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SUPERPOSITION RULES& L IE SYSTEMS

Given a first-order differential equation inRn given by:

dxi

dt
= Y i(t, x) , i = 1, . . . , n , (1)

a superposition rule for this differential equation is certain mapΦ : R
n(m+1) → R

n, i.e.

x = Φ(x(1), ..., x(m); k1, ..., kn).
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a superposition rule for this differential equation is certain mapΦ : R
n(m+1) → R

n, i.e.

x = Φ(x(1), ..., x(m); k1, ..., kn).

This superposition map verifies that the general solution can be written, at least for sufficiently

smallt, as

x(t) = Φ(x(1)(t), ..., x(m)(t); k1, ..., kn),

with {x(a)(t)| a = 1, ...,m} being a fundamental set of particular solutions of the system and

k = (k1, ..., kn) a set ofn arbitrary constants associated with each particular solution.
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Given a first-order differential equation inRn given by:

dxi

dt
= Y i(t, x) , i = 1, . . . , n , (1)

a superposition rule for this differential equation is certain mapΦ : R
n(m+1) → R

n, i.e.

x = Φ(x(1), ..., x(m); k1, ..., kn).

This superposition map verifies that the general solution can be written, at least for sufficiently

smallt, as

x(t) = Φ(x(1)(t), ..., x(m)(t); k1, ..., kn),

with {x(a)(t)| a = 1, ...,m} being a fundamental set of particular solutions of the system and

k = (k1, ..., kn) a set ofn arbitrary constants associated with each particular solution.

The differential equations (1) which admit this superposition rule are called Lie systems.

Lie systems are characterized by the Lie Theorem.
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Lie’s Theorem: (1) admits a superposition rule if and only if the t-dependent vector field Y (t, x) can be

written

Y (t, x) =
r
X

α=1

bα(t)Xα(x)

where the vector fields {Xα, α = 1, . . . , r}, close a r-dimensional real Lie algebra V , i.e. there exist r3

real numbers cαβ
γ such that

[Xα, Xβ ] =

r
X

γ=1

cαβ
γ Xγ , ∀α, β = 1, . . . , r .
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Lie’s Theorem: (1) admits a superposition rule if and only if the t-dependent vector field Y (t, x) can be

written

Y (t, x) =
r
X

α=1

bα(t)Xα(x)

where the vector fields {Xα, α = 1, . . . , r}, close a r-dimensional real Lie algebra V , i.e. there exist r3

real numbers cαβ
γ such that

[Xα, Xβ ] =

r
X

γ=1

cαβ
γ Xγ , ∀α, β = 1, . . . , r .

Consider the abstract Lie algebrag isomorphic toV and a connected Lie groupG with this Lie

algebra. Then, there exists an effective actionΦ : G× R
n → R

n with fundamental vector fields

those ofV . Let {aα} be a basis ofg with associated fundamental vector fields{Xα} thus if the

solution of the equation

Rg−1
∗g ġ = −

r
X

α=1

bα(t)aα, g(0) = e.

verifies that the integral curve ofY in x0 ∈ R
n is x(t) = Φ(g(t), x0).
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Consider now a set of t-dependent vector fields{Y (µ) |µ = 1, . . . ,m} over a set of manifolds

N(µ) such that

Y (µ)(t, x(µ)) =
r
X

α=1

bα(t)Y
(µ)
α (xµ)

where theY (µ)
α close the same commutation relations that theYα.
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Consider now a set of t-dependent vector fields{Y (µ) |µ = 1, . . . ,m} over a set of manifolds

N(µ) such that

Y (µ)(t, x(µ)) =
r
X

α=1

bα(t)Y
(µ)
α (xµ)

where theY (µ)
α close the same commutation relations that theYα.

