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SUPERPOSITION RULES& LIE SYSTEMS
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Given a first-order differential equation R* given by:

dx*

= Y'(t, ), =1,....,n, (1
o (¢, x) U n, (1)

a superposition rule for this differential equation is agrtmap® : R»(m+1) _ R" je.

r = (I)(m(l), ...,:E(m); k‘l, ceny k‘n)
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This superposition map verifies that the general solutionbeawritten, at least for sufficiently
smallt, as
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r = (I)(m(l), ceey LE(m), k‘l, ceny k‘n)

This superposition map verifies that the general solutionbeawritten, at least for sufficiently
smallt, as

x(t) = (I)(CU(l) (t), ..., T (m) (t); k1, ..y kn),

with {z(,)(t)| @ = 1, ..., m} being a fundamental set of particular solutions of the systad
k = (k1,...,kn) asetofn arbitrary constants associated with each particular isolut

O The differential equations (1) which admit this supergositule are called Lie systems.

O Lie systems are characterized by the Lie Theorem.
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Lie’s Theorem: (1) admits a superposition rule if and only if the ¢-dependent vector field Y(t, a:) can be

written
r
Y(t,z) =Y ba(t) Xa()
a=1
where the vector fields { Xo, @ = 1, ..., 7}, close a r-dimensional real Lie algebra V', i.e. there exist r3

real numbers c, 3 7 such that

&
[Xa,XB]:anﬁWXW, Va,B8=1,...,r.
y=1
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Lie’s Theorem: (1) admits a superposition rule if and only if the ¢-dependent vector field Y(t, a:) can be

written
r
a=1
where the vector fields { Xo, @ = 1, ..., 7}, close a r-dimensional real Lie algebra V', i.e. there exist r3

real numbers c, 3 7 such that

[ Xa, Xg] = anﬁ XA, Voa,B=1,...,r

Consider the abstract Lie algelgasomorphic toV and a connected Lie group with this Lie
algebra. Then, there exists an effective actionGG x R™ — R"™ with fundamental vector fields
those ofV'. Let{a } be a basis of with associated fundamental vector fiefds, } thus if the
solution of the equation

Ry-1,,0=— Y ba(t)aa, g(0)=e.

verifies that the integral curve of in xg € R™ isx(t) = ®(g(t), zo).
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Consider now a set of t-dependent vector figl#fs*) | u = 1,...,m} over a set of manifolds
N(#) such that

Y(N) t, :L.(u) Z by, Y(N) 2

where theYOE“’) close the same commutation relations thatthe
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Consider now a set of t-dependent vector figl#fs*) | u = 1,...,m} over a set of manifolds
N(#) such that

Y(M) t, x(ﬂ) Z by, Y(M) 2

where theYog“) close the same commutation relations thatthe

Thus, we can consider the integral curves of the t-depenaetor field

Y(t,%) =Yt z)+ i Y ) (¢, (W) = Z b (t) (Ya (z) + i Yéj(ﬁ))
a=1

p=1

withz e N x NO x ... x N(m) and

Yo(Z) = Yo + _ Y (z(1)
pn=1
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Asforu,pu’ =1,...,m

[YCEIJJ) : YIB(IJJ)] — Cozﬁ ’YYWSIJJ)

and
YO, Y =0 [Ya, Y] =0
then
Yo, Yp] = cap 7Yy

Then the differential equation determining the integraves ofY is a Lie system.
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Asforu,pu’ =1,...,m

[YCEM) : YIB(M)] — Cozﬁ ’YYWSN)

and

[Yéﬂ),yﬂ(u’)] —0 [Ya,Yﬂ('u/)] — 0

then

Then the differential equation determining the integraves ofY is a Lie system.

Also, at any point: € N we obtain

~ ~ ~

Y(t, %) € V(&) = (Y1(2),...,Yr(T))
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Asforu,pu’ =1,...,m

[YQ(/L) : YIB(IU] — Caﬁ WY’}SM)

and

[Ya(alL)aYﬁ(u/)] —0 [Ya,Yﬁ('u/)] — 0

then

Then the differential equation determining the integraves ofY is a Lie system.

