New geometric approaches in the study of Ermakov systems
 Javier de Lucas Araújo
 University of Zaragoza, Spain.

(Work made with J. F. Cariñena M. F. Rañada)
email:dlucas@unizar.es

Contents

- Superposition rules \& geometrical approach.

Contents

- Superposition rules \& geometrical approach.
- SODE Lie systems.

Contents

- Superposition rules \& geometrical approach.
- SODE Lie systems.
- Examples of SODE Lie systems

Contents

- Superposition rules \& geometrical approach.
- SODE Lie systems.
- Examples of SODE Lie systems
- Harmonic Oscillators

Contents

- Superposition rules \& geometrical approach.
- SODE Lie systems.
- Examples of SODE Lie systems
- Harmonic Oscillators
** Pinney equation

Contents

- Superposition rules \& geometrical approach.
- SODE Lie systems.
- Examples of SODE Lie systems
- Harmonic Oscillators
** Pinney equation
* Ermakov system

CONTENTS

- Superposition rules \& geometrical approach.
- SODE Lie systems.
- Examples of SODE Lie systems
- Harmonic Oscillators
** Pinney equation
* Ermakov system
- Generalized superposition maps for these examples.

CONTENTS

- Superposition rules \& geometrical approach.
- SODE Lie systems.
- Examples of SODE Lie systems
- Harmonic Oscillators
** Pinney equation
* Ermakov system
- Generalized superposition maps for these examples.
- Quasi-Lie systems

Superposition rules \& LIE Systems

Given a first-order differential equation in \mathbb{R}^{n} given by:

$$
\begin{equation*}
\frac{d x^{i}}{d t}=Y^{i}(t, x), \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

a superposition rule for this differential equation is certain map $\Phi: \mathbb{R}^{n(m+1)} \rightarrow \mathbb{R}^{n}$, i.e.

$$
x=\Phi\left(x_{(1)}, \ldots, x_{(m)} ; k_{1}, \ldots, k_{n}\right) .
$$

Superposition rules \& LIE systems

Given a first-order differential equation in \mathbb{R}^{n} given by:

$$
\begin{equation*}
\frac{d x^{i}}{d t}=Y^{i}(t, x), \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

a superposition rule for this differential equation is certain map $\Phi: \mathbb{R}^{n(m+1)} \rightarrow \mathbb{R}^{n}$, i.e.

$$
x=\Phi\left(x_{(1)}, \ldots, x_{(m)} ; k_{1}, \ldots, k_{n}\right) .
$$

This superposition map verifies that the general solution can be written, at least for sufficiently small t, as

$$
x(t)=\Phi\left(x_{(1)}(t), \ldots, x_{(m)}(t) ; k_{1}, \ldots, k_{n}\right)
$$

with $\left\{x_{(a)}(t) \mid a=1, \ldots, m\right\}$ being a fundamental set of particular solutions of the system and $k=\left(k_{1}, \ldots, k_{n}\right)$ a set of n arbitrary constants associated with each particular solution.

Superposition rules \& Lie systems

Given a first-order differential equation in \mathbb{R}^{n} given by:

$$
\begin{equation*}
\frac{d x^{i}}{d t}=Y^{i}(t, x), \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

a superposition rule for this differential equation is certain map $\Phi: \mathbb{R}^{n(m+1)} \rightarrow \mathbb{R}^{n}$, i.e.

$$
x=\Phi\left(x_{(1)}, \ldots, x_{(m)} ; k_{1}, \ldots, k_{n}\right) .
$$

This superposition map verifies that the general solution can be written, at least for sufficiently small t, as

$$
x(t)=\Phi\left(x_{(1)}(t), \ldots, x_{(m)}(t) ; k_{1}, \ldots, k_{n}\right)
$$

with $\left\{x_{(a)}(t) \mid a=1, \ldots, m\right\}$ being a fundamental set of particular solutions of the system and $k=\left(k_{1}, \ldots, k_{n}\right)$ a set of n arbitrary constants associated with each particular solution.

- The differential equations (1) which admit this superposition rule are called Lie systems.

Superposition rules \& Lie systems

Given a first-order differential equation in \mathbb{R}^{n} given by:

$$
\begin{equation*}
\frac{d x^{i}}{d t}=Y^{i}(t, x), \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

a superposition rule for this differential equation is certain map $\Phi: \mathbb{R}^{n(m+1)} \rightarrow \mathbb{R}^{n}$, i.e.

$$
x=\Phi\left(x_{(1)}, \ldots, x_{(m)} ; k_{1}, \ldots, k_{n}\right) .
$$

This superposition map verifies that the general solution can be written, at least for sufficiently small t, as

$$
x(t)=\Phi\left(x_{(1)}(t), \ldots, x_{(m)}(t) ; k_{1}, \ldots, k_{n}\right)
$$

with $\left\{x_{(a)}(t) \mid a=1, \ldots, m\right\}$ being a fundamental set of particular solutions of the system and $k=\left(k_{1}, \ldots, k_{n}\right)$ a set of n arbitrary constants associated with each particular solution.

- The differential equations (1) which admit this superposition rule are called Lie systems.
- Lie systems are characterized by the Lie Theorem.

Lie's Theorem: (1) admits a superposition rule if and only if the t-dependent vector field $Y(t, x)$ can be written

$$
Y(t, x)=\sum_{\alpha=1}^{r} b_{\alpha}(t) X_{\alpha}(x)
$$

where the vector fields $\left\{X_{\alpha}, \alpha=1, \ldots, r\right\}$, close ar-dimensional real Lie algebra V, i.e. there exist r^{3} real numbers $c_{\alpha \beta}{ }^{\gamma}$ such that

$$
\left[X_{\alpha}, X_{\beta}\right]=\sum_{\gamma=1}^{r} c_{\alpha \beta}^{\gamma} X_{\gamma}, \quad \forall \alpha, \beta=1, \ldots, r
$$

Lie's Theorem: (1) admits a superposition rule if and only if the t-dependent vector field $Y(t, x)$ can be written

$$
Y(t, x)=\sum_{\alpha=1}^{r} b_{\alpha}(t) X_{\alpha}(x)
$$

where the vector fields $\left\{X_{\alpha}, \alpha=1, \ldots, r\right\}$, close ar-dimensional real Lie algebra V, i.e. there exist r^{3} real numbers $c_{\alpha \beta}{ }^{\gamma}$ such that

$$
\left[X_{\alpha}, X_{\beta}\right]=\sum_{\gamma=1}^{r} c_{\alpha \beta}^{\gamma} X_{\gamma}, \quad \forall \alpha, \beta=1, \ldots, r
$$