Thus, we can consider the integral curves of the t-dependentvector field

Ỹ (t, x̃) = Y (t, x) +
m
X

µ=1

Y (µ)(t, x(µ)) =
r
X

α=1

bα(t)

0

@Yα(x) +
m
X

µ=1

Y µ
α (xµ)

1

A

with x̃ ∈ N ×N(1) × . . .×N(m) and

Ỹα(x̃) = Yα +
m
X

µ=1

Y
(µ)
α (x(µ))
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As forµ, µ′ = 1, . . . ,m

[Y
(µ)
α , Y

(µ)
β ] = cαβ

γY
(µ)
γ

and

[Y
(µ)
α , Y

(µ′)
β ] = 0 [Yα, Y

(µ′)
β ] = 0

then

[Ỹα, Ỹβ ] = cαβ
γ Ỹγ

Then the differential equation determining the integral curves ofỸ is a Lie system.
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γ Ỹγ

Then the differential equation determining the integral curves ofỸ is a Lie system.
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Ỹ (t, x̃) ∈ V(x̃) ≡ 〈Ỹ1(x̃), . . . , Ỹr(x̃)〉
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then

[Ỹα, Ỹβ ] = cαβ
γ Ỹγ

Then the differential equation determining the integral curves ofỸ is a Lie system.

Also, at any point̃x ∈ Ñ we obtain

Ỹ (t, x̃) ∈ V(x̃) ≡ 〈Ỹ1(x̃), . . . , Ỹr(x̃)〉

1. ThusỸ is inside at any timet of an involutive distribution with rank lower or equal tor.

2. Thus, letp be the higher rank of the distributionV over an open of̃N andñ ≡ dim Ñ we

known that there exists̃n− p time-independent integrals of motion{k1, ...kñ−p} of Ỹ .
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Consider the mapΨ : x̃ ∈ Ñ → (k1(x̃), . . . , kñ−p(x̃)) ∈ R
ñ−p such that

Ψ(x(t), x(1)(t), . . . , x(m)(t)) = (k1, . . . , kñ−p)

The constants of motion stablish relations between the coordinates of the integral curves of̃Y ,

these are

(x(t), x(1)(t), . . . , x(m)(t)).

Thus{k1, . . . , kñ−p} allow to relate the integral curves ofY and theY (µ).
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Consider the mapΨ : x̃ ∈ Ñ → (k1(x̃), . . . , kñ−p(x̃)) ∈ R
ñ−p such that

Ψ(x(t), x(1)(t), . . . , x(m)(t)) = (k1, . . . , kñ−p)

The constants of motion stablish relations between the coordinates of the integral curves of̃Y ,

these are

(x(t), x(1)(t), . . . , x(m)(t)).

Thus{k1, . . . , kñ−p} allow to relate the integral curves ofY and theY (µ).

Suppose that we obtain as many integrals of motion (we must have at leastn) as to obtain the

initial n coordinates in terms of the other coordinates{x(1), . . . , x(m)} and a certain set of

constants{k1, . . . , kn}. Also, if we fix the coordinates inN (e) ≡ N(1) × . . .×N(m) there is

a diffeomorphism

Ψ(x(1), . . . , x(m)) : x ≡ (x1, . . . , xn) ∈ R
n → k ≡ (k1, . . . , kn) ∈ R

n
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Thus, we can obtain a mapΦ such that

Φ(x(1)(t), . . . , x(m)(t), k1, . . . , kn) = x(t)

Thus, we have generalized a superposition rule to mix different solutions of different Lie systems.
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The level sets ofΨ corresponding to regular values define an-codimensional foliationF on an

open dense subsetU ⊂ Ñ and the family{Ỹ (t), t ∈ R} of vector fields inÑ consists of vector

fields tangent to the leaves ofF .
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SODE LIE SYSTEMS

A system of second-order differential equations

ẍi = f i(t, x, ẋ) , i = 1, . . . , n,

can be studied through the system of first-order differential equations

8

>

<

>

:

dxi

dt
= vi

dvi

dt
= f i(t, x, v)

with associatedt-dependent vector field

X = vi ∂

∂xi
+ f i(t, x, v)

∂

∂vi
.
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A system of second-order differential equations

ẍi = f i(t, x, ẋ) , i = 1, . . . , n,

can be studied through the system of first-order differential equations

8

>

<

>

:

dxi

dt
= vi

dvi

dt
= f i(t, x, v)

with associatedt-dependent vector field

X = vi ∂

∂xi
+ f i(t, x, v)

∂

∂vi
.

