Natural and invariant quantizations

P. Mathonet

University of Liege
Department of Mathematics

Bedlewo, 25 August 2007



Outline

@ The setting
Densities, differential operators and symbols
Projective structures
Natural and invariant quantizations
® Link with previous works
Equivariant quantizations
History
© Cartan connections
In general
Projective connections
Conformal connections
O Projectively invariant quantizations made easy
A first step
Correcting terms
The results
@ Arbitrary tensor fields
The setting

“ "

P. Mathonet Natural and invariant quantizations



The setting

Densities, differential operators and symbols
Projective structures
Natural and invariant quantizations

Tensor De

Let M be a smooth manifold of dim n
In coordinates, a density F of weight A writes

F(x)=f(xY, -, x") [dx AL A dx"P,

where f is a function.
The bundle of A-densities is denoted by F\(M), while F(M) is the space
of sections.
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Tensor De

Let M be a smooth manifold of dim n
In coordinates, a density F of weight A writes

F(x)=f(xY, -, x") [dx AL A dx"P,

where f is a function.
The bundle of A-densities is denoted by F\(M), while F(M) is the space
of sections.
o FA(M) = PM x,, AMR").
where P'M is the linear frame bundle of M and
dimAMR") =1
pa(A)e = |detA|"*e, VA€ GL(n,R)
° ]:)\(M) : CDO(PIM,AA(R"))GL(H’R)
o Vf € f,\(M),

pa(©)(F)(x) = F o o™ (x)| det Dyp| .
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Differentia

e Dy, (M) : linear diff. operators from Fy(M) to F,(M).

e There is a filtration

k
Dy = |J D4,
keN
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Dxp(M) : linear diff. operators from Fx(M) to F,(M).
There is a filtration

k
Dy = |J D4,
keN

In coordinates, if D € Df‘\u :

Action of Diff (M) :

pan(0)D = pu(@) o Do pa(p™H).

I B \otural and invariant quantizations
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Symbols

The space of symbols

We set SL(R") = S'R" @ A(R").
We set
SHM) — M := P'M x, SKR") — M,

Sé(M) = COO(Plesé(Rn))GL(n,R)

and

Ss(M) = &2 S5(M).

I 8 \\otural and invariant quantizations
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Symbols

The space of symbols

We set SL(R") = S'R" @ A(R").

We set
SHM) — M := P'M x, SKR") — M,
Sé(M) = COO('DIM7 Sg(Rn))GL(n,R)
and
S5(M) = &2S5(M).
Remark

As symmetric tensor fields identify with functions on T*M that reduce to
polynomials along the fibers, we identify symbols with such functions
(with values in spaces of densities)
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Definition

If § = pu— X we set oy : DYy (M) — S5(M) :

I «
D= Aux) (;}() = o(D)(x,8) = Y Aa(x)E".
|ae|=0

lee=1
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The principal

Definition

If § = pu— X we set oy : DYy (M) — S5(M) :

I «
D= Aux) (;{) = o(D)(x,8) = Y Aa(x)E".
|ae|=0

la|=I

Properties

The operator ¢ commutes with the actions of local diffeomorphisms.
It induces a bijection from the graded space associated to differential
operators to the space of symbols.
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Projective s

Denote by Cp the space of torsion-free linear connections on M.

Two such connections are Projectively equivalent if they define the
same geodesics up to parametrization.

An equivalent condition : V ~ V' & 3a € QY(M) :

VY =VxY +a(X)Y +a(Y)X.

(This formulation was given by H. Weyl).

A class of equivalent torsion free linear connections defines a
projective structure on M.
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The setting

Densities, differential operators and symbols
Projective structures
Natural and invariant quantizations

Projective s

Denote by Cp the space of torsion-free linear connections on M.

Two such connections are Projectively equivalent if they define the
same geodesics up to parametrization.

An equivalent condition : V ~ V' & 3a € QY(M) :

VY =VxY +a(X)Y +a(Y)X.

(This formulation was given by H. Weyl).

A class of equivalent torsion free linear connections defines a
projective structure on M.
e To a projective structure on M is associated :

o A Thomas-Whitehead connection ¥ on
e A Cartan connection w on a Cartan bundle P — M.