Consider the abstract Lie algebra \mathfrak{g} isomorphic to V and a connected Lie group G with this Lie algebra. Then, there exists an effective action $\Phi: G \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with fundamental vector fields those of V. Let $\left\{\mathrm{a}_{\alpha}\right\}$ be a basis of \mathfrak{g} with associated fundamental vector fields $\left\{X_{\alpha}\right\}$ thus if the solution of the equation

$$
R_{g^{-1}{ }_{* g}} \dot{g}=-\sum_{\alpha=1}^{r} b_{\alpha}(t) \mathrm{a}_{\alpha}, \quad g(0)=e
$$

verifies that the integral curve of Y in $x_{0} \in \mathbb{R}^{n}$ is $x(t)=\Phi\left(g(t), x_{0}\right)$.

Consider now a set of t -dependent vector fields $\left\{Y^{(\mu)} \mid \mu=1, \ldots, m\right\}$ over a set of manifolds $N^{(\mu)}$ such that

$$
Y^{(\mu)}\left(t, x^{(\mu)}\right)=\sum_{\alpha=1}^{r} b_{\alpha}(t) Y_{\alpha}^{(\mu)}\left(x^{\mu}\right)
$$

where the $Y_{\alpha}^{(\mu)}$ close the same commutation relations that the Y_{α}.

Consider now a set of t -dependent vector fields $\left\{Y^{(\mu)} \mid \mu=1, \ldots, m\right\}$ over a set of manifolds $N^{(\mu)}$ such that

$$
Y^{(\mu)}\left(t, x^{(\mu)}\right)=\sum_{\alpha=1}^{r} b_{\alpha}(t) Y_{\alpha}^{(\mu)}\left(x^{\mu}\right)
$$

where the $Y_{\alpha}^{(\mu)}$ close the same commutation relations that the Y_{α}.

Thus, we can consider the integral curves of the t-dependent vector field

$$
\tilde{Y}(t, \tilde{x})=Y(t, x)+\sum_{\mu=1}^{m} Y^{(\mu)}\left(t, x^{(\mu)}\right)=\sum_{\alpha=1}^{r} b_{\alpha}(t)\left(Y_{\alpha}(x)+\sum_{\mu=1}^{m} Y_{\alpha}^{\mu}\left(x^{\mu}\right)\right)
$$

with $\tilde{x} \in N \times N^{(1)} \times \ldots \times N^{(m)}$ and

$$
\tilde{Y}_{\alpha}(\tilde{x})=Y_{\alpha}+\sum_{\mu=1}^{m} Y_{\alpha}^{(\mu)}\left(x^{(\mu)}\right)
$$

As for $\mu, \mu^{\prime}=1, \ldots, m$

$$
\left[Y_{\alpha}^{(\mu)}, Y_{\beta}^{(\mu)}\right]=c_{\alpha \beta}^{\gamma} Y_{\gamma}^{(\mu)}
$$

and

$$
\left[Y_{\alpha}^{(\mu)}, Y_{\beta}^{\left(\mu^{\prime}\right)}\right]=0 \quad\left[Y_{\alpha}, Y_{\beta}^{\left(\mu^{\prime}\right)}\right]=0
$$

then

$$
\left[\tilde{Y}_{\alpha}, \tilde{Y}_{\beta}\right]=c_{\alpha \beta}{ }^{\gamma} \tilde{Y}_{\gamma}
$$

Then the differential equation determining the integral curves of \tilde{Y} is a Lie system.

As for $\mu, \mu^{\prime}=1, \ldots, m$

$$
\left[Y_{\alpha}^{(\mu)}, Y_{\beta}^{(\mu)}\right]=c_{\alpha \beta}^{\gamma} Y_{\gamma}^{(\mu)}
$$

and

$$
\left[Y_{\alpha}^{(\mu)}, Y_{\beta}^{\left(\mu^{\prime}\right)}\right]=0 \quad\left[Y_{\alpha}, Y_{\beta}^{\left(\mu^{\prime}\right)}\right]=0
$$

then

$$
\left[\tilde{Y}_{\alpha}, \tilde{Y}_{\beta}\right]=c_{\alpha \beta}{ }^{\gamma} \tilde{Y}_{\gamma}
$$

Then the differential equation determining the integral curves of \tilde{Y} is a Lie system.

Also, at any point $\tilde{x} \in \tilde{N}$ we obtain

$$
\tilde{Y}(t, \tilde{x}) \in \mathcal{V}(\tilde{x}) \equiv\left\langle\tilde{Y}_{1}(\tilde{x}), \ldots, \tilde{Y}_{r}(\tilde{x})\right\rangle
$$

As for $\mu, \mu^{\prime}=1, \ldots, m$

$$
\left[Y_{\alpha}^{(\mu)}, Y_{\beta}^{(\mu)}\right]=c_{\alpha \beta}^{\gamma} Y_{\gamma}^{(\mu)}
$$

and

$$
\left[Y_{\alpha}^{(\mu)}, Y_{\beta}^{\left(\mu^{\prime}\right)}\right]=0 \quad\left[Y_{\alpha}, Y_{\beta}^{\left(\mu^{\prime}\right)}\right]=0
$$

then

$$
\left[\tilde{Y}_{\alpha}, \tilde{Y}_{\beta}\right]=c_{\alpha \beta}^{\gamma} \tilde{Y}_{\gamma}
$$

Then the differential equation determining the integral curves of \tilde{Y} is a Lie system.

Also, at any point $\tilde{x} \in \tilde{N}$ we obtain

$$
\tilde{Y}(t, \tilde{x}) \in \mathcal{V}(\tilde{x}) \equiv\left\langle\tilde{Y}_{1}(\tilde{x}), \ldots, \tilde{Y}_{r}(\tilde{x})\right\rangle
$$

1. Thus \tilde{Y} is inside at any time t of an involutive distribution with rank lower or equal to r.

As for $\mu, \mu^{\prime}=1, \ldots, m$

$$
\left[Y_{\alpha}^{(\mu)}, Y_{\beta}^{(\mu)}\right]=c_{\alpha \beta}^{\gamma} Y_{\gamma}^{(\mu)}
$$

and

$$
\left[Y_{\alpha}^{(\mu)}, Y_{\beta}^{\left(\mu^{\prime}\right)}\right]=0 \quad\left[Y_{\alpha}, Y_{\beta}^{\left(\mu^{\prime}\right)}\right]=0
$$

then

$$
\left[\tilde{Y}_{\alpha}, \tilde{Y}_{\beta}\right]=c_{\alpha \beta}{ }^{\gamma} \tilde{Y}_{\gamma}
$$

Then the differential equation determining the integral curves of \tilde{Y} is a Lie system.