We call SODE Lie systems those for whichX is a Lie system, i.e. it can be written as a linear

combination witht-dependent coefficients of vector fields closing a finite-dimensional real Lie

algebra.
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EXAMPLES

A) 1-dim harmonic time-dependent frequency oscillator

The equation of motion is̈x = −ω2(t)x, with associated system

8

<

:

ẋ = v

v̇ = −ω2(t)x

andt-dependent vector field

X = v
∂

∂x
− ω2(t)x

∂

∂v
,
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The equation of motion is̈x = −ω2(t)x, with associated system

8

<

:

ẋ = v

v̇ = −ω2(t)x

andt-dependent vector field

X = v
∂

∂x
− ω2(t)x

∂

∂v
,

This last vector field is a linear combinationX = X2 − ω2(t)X1 with

X1 = x
∂

∂v
, X2 = v

∂

∂x
, X3 =

1

2

„

x
∂

∂x
− v

∂

∂v

«

.
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The equation of motion is̈x = −ω2(t)x, with associated system

8

<

:

ẋ = v

v̇ = −ω2(t)x

andt-dependent vector field

X = v
∂

∂x
− ω2(t)x

∂

∂v
,

This last vector field is a linear combinationX = X2 − ω2(t)X1 with

X1 = x
∂

∂v
, X2 = v

∂

∂x
, X3 =

1

2

„

x
∂

∂x
− v

∂

∂v

«

.

As

[X1, X2] = 2X3 , [X1, X3] = −X1 , [X2, X3] = X2 ,

X defines a Lie system with associated Lie algebrasl(2,R).
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B) Pinney equation

The Pinney equation is the second-order non-linear differential equation:

ẍ = −ω2(t)x+
k

x3
,

wherek is a constant.
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B) Pinney equation

The Pinney equation is the second-order non-linear differential equation:

ẍ = −ω2(t)x+
k

x3
,

wherek is a constant.

The corresponding system of first-order differential equations is

8

<

:

ẋ = v

v̇ = −ω2(t)x+ k
x3

and the associatedt-dependent vector field

X = v
∂

∂x
+

„

−ω2(t)x+
k

x3

«

∂

∂v
.
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This is a Lie system because it can be determined by a time-dependent vector field which can be

written as

X = X2 − ω2(t)X1 ,

where

X1 = x
∂

∂v
, X2 =

k

x3

∂

∂v
+ v

∂

∂x
, X3 =

1

2

„

x
∂

∂x
− v

∂

∂v

«

.
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∂
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2

„
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∂
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∂
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«

.

As these vector fields are such that

[X1, X2] = 2X3, [X3, X2] = −X2, [X3, X1] = X1

then the vector fieldsXi with i = 1, 2, 3 span a three-dimensional real Lie algebrag which is

isomorphic tosl(2,R).
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written as

X = X2 − ω2(t)X1 ,

where

X1 = x
∂

∂v
, X2 =

k

x3

∂

∂v
+ v

∂

∂x
, X3 =

1

2

„

x
∂

∂x
− v

∂

∂v

«

.

As these vector fields are such that

[X1, X2] = 2X3, [X3, X2] = −X2, [X3, X1] = X1

then the vector fieldsXi with i = 1, 2, 3 span a three-dimensional real Lie algebrag which is

isomorphic tosl(2,R).

Also, theXi in examples A and B close under commutator relations the samestructure constants

and theirX ’s can be written in the same way as

X = X2 − ω2(t)X1
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C) Ermakov system

Consider the system
8

>

>

>

>

>

<

>

>

>

>

>

:

ẋ = vx

v̇x = −ω2(t)x

ẏ = vy

v̇y = −ω2(t)y + 1
y3

with associatedt-dependent vector field

L = vx
∂

∂x
+ vy

∂

∂y
− ω2(t)x

∂

∂vx
+

„

−ω2(t)y +
1

y3

«

∂

∂vy
,
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8

>

>

>

>

>

<

>

>

>

>

>

:

