl(n, \mathbb{R})$, $a \in \mathbb{R}$, $v \in \mathbb{R}^n$ and $\xi \in \mathbb{R}^{n*}$.

Vector fields

$$\left\{ \begin{array}{ll} X^h_x &=& -h \quad \text{if } h \in \mathfrak{g}_{-1} \\ X^h_x &=& -[h,x] \quad \text{if } h \in \mathfrak{g}_0 \\ X^h_x &=& -\frac{1}{2}[[h,x],x] \quad \text{if } h \in \mathfrak{g}_1 \end{array} \right. ,$$

where $x \in \mathfrak{g}_{-1} \cong \mathbb{R}^n$.

$$\mathfrak{g}_0=\mathfrak{h}_0\oplus\mathbb{R}\mathcal{E}$$

where $\mathfrak{h}_0 \cong sl(n,\mathbb{R})$ and $ad(\mathcal{E})|_{\mathfrak{g}_{-1}} = -Id$.

The method

• Use Q_{Aff} to pull the problem back on symbols

The method

- Use Q_{Aff} to pull the problem back on symbols
- Analyse the eigenvector problem for Casimir operators $\mathcal C$ and $\mathcal C$ associated to symbols and to differential operators : Associate to each eigenvector of the first a single eigenvector of the latter.

The method

- Use Q_{Aff} to pull the problem back on symbols
- Analyse the eigenvector problem for Casimir operators C and C associated to symbols and to differential operators: Associate to each eigenvector of the first a single eigenvector of the latter.

Casimir operators

If $\mathfrak g$ is semi-simple finite dim. Lie alg., each basis (u_i) has a Killing-dual basis (u_i^*) . If (V,ρ) is a rep then the Casimir operator is given by

$$\sum_{i} \rho(u_i) \circ \rho(u_i^*).$$

The map Q_{aff}

The affine quantization map

If $S(x,\xi) = \sum_{|\alpha|=l} C_{\alpha}(x)\xi^{\alpha}$, where α is a multi-index, $\xi \in \mathbb{R}^{n^*}$, and $C_{\alpha}(x) \in V_1^* \otimes V_2$, then

$$Q_{Aff}(S) = \sum_{|\alpha|=I} C_{\alpha}(x) \circ (\frac{\partial}{\partial x})^{\alpha}.$$

The map Q_{aff}

The affine quantization map

If $S(x,\xi) = \sum_{|\alpha|=l} C_{\alpha}(x)\xi^{\alpha}$, where α is a multi-index, $\xi \in \mathbb{R}^{n^*}$, and $C_{\alpha}(x) \in V_1^* \otimes V_2$, then

$$Q_{Aff}(S) = \sum_{|\alpha|=I} C_{\alpha}(x) \circ (\frac{\partial}{\partial x})^{\alpha}.$$

Lie derivative $\mathcal L$ on symbols

Define

$$\mathcal{L}_X: \mathcal{S}(\mathbb{R}^n) o \mathcal{S}(\mathbb{R}^n): S \mapsto Q_{Aff}^{-1} \circ \mathcal{L}_X \circ Q_{Aff}(S)$$

The map Q_{aff}

The affine quantization map

If $S(x,\xi) = \sum_{|\alpha|=l} C_{\alpha}(x)\xi^{\alpha}$, where α is a multi-index, $\xi \in \mathbb{R}^{n^*}$, and $C_{\alpha}(x) \in V_1^* \otimes V_2$, then

$$Q_{Aff}(S) = \sum_{|\alpha|=I} C_{\alpha}(x) \circ (\frac{\partial}{\partial x})^{\alpha}.$$

Lie derivative $\mathcal L$ on symbols

Define

$$\mathcal{L}_{X}: \mathcal{S}(\mathbb{R}^{n})
ightarrow \mathcal{S}(\mathbb{R}^{n}): \mathcal{S} \mapsto \mathcal{Q}_{Aff}^{-1} \circ \mathcal{L}_{X} \circ \mathcal{Q}_{Aff}(\mathcal{S})$$

We seek for an equivariant map from $(S(\mathbb{R}^n), L)$ to $(S(\mathbb{R}^n), \mathcal{L})$.