Also, at any point $\tilde{x} \in \tilde{N}$ we obtain

$$
\tilde{Y}(t, \tilde{x}) \in \mathcal{V}(\tilde{x}) \equiv\left\langle\tilde{Y}_{1}(\tilde{x}), \ldots, \tilde{Y}_{r}(\tilde{x})\right\rangle
$$

1. Thus \tilde{Y} is inside at any time t of an involutive distribution with rank lower or equal to r.
2. Thus, let p be the higher rank of the distribution \mathcal{V} over an open of \tilde{N} and $\tilde{n} \equiv \operatorname{dim} \tilde{N}$ we known that there exists $\tilde{n}-p$ time-independent integrals of motion $\left\{k_{1}, \ldots k_{\tilde{n}-p}\right\}$ of \tilde{Y}.

Consider the map $\Psi: \tilde{x} \in \tilde{N} \rightarrow\left(k_{1}(\tilde{x}), \ldots, k_{\tilde{n}-p}(\tilde{x})\right) \in \mathbb{R}^{\tilde{n}-p}$ such that

$$
\Psi\left(x(t), x^{(1)}(t), \ldots, x^{(m)}(t)\right)=\left(k_{1}, \ldots, k_{\tilde{n}-p}\right)
$$

The constants of motion stablish relations between the coordinates of the integral curves of \tilde{Y}, these are

$$
\left(x(t), x^{(1)}(t), \ldots, x^{(m)}(t)\right)
$$

Thus $\left\{k_{1}, \ldots, k_{\tilde{n}-p}\right\}$ allow to relate the integral curves of Y and the $Y^{(\mu)}$.

Consider the map $\Psi: \tilde{x} \in \tilde{N} \rightarrow\left(k_{1}(\tilde{x}), \ldots, k_{\tilde{n}-p}(\tilde{x})\right) \in \mathbb{R}^{\tilde{n}-p}$ such that

$$
\Psi\left(x(t), x^{(1)}(t), \ldots, x^{(m)}(t)\right)=\left(k_{1}, \ldots, k_{\tilde{n}-p}\right)
$$

The constants of motion stablish relations between the coordinates of the integral curves of \tilde{Y}, these are

$$
\left(x(t), x^{(1)}(t), \ldots, x^{(m)}(t)\right)
$$

Thus $\left\{k_{1}, \ldots, k_{\tilde{n}-p}\right\}$ allow to relate the integral curves of Y and the $Y^{(\mu)}$.
Suppose that we obtain as many integrals of motion (we must have at least n) as to obtain the initial n coordinates in terms of the other coordinates $\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ and a certain set of constants $\left\{k_{1}, \ldots, k_{n}\right\}$. Also, if we fix the coordinates in $N^{(e)} \equiv N^{(1)} \times \ldots \times N^{(m)}$ there is a diffeomorphism

$$
\Psi\left(x^{(1)}, \ldots, x^{(m)}\right): x \equiv\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \rightarrow k \equiv\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{R}^{n}
$$

Thus, we can obtain a map Φ such that

$$
\Phi\left(x^{(1)}(t), \ldots, x^{(m)}(t), k_{1}, \ldots, k_{n}\right)=x(t)
$$

Thus, we have generalized a superposition rule to mix different solutions of different Lie systems.

Thus, we can obtain a map Φ such that

$$
\Phi\left(x^{(1)}(t), \ldots, x^{(m)}(t), k_{1}, \ldots, k_{n}\right)=x(t)
$$

Thus, we have generalized a superposition rule to mix different solutions of different Lie systems.

The level sets of Ψ corresponding to regular values define a n-codimensional foliation \mathcal{F} on an open dense subset $U \subset \tilde{N}$ and the family $\{\tilde{Y}(t), t \in \mathbb{R}\}$ of vector fields in \tilde{N} consists of vector fields tangent to the leaves of \mathcal{F}.

Thus, we can obtain a map Φ such that

$$
\Phi\left(x^{(1)}(t), \ldots, x^{(m)}(t), k_{1}, \ldots, k_{n}\right)=x(t)
$$

Thus, we have generalized a superposition rule to mix different solutions of different Lie systems.

The level sets of Ψ corresponding to regular values define a n-codimensional foliation \mathcal{F} on an open dense subset $U \subset \tilde{N}$ and the family $\{\tilde{Y}(t), t \in \mathbb{R}\}$ of vector fields in \tilde{N} consists of vector fields tangent to the leaves of \mathcal{F}.
As the level sets \mathcal{F}_{k} corresponding to $k \in \mathbb{R}^{n}$, given $\left(x_{(1)}, \ldots, x_{(m)}\right) \in N^{(e)}$ there is a unique point $x_{(0)}$ such that $\left(x_{(0)}, x_{(1)}, \ldots, x_{(m)}\right) \in \mathcal{F}_{k}$. Therefore the projection

$$
p r:\left(x_{(0)}, x_{(1)}, \ldots, x_{(m)}\right) \in \tilde{N} \rightarrow\left(x_{(1)}, \ldots, x_{(m)}\right) \in N^{(e)}
$$

induces diffeomorphisms on the leaves \mathcal{F}_{k} of \mathcal{F}.

Thus, we can obtain a map Φ such that

$$
\Phi\left(x^{(1)}(t), \ldots, x^{(m)}(t), k_{1}, \ldots, k_{n}\right)=x(t)
$$

Thus, we have generalized a superposition rule to mix different solutions of different Lie systems.