ẋ = vx

v̇x = −ω2(t)x

ẏ = vy

v̇y = −ω2(t)y + 1
y3

with associatedt-dependent vector field

L = vx
∂

∂x
+ vy

∂

∂y
− ω2(t)x

∂

∂vx
+

„

−ω2(t)y +
1

y3

«

∂

∂vy
,

This is a linear combination with time-dependent coefficients,L = L2 − ω2(t)L1, of the vector

fields

L1 = x
∂

∂vx
+ y

∂

∂vy
, L2 = vx

∂

∂x
+ vy

∂

∂y
+

1

y3
∂

∂vy
.
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that withL3 given by

L3 =
1

2

„

x
∂

∂x
− vx

∂

∂vx
+ y

∂

∂y
− vy

∂

∂vy

«

.

close on asl(2,R) algebra with the fieldL expressed in terms of the vector fieldsL1,L2 and

L3 as before.
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This system have asociated a distribution of rank three in a manifold of dimension four, then,

there exists a constant of motion.
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L3 =
1

2

„

x
∂

∂x
− vx

∂

∂vx
+ y

∂

∂y
− vy

∂

∂vy

«

.

close on asl(2,R) algebra with the fieldL expressed in terms of the vector fieldsL1,L2 and

L3 as before.

This system have asociated a distribution of rank three in a manifold of dimension four, then,

there exists a constant of motion.

If we get enough integrals of motion and we get to obtain the coordinates of one of the system in

terms of the other we have obtained a superposition principle.

In this case there is just one integral and we cannot obtain a superposition rule. Nevertheless, this

integral is the knowm Lewis-Ermakov invariant.

ψ(x, y, vx, vy) =

„

x

y

«2

+ ξ2 =

„

x

y

«2

+ (xvy − yvx)2 ,
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PINNEY EQUATION REVISITED

Consider the system of first-order differential equations:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ẋ = vx

ẏ = vy

ż = vz

v̇x = −ω2(t)x

v̇y = −ω2(t)y + k
y3

v̇z = −ω2(t)z

which corresponds to the vector field

X = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
+

k

y3
∂

∂vy
− ω2(t)

„

x
∂

∂vx
+ y

∂

∂vy
+ z

∂

∂vz

«
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Consider the system of first-order differential equations:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ẋ = vx

ẏ = vy

ż = vz

v̇x = −ω2(t)x

v̇y = −ω2(t)y + k
y3

v̇z = −ω2(t)z

which corresponds to the vector field

X = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
+

k

y3
∂

∂vy
− ω2(t)

„

x
∂

∂vx
+ y

∂

∂vy
+ z

∂

∂vz

«

The vector fieldX can be expressed asX = N2 − ω2(t)N1 where the vector fieldsN1 andN2

are:

N1 = y
∂

∂vy
+ x

∂

∂vx
+ z

∂

∂vz
, N2 = vy

∂

∂y
+

1

y3
∂

∂vy
+ vx

∂

∂x
+ vz

∂

∂z
,

2007, Lie Systems – p. 15



These vector fields generate a three-dimensinal real Lie algebra with the vector fieldN3 given by

N3 =
1

2

„

x
∂

∂x
− vx

∂

∂vx
+ y

∂

∂y
− vy

∂

∂vy
+ z

∂

∂z
− vz

∂

∂vz

«

.
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In fact, as

[N1, N2] = 2N3, [N3, N1] = N1, [N3, N2] = −N2

they generate a Lie algebra isomorphic tosl(2,R). The system is a Lie system.
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generated by these fundamental vector fields has rank three.Thus, as the manifold of the Lie

system is of dimension six we obtain three time-independentintegrals of motion.
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The Ermakov invariantI1 of the subsystem involving variablesx andy.
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The Ermakov invariantI1 of the subsystem involving variablesx andy.

The Ermakov invariantI2 of the subsystem involving variablesy andz
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These vector fields generate a three-dimensinal real Lie algebra with the vector fieldN3 given by

N3 =
1

2

„

x
∂

∂x
− vx

∂

∂vx
+ y

∂

∂y
− vy

∂

∂vy
+ z

∂

∂z
− vz

∂

∂vz

«

.

In fact, as

[N1, N2] = 2N3, [N3, N1] = N1, [N3, N2] = −N2

they generate a Lie algebra isomorphic tosl(2,R). The system is a Lie system. The distribution

generated by these fundamental vector fields has rank three.Thus, as the manifold of the Lie

system is of dimension six we obtain three time-independentintegrals of motion.

