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Tensor Densities
Let M be a smooth manifold of dim n
In coordinates, a density F of weight λ writes

F (x) = f (x1, · · · , xn) |dx1 ∧ . . . ∧ dxn|λ,

where f is a function.
The bundle of λ-densities is denoted by Fλ(M), while Fλ(M) is the space
of sections.

• Fλ(M) = P1M ×ρλ ∆λ(Rn).
where P1M is the linear frame bundle of M and{

dim∆λ(Rn) = 1
ρλ(A)e = |detA|−λe, ∀A ∈ GL(n,R)

• Fλ(M) : C∞(P1M,∆λ(Rn))GL(n,R)

• ∀f ∈ Fλ(M),

ρλ(ϕ)(F )(x) = F ◦ ϕ−1(x)| detDxϕ|−λ.
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Differential operators

• Dλµ(M) : linear diff. operators from Fλ(M) to Fµ(M).
• There is a filtration

Dλµ =
⋃
k∈N
Dk
λµ.

• In coordinates, if D ∈ Dk
λµ :

D =
k∑
|α|=0

Aα(x)

(
∂

∂x

)α
, Aα ∈ Fµ−λ.

• Action of Diff (M) :

ρλµ(ϕ)D = ρµ(ϕ) ◦ D ◦ ρλ(ϕ−1).
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Symbols

The space of symbols
We set S l

δ(Rn) = S lRn ⊗∆δ(Rn).
We set

S l
δ(M)→ M := P1M ×ρ S l

δ(Rn)→ M,

S l
δ(M) = C∞(P1M,S l

δ(Rn))GL(n,R)

and
Sδ(M) = ⊕∞l=0S l

δ(M).

Remark
As symmetric tensor fields identify with functions on T ∗M that reduce to
polynomials along the fibers, we identify symbols with such functions
(with values in spaces of densities)
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The principal symbol operator

Definition
If δ = µ− λ we set σ(l) : Dl

λ,µ(M)→ S l
δ(M) :

D =
l∑

|α|=0

Aα(x)

(
∂

∂x

)α
7→ σ(D)(x , ξ) =

∑
|α|=l

Aα(x)ξα.

Properties
The operator σ commutes with the actions of local diffeomorphisms.
It induces a bĳection from the graded space associated to differential
operators to the space of symbols.
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Projective structures

• Denote by CM the space of torsion-free linear connections on M.
• Two such connections are Projectively equivalent if they define the

same geodesics up to parametrization.
• An equivalent condition : ∇ ∼ ∇′ ⇔ ∃α ∈ Ω1(M) :

∇′XY = ∇XY + α(X )Y + α(Y )X .

(This formulation was given by H. Weyl).
• A class of equivalent torsion free linear connections defines a

projective structure on M.

• To a projective structure on M is associated :
• A Thomas-Whitehead connection ∇̃ on M̃
• A Cartan connection ω on a Cartan bundle P → M.
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Quantizations

Definition
A quantization on M is a linear bĳection QM : Sδ(M)→ Dλ,µ(M) s.t.

σ(QM(S)) = S, ∀S ∈ Sk
δ (M), ∀k ∈ N.

A Trivial example : The affine quantization map
Take M = Rn.
If S(x , ξ) =

∑
|α|=k Cα(x)ξα, then set

QAff (S) =
∑
|α|=k

Cα(x) ◦ (
∂

∂x )α.

QAff is the so-called Standard ordering.
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Natural and projectively invariant quantizations

Natural quantizations
A natural quantization is a collection of maps (defined for every manifold
M)

QM : CM × Sδ(M)→ Dλ,µ(M)

such that
• For all ∇ in CM , QM(∇) is a quantization,
• If φ : M → N is a local diffeomorphism, one has

QM(φ∗∇)(φ∗S) = φ∗(QN(∇)(S)), ∀∇ ∈ CN ,∀S ∈ Sδ(N).

Projective invariance
A quantization QM is projectively invariant if one has QM(∇) = QM(∇′)
whenever ∇ and ∇′ are projectively equivalent torsion-free linear
connections on M.
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Natural and conformally equivariant quantizations

Natural quantizations (conformal case)
In the conformal sense, a natural quantization is a collection of
quantizations QM depending on a pseudo-Riemannian metric such that

• For all pseudo-Riemannian metric g on M, QM(g) is a quantization,
• If φ is a local diffeomorphism from M to N, then one has

QM(φ∗g)(φ∗S) = φ∗(QN(g)(S)),

for all pseudo-Riemannian metrics g on N, and all S ∈ Sδ(N).