The level sets of Ψ corresponding to regular values define a n-codimensional foliation \mathcal{F} on an open dense subset $U \subset \tilde{N}$ and the family $\{\tilde{Y}(t), t \in \mathbb{R}\}$ of vector fields in \tilde{N} consists of vector fields tangent to the leaves of \mathcal{F}.
As the level sets \mathcal{F}_{k} corresponding to $k \in \mathbb{R}^{n}$, given $\left(x_{(1)}, \ldots, x_{(m)}\right) \in N^{(e)}$ there is a unique point $x_{(0)}$ such that $\left(x_{(0)}, x_{(1)}, \ldots, x_{(m)}\right) \in \mathcal{F}_{k}$. Therefore the projection

$$
p r:\left(x_{(0)}, x_{(1)}, \ldots, x_{(m)}\right) \in \tilde{N} \rightarrow\left(x_{(1)}, \ldots, x_{(m)}\right) \in N^{(e)}
$$

induces diffeomorphisms on the leaves \mathcal{F}_{k} of \mathcal{F}.

SODE LIE SYSTEMS

A system of second-order differential equations

$$
\ddot{x}^{i}=f^{i}(t, x, \dot{x}), \quad i=1, \ldots, n
$$

can be studied through the system of first-order differential equations

$$
\left\{\begin{aligned}
\frac{d x^{i}}{d t} & =v^{i} \\
\frac{d v^{i}}{d t} & =f^{i}(t, x, v)
\end{aligned}\right.
$$

with associated t-dependent vector field

$$
X=v^{i} \frac{\partial}{\partial x^{i}}+f^{i}(t, x, v) \frac{\partial}{\partial v^{i}} .
$$

SODE LIE SYSTEMS

A system of second-order differential equations

$$
\ddot{x}^{i}=f^{i}(t, x, \dot{x}), \quad i=1, \ldots, n
$$

can be studied through the system of first-order differential equations

$$
\left\{\begin{aligned}
\frac{d x^{i}}{d t} & =v^{i} \\
\frac{d v^{i}}{d t} & =f^{i}(t, x, v)
\end{aligned}\right.
$$

with associated t-dependent vector field

$$
X=v^{i} \frac{\partial}{\partial x^{i}}+f^{i}(t, x, v) \frac{\partial}{\partial v^{i}} .
$$

We call SODE Lie systems those for which X is a Lie system, i.e. it can be written as a linear combination with t-dependent coefficients of vector fields closing a finite-dimensional real Lie algebra.

EXAMPLES

A) 1-dim harmonic time-dependent frequency oscillator

The equation of motion is $\ddot{x}=-\omega^{2}(t) x$, with associated system

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=-\omega^{2}(t) x
\end{array}\right.
$$

and t-dependent vector field

$$
X=v \frac{\partial}{\partial x}-\omega^{2}(t) x \frac{\partial}{\partial v}
$$

EXAMPLES

A) 1-dim harmonic time-dependent frequency oscillator

The equation of motion is $\ddot{x}=-\omega^{2}(t) x$, with associated system

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=-\omega^{2}(t) x
\end{array}\right.
$$

and t-dependent vector field

$$
X=v \frac{\partial}{\partial x}-\omega^{2}(t) x \frac{\partial}{\partial v}
$$

This last vector field is a linear combination $X=X_{2}-\omega^{2}(t) X_{1}$ with

$$
X_{1}=x \frac{\partial}{\partial v}, \quad X_{2}=v \frac{\partial}{\partial x}, \quad X_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v \frac{\partial}{\partial v}\right)
$$

EXAMPLES

A) 1-dim harmonic time-dependent frequency oscillator

The equation of motion is $\ddot{x}=-\omega^{2}(t) x$, with associated system

$$
\left\{\begin{aligned}
\dot{x} & =v \\
\dot{v} & =-\omega^{2}(t) x
\end{aligned}\right.
$$

and t-dependent vector field

$$
X=v \frac{\partial}{\partial x}-\omega^{2}(t) x \frac{\partial}{\partial v}
$$

This last vector field is a linear combination $X=X_{2}-\omega^{2}(t) X_{1}$ with

$$
X_{1}=x \frac{\partial}{\partial v}, \quad X_{2}=v \frac{\partial}{\partial x}, \quad X_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v \frac{\partial}{\partial v}\right)
$$

As

$$
\left[X_{1}, X_{2}\right]=2 X_{3}, \quad\left[X_{1}, X_{3}\right]=-X_{1}, \quad\left[X_{2}, X_{3}\right]=X_{2}
$$

X defines a Lie system with associated Lie algebra $\mathfrak{s l}(2, \mathbb{R})$.

B) Pinney equation

The Pinney equation is the second-order non-linear differential equation:

$$
\ddot{x}=-\omega^{2}(t) x+\frac{k}{x^{3}},
$$

where k is a constant.

B) Pinney equation

The Pinney equation is the second-order non-linear differential equation:

$$
\ddot{x}=-\omega^{2}(t) x+\frac{k}{x^{3}},
$$

where k is a constant.
The corresponding system of first-order differential equations is

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=-\omega^{2}(t) x+\frac{k}{x^{3}}
\end{array}\right.
$$

and the associated t-dependent vector field

$$
X=v \frac{\partial}{\partial x}+\left(-\omega^{2}(t) x+\frac{k}{x^{3}}\right) \frac{\partial}{\partial v} .
$$

This is a Lie system because it can be determined by a time-dependent vector field which can be written as

$$
X=X_{2}-\omega^{2}(t) X_{1}
$$

where

$$
X_{1}=x \frac{\partial}{\partial v}, \quad X_{2}=\frac{k}{x^{3}} \frac{\partial}{\partial v}+v \frac{\partial}{\partial x}, \quad X_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v \frac{\partial}{\partial v}\right)
$$

This is a Lie system because it can be determined by a time-dependent vector field which can be written as

$$
X=X_{2}-\omega^{2}(t) X_{1}
$$

where

$$
X_{1}=x \frac{\partial}{\partial v}, \quad X_{2}=\frac{k}{x^{3}} \frac{\partial}{\partial v}+v \frac{\partial}{\partial x}, \quad X_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v \frac{\partial}{\partial v}\right)
$$

As these vector fields are such that

$$
\left[X_{1}, X_{2}\right]=2 X_{3}, \quad\left[X_{3}, X_{2}\right]=-X_{2}, \quad\left[X_{3}, X_{1}\right]=X_{1}
$$

then the vector fields X_{i} with $i=1,2,3$ span a three-dimensional real Lie algebra \mathfrak{g} which is isomorphic to $\mathfrak{s l}(2, \mathbb{R})$.