The Ermakov invariantI1 of the subsystem involving variablesx andy.

The Ermakov invariantI2 of the subsystem involving variablesy andz

The WronskianW of the subsystem involving variablesx andz has.
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They define a foliation with three-dimensional leaves.
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They define a foliation with three-dimensional leaves. The Ermakov invariants read as:

I1 =
1

2

 

(yvx − xvy)2 + c

„

x

y

«2
!

I2 =
1

2

 

(yvz − zvy)2 + c

„

z

y

«2
!

andW is:

W = xvz − zvx
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They define a foliation with three-dimensional leaves. The Ermakov invariants read as:

I1 =
1

2

 

(yvx − xvy)2 + c

„

x

y

«2
!

I2 =
1

2

 

(yvz − zvy)2 + c

„

z

y

«2
!

andW is:

W = xvz − zvx

In terms of these three integrals we can obtain an explicit expression ofy in terms ofx, z and the

integralsI1, I2,W :

y =

√
2

W

“

I2x
2 + I1z

2 ±
p

4I1I2 − cW 2xz
”1/2

This can be interpreted as saying that there is a superposition rule allowing us to express the

general solution of the Pinney equation in terms of two independent solutions of the

corresponding harmonic oscillator with time-dependent frequency
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QUASI L IE SYSTEMS

Consider a non-autonomous system of first-order differential equations describing the integral

curves of at-dependent vector field

X(t, x) = Xi(t, x)
∂

∂xi

in a manifoldN whereX(t, x) can be written as

X(t, x) =
r
X

α=1

bα(t)Xα(x)

We can associate with this differential equation theR-linear spaceV of linear combinations of

the vector fieldsXα:

V ≡ {X|X =
r
X

α=1

λαXα, λα ∈ R}

andX(t, x) can be considered as a curve inV . Also,V may not be a Lie algebra.
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Consider a non-autonomous system of first-order differential equations describing the integral

curves of at-dependent vector field

X(t, x) = Xi(t, x)
∂

∂xi

in a manifoldN whereX(t, x) can be written as

X(t, x) =
r
X

α=1

bα(t)Xα(x)

We can associate with this differential equation theR-linear spaceV of linear combinations of

the vector fieldsXα:

V ≡ {X|X =
r
X

α=1

λαXα, λα ∈ R}

andX(t, x) can be considered as a curve inV . Also,V may not be a Lie algebra. X is a

Quasi-Lie system if there exists a Lie algebraW ⊂ V such that [W,V ] ⊂ V
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G a connected Lie group with Lie algebra isomorphic to that ofW

M is the set of Quasi-Lie systems determined byV .
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G a connected Lie group with Lie algebra isomorphic to that ofW

M is the set of Quasi-Lie systems determined byV .

Let G be the set of curves inG, i.e.G ≡ Map(R, G), then,G admits an structure of group with

the composition law:

∀ḡ1, ḡ2 ∈ G, (ḡ1 · ḡ2)(t) ≡ g1(t)g2(t)
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the composition law:
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LetX be a t-dependent vector field with integral curvesx(t) we define the transformed

t-dependent vector fieldX′ by ḡ ∈ G as that with integral curvesx′(t) = Φ(ḡ(t), x(t)).

2007, Lie Systems – p. 19



G a connected Lie group with Lie algebra isomorphic to that ofW

M is the set of Quasi-Lie systems determined byV .

Let G be the set of curves inG, i.e.G ≡ Map(R, G), then,G admits an structure of group with

the composition law:

∀ḡ1, ḡ2 ∈ G, (ḡ1 · ḡ2)(t) ≡ g1(t)g2(t)

LetX be a t-dependent vector field with integral curvesx(t) we define the transformed

t-dependent vector fieldX′ by ḡ ∈ G as that with integral curvesx′(t) = Φ(ḡ(t), x(t)).

The map

Ψ : (ḡ, X) ∈ G ×M → b′ = Ψ(ḡ, X′) ∈ M

is an action of the group G in M.
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Consider the family of differential equations

ẍ = a(t)ẋ+ b(t)x+ c(t)
1

x3
.