Il  \\otural and invariant quantizations




The setting

Densities, differential operators and symbols
Projective structures
Natural and invariant quantizations

Quantizatio

Definition
A quantization on M is a linear bijection Qu : S5(M) — Dy (M) s.t.

o(Qu(S)) =S, VS e S¥M), VkeN.

I 0 \\otural and invariant quantizations
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Quantizations

Definition
A quantization on M is a linear bijection Qu : S5(M) — Dy (M) s.t.

o(Qu(S)) =S, VS e S¥M), VkeN.
A Trivial example : The affine quantization map

Take M = R".
If S(x, ) = 32 aj=k Calx)€", then set

Qur(S) = > Calx)o (C%)a_

|| =k

Qasr is the so-called Standard ordering.
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Natural quantizations
A natural quantization is a collection of maps (defined for every manifold
M)
Qu : Cm x Ss(M) — Dy (M)
such that
e For all Vin Cy, Qu(V) is a quantization,
o If : M — N is a local diffeomorphism, one has

Qm(e*V)(¢*S) = ¢ (QN(V)(S)), VYV €Cn,VS € S5(N).
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Natural quantizations

A natural quantization is a collection of maps (defined for every manifold
M)
Qu :Cy x 85(/\/7) — 'D/\}N(M)
such that
e For all Vin Cy, Qu(V) is a quantization,
o If : M — N is a local diffeomorphism, one has

Qu(¢*V)(¢"5) = o™ (Qn(V)(S)), VV €Cn, VS € S5(N).

Projective invariance

A quantization Qu is projectively invariant if one has Qu(V) = Qu(V’)
whenever V and V' are projectively equivalent torsion-free linear
connections on M.
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Natural quantizations (conformal case)

In the conformal sense, a natural quantization is a collection of
quantizations Qu depending on a pseudo-Riemannian metric such that

e For all pseudo-Riemannian metric g on M, Qu(g) is a quantization,

o If ¢ is a local diffeomorphism from M to N, then one has

Qu(¢*g)(9*S) = ¢*(Qn(g)(5)),

for all pseudo-Riemannian metrics g on N, and all S € Ss(N).
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Natural quantizations (conformal case)

In the conformal sense, a natural quantization is a collection of
quantizations Qu depending on a pseudo-Riemannian metric such that

e For all pseudo-Riemannian metric g on M, Qu(g) is a quantization,

o If ¢ is a local diffeomorphism from M to N, then one has

Qu(¢*g)(9*S) = ¢*(Qn(g)(5)),

for all pseudo-Riemannian metrics g on N, and all S € Ss(N).

Conformal invariance

A quantization Qu is conformally invariant if one has Qu(g) = Qum(g’)
whenever g and g’ are conformally equivalent.




Link with previous works Equivariant quantizations

History

sl(n + 1)-equ

A remark

Suppose {Qum} is natural and projectively invariant. Then Qg+(Vo) is a
quantization over R” and commutes with transformations of R” that take
Vo into a projectively equivalent connection.

At the infinitesimal level, Qrn(Vo) is an sl(n + 1, R)-equivariant
quantization : it commutes with the action of

sl(n+ 1,R) = span{0k, x/ Ok, x/ Zxkak}.
k=1




Link with previous works Equivariant quantizations

sl(n + 1)-equiv

A remark

Suppose {Qum} is natural and projectively invariant. Then Qg+(Vo) is a
quantization over R” and commutes with transformations of R” that take
Vo into a projectively equivalent connection.

At the infinitesimal level, Qrn(Vo) is an sl(n + 1, R)-equivariant
quantization : it commutes with the action of

sl(n+1,R) = span{0y, x) Ok, x/ Zxkak}.
k=1
The explicit formula (Duval Ovsienko, 2001)
K k=1 k—I
A1) A+ o) [k
Qproj(T) = QAff(Z = = ( /

=0

) Div'T),
V2k—1 " V2k—I
where v, = %ﬁlﬂ)&
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History

History of th

The flat situation

e Existence and uniqueness of sl(n + 1, R)-equivariant quantization for
d =0 : Lecomte, Ovsienko (1999)