This is a Lie system because it can be determined by a time-dependent vector field which can be written as

$$
X=X_{2}-\omega^{2}(t) X_{1}
$$

where

$$
X_{1}=x \frac{\partial}{\partial v}, \quad X_{2}=\frac{k}{x^{3}} \frac{\partial}{\partial v}+v \frac{\partial}{\partial x}, \quad X_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v \frac{\partial}{\partial v}\right)
$$

As these vector fields are such that

$$
\left[X_{1}, X_{2}\right]=2 X_{3}, \quad\left[X_{3}, X_{2}\right]=-X_{2}, \quad\left[X_{3}, X_{1}\right]=X_{1}
$$

then the vector fields X_{i} with $i=1,2,3$ span a three-dimensional real Lie algebra \mathfrak{g} which is isomorphic to $\mathfrak{s l}(2, \mathbb{R})$.
Also, the X_{i} in examples A and B close under commutator relations the same structure constants and their X 's can be written in the same way as

$$
X=X_{2}-\omega^{2}(t) X_{1}
$$

C) Ermakov system

Consider the system

$$
\left\{\begin{aligned}
\dot{x} & =v_{x} \\
\dot{v}_{x} & =-\omega^{2}(t) x \\
\dot{y} & =v_{y} \\
\dot{v}_{y} & =-\omega^{2}(t) y+\frac{1}{y^{3}}
\end{aligned}\right.
$$

with associated t-dependent vector field

$$
L=v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}-\omega^{2}(t) x \frac{\partial}{\partial v_{x}}+\left(-\omega^{2}(t) y+\frac{1}{y^{3}}\right) \frac{\partial}{\partial v_{y}}
$$

C) Ermakov system

Consider the system

$$
\left\{\begin{aligned}
\dot{x} & =v_{x} \\
\dot{v}_{x} & =-\omega^{2}(t) x \\
\dot{y} & =v_{y} \\
\dot{v}_{y} & =-\omega^{2}(t) y+\frac{1}{y^{3}}
\end{aligned}\right.
$$

with associated t-dependent vector field

$$
L=v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}-\omega^{2}(t) x \frac{\partial}{\partial v_{x}}+\left(-\omega^{2}(t) y+\frac{1}{y^{3}}\right) \frac{\partial}{\partial v_{y}}
$$

This is a linear combination with time-dependent coefficients, $L=L_{2}-\omega^{2}(t) L_{1}$, of the vector fields

$$
L_{1}=x \frac{\partial}{\partial v_{x}}+y \frac{\partial}{\partial v_{y}}, \quad L_{2}=v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}+\frac{1}{y^{3}} \frac{\partial}{\partial v_{y}} .
$$

that with L_{3} given by

$$
L_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v_{x} \frac{\partial}{\partial v_{x}}+y \frac{\partial}{\partial y}-v_{y} \frac{\partial}{\partial v_{y}}\right)
$$

close on a $\mathfrak{S l}(2, \mathbb{R})$ algebra with the field L expressed in terms of the vector fields L_{1}, L_{2} and L_{3} as before.
that with L_{3} given by

$$
L_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v_{x} \frac{\partial}{\partial v_{x}}+y \frac{\partial}{\partial y}-v_{y} \frac{\partial}{\partial v_{y}}\right) .
$$

close on a $\mathfrak{S l}(2, \mathbb{R})$ algebra with the field L expressed in terms of the vector fields L_{1}, L_{2} and L_{3} as before.
This system have asociated a distribution of rank three in a manifold of dimension four, then, there exists a constant of motion.
that with L_{3} given by

$$
L_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v_{x} \frac{\partial}{\partial v_{x}}+y \frac{\partial}{\partial y}-v_{y} \frac{\partial}{\partial v_{y}}\right) .
$$

close on a $\mathfrak{S l}(2, \mathbb{R})$ algebra with the field L expressed in terms of the vector fields L_{1}, L_{2} and L_{3} as before.
This system have asociated a distribution of rank three in a manifold of dimension four, then, there exists a constant of motion.
If we get enough integrals of motion and we get to obtain the coordinates of one of the system in terms of the other we have obtained a superposition principle.
that with L_{3} given by

$$
L_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v_{x} \frac{\partial}{\partial v_{x}}+y \frac{\partial}{\partial y}-v_{y} \frac{\partial}{\partial v_{y}}\right) .
$$

close on a $\mathfrak{S l}(2, \mathbb{R})$ algebra with the field L expressed in terms of the vector fields L_{1}, L_{2} and L_{3} as before.
This system have asociated a distribution of rank three in a manifold of dimension four, then, there exists a constant of motion.
If we get enough integrals of motion and we get to obtain the coordinates of one of the system in terms of the other we have obtained a superposition principle.

In this case there is just one integral and we cannot obtain a superposition rule. Nevertheless, this integral is the knowm Lewis-Ermakov invariant.

$$
\psi\left(x, y, v_{x}, v_{y}\right)=\left(\frac{x}{y}\right)^{2}+\xi^{2}=\left(\frac{x}{y}\right)^{2}+\left(x v_{y}-y v_{x}\right)^{2}
$$

Pinney equation revisited

Consider the system of first-order differential equations:

$$
\left\{\begin{aligned}
\dot{x} & =v_{x} \\
\dot{y} & =v_{y} \\
\dot{z} & =v_{z} \\
\dot{v}_{x} & =-\omega^{2}(t) x \\
\dot{v}_{y} & =-\omega^{2}(t) y+\frac{k}{y^{3}} \\
\dot{v}_{z} & =-\omega^{2}(t) z
\end{aligned}\right.
$$

which corresponds to the vector field

$$
X=v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}+v_{z} \frac{\partial}{\partial z}+\frac{k}{y^{3}} \frac{\partial}{\partial v_{y}}-\omega^{2}(t)\left(x \frac{\partial}{\partial v_{x}}+y \frac{\partial}{\partial v_{y}}+z \frac{\partial}{\partial v_{z}}\right)
$$

Pinney equation Revisited

Consider the system of first-order differential equations:

$$
\left\{\begin{aligned}
\dot{x} & =v_{x} \\
\dot{y} & =v_{y} \\
\dot{z} & =v_{z} \\
\dot{v}_{x} & =-\omega^{2}(t) x \\
\dot{v}_{y} & =-\omega^{2}(t) y+\frac{k}{y^{3}} \\
\dot{v}_{z} & =-\omega^{2}(t) z
\end{aligned}\right.
$$

which corresponds to the vector field

$$
X=v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}+v_{z} \frac{\partial}{\partial z}+\frac{k}{y^{3}} \frac{\partial}{\partial v_{y}}-\omega^{2}(t)\left(x \frac{\partial}{\partial v_{x}}+y \frac{\partial}{\partial v_{y}}+z \frac{\partial}{\partial v_{z}}\right)
$$