Also, at any point: € N we obtain

~ ~ ~

Y(t, %) € V(&) = (Y1(2),...,Yr(T))

1. ThusY isinside at any time of an involutive distribution with rank lower or equal to

2. Thus, letp be the higher rank of the distributian over an open ofV and# = dim N we
known that there exist8 — p time-independent integrals of motid#+, ...k _, } Of Y.
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Considerthe ma@ : & € N — (k1(Z),. .., ka_p(Z)) € R* P such that
U(a(t), 2D (t),..., 2™ @) = (k1,... ka_p)

The constants of motion stablish relations between thedioates of the integral curves bf,
these are

(z(t), 2D (@),..., 2™ (1)).

Thus{k1,...,kx_,} allow to relate the integral curves f and they (#).
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Considerthe ma@ : & € N — (k1(Z),. .., ka_p(Z)) € R* P such that
U(a(t), 2D (t),..., 2™ @) = (k1,... ka_p)

The constants of motion stablish relations between thedioates of the integral curves bf,
these are

(z(t), 2D (@),..., 2™ (1)).

Thus{k1,...,kx_,} allow to relate the integral curves f and they (#).

Suppose that we obtain as many integrals of motion (we must &ideast:) as to obtain the
initial n coordinates in terms of the other coordinafes$!), ..., (™)} and a certain set of
constant k1, . .., kn }. Also, if we fix the coordinates itV (¢) = N(1) x ... x N(™) there is
a diffeomorphism

Tz, 2™ e = (21, ,x0) €ER® > k= (k1,...,kn) €R?

2007, Lie Systems —p. 7




S ——

Thus, we can obtain a map such that

Sz (@), ..., 2™ @), k1,... kn) = z(t)

Thus, we have generalized a superposition rule to mix @iffesolutions of different Lie systems.
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Thus, we can obtain a map such that

Sz (@), ..., 2™ @), k1,... kn) = z(t)

Thus, we have generalized a superposition rule to mix @iffesolutions of different Lie systems.

The level sets of corresponding to regular values define-aodimensional foliatiorF on an
open dense subskt C N and the family{Y (¢),t € R} of vector fields inV consists of vector
fields tangent to the leaves &.
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2007, Lie Systems —p. 8




S ——

Thus, we can obtain a map such that

Sz (@), ..., 2™ @), k1,... kn) = z(t)

Thus, we have generalized a superposition rule to mix @iffesolutions of different Lie systems.

The level sets of corresponding to regular values define-aodimensional foliatiorF on an
open dense subskt C N and the family{Y (¢),t € R} of vector fields inV consists of vector
fields tangent to the leaves &.

As the level setsF, corresponding t& € R™ , given(z(y), . .., o)) € N thereis a
unigue pointz oy such tha((z gy, x(1y), - - -, T(m)) € Fi - Therefore the projection

pr (x(o),x(l), ,ac(m)) € N — (33(1), .. ,x(m)) c N(e)

induces diffeomorphisms on the leavgés of F.

2007, Lie Systems —p. 8




SOQE LIE SYSTEM
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A system of second-order differential equations

' = f'(t, @, &), i=1,...,n,

can be studied through the system of first-order differéatjaations

dx? ;
= v
ddt.
v :
— ¢ t? )
— = [t

with associated-dependent vector field

9 . o
X =vi— + fi(t,z,v)— .
v 8x1+f( mv)@fu@
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A system of second-order differential equations
' = f'(t, @, &), i=1,...,n,

can be studied through the system of first-order differéatjaations

dx? ;
= v
ddt.
v :
— ¢ t? )
— = [t

with associated-dependent vector field

.0 , o0
X =vi— + fi(t,z,v)— .
v 83:1+f( mv)@fu@

We call SODE Lie systems those for whighis a Lie system, i.e. it can be written as a linear

combination witht-dependent coefficients of vector fields closing a finite-hisional real Lie
algebra.
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EXAMPLES
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A) 1-dim harmonic time-dependent frequency oscillator

The equation of motion i$ = —w?(t)x, with associated system
T = v
v = —w?(t)x

andt-dependent vector field

ox ov
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A) 1-dim harmonic time-dependent frequency oscillator

The equation of motion i$ = —w?(t)x, with associated system
T = v
v = —w?(t)x

andt-dependent vector field

X = ,Uﬂ — Wtz 9 :
ox ov

This last vector field is a linear combination = X5 — w?(t) X1 with

0 0 1 0 0
X1=33—, XQZ’U—, X3=—<(B——’U—>.

ov ox 2 ox ov
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A) 1-dim harmonic time-dependent frequency oscillator