Conformal invariance
A quantization QM is conformally invariant if one has QM(g) = QM(g ′)
whenever g and g ′ are conformally equivalent.
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sl(n + 1)-equivariant quantizations

A remark
Suppose {QM} is natural and projectively invariant. Then QRn (∇0) is a
quantization over Rn and commutes with transformations of Rn that take
∇0 into a projectively equivalent connection.
At the infinitesimal level, QRn (∇0) is an sl(n + 1,R)-equivariant
quantization : it commutes with the action of

sl(n + 1,R) = span{∂k , x j ∂k , x j
m∑

k=1
xk∂k}.

The explicit formula (Duval Ovsienko, 2001)

Qproj(T ) = QAff (
k∑

l=0

(λ+ k−1
n+1 ) · · · (λ+ k−l

n+1 )

γ2k−1 · · · γ2k−l

(
k
l

)
Div lT ),

where γr = n+r−(n+1)δ
n+1
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History of the subject

The flat situation
• Existence and uniqueness of sl(n + 1,R)-equivariant quantization for
δ = 0 : Lecomte, Ovsienko (1999)

• Existence, explicit formulae for arbitrary δ : Lecomte (2000) and
Duval, Ovsienko (2001)

• The conformal case, arbitrary δ : Duval, Lecomte, Ovsienko (2000)
• Other algebras : Boniver, M. (2001,2006)
• Diff. ops; acting on forms : Boniver, Hansoul, M. , Poncin (2002)

Natural quantizations
• Bouarroudj wrote Qproj using connections (2001)
• Lecomte : The exact setting (2001)
• Bordemann : Existence (2002) and Hansoul (2004)
• M. and Radoux : Existence using Cartan connections (2005)
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Cartan connections in general

The ingredients
We need a manifold M, a group G , a closed subgoup H s.t.
dimM = dimG/H and Q → M : a principal H-bundle.

The definition
A Cartan connection ω on Q is a 1-form on Q with values in g such that

• There holds R∗aω = Ad(a−1)ω, ∀a ∈ H,
• One has ω(k∗) = k ∀k ∈ h,

• ∀u ∈ Q, ωu : TuQ → g is a linear bĳection.

The curvature Ω is defined as usual by

Ω = dω +
1
2 [ω, ω].
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A trivial example

The flat case.

Example
• G : a Lie group
• H : a closed subgroup
• M = G/H and ω : the Maurer Cartan form of G
• The curvature is zero, due to Maurer-Cartan equations.

Normal Cartan connections
A Cartan connection is normal if its curvature fulfills some trace free
conditions.
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The projective setting

The group G
The group G is PGL(n + 1,R) = GL(n + 1,R)/R0Id
It acts on RPn.

The group H
The group H is the stabilizer of [en+1] in RPn, that is,

H = {
(

A 0
ξ a

)
: A ∈, ξ ∈ Rn∗, a 6= 0}/R0Id

Therefore H ∼= G0 o G1, where G0 is isomorphic to GL(n,R) and G1 is
isomorphic to Rn∗.
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The projective setting

The algebras
We have g ∼= sl(n + 1,R) ∼= Rn ⊕ gl(n,R)⊕ Rn∗ = g−1 ⊕ g0 ⊕ g1.
We have h ∼= g0 ⊕ g1

H ↪→ G2
n

The group H acts locally on Rn by projective transformations that leave
the origin fixed. Such a transformation is characterized by its second
order jet.
We may consider reductions of P2M to H.
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Results of Kobayashi and Nagano

Theorem (Kobayashi, Nagano (1960))
There is a 1-1 correspondence between projective structures on M and
reductions P of P2M to H.
This association is natural.

Theorem (Kobayashi, Nagano (1960))
On each bundle P as above there exists a canonical normal Cartan
connection ω with values in g.