Existence, explicit formulae for arbitrary § : Lecomte (2000) and
Duval, Ovsienko (2001)

The conformal case, arbitrary 6 : Duval, Lecomte, Ovsienko (2000)
Other algebras : Boniver, M. (2001,2006)
Diff. ops; acting on forms : Boniver, Hansoul, M. , Poncin (2002)
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History

History of the s

The flat situation

e Existence and uniqueness of sl(n + 1, R)-equivariant quantization for
d =0 : Lecomte, Ovsienko (1999)

Existence, explicit formulae for arbitrary § : Lecomte (2000) and
Duval, Ovsienko (2001)

The conformal case, arbitrary 6 : Duval, Lecomte, Ovsienko (2000)
Other algebras : Boniver, M. (2001,2006)
Diff. ops; acting on forms : Boniver, Hansoul, M. , Poncin (2002)

Natural quantizations
e Bouarroudj wrote Q,0; using connections (2001)
e Lecomte : The exact setting (2001)
e Bordemann : Existence (2002) and Hansoul (2004)

e M. and Radoux : Existence using Cartan connections (2005)

v
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Cartan con

The ingredients

We need a manifold M, a group G, a closed subgoup H s.t.
dimM = dimG/H and @ — M : a principal H-bundle.
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dimM = dimG/H and @ — M : a principal H-bundle.

The definition

A Cartan connection w on @ is a 1-form on Q with values in g such that
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The ingredients

We need a manifold M, a group G, a closed subgoup H s.t.
dimM = dimG/H and @ — M : a principal H-bundle.

The definition

A Cartan connection w on @ is a 1-form on Q with values in g such that

e There holds R¥w = Ad(a~!)w, VaeH,
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We need a manifold M, a group G, a closed subgoup H s.t.
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The definition

A Cartan connection w on @ is a 1-form on Q with values in g such that
e There holds R¥w = Ad(a~!)w, VaeH,
e One has w(k*) =k Vkeb,




In general
Cartan connections Projective connections
Conformal connections

The ingredients

We need a manifold M, a group G, a closed subgoup H s.t.
dimM = dimG/H and @ — M : a principal H-bundle.

The definition

A Cartan connection w on @ is a 1-form on Q with values in g such that
e There holds R¥w = Ad(a~!)w, VaeH,
e One has w(k*) =k Vkeb,
e Yue Q, w,: T,Q — g is a linear bijection.




In general
Cartan connections Projective connections
Conformal connections

The ingredients

We need a manifold M, a group G, a closed subgoup H s.t.
dimM = dimG/H and @ — M : a principal H-bundle.

The definition

A Cartan connection w on @ is a 1-form on Q with values in g such that
e There holds R¥w = Ad(a~!)w, VaeH,
e One has w(k*) =k Vkeb,
e Yue Q, w,: T,Q — g is a linear bijection.

The curvature Q is defined as usual by

Q=dw+ %[w,w].
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A trivial exa

The flat case.

Example
e G : alie group
e H : a closed subgroup
e M= G/H and w : the Maurer Cartan form of G

e The curvature is zero, due to Maurer-Cartan equations.
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A trivial exa

The flat case.

Example
e G : alie group
e H : a closed subgroup
e M= G/H and w : the Maurer Cartan form of G

e The curvature is zero, due to Maurer-Cartan equations.

Normal Cartan connections
A Cartan connection is normal if its curvature fulfills some trace free

conditions.
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The group G

The group G is PGL(n+ 1,R) = GL(n+ 1,R)/Rold
It acts on RP".
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The projective

The group G

The group G is PGL(n+ 1,R) = GL(n+ 1,R)/Rold
It acts on RP".