The vector field X can be expressed as $X=N_{2}-\omega^{2}(t) N_{1}$ where the vector fields N_{1} and N_{2} are:

$$
N_{1}=y \frac{\partial}{\partial v_{y}}+x \frac{\partial}{\partial v_{x}}+z \frac{\partial}{\partial v_{z}}, \quad N_{2}=v_{y} \frac{\partial}{\partial y}+\frac{1}{y^{3}} \frac{\partial}{\partial v_{y}}+v_{x} \frac{\partial}{\partial x}+v_{z} \frac{\partial}{\partial z}
$$

These vector fields generate a three-dimensinal real Lie algebra with the vector field N_{3} given by

$$
N_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v_{x} \frac{\partial}{\partial v_{x}}+y \frac{\partial}{\partial y}-v_{y} \frac{\partial}{\partial v_{y}}+z \frac{\partial}{\partial z}-v_{z} \frac{\partial}{\partial v_{z}}\right) .
$$

These vector fields generate a three-dimensinal real Lie algebra with the vector field N_{3} given by

$$
N_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v_{x} \frac{\partial}{\partial v_{x}}+y \frac{\partial}{\partial y}-v_{y} \frac{\partial}{\partial v_{y}}+z \frac{\partial}{\partial z}-v_{z} \frac{\partial}{\partial v_{z}}\right) .
$$

In fact, as

$$
\left[N_{1}, N_{2}\right]=2 N_{3}, \quad\left[N_{3}, N_{1}\right]=N_{1}, \quad\left[N_{3}, N_{2}\right]=-N_{2}
$$

they generate a Lie algebra isomorphic to $\mathfrak{S l}(2, \mathbb{R})$. The system is a Lie system.

These vector fields generate a three-dimensinal real Lie algebra with the vector field N_{3} given by

$$
N_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v_{x} \frac{\partial}{\partial v_{x}}+y \frac{\partial}{\partial y}-v_{y} \frac{\partial}{\partial v_{y}}+z \frac{\partial}{\partial z}-v_{z} \frac{\partial}{\partial v_{z}}\right) .
$$

In fact, as

$$
\left[N_{1}, N_{2}\right]=2 N_{3}, \quad\left[N_{3}, N_{1}\right]=N_{1}, \quad\left[N_{3}, N_{2}\right]=-N_{2}
$$

they generate a Lie algebra isomorphic to $\mathfrak{S l}(2, \mathbb{R})$. The system is a Lie system. The distribution
generated by these fundamental vector fields has rank three. Thus, as the manifold of the Lie system is of dimension six we obtain three time-independent integrals of motion.

These vector fields generate a three-dimensinal real Lie algebra with the vector field N_{3} given by

$$
N_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v_{x} \frac{\partial}{\partial v_{x}}+y \frac{\partial}{\partial y}-v_{y} \frac{\partial}{\partial v_{y}}+z \frac{\partial}{\partial z}-v_{z} \frac{\partial}{\partial v_{z}}\right) .
$$

In fact, as

$$
\left[N_{1}, N_{2}\right]=2 N_{3}, \quad\left[N_{3}, N_{1}\right]=N_{1}, \quad\left[N_{3}, N_{2}\right]=-N_{2}
$$

they generate a Lie algebra isomorphic to $\mathfrak{S l}(2, \mathbb{R})$. The system is a Lie system. The distribution
generated by these fundamental vector fields has rank three. Thus, as the manifold of the Lie system is of dimension six we obtain three time-independent integrals of motion.

- The Ermakov invariant I_{1} of the subsystem involving variables x and y.

These vector fields generate a three-dimensinal real Lie algebra with the vector field N_{3} given by

$$
N_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v_{x} \frac{\partial}{\partial v_{x}}+y \frac{\partial}{\partial y}-v_{y} \frac{\partial}{\partial v_{y}}+z \frac{\partial}{\partial z}-v_{z} \frac{\partial}{\partial v_{z}}\right)
$$

In fact, as

$$
\left[N_{1}, N_{2}\right]=2 N_{3}, \quad\left[N_{3}, N_{1}\right]=N_{1}, \quad\left[N_{3}, N_{2}\right]=-N_{2}
$$

they generate a Lie algebra isomorphic to $\mathfrak{s l}(2, \mathbb{R})$. The system is a Lie system. The distribution
generated by these fundamental vector fields has rank three. Thus, as the manifold of the Lie system is of dimension six we obtain three time-independent integrals of motion.

- The Ermakov invariant I_{1} of the subsystem involving variables x and y.
- The Ermakov invariant I_{2} of the subsystem involving variables y and z

These vector fields generate a three-dimensinal real Lie algebra with the vector field N_{3} given by

$$
N_{3}=\frac{1}{2}\left(x \frac{\partial}{\partial x}-v_{x} \frac{\partial}{\partial v_{x}}+y \frac{\partial}{\partial y}-v_{y} \frac{\partial}{\partial v_{y}}+z \frac{\partial}{\partial z}-v_{z} \frac{\partial}{\partial v_{z}}\right)
$$

In fact, as

$$
\left[N_{1}, N_{2}\right]=2 N_{3}, \quad\left[N_{3}, N_{1}\right]=N_{1}, \quad\left[N_{3}, N_{2}\right]=-N_{2}
$$

they generate a Lie algebra isomorphic to $\mathfrak{s l}(2, \mathbb{R})$. The system is a Lie system. The distribution
generated by these fundamental vector fields has rank three. Thus, as the manifold of the Lie system is of dimension six we obtain three time-independent integrals of motion.

- The Ermakov invariant I_{1} of the subsystem involving variables x and y.
- The Ermakov invariant I_{2} of the subsystem involving variables y and z
- The Wronskian W of the subsystem involving variables x and z has.

They define a foliation with three-dimensional leaves.