The setting
The "flat" case
The general situation

Properties of *C*

Main property

The operator ${\it C}$ is semisimple.

Properties of C

Main property

The operator C is semisimple.

As a representation of $\mathfrak{h}_0 \cong sl(n,\mathbb{R})$, we have

$$S_{V_1,V_2}^I = \bigoplus_{s=1}^{n_I} I_{I,s}.$$

We set $E_{l,s} = C^{\infty}(\mathbb{R}^n, I_{l,s})$ and define $\delta = \frac{1}{n}(a_1 - a_2)$ if $\rho_*(Id)|_{V_i} = a_i Id$.

Properties of C

Main property

The operator C is semisimple.

As a representation of $\mathfrak{h}_0 \cong sl(n,\mathbb{R})$, we have

$$S_{V_1,V_2}^I = \bigoplus_{s=1}^{n_I} I_{I,s}.$$

We set $E_{l,s}=C^{\infty}(\mathbb{R}^n,I_{l,s})$ and define $\delta=\frac{1}{n}(a_1-a_2)$ if $\rho_*(Id)|_{V_i}=a_i\,Id$.

Theorem

The restriction of C to $E_{l,s}$ is equal to $\alpha_{l,s}Id_{E_{l,s}}$ where

$$\alpha_{I,s} = \frac{1}{2n} (n\delta - I)(n(\delta - 1) - I) + \frac{n}{n+1} (\mu_{I_{I,s}}, \mu_{I_{I,s}} + 2\rho_{S}).$$

Properties of $\mathcal C$

The map γ

Define

$$\gamma: \mathfrak{g} \to gl(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n)): h \mapsto \gamma(h) = \mathcal{L}_{X^h} - \mathcal{L}_{X^h}$$

It vanishes on $\mathfrak{g}_{-1} \oplus \mathfrak{g}_0$ and for $h \in \mathfrak{g}_1$, $\gamma(h)$ is a diff op. of order 0 that maps $\mathcal{S}^k(\mathbb{R}^n)$ into $\mathcal{S}^{k-1}(\mathbb{R}^n)$.

Properties of $\mathcal C$

The map γ

Define

$$\gamma: \mathfrak{g} \to gl(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n)): h \mapsto \gamma(h) = \mathcal{L}_{X^h} - \mathcal{L}_{X^h}$$

It vanishes on $\mathfrak{g}_{-1} \oplus \mathfrak{g}_0$ and for $h \in \mathfrak{g}_1$, $\gamma(h)$ is a diff op. of order 0 that maps $\mathcal{S}^k(\mathbb{R}^n)$ into $\mathcal{S}^{k-1}(\mathbb{R}^n)$.

The problem becomes...

Find Q such that $(L_{X^h} + \gamma(h)) \circ Q = Q \circ L_{X^h}$.

The map γ

Define

$$\gamma: \mathfrak{g} \to gl(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n)): h \mapsto \gamma(h) = \mathcal{L}_{X^h} - \mathcal{L}_{X^h}$$

It vanishes on $\mathfrak{g}_{-1} \oplus \mathfrak{g}_0$ and for $h \in \mathfrak{g}_1$, $\gamma(h)$ is a diff op. of order 0 that maps $\mathcal{S}^k(\mathbb{R}^n)$ into $\mathcal{S}^{k-1}(\mathbb{R}^n)$.

The problem becomes...

Find Q such that $(L_{X^h} + \gamma(h)) \circ Q = Q \circ L_{X^h}$.

The relation

- We fix a basis $(e_j) \in \mathfrak{g}_{-1}$ and denote by (e^j) the Killing dual basis in \mathfrak{g}_1 .
- We set $N=2\sum_{j}\gamma(\epsilon^{j})L_{X^{e_{j}}}.$
- We hav C = C + N.