To summarize
There is a natural association (M, [∇])←→ (P → M, ω)

For extensions of these results, see Cap, Slovack, Soucek (1997)
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For extensions of these results, see Cap, Slovack, Soucek (1997)
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Conformal connections

Consider the bilinear symmetric form g of signature (p + 1, q + 1) on
Rn+2 (p + q = n) defined by

S =

 0 0 −1
0 J 0
−1 0 0

 .

where
J =

(
Ip 0
0 −Iq

)
(J represents a nondegenerate symmetric bilinear form g0 on Rn)
The Möbius space is the projection of the light cone associated to g on
the projective space RPn+1.
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Conformal connections

The group G
The group G is made of linear transformations that leave B invariant,
modulo its center, that is,

G = {X ∈ GL(n + 2,R) : tXSX = S}/{±Id}.

It acts transitively on the Möbius space Sn.

The group H
H is the stabilizer of [en+2] of the Möbius space :

H = {

 a−1 0 0
a−1Aξ[ A 0

1
2a |ξ|

2 ξ a

 : A ∈ O(p, q), a ∈ R0, ξ ∈ Rn∗}/{±Id}.

The results about the algebras, P and ω are exactly the same.
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Invariant quantization and Cartan connections

Joint work with F. Radoux (Letters in mathematical physics, 2005)

Lift of equivariant functions
There is a projection p : P → P1M. Let (V , ρ) be a rep. of GL(n,R).
If f ∈ C∞(P1M,V )GL(n,R), then p∗f ∈ C∞(P,V )H , where the action of
H is given by

ρ′(

(
A 0
ξ a

)
) = ρ(

A
a )

(the part G1 does not act).

A consequence
The map p∗ is a 1-1 correspondence. Hence we can lift densities and
symbols to H-equivariant functions on P.
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Invariant differentiation and Qω

The definition (Ehresman, Cap, Slovack, Soucek)
Let (V , ρ) be a representation of H. If f ∈ C∞(P,V ), then the invariant
differential of f with respect to ω is the function
∇ωf ∈ C∞(P,Rn∗ ⊗ V ) defined by

∇ωf (u)(X ) = Lω−1(X)f (u) ∀u ∈ P, ∀X ∈ Rn ⊂ g.

The iterated symmetrized version
If f ∈ C∞(P,V ) then (∇ω)k f ∈ C∞(P,SkRn∗ ⊗ V ) is defined by

(∇ω)k f (u)(X1, . . . ,Xk) =
1
k!

∑
ν

Lω−1(Xν1 ) ◦ . . . ◦ Lω−1(Xνk )f (u)

for X1, . . . ,Xk ∈ Rn.
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Standard ordering associated to ω

The map Qω
It associates to S ∈ C∞(P,SkRn ⊗∆δ(Rn)) and f ∈ C∞(P,∆λ(Rn))
((∇ω)k f ∈ C∞(P,SkRn∗ ⊗∆λ(Rn))) the function

Qω(S)(f ) := 〈S, (∇ω)k f 〉.

The problem
If S ∈ C∞(P,SkRn ⊗∆δ(Rn))H and f ∈ C∞(P,∆λ(Rn))H , we just have
Qω(S)(f ) ∈ C∞(P,∆λ(Rn))G0 .

The solution
Measure the default to G1-equivariance and add lower degree correcting
terms to S.
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Default of equivariance and divergence

The G0 and G1 equivariances
If f ∈ C∞(P,∆λRn)H , then

• (∇ω)k f belongs to C∞(P,SkRn∗ ⊗∆λRn)G0 ,
• there holds

Lh∗(∇ω)k f = −k((n + 1)λ+ k − 1)((∇ω)k−1f ∨ h),

for every h ∈ Rn∗ ∼= g1.