The group H
The group H is the stabilizer of [e,11] in RP", that is,

H—{( ? ; ) A€ E€R™, a+0}/Rold

Therefore H = Gy x Gy, where Gp is isomorphic to GL(n,R) and G; is
isomorphic to R"*.
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Cartan connections Projective connections
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The project

The algebras

We have g 2 sl(n+ 1,R) 2 R"® gl(n,R) & R™ =g_1  go D g1.
We have ) = go @ g1
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In general
Cartan connections Projective connections
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The projectiv

The algebras

We have g 2 sl(n+ 1,R) 2 R"® gl(n,R) & R™ =g_1  go D g1.
We have ) = go @ g1

H — G2
The group H acts locally on R” by projective transformations that leave
the origin fixed. Such a transformation is characterized by its second

order jet.
We may consider reductions of P?M to H.
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Results of K

Theorem (Kobayashi, Nagano (1960))

There is a 1-1 correspondence between projective structures on M and
reductions P of P>M to H.

This association is natural.
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Results of Kc

Theorem (Kobayashi, Nagano (1960))

There is a 1-1 correspondence between projective structures on M and
reductions P of P>M to H.

This association is natural.

Theorem (Kobayashi, Nagano (1960))

On each bundle P as above there exists a canonical normal Cartan
connection w with values in g.
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Results of Kok

Theorem (Kobayashi, Nagano (1960))

There is a 1-1 correspondence between projective structures on M and
reductions P of P>M to H.
This association is natural.

Theorem (Kobayashi, Nagano (1960))

On each bundle P as above there exists a canonical normal Cartan
connection w with values in g.

To summarize

There is a natural association (M, [V]) «— (P — M,w)
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Results of Kok

Theorem (Kobayashi, Nagano (1960))

There is a 1-1 correspondence between projective structures on M and
reductions P of P>M to H.
This association is natural.

Theorem (Kobayashi, Nagano (1960))

On each bundle P as above there exists a canonical normal Cartan
connection w with values in g.

To summarize

There is a natural association (M, [V]) «— (P — M,w)

For extensions of these results, see Cap, Slovack, Soucek (1997)



Conformal

In general
Cartan connections Projective connections
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Consider the bilinear symmetric form g of signature (p+1,g+ 1) on
R™2 (p + g = n) defined by

0 0 -1
S= 0o J 0
-1 0 O

where
(1, 0
=(5 %)

(J represents a nondegenerate symmetric bilinear form gy on R")
The Mobius space is the projection of the light cone associated to g on
the projective space RP"1.

I 8 \\otural and invariant quantizations
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Conformal cc

The group G

The group G is made of linear transformations that leave B invariant,
modulo its center, that is,

G ={X € GL(n+2,R) : 'XSX = S}/{£Id}.

It acts transitively on the Md&bius space S”.

I Sl \\otural and invariant quantizations



In general
Cartan connections Projective connections
Conformal connections

Conformal co

The group G

The group G is made of linear transformations that leave B invariant,
modulo its center, that is,

G ={X € GL(n+2,R) : 'XSX = S}/{£Id}.

It acts transitively on the Md&bius space S”.

The group H

H is the stabilizer of [e,12] of the Mdbius space :

al 0 0
H={[ a2 A 0 |:AcO(p,q),acRo,ée€R™}/{ld).
=P € a




In general
Cartan connections Projective connections
Conformal connections

Conformal co

The group G

The group G is made of linear transformations that leave B invariant,
modulo its center, that is,

G ={X € GL(n+2,R) : 'XSX = S}/{£Id}.

It acts transitively on the Md&bius space S”.

The group H

H is the stabilizer of [e,12] of the Mdbius space :

al 0 0
H={[ a2 A 0 |:AcO(p,q),acRo,ée€R™}/{ld).
=P € a

The results about the algebras, P and w are exactly, the same.
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Joint work with F. Radoux (Letters in mathematical physics, 2005)

Lift of equivariant functions

There is a projection p: P — PIM. Let (V,p) be a rep. of GL(n,R).
If f € C>°(P*M, V)g(nr). then p*f € C°°(P, V)4, where the action of

H is given by
(50 )=n)

(the part G; does not act).




Invariant quan

A first step
Correcting terms
Projectively invariant quantizations made easy The results

Joint work with F. Radoux (Letters in mathematical physics, 2005)

Lift of equivariant functions

There is a projection p: P — PIM. Let (V,p) be a rep. of GL(n,R).
If f € C>°(P*M, V)g(nr). then p*f € C°°(P, V)4, where the action of

H is given by
(50 )=n)

(the part G; does not act).