The equation of motion i$ = —w?(t)x, with associated system
T = v
v = —w?(t)x

andt-dependent vector field

X = ,Uﬂ — Wtz 9 :
ox ov
This last vector field is a linear combination = X5 — w?(t) X1 with
1
Xlzmg, XQZ'UE, X3=—<332—’02>.
ov ox 2 ox ov

As
(X1, Xo] =2X3, [X1,X3]=-X1, [X2,X3]=X2,

X defines a Lie system with associated Lie aIg&E)F(Q, R).
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B) Pinney equation
The Pinney equation is the second-order non-linear difteakequation:

wherek is a constant.
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B) Pinney equation

The Pinney equation is the second-order non-linear difteakequation:

wherek is a constant.
The corresponding system of first-order differential emuntis

r = v

v = —<,u2(t):16—|—mi3

and the associategddependent vector field

0 k
X =v— — w3 (t A
v8m+< “ ()x+az3> ov
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This is a Lie system because it can be determined by a timendiemt vector field which can be

written as
X = X5 —w?(t) X1,
where
5] k 0O 0 1 15) 0
LT 2T Bov ! ox 5T 9 (m(?a: v@v)
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This is a Lie system because it can be determined by a timendiemt vector field which can be

written as
X = X5 —w?(t) X1,
where
0 k O 0 1 0 0
X — > X = — — -, X = — _ — S .
LT S 8v+vax 5T 9 (max v(‘%)

As these vector fields are such that
[X1,X2] =2X5, [X5,X2]=-X2, [X3,X1]=X1

then the vector field; with i = 1, 2, 3 span a three-dimensional real Lie algefrahich is
isomorphic toS[(2, R).

2007, Lie Systems —p. 12




S —— ]

i == it = i ——

This is a Lie system because it can be determined by a timendiemt vector field which can be

written as
X = X5 —w?(t) X1,
where
0 k O o 1 0 1,
LT S Gv—i_vax’ 5T 9 (max U@v)

As these vector fields are such that

[X1,X2] =2X5, [X5,X2]=-X2, [X3,X1]=X1
then the vector field; with i = 1, 2, 3 span a three-dimensional real Lie algefrahich is
isomorphic toS[(2, R).

Also, the X; in examples A and B close under commutator relations the sameture constants
and theirX'’s can be written in the same way as

X = Xo —w?(t) X1
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C) Ermakov system
Consider the system

( xr = Ve
Vg —w?(t)x
) Y Uy
| Uy = —w?(t)y + y%
with associated-dependent vector field
L= vx% + vya% - c02(15)96% + (—wQ(t)y + y%) % :
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C) Ermakov system
Consider the system

xr = Ve
Vg —w?(t)x
) Y Uy
| Uy = —w?(t)y + y%
with associated-dependent vector field
L= vm% + vya% - c02(15)96% + (—wQ(t)y + y%) % :

This is a linear combination with time-dependent coeffitieh = Lo — w?(t) L1, of the vector

fields
0 0 0 o 1 0

Ovg Ovy Ox T oy i y3 Ovy
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that with L3 given by

3_2 ox x@vm y@y y@vy '

close on ﬁ[(Z, R) algebra with the field. expressed in terms of the vector fields, Lo and
L3 as before.
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that with L3 given by

3_2 ox x@vm y@y y@vy '

close on ﬁ[(Z, R) algebra with the field. expressed in terms of the vector fields, Lo and
L3 as before.

This system have asociated a distribution of rank three imaifold of dimension four, then,
there exists a constant of motion.
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that with L3 given by

3_2 ox m@vm y@y y@vy '

close on aﬁ[(Z, R) algebra with the field. expressed in terms of the vector fields, Lo and

L3 as before.

This system have asociated a distribution of rank three imaifold of dimension four, then,
there exists a constant of motion.

If we get enough integrals of motion and we get to obtain trerdionates of one of the system in
terms of the other we have obtained a superposition priacipl
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that with L3 given by

3_2 ox x@vm y@y y@vy '

close on aﬁ[(z, R) algebra with the field. expressed in terms of the vector fiellls, Lo and

L3 as before.

This system have asociated a distribution of rank three imaifold of dimension four, then,
there exists a constant of motion.

If we get enough integrals of motion and we get to obtain trerdionates of one of the system in
terms of the other we have obtained a superposition priacipl

In this case there is just one integral and we cannot obtaiparposition rule. Nevertheless, this
integral is the knowm Lewis-Ermakov invariant.