They define a foliation with three-dimensional leaves. The Ermakov invariants read as:

$$
\begin{aligned}
& I_{1}=\frac{1}{2}\left(\left(y v_{x}-x v_{y}\right)^{2}+c\left(\frac{x}{y}\right)^{2}\right) \\
& I_{2}=\frac{1}{2}\left(\left(y v_{z}-z v_{y}\right)^{2}+c\left(\frac{z}{y}\right)^{2}\right)
\end{aligned}
$$

and W is:

$$
W=x v_{z}-z v_{x}
$$

They define a foliation with three-dimensional leaves. The Ermakov invariants read as:

$$
\begin{aligned}
& I_{1}=\frac{1}{2}\left(\left(y v_{x}-x v_{y}\right)^{2}+c\left(\frac{x}{y}\right)^{2}\right) \\
& I_{2}=\frac{1}{2}\left(\left(y v_{z}-z v_{y}\right)^{2}+c\left(\frac{z}{y}\right)^{2}\right)
\end{aligned}
$$

and W is:

$$
W=x v_{z}-z v_{x}
$$

In terms of these three integrals we can obtain an explicit expression of y in terms of x, z and the integrals I_{1}, I_{2}, W :

$$
y=\frac{\sqrt{2}}{W}\left(I_{2} x^{2}+I_{1} z^{2} \pm \sqrt{4 I_{1} I_{2}-c W^{2}} x z\right)^{1 / 2}
$$

This can be interpreted as saying that there is a superposition rule allowing us to express the general solution of the Pinney equation in terms of two independent solutions of the corresponding harmonic oscillator with time-dependent frequency

Quasi Lie Systems

Consider a non-autonomous system of first-order differential equations describing the integral curves of a t-dependent vector field

$$
X(t, x)=X^{i}(t, x) \frac{\partial}{\partial x^{i}}
$$

in a manifold N where $X(t, x)$ can be written as

$$
X(t, x)=\sum_{\alpha=1}^{r} b_{\alpha}(t) X_{\alpha}(x)
$$

We can associate with this differential equation the \mathbb{R}-linear space V of linear combinations of the vector fields X_{α} :

$$
V \equiv\left\{X \mid X=\sum_{\alpha=1}^{r} \lambda_{\alpha} X_{\alpha}, \lambda_{\alpha} \in \mathbb{R}\right\}
$$

and $X(t, x)$ can be considered as a curve in V. Also, V may not be a Lie algebra.

Quasi Lie Systems

Consider a non-autonomous system of first-order differential equations describing the integral curves of a t-dependent vector field

$$
X(t, x)=X^{i}(t, x) \frac{\partial}{\partial x^{i}}
$$

in a manifold N where $X(t, x)$ can be written as

$$
X(t, x)=\sum_{\alpha=1}^{r} b_{\alpha}(t) X_{\alpha}(x)
$$

We can associate with this differential equation the \mathbb{R}-linear space V of linear combinations of the vector fields X_{α} :

$$
V \equiv\left\{X \mid X=\sum_{\alpha=1}^{r} \lambda_{\alpha} X_{\alpha}, \lambda_{\alpha} \in \mathbb{R}\right\}
$$

and $X(t, x)$ can be considered as a curve in V. Also, V may not be a Lie algebra. X is a

Quasi-Lie system if there exists a Lie algebra $W \subset V$ such that $[W, V] \subset V$

- G a connected Lie group with Lie algebra isomorphic to that of W
- \mathcal{M} is the set of Quasi-Lie systems determined by V.
- G a connected Lie group with Lie algebra isomorphic to that of W
- \mathcal{M} is the set of Quasi-Lie systems determined by V.

Let \mathcal{G} be the set of curves in G, i.e. $\mathcal{G} \equiv \operatorname{Map}(\mathbb{R}, G)$, then, \mathcal{G} admits an structure of group with the composition law:

$$
\forall \bar{g}_{1}, \bar{g}_{2} \in \mathcal{G}, \quad\left(\bar{g}_{1} \cdot \bar{g}_{2}\right)(t) \equiv g_{1}(t) g_{2}(t)
$$

- G a connected Lie group with Lie algebra isomorphic to that of W
- \mathcal{M} is the set of Quasi-Lie systems determined by V.

Let \mathcal{G} be the set of curves in G, i.e. $\mathcal{G} \equiv \operatorname{Map}(\mathbb{R}, G)$, then, \mathcal{G} admits an structure of group with the composition law:

$$
\forall \bar{g}_{1}, \bar{g}_{2} \in \mathcal{G}, \quad\left(\bar{g}_{1} \cdot \bar{g}_{2}\right)(t) \equiv g_{1}(t) g_{2}(t)
$$

Let X be a t-dependent vector field with integral curves $x(t)$ we define the transformed t-dependent vector field X^{\prime} by $\bar{g} \in \mathcal{G}$ as that with integral curves $x^{\prime}(t)=\Phi(\bar{g}(t), x(t))$.

- G a connected Lie group with Lie algebra isomorphic to that of W
- \mathcal{M} is the set of Quasi-Lie systems determined by V.

Let \mathcal{G} be the set of curves in G, i.e. $\mathcal{G} \equiv \operatorname{Map}(\mathbb{R}, G)$, then, \mathcal{G} admits an structure of group with the composition law:

$$
\forall \bar{g}_{1}, \bar{g}_{2} \in \mathcal{G}, \quad\left(\bar{g}_{1} \cdot \bar{g}_{2}\right)(t) \equiv g_{1}(t) g_{2}(t)
$$

Let X be a t-dependent vector field with integral curves $x(t)$ we define the transformed t-dependent vector field X^{\prime} by $\bar{g} \in \mathcal{G}$ as that with integral curves $x^{\prime}(t)=\Phi(\bar{g}(t), x(t))$.

The map

$$
\Psi:(\bar{g}, X) \in \mathcal{G} \times \mathcal{M} \rightarrow b^{\prime}=\Psi\left(\bar{g}, X^{\prime}\right) \in \mathcal{M}
$$

is an action of the group \mathcal{G} in \mathcal{M}.

Consider the family of differential equations

$$
\ddot{x}=a(t) \dot{x}+b(t) x+c(t) \frac{1}{x^{3}} .
$$

We associate with such a second-order differential equation a system of first-order differential equations by introducing a new variable $v \equiv \dot{x}$:

$$
\left\{\begin{aligned}
\dot{v} & =a(t) v+b(t) x+c(t) \frac{1}{x^{3}} \\
\dot{x} & =v
\end{aligned}\right.
$$

The vector fields

$$
X_{1}=v \frac{\partial}{\partial v}, \quad X_{2}=x \frac{\partial}{\partial v}, \quad X_{3}=\frac{1}{x^{3}} \frac{\partial}{\partial v}, \quad X_{4}=v \frac{\partial}{\partial x}, \quad X_{5}=x \frac{\partial}{\partial x}
$$

are a basis for a \mathbb{R}-linear space V, which however is not a Lie algebra because the commutator [$\left.X_{3}, X_{4}\right]$ is not in V.