A consequence

The map p* is a 1-1 correspondence. Hence we can lift densities and
symbols to H-equivariant functions on P.
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Invariant dif|

The definition (Ehresman, Cap, Slovack, Soucek)

Let (V,p) be a representation of H. If f € C>°(P, V), then the invariant
differential of f with respect to w is the function
Vf € C(P,R™ @ V) defined by

V“’f(u)(X) = wal(x)f(u) Yu e ID7 VX eR" C g.

I B \otural and invariant quantizations



A first step
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Invariant diffe

The definition (Ehresman, Cap, Slovack, Soucek)

Let (V,p) be a representation of H. If f € C>°(P, V), then the invariant
differential of f with respect to w is the function
Vf € C(P,R™ @ V) defined by

V“’f(u)(X) = wal(x)f(u) Yu e ID7 VX eR" C g.

The iterated symmetrized version

If f € C®(P, V) then (V<)< f € C=(P,S*R™ @ V) is defined by
w 1
(V) F(u)( X, .o, Xe) = 7 D Lur(x,y) © -+ 0 Lumi(x, ) F()

for Xq,..., Xk € R".
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Standard orc

The map Q.

It associates to S € C®(P, SKR" ® A’(R")) and f € C>=(P, AMR"))
(V)< € C=(P, SKR™ ® A*(R"))) the function

Qu(S)(f) := (S, (V¥)¥F).

I Sl \\otural and invariant quantizations
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Standard orde

The map Q.

It associates to S € C®(P, SKR" ® A’(R")) and f € C>=(P, AMR"))
(V)< € C=(P, SKR™ ® A*(R"))) the function

Qu(S)(f) := (S, (V¥)¥F).

The problem

If S € C=(P,S*R"® A%(R™))y and f € C>(P, AMR"))y, we just have
Qu(S)(f) € C=(P, AMR"))g,.
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Correcting terms
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Standard orde

The map Q.

It associates to S € C®(P, SKR" ® A’(R")) and f € C>=(P, AMR"))
(V)< € C=(P, SKR™ ® A*(R"))) the function

Qu(S)(f) := (S, (V¥)¥F).

The problem

If S € C=(P,S*R"® A%(R™))y and f € C>(P, AMR"))y, we just have
Qu(S)(f) € C=(P, AMR"))g,.

The solution

Measure the default to Gj-equivariance and add lower degree correcting
terms to S.
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Default of eq

The Gy and G; equivariances

If f € C>(P, A’R")y, then
e (V¥)Xf belongs to C®(P, SKR™ @ A*R")g,,
e there holds

L (V) F = —k((n + D)X+ k — 1)((V*)LF v h),

for every h € R™ = g;.
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Default of equ

The Go and G; equivariances
If f € C>(P, A’R")y, then
e (V¥)Xf belongs to C®(P, SKR™ @ A*R")g,,
e there holds
L (V) F = —k((n + D)X+ k — 1)((V*)LF v h),

for every h € R™ = g;.

The divergence operator
We fix dual bases (¢;) in R” and (¢/) in R™ and

div* : C°(P, S§(R")) — C®(P,SK 1 (R") : S>> i()V¥S,

=1
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Results

Lie derivative of divergence
For every S € C>(P, SX(R™))n,

o the function (div*’)'S belongs to C*=(P, S5~ '(R"))g,,

n+r—(n+1)5§

e there holds, for h € R™ = g; and v, = =5

Ly (div*)'S = (n+ 1) lyak—si( h)(div?)' 1S,

I 8 \otural and invariant quantizations



Results

A first step
Correcting terms
Projectively invariant quantizations made easy The results

Lie derivative of divergence
For every S € C>(P, SX(R™))n,

o the function (div*’)'S belongs to C*=(P, S5~ '(R"))g,,

n+r—(n+1)5§

e there holds, for h € R™ = g; and v, = =5

Ly (div®)'S = (n + 1) Iyak—si(h)(div*)' 7S,

The formula
If § is not critical, Qp : Cpy X Sg(M) = D)\7M(M) :

k
Qu(V,S) = p* 0 Qu(>_ Cuudiv®'p*S) o p*, VS € SK(M)
1=0

defines a projectively invariant natural quantization.
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Further res

F. Radoux : Explicit formulae on the base manifold M(Lett. Math Phys.
2007)
F. Radoux : Analysis of the uniqueness (Submitted)
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The setting

The “flat” case

The general situation
Arbitrary tensor fields

Arbitrary ten

Joint work with F.Radoux (London Math Soc 2007), see also S. Hansoul.