T T

2 2
(@, 02, 0y) = (5) Ny (—) T (avy — yvs)?,

Y
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PINNEY EQUATION REVISITED

T e e S e s = s

Consider the system of first-order differential equations:

r .

xr — Ve

Yy = Uy

Vz

. .

Uy = —w(t)x

by = —w?(t)y+ y%
v, = —wQ(t)z

which corresponds to the vector field

X T S AL w2(t)(:na+6—|—za>
—'Uw_ Vy — ,UZ - -
oz oy 0z  y3 vy Bog 7 Ovy ov,
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PINNEY EQUATION REVISITED

T e e S e s = s

Consider the system of first-order differential equations:

(

Yy = Uy
Vz
. .
Uy = —w(t)x
by = —w?(t)y+ y%
v, = —wQ(t)z

which corresponds to the vector field

X AP A AL 2(t)<ma+a—|—za>
= Vg— +vy— + v —w —
oz oy 0z  y3 vy Bog 7 Ovy ov,

The vector fieldX can be expressed 8 = N — w?(t) N1 where the vector fieldd; and N»
are:

N 0 n 0 n 0 N 0 n 1 0 n 0 n 0
== - T z , = Vg — Vy — y
LY Ovy Ovg ov, 2T Wy Ty Ovy Ox 0z
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These vector fields generate a three-dimensinal real Lebadgwith the vector field&Ns given by

3 2 ox m@vw y@y y@vy 0z z@vz '
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These vector fields generate a three-dimensinal real Lebadgwith the vector field&Ns given by

3 2 ox m@fuw y@y y@vy 0z z@fuz '

In fact, as
[N1, N2] = 2N3, [N3,Ni] = Ni, [N3,N2]=—Ng

they generate a Lie algebra isomorphicﬁtE(Q, R). The system is a Lie system.
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These vector fields generate a three-dimensinal real Lebadgwith the vector field&Ns given by

3 2 ox m@vw y@y y@vy 0z z@vz '

In fact, as
[N1, N2] = 2N3, [N3,Ni] = Ni, [N3,N2]=—Ng

they generate a Lie algebra isomorphicﬁtE(Q, R). The system is a Lie system. The distribution

generated by these fundamental vector fields has rank thnes, as the manifold of the Lie
system is of dimension six we obtain three time-indepenohitegrals of motion.
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These vector fields generate a three-dimensinal real Lebadgwith the vector field&Ns given by

3 2 ox m@vw y@y y@vy 0z z@vz '

In fact, as
[N1, N2] = 2N3, [N3,Ni] = Ni, [N3,N2]=—Ng

they generate a Lie algebra isomorphicﬁtE(Q, R). The system is a Lie system. The distribution

generated by these fundamental vector fields has rank thnes, as the manifold of the Lie
system is of dimension six we obtain three time-indepenohitegrals of motion.

8 The Ermakov invarianf; of the subsystem involving variablesandy.
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These vector fields generate a three-dimensinal real Lebadgwith the vector field&Ns given by

3 2 ox m@vw y@y y@vy 0z Z@vz '

In fact, as
[N1, N2] = 2N3, [N3,Ni] = Ni, [N3,N2]=—Ng

they generate a Lie algebra isomorphicﬁtE(Z, R). The system is a Lie system. The distribution

generated by these fundamental vector fields has rank thnes, as the manifold of the Lie
system is of dimension six we obtain three time-indepenohitegrals of motion.

8 The Ermakov invarianf; of the subsystem involving variablesandy.

8 The Ermakov invarianfs of the subsystem involving variablgsandz
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These vector fields generate a three-dimensinal real Lebadgwith the vector field&Ns given by

3 2 ox m@vw y@y y@vy 0z Z@vz '

In fact, as

[N1, N2] = 2N3, [N3,Ni] = Ni, [N3,N2]=—Ng

they generate a Lie algebra isomorphicﬁtE(Z, R). The system is a Lie system. The distribution

generated by these fundamental vector fields has rank thnes, as the manifold of the Lie
system is of dimension six we obtain three time-indepenohitegrals of motion.

8 The Ermakov invarianf; of the subsystem involving variablesandy.
8 The Ermakov invarianfs of the subsystem involving variablgsandz

O The WronskiariV of the subsystem involving variablesandz has.