The divergence operator
We fix dual bases (ej) in Rn and (εj) in Rn∗ and

divω : C∞(P,Sk
δ (Rn))→ C∞(P,Sk−1

δ (Rn)) : S 7→
n∑

j=1
i(εj)∇ωej

S,
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Results

Lie derivative of divergence
For every S ∈ C∞(P,Sk

δ (Rn))H ,
• the function (divω)lS belongs to C∞(P,Sk−l

δ (Rn))G0 ,
• there holds, for h ∈ Rn∗ ∼= g1 and γr = n+r−(n+1)δ

n+1

Lh∗(divω)lS = (n + 1)lγ2k−l i(h)(divω)l−1S,

The formula
If δ is not critical, QM : CM × Sδ(M)→ Dλ,µ(M) :

QM(∇,S) = p∗
−1
◦ Qω(

k∑
l=0

Ck,ldivω
l
p∗S) ◦ p∗, ∀S ∈ Sk

δ (M)

defines a projectively invariant natural quantization.
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Further results

F. Radoux : Explicit formulae on the base manifold M(Lett. Math Phys.
2007)
F. Radoux : Analysis of the uniqueness (Submitted)
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Arbitrary tensors : the material

Joint work with F.Radoux (London Math Soc 2007), see also S. Hansoul.

“Tensors”
Let (V , ρD) be the representation of GL(n,R) corresponding to a Young
diagram YD of depth m < n. Fix λ ∈ R and z ∈ Z and set

ρ(A)u = |det(A)|λ(det(A))zρD(A)u, ∀A ∈ GL(n,R), u ∈ V .

Also set

V (M) = P1M ×ρ V and V(M) = C∞(P1M,V )GL(n,R)

Differential operators
D(V1(M),V2(M)) (or simply by D(M)) is the space of linear differential
operators from V1(M) to V2(M).
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Symbols and quantizations

Symbols
We set S l

V1,V2
= S lRn ⊗ V ∗1 ⊗ V2 and

S l
V1,V2

(M)→ M := P1M ×ρ S l
V1,V2

→ M.

Symbols of degree l belong to S l
V1,V2

(M) = C∞(P1M,S l
V1,V2

)GL(n,R) and

S(M) =
∞⊕
l=0
S l

V1,V2
(M).

Natural and projectively invariant quantizations
It is a collection of maps

QM : C(M)× S(M)→ D(V1(M),V2(M))

s.t. for every ∇, QM(∇) is a quantization + diffeo + invariance
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sl(n + 1,R)- equivariant quantizations
We look at M = Rn.
Identifications

V1(Rn) ∼= C∞(Rn,V1),
Sk

V1,V2
(Rn) ∼= C∞(Rn,Sk

V1,V2
).

(LXS)(x) = X .S(x)−ρ∗(DxX )S(x) X ∈ Vect(Rn), S ∈ C∞(Rn,Sk
V1,V2

)

LXD = [LX ,D] ∀D ∈ D(V1(Rn),V2(Rn))

The map QRn (∇0) : (if it exists)

• It is quantization over Rn

• It is projectively equivariant i.e.

QRn (∇0) ◦ LX = LX ◦ QRn (∇0) ∀X ∈ sl(n + 1,R).
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The algebra sl(n + 1,R)

The decomposition
It is isomorphic to the sum of 3 subalgebras

gl(n + 1,R)/RId→ g−1 ⊕ g0 ⊕ g1 :

[(
A v
ξ a

)]
7→ (v ,A− a Id , ξ),

where A ∈ gl(n,R), a ∈ R, v ∈ Rn and ξ ∈ Rn∗.

Vector fields 
X h

x = −h if h ∈ g−1
X h

x = −[h, x ] if h ∈ g0
X h

x = − 1
2 [[h, x ], x ] if h ∈ g1

,

where x ∈ g−1 ∼= Rn.
g0 = h0 ⊕ RE

where h0 ∼= sl(n,R) and ad(E)|g−1 = −Id .
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The method

• Use QAff to pull the problem back on symbols

• Analyse the eigenvector problem for Casimir operators C and C
associated to symbols and to differential operators : Associate to
each eigenvector of the first a single eigenvector of the latter.

Casimir operators
If g is semi-simple finite dim. Lie alg., each basis (ui) has a Killing-dual
basis (u∗i ). If (V , ρ) is a rep then the Casimir operator is given by∑

i
ρ(ui) ◦ ρ(u∗i ).
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The map Qaff

The affine quantization map

If S(x , ξ) =
∑
|α|=l Cα(x)ξα, where α is a multi-index, ξ ∈ Rn∗ , and

Cα(x) ∈ V ∗1 ⊗ V2, then

QAff (S) =
∑
|α|=l

Cα(x) ◦ (
∂

∂x )α.