The eigenvector problem

Theorem

If (V_1, V_2) is not critical, for every $S \in E_{l,s}$ there exists a unique eigenvector \hat{S} of C with eigenvalue $\alpha_{l,s}$ such that

$$\begin{cases} \hat{S} = S_l + S_{l-1} + \dots + S_0, & S_l = S \\ S_r \in \mathcal{T}^{l-r}(E_{l,s}) & \text{for all } r \leq l-1. \end{cases}$$

Indeed these conditions write

$$\begin{cases} C(S) = \alpha_{l,s}S \\ (C - \alpha_{l,s}Id)S_{l-r} = -N(S_{l-r+1}) \end{cases}$$

In this case, the following map will do the job

$$Q|_{E_{l,s}}(S)=\hat{S}.$$

Main points of the proof

- Uniqueness of the association between eigenvectors.
- $(L_{X^h} + \gamma(h)) \circ Q$ and $Q \circ L_{X^h}$ are eigenvectors of C with the same leading term because of relations

$$\begin{cases}
[L_{X^h} + \gamma(h), \mathcal{C}] &= 0 \\
[L_{X^h}, \mathcal{C}] &= 0
\end{cases}$$

The curved situation

Ingredients and method

- Ingredients : $(M, [\nabla]) \longleftrightarrow (P, G, H, \omega)$,
- We lift tensors and symbols to H-equivariant functions on P,
- We use the map Q_{ω} to turn symbols into differential operators,
- We use Casimir-like operators to produce correcting terms.

Ingredients and method

- Ingredients : $(M, [\nabla]) \longleftrightarrow (P, G, H, \omega)$,
- We lift tensors and symbols to H-equivariant functions on P,
- We use the map Q_{ω} to turn symbols into differential operators,
- We use Casimir-like operators to produce correcting terms.

Remind Q.,

If $S = tA \otimes h_1 \vee \cdots \vee h_k$ for $t \in C^{\infty}(P)$, $A \in V_1^* \otimes V_2$ and $h_1, \cdots, h_k \in \mathbb{R}^m \cong \mathfrak{g}_{-1}$ then one has

$$Q_{\omega}(S)f = \frac{1}{k!} \sum_{\nu} tA \circ L_{\omega^{-1}(h_{\nu_1})} \circ \cdots \circ L_{\omega^{-1}(h_{\nu_k})} f,$$

Key Results

Theorem

A nice formula The relation

$$L_{h^*}Q_{\omega}(S)(f) - Q_{\omega}(S)(L_{h^*}f) = Q_{\omega}((L_{h^*} + \gamma(h))S)(f)$$

holds for all $f \in C^{\infty}(P, V_1)_{G_0}$, $h \in \mathfrak{g}_1$, and $T \in C^{\infty}(P, S^k_{V_1, V_2})$.

Key Results

Theorem

A nice formula The relation

$$L_{h^*}Q_{\omega}(S)(f) - Q_{\omega}(S)(L_{h^*}f) = Q_{\omega}((L_{h^*} + \gamma(h))S)(f)$$

holds for all $f \in C^{\infty}(P, V_1)_{G_0}$, $h \in \mathfrak{g}_1$, and $T \in C^{\infty}(P, S^k_{V_1, V_2})$.

Idea

Find a map Q such that

$$(L_{h^*} + \gamma(h))Q(S) = Q(L_{h^*}S),$$

for every $h \in \mathfrak{g}_1$ and every $S \in C^\infty(P, S_{V_1, V_2})_{G_0}$.

Then $Q_{\omega} \circ Q$ will be a solution of the problem.

We set

$$N^{\omega} = -2\sum_{i} \gamma(\epsilon^{i}) L_{\omega^{-1}(e_{i})}.$$

$$\begin{cases}
C^{\omega}(S) &= \alpha_{k,s}S \\
C^{\omega}(S) &= C^{\omega}(S) + N^{\omega}(S),
\end{cases} \quad \forall S \in C^{\infty}(P, I_{k,s})$$

Theorem

For every $h \in \mathfrak{g}_1$, one has

$$[L_{h^*} + \gamma(h), \mathcal{C}^{\omega}] = 0$$

on
$$C^{\infty}(P, S_{V_1, V_2}^k)_{G_0}$$
.

So the eigenvector problem is the same as in \mathbb{R}^n , and the association defines a map Q

Conformal situation

- The nice formula is OK for densities up to the order three,
- For symbols of degree 4, there are additional terms, but we could manage them by hands,
- The general solution is not known.

Koniec

Thanks for your attention