“Tensors”

Let (V, pp) be the representation of GL(n,R) corresponding to a Young
diagram Yp of depth m < n. Fix A € R and z € Z and set

p(A)u = |det(A)|*(det(A))?pp(A)u, VA€ GL(n,R),uc V.

Also set

V(M) =P'Mx,V and V(M)= C®(P'M,V)e(nx)




The setting

The “flat” case

The general situation
Arbitrary tensor fields

Arbitrary tensc

Joint work with F.Radoux (London Math Soc 2007), see also S. Hansoul.

“Tensors”

Let (V, pp) be the representation of GL(n,R) corresponding to a Young
diagram Yp of depth m < n. Fix A € R and z € Z and set

p(A)u = |det(A)|*(det(A))?pp(A)u, VA€ GL(n,R),uc V.
Also set

V(M) =P'Mx,V and V(M)= C®(P'M,V)e(nx)

Differential operators

D(V1(M), V2(M)) (or simply by D(M)) is the space of linear differential
operators from V(M) to Vo(M).




The setting

The “flat” case

The general situation
Arbitrary tensor fields

Symbols and

Symbols
We set 5 Viva = SR"® Vi ® V> and

Svv,(M) = M :=P*M x, S{, , = M.

Symbols of degree / belong to S</1,V2(M) = C>(PM, 5\’/17\/2)GL(n,]R) and

@SvlgVZ




The setting

The “flat” case

The general situation
Arbitrary tensor fields

Symbols and q

Symbols
We set S Viva = SR"® Vi ® V> and

Svv,(M) = M :=P*M x, S{, , = M.

Symbols of degree / belong to S</1,V2(M) = C>(PM, S\l/l’\/2)GL(n,]R) and

@Svl,vz

Natural and projectively invariant quantizations

It is a collection of maps

s.t. for every V, Qu(V) is a quantization + diffeo + invariance
Natural and invariant quantizations




The setting

The “flat” case

The general situation
Arbitrary tensor fields

sl(n+ 1,R)

We look at M = R".

Identifications

Vl(Rn) =
SR = CP(R", S, )

(LxS)(x) = X.5(x)—p«(DxX)S(x) X € Vect(R"), S € COO(R",S\’}LVZ)
[:xD = [Lx, D] VD e D(Vl(Rn), VQ(R"))

Co(R, V1),
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sl(n+ 1,R)- e
We look at M = R".

Identifications

V1(]Rn) =
SR = CP(R", S, )

(LxS)(x) = X.5(x)—p«(DxX)S(x) X € Vect(R"), S € COO(R",S\’}LVZ)
[:xD = [Lx, D] VD e D(Vl(Rn),Vz(Rn))

COO(Rna V1)7

The map Qgr~(Vo) : (if it exists)
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sl(n+ 1,R)- e
We look at M = R".

Identifications

V1(]Rn) =
SR = CP(R", S, )

(LxS)(x) = X.5(x)—p«(DxX)S(x) X € Vect(R"), S € COO(R",S\’}LVZ)
[:xD = [Lx, D] VD e D(Vl(Rn),Vz(Rn))

COO(Rna V1)7

The map Qgr~(Vo) : (if it exists)

e It is quantization over R”
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The “flat” case

The general situation
Arbitrary tensor fields

sl(n+ 1,R)- e
We look at M = R".

Identifications

V1(]Rn) =
SR = CP(R", S, )

(LxS)(x) = X.5(x)—p«(DxX)S(x) X € Vect(R"), S € COO(R",S\’}LVZ)
[:xD = [Lx, D] VD e D(Vl(Rn),Vz(Rn))

C>=(R", W),

The map Qgr~(Vo) : (if it exists)
e It is quantization over R”

e |t is projectively equivariant i.e.