Lie derivative L on symbols
Define

LX : S(Rn)→ S(Rn) : S 7→ Q−1
Aff ◦ LX ◦ QAff (S)

We seek for an equivariant map from (S(Rn), L) to (S(Rn),L).
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Properties of C

Main property
The operator C is semisimple.

As a representation of h0 ∼= sl(n,R), we have

S l
V1,V2

= ⊕nl
s=1Il,s .

We set El,s = C∞(Rn, Il,s) and define δ = 1
n (a1 − a2) if ρ∗(Id)|Vi = ai Id .

Theorem
The restriction of C to El,s is equal to αl,s IdEl,s where

αl,s =
1
2n (nδ − l)(n(δ − 1)− l) +

n
n + 1 (µIl,s , µIl,s + 2ρS).
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Properties of C

The map γ
Define

γ : g→ gl(S(Rn),S(Rn)) : h 7→ γ(h) = LXh − LXh

It vanishes on g−1 ⊕ g0 and for h ∈ g1, γ(h) is a diff op. of order 0 that
maps Sk(Rn) into Sk−1(Rn).

The problem becomes...
Find Q such that (LXh + γ(h)) ◦ Q = Q ◦ LXh .

The relation
• We fix a basis (ej) ∈ g−1 and denote by (εj) the Killing dual basis in

g1.
• We set N = 2

∑
j γ(εj)LX ej .

• We hav C = C + N.
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The eigenvector problem

Theorem
If (V1,V2) is not critical, for every S ∈ El,s there exists a unique
eigenvector Ŝ of C with eigenvalue αl,s such that{

Ŝ = Sl + Sl−1 + · · ·+ S0, Sl = S
Sr ∈ T l−r (El,s) for all r ≤ l − 1.

Indeed these conditions write{
C(S) = αl,sS
(C − αl,s Id))Sl−r = −N(Sl−r+1)

In this case, the following map will do the job

Q|El,s (S) = Ŝ.
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Main points of the proof

• Uniqueness of the association between eigenvectors.
• (LXh + γ(h)) ◦ Q and Q ◦ LXh are eigenvectors of C with the same

leading term because of relations{
[LXh + γ(h), C] = 0
[LXh ,C ] = 0
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The curved situation

Ingredients and method
• Ingredients : (M, [∇]) ←→ (P,G ,H, ω),
• We lift tensors and symbols to H-equivariant functions on P,
• We use the map Qω to turn symbols into differential operators,
• We use Casimir-like operators to produce correcting terms.

Remind Qω
If S = tA⊗ h1 ∨ · · · ∨ hk for t ∈ C∞(P), A ∈ V ∗1 ⊗ V2 and
h1, · · · , hk ∈ Rm ∼= g−1 then one has

Qω(S)f =
1
k!

∑
ν

tA ◦ Lω−1(hν1 ) ◦ · · · ◦ Lω−1(hνk )f ,
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Key Results

Theorem
A nice formula The relation

Lh∗Qω(S)(f )− Qω(S)(Lh∗ f ) = Qω((Lh∗ + γ(h))S)(f )

holds for all f ∈ C∞(P,V1)G0 , h ∈ g1, and T ∈ C∞(P,Sk
V1,V2

).

Idea
Find a map Q such that

(Lh∗ + γ(h))Q(S) = Q(Lh∗S),

for every h ∈ g1 and every S ∈ C∞(P,SV1,V2 )G0 .
Then Qω ◦ Q will be a solution of the problem.
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Casimir-like operators
We set

Nω = −2
∑

i
γ(εi)Lω−1(ei ).{

Cω(S) = αk,sS
Cω(S) = Cω(S) + Nω(S),

∀S ∈ C∞(P, Ik,s)

Theorem
For every h ∈ g1, one has

[Lh∗ + γ(h), Cω] = 0

on C∞(P,Sk
V1,V2

)G0 .

So the eigenvector problem is the same as in Rn, and the association
defines a map Q
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Conformal situation

• The nice formula is OK for densities up to the order three,
• For symbols of degree 4, there are additional terms, but we could

manage them by hands,
• The general solution is not known.

P. Mathonet Natural and invariant quantizations



The setting
Link with previous works

Cartan connections
Projectively invariant quantizations made easy

Arbitrary tensor fields

The setting
The “flat” case
The general situation

Koniec

Thanks for your attention
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