If $p \equiv(x, v)$ denotes a point of $T \mathbb{R}$ our differential equation gives the integral curves of

$$
X(p, t)=a(t) X_{1}(p)+b(t) X_{2}(p)+c(t) X_{3}(p)+X_{4}(p)
$$

If $p \equiv(x, v)$ denotes a point of $T \mathbb{R}$ our differential equation gives the integral curves of

$$
X(p, t)=a(t) X_{1}(p)+b(t) X_{2}(p)+c(t) X_{3}(p)+X_{4}(p)
$$

Consider the two-dimensional Lie algebra W generated by the vector fields

$$
Y_{1}=X_{1}=v \frac{\partial}{\partial v}, \quad Y_{2}=X_{2}=x \frac{\partial}{\partial v}
$$

which satisfy

$$
\left[Y_{1}, Y_{2}\right]=-Y_{2}
$$

and therefore W is a 2-dimensional non-Abelian Lie algebra. The other commutation relations among elements of W and V are determined by:

$$
\begin{array}{lll}
{\left[Y_{1}, X_{3}\right]=X_{3},} & {\left[Y_{1}, X_{4}\right]=X_{4},} & {\left[Y_{1}, X_{5}\right]=0} \\
{\left[Y_{2}, X_{3}\right]=0,} & {\left[Y_{2}, X_{4}\right]=X_{5}-X_{1},} & {\left[Y_{2}, X_{5}\right]=-X_{2}}
\end{array}
$$

and thus $[W, V] \subset V$, which shows that X is a Quasi-Lie system.

The corresponding set of transformations of $T \mathbb{R}$ associated with W is given by:

$$
\left\{\begin{array}{l}
v=\alpha(t) v^{\prime}+\beta(t) x^{\prime} \\
x=x^{\prime}
\end{array}\right.
$$

with $\alpha(t) \neq 0$. These transformations allow us to transform the Quasi-Lie system (20) into a new system of first-order differential equations in which the time-dependent vector field determining the dynamics can be written as a linear combination of the fields of V at each time. More explicitly, if $p^{\prime}=\left(x^{\prime}, v^{\prime}\right)$ then

$$
\begin{equation*}
X^{\prime}\left(p^{\prime}, t\right)=a^{\prime}(t) X_{1}\left(p^{\prime}\right)+b^{\prime}(t) X_{2}\left(p^{\prime}\right)+c^{\prime}(t) X_{3}\left(p^{\prime}\right)+d^{\prime}(t) X_{4}\left(p^{\prime}\right)+e^{\prime}(t) X_{5}\left(p^{\prime}\right) \tag{0.1}
\end{equation*}
$$

with

$$
\begin{array}{rlrl}
a^{\prime}(t) & =a(t)-\beta(t)-\frac{\dot{\alpha}(t)}{\alpha(t)} & c^{\prime}(t) & =\frac{c(t)}{\alpha(t)} \\
b^{\prime}(t) & =\frac{b(t)}{\alpha(t)}+a(t) \frac{\beta(t)}{\alpha(t)}-\frac{\beta^{2}(t)}{\alpha(t)}-\frac{\dot{\beta}(t)}{\alpha(t)} & d^{\prime}(t) & =\alpha(t) \\
e^{\prime}(t) & =\beta(t)
\end{array}
$$

The integral curves of X^{\prime} are the integral curves of:

$$
\begin{aligned}
\frac{d v^{\prime}}{d t} & =\left(a(t)-\beta(t)-\frac{\dot{\alpha}(t)}{\alpha(t)}\right) v^{\prime}+\left(\frac{b(t)}{\alpha(t)}+a(t) \frac{\beta(t)}{\alpha(t)}-\frac{\beta^{2}(t)}{\alpha(t)}-\frac{\dot{\beta}(t)}{\alpha(t)}\right) x^{\prime} \\
& +\frac{c(t)}{\alpha(t)} \frac{1}{x^{\prime 3}} \\
\frac{d x^{\prime}}{d t} & =\alpha(t) v^{\prime}+\beta(t) x^{\prime}
\end{aligned}
$$

In the most general case, once the coefficient $a(t)$ has been fixed, the coefficient $c(t)$ of a system that can be reduced to a Lie-Ermakov system:

$$
c(t)=K \exp \left(-\int^{t} 2 a\left(t^{\prime}\right) d t^{\prime}\right)
$$

and thus, we can we write

$$
a(t)=-\frac{p_{1}(t)}{p(t)}
$$

Then the most general differential equation of our type we can describe as a Quasi-Lie system is

$$
p(t) \ddot{x}+p_{1}(t) \dot{x}+q(t) r=\frac{p(t)}{\exp (2 F(t))} \frac{k^{2}}{x^{3}}
$$

where

$$
F(t)=\int^{t} \frac{p_{1}\left(t^{\prime}\right)}{p\left(t^{\prime}\right)} d t^{\prime}
$$

and we recover in this way a Lie systems. In this case, we can choose:

$$
\alpha(t)=\exp (-F(t))
$$

and from it we obtain

$$
\begin{aligned}
\frac{d v^{\prime}}{d t} & =-q(t) \exp (F(t)) x^{\prime}+\exp (-F(t)) \frac{k^{2}}{x^{\prime 3}} \\
\frac{d x^{\prime}}{d t} & =\exp (-F(t)) v^{\prime}
\end{aligned}
$$

Through the t-reparametrization

$$
\tau=\int^{t} \exp \left(-F\left(t^{\prime}\right)\right) d t^{\prime}
$$

becomes:

$$
\begin{aligned}
\frac{d v^{\prime}}{d \tau} & =-\frac{q(t)}{p(t)} \exp (2 F(t)) x^{\prime}+\frac{k^{2}}{x^{\prime 3}} \\
\frac{d x^{\prime}}{d \tau} & =v^{\prime}
\end{aligned}
$$

now we can consider the next integral for this Lie system:

$$
I=\left(\bar{x} v^{\prime}-\bar{v} x^{\prime}\right)^{2}+k^{2}\left(\frac{x^{\prime}}{\bar{x}}\right)^{2}
$$