Qrr(Vo) o Lx = Lx o Qre(Vo) VX €sl(n+1,R).
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The “flat” case

The general situation
Arbitrary tensor fields

The algebra

The decomposition

It is isomorphic to the sum of 3 subalgebras

i+ LR/R = g emen (£ 4 )]~ ma-aie)

where A € gl(n,R), ae R, veR" and £ € R™.
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The general situation

Arbitrary tensor fields

The algebra sl

The decomposition
It is isomorphic to the sum of 3 subalgebras

A
gl(n+1,R)/RId — g_1 D go Dy : K ¢ : )] — (v,A—ald,¢),
where A € gl(n,R), ae R, veR" and £ € R™.

Vector fields

Xh = —h ifheg_
Xh = —[h,x] ifhego ,
X)ﬁ’ = —%[[h, x],x] ifheg

where x € g_; = R".
g0 =ho ®RE

where ho = s/(n,R) and ad(€)|; , = —/d.
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The “flat” case

The general situation
Arbitrary tensor fields

The metho

e Use Qas to pull the problem back on symbols
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The “flat” case

The general situation
Arbitrary tensor fields

e Use Qas to pull the problem back on symbols

o Analyse the eigenvector problem for Casimir operators C and C
associated to symbols and to differential operators : Associate to
each eigenvector of the first a single eigenvector of the latter.
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The “flat” case
The general situation

Arbitrary tensor fields

e Use Qas to pull the problem back on symbols

o Analyse the eigenvector problem for Casimir operators C and C
associated to symbols and to differential operators : Associate to
each eigenvector of the first a single eigenvector of the latter.

Casimir operators

If g is semi-simple finite dim. Lie alg., each basis (u;) has a Killing-dual
basis (u}). If (V, p) is a rep then the Casimir operator is given by

3 plu) o p().

I Sl \otural and invariant quantizations
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The “flat” case

The general situation
Arbitrary tensor fields

The map Q.

The affine quantization map

If S(x, &) = 32|12 Ca(X)§*, where o is a multi-index, & € R"", and
Ca(x) € VI ® Vs, then

Qar(S Z Ca(

lee|=1
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The map Q.

The affine quantization map

If S(x, &) = 32|12 Ca(X)§*, where o is a multi-index, & € R"", and
Ca(x) € V" ® V3, then

Qar (S Z Cal

lee|=1

Lie derivative £ on symbols
Define

Lx: S(R") — S(Rn) 'S Q;ﬂlr oLxo QAff(S)
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The “flat” case

The general situation
Arbitrary tensor fields

The map Q.

The affine quantization map

If S(x, &) = 32|12 Ca(X)§*, where o is a multi-index, & € R"", and
Ca(x) € V" ® V3, then

Qar (S Z Cal

lee|=1

Lie derivative £ on symbols
Define

Lx: S(R") — S(Rn) 'S Q;ﬂlr oLxo QAff(S)

We seek for an equivariant map from (S(R"), L) to (S(R"), £).
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The “flat” case

The general situation
Arbitrary tensor fields

Properties

Main property

The operator C is semisimple.
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Arbitrary tensor fields

Properties «

Main property
The operator C is semisimple.

As a representation of hy = s/(n,R), we have
5V1,V2 s 1II75'

We set E; s = C°(R", I, 5) and define § = (31 — ap) if p.(Id)|v, = a; Id.
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The “flat” case

The general situation
Arbitrary tensor fields

Properties o

Main property

The operator C is semisimple.

As a representation of hy = s/(n,R), we have
5V1,V2 s 1I175'
We set E;; = C*(R", I; ) and define § = 1(a; — a,) if p.(Id)|y, = a; Id.

Theorem
The restriction of C to E, s is equal to oz,,s/dE/ys where

1
s = o= (06 = (05 = 1) = )+~ (g o, + 205).

I Sl \\otural and invariant quantizations
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The “flat” case

The general situation
Arbitrary tensor fields

Properties o

The map v
Define
79— gl(SR"),S(R")) : h—(h) = Lxn — Lxn

It vanishes on g_; @ go and for h € gy, y(h) is a diff op. of order 0 that
maps S¥(R") into SK~1(R").