We associate with such a second-order differential equation a system of first-order differential

equations by introducing a new variablev ≡ ẋ:

8

<

:

v̇ = a(t)v + b(t)x+ c(t) 1
x3

ẋ = v.

The vector fields

X1 = v
∂

∂v
, X2 = x

∂

∂v
, X3 =

1

x3

∂

∂v
, X4 = v

∂

∂x
, X5 = x

∂

∂x

are a basis for aR-linear spaceV , which howeveris not a Lie algebra because the commutator

[X3, X4] is not in V .
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If p ≡ (x, v) denotes a point ofTR our differential equation gives the integral curves of

X(p, t) = a(t)X1(p) + b(t)X2(p) + c(t)X3(p) +X4(p) .
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If p ≡ (x, v) denotes a point ofTR our differential equation gives the integral curves of

X(p, t) = a(t)X1(p) + b(t)X2(p) + c(t)X3(p) +X4(p) .

Consider the two-dimensional Lie algebraW generated by the vector fields

Y1 = X1 = v
∂

∂v
, Y2 = X2 = x

∂

∂v
,

which satisfy

[Y1, Y2] = −Y2 ,

and thereforeW is a 2-dimensional non-Abelian Lie algebra. The other commutation relations

among elements ofW andV are determined by:

[Y1, X3] = X3, [Y1, X4] = X4, [Y1, X5] = 0

[Y2, X3] = 0, [Y2, X4] = X5 −X1, [Y2, X5] = −X2

and thus[W,V ] ⊂ V , which shows thatX is a Quasi-Lie system.
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The corresponding set of transformations ofTR associated withW is given by:

8

<

:

v = α(t)v′ + β(t)x′

x = x′

with α(t) 6= 0. These transformations allow us to transform the Quasi-Liesystem (20) into a new

system of first-order differential equations in which the time-dependent vector field determining

the dynamics can be written as a linear combination of the fields ofV at each time. More

explicitly, if p′ = (x′, v′) then

X′(p′, t) = a′(t)X1(p′) + b′(t)X2(p′) + c′(t)X3(p′) + d′(t)X4(p′) + e′(t)X5(p′) (0.1)

with

a′(t) = a(t) − β(t) − α̇(t)

α(t)

b′(t) =
b(t)

α(t)
+ a(t)

β(t)

α(t)
− β2(t)

α(t)
− β̇(t)

α(t)

c′(t) =
c(t)

α(t)

d′(t) = α(t)

e′(t) = β(t).
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The integral curves ofX′ are the integral curves of:

dv′

dt
=

“

a(t) − β(t) − α̇(t)
α(t)

”

v′ +
“

b(t)
α(t)

+ a(t)
β(t)
α(t)

− β2(t)
α(t)

− β̇(t)
α(t)

”

x′

+
c(t)
α(t)

1
x′3

dx′

dt
= α(t)v′ + β(t)x′

In the most general case, once the coefficienta(t) has been fixed, the coefficientc(t) of a system

that can be reduced to a Lie-Ermakov system:

c(t) = K exp

„

−
Z t

2a(t′)dt′
«

and thus, we can we write

a(t) = −p1(t)
p(t)
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Then the most general differential equation of our type we can describe as a Quasi-Lie system is

p(t)ẍ+ p1(t)ẋ+ q(t)r =
p(t)

exp(2F (t))

k2

x3

where

F (t) =

Z t p1(t′)

p(t′)
dt′

and we recover in this way a Lie systems. In this case, we can choose:

α(t) = exp(−F (t))

and from it we obtain

dv′

dt
= −q(t) exp(F (t))x′ + exp(−F (t))

k2

x′3

dx′

dt
= exp(−F (t))v′

2007, Lie Systems – p. 24



Through thet-reparametrization

τ =

Z t

exp(−F (t′))dt′

becomes:
dv′

dτ
= − q(t)

p(t)
exp(2F (t))x′ +

k2

x′3

dx′

dτ
= v′.

now we can consider the next integral for this Lie system:

I = (x̄v′ − v̄x′)2 + k2

„

x′

x̄

«2
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