Il \otural and invariant quantizations
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The “flat” case

The general situation
Arbitrary tensor fields

Properties o

The map v
Define
79— gl(SR"),S(R")) : h—(h) = Lxn — Lxn

It vanishes on g_; @ go and for h € gy, y(h) is a diff op. of order 0 that
maps S¥(R") into SK~1(R").

The problem becomes...
Find Q such that (Lxs +v(h)) o Q = Q o Lxs.
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Properties of C

The map v
Define
78— gl(S(R),SR")) : b y(h) = Lyn — Ly

It vanishes on g_; @ go and for h € gy, y(h) is a diff op. of order 0 that
maps S¥(R") into SK~1(R").

The problem becomes...
Find Q such that (Lx» +v(h)) o @ = Qo Lxs.

The relation
o We fix a basis (¢;) € g_1 and denote by (&) the Killing dual basis in
g1
o Weset N=23 v()Lxs.
e WehavC=C+N.
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Arbitrary tensor fields

The eigenvec

Theorem

If (Vi, V») is not critical, for every S € E, ¢ there exists a unique
eigenvector S of C with eigenvalue «; s such that

5=5+S 1+ +%, S=S
S, €T="(Es) forallr <[—1.

Indeed these conditions write

{ C(S) = arsS
(C - Oél,sld))sl—r = _N(Sl—r+1)

In this case, the following map will do the job

Qle.(8) = 5.

I Sl \otural and invariant quantizations
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The “flat” case

The general situation
Arbitrary tensor fields

e Uniqueness of the association between eigenvectors.

o (Lyn+v(h)) o Q and Qo Ly are eigenvectors of C with the same
leading term because of relations

{ [Lx» +~(h),C] =
[LX”v C]

|
oo

I 8 \\otural and invariant quantizations
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Arbitrary tensor fields

The curved

Ingredients and method
e Ingredients : (M,[V]) «— (P, G, H,w),
o We lift tensors and symbols to H-equivariant functions on P,
o We use the map Q,, to turn symbols into differential operators,

e We use Casimir-like operators to produce correcting terms.
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Ingredients and method
e Ingredients : (M,[V]) «— (P, G, H,w),
We lift tensors and symbols to H-equivariant functions on P,

We use the map Q,, to turn symbols into differential operators,

We use Casimir-like operators to produce correcting terms.

Remind Q.

fS=tA®@h V---Vhforte C®(P), Ac V/® WV, and
hy, -+, hy € R™ = g_; then one has

1
Qu(S)f = 4 D tAoLyih, )00 Ly-igh,)fs
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The “flat” case

The general situation
Arbitrary tensor fields

Key Results

Theorem

A nice formula The relation
Ly Qu(S)(F) — Qu(S)(Lp-f) = Qu((Ln- +~(h))S)(f)

holds for all f € C*=*(P, Vi), h € g1, and T € C>(P, S}, ,,).
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Key Results

Theorem

A nice formula The relation
L Qu(S)(f) = Qu(S) (L) = Qu((La~ + 7(h))S)(f)
holds for all f € C*=*(P, Vi), h € g1, and T € C>(P, S}, ,,).
Idea
Find a map @ such that
(L +7(h)Q(S) = Q(Ls-5),

for every h € g1 and every S € C=(P, Sy, v,) -
Then Q, o Q will be a solution of the problem.




The setting

The “flat” case

Projectively invariant quantiz: muu ma The general situation
Arbitrary tensor helds

Casimir-like operators

We set _
Nw = —227(6’)Lw—1(ei).
Cw(s) = O‘k,ss o0
166 © Eame, 5P
Theorem

For every h € g1, one has
[Lh +~(h),C*] =0
on C*=(P, SV1 V,)Go-

So the eigenvector problem is the same as in R”, and the association
defines a map @

P. Mathonet Natural and invariant quantizations
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The “flat” case

The general situation
Arbitrary tensor fields

Conformal

e The nice formula is OK for densities up to the order three,

e For symbols of degree 4, there are additional terms, but we could
manage them by hands,

e The general solution is not known.

I 8 \\otural and invariant quantizations



e settin;

Koniec

Thanks for your attention
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