2007, Lie Systems —p. 16




They define a foliation with three-dimensional leaves.
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They define a foliation with three-dimensional leaves. Thad&kov invariants read as:

I = % ((yvm —2vy)2 4 ¢ G)Q)
s (o= (2))

W = zv, — zv,

andW is:
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They define a foliation with three-dimensional leaves. Thad&kov invariants read as:

I = % ((yvm —2vy)2 4 ¢ G)Q)
s (o= (2))

W = zv, — zv,

andW is:

In terms of these three integrals we can obtain an expligitession ofy in terms ofz, z and the
integralsiy, Is, W

2 1/2
y = \/W— (125132 +I12% 4+ \/4[1[2 — cW%:z) /

This can be interpreted as saying that there is a supemositie allowing us to express the
general solution of the Pinney equation in terms of two irahejent solutions of the
corresponding harmonic oscillator with time-dependeaqfiency
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Consider a non-autonomous system of first-order diffeabatjuations describing the integral
curves of a-dependent vector field

0

X(t,z) = X"(t,a;)a .
m%

in a manifold NV whereX (¢, ) can be written as

X(t,x) =) ba(t)Xa(z)
a=1

We can associate with this differential equation ¥near spacd’ of linear combinations of
the vector fieldsX:

V={X|X=) XXa, Ao €R}
a=1

and X (¢, ) can be considered as a curvelin Also, V' may not be a Lie algebra.

2007, Lie Systems —p. 18




QUASI LIE SYSTEM

i == it = e T e e e e o - R RO S~ = st = |

Consider a non-autonomous system of first-order diffeabatjuations describing the integral
curves of a-dependent vector field

0

X(t,z) = Xi(t,a;)a .
x%

in a manifold NV whereX (¢, ) can be written as

X(t,x) =) ba(t)Xa(z)
a=1

We can associate with this differential equation ¥near spacd’ of linear combinations of
the vector fieldsX:

™
a=1
and X (¢, ) can be considered as a curvelin Also, V' may not be a Lie algebra. X is a

Quasi-Lie system if there exists a Lie algebra W C V such that [W, V] C V
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0O @ aconnected Lie group with Lie algebra isomorphic to thatiof

B0 M is the set of Quasi-Lie systems determinedihy
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0O @ aconnected Lie group with Lie algebra isomorphic to thatiof

B0 M is the set of Quasi-Lie systems determinedihy

Let G be the set of curves i@, i.e. G = Map(R, GG), then,G admits an structure of group with
the composition law:

V31,92 € G, (g1-32)(t) = g1(t)g2(1)
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0O @ aconnected Lie group with Lie algebra isomorphic to thatiof

B0 M is the set of Quasi-Lie systems determinedihy

Let G be the set of curves i, i.e. G = Map(R, GG), then,G admits an structure of group with
the composition law:

V31,92 € G, (g1-32)(t) = g1(t)g2(1)

Let X be a t-dependent vector field with integral curu€s) we define the transformed
t-dependent vector field’ by g € G as that with integral curves' (t) = ®(g(t), z(t)).
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0O @ aconnected Lie group with Lie algebra isomorphic to thatiof

B0 M is the set of Quasi-Lie systems determinedihy

Let G be the set of curves i, i.e. G = Map(R, GG), then,G admits an structure of group with
the composition law:

V31,92 € G, (g1-32)(t) = g1(t)g2(1)

Let X be a t-dependent vector field with integral curu€s) we define the transformed
t-dependent vector field’ by g € G as that with integral curves' (t) = ®(g(t), z(t)).

The map
(g, X)eGxM—=b =¥(g,X')eM

is an action of the group G in M.
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S ——

Consider the family of differential equations
. . 1
& =a(t)t +b(t)r + ct) = .
T

We associate with such a second-order differential equati®ystem of first-order differential
equations by introducing a new variahle= i:

v = a(t)v+b(t)r + c(t) :%3
r = .
The vector fields
0 0 1 0 0 o
! U@'U’ 2 x@v’ 5T B o] 4 v@m’ > x@m

are a basis for R-linear spacd’/, which howevers not a Lie algebra because the commutator
[ X3, X4]isnotin V.
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If p = (z,v) denotes a point dI'R our differential equation gives the integral curves of

X(p,t) = a(t)X1(p) + b(t) X2(p) + c(t) X3(p) + Xa(p) .
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If p = (z,v) denotes a point dI'R our differential equation gives the integral curves of
X(p,t) = a(t)X1(p) + b(t) X2(p) + c(¢) X3(p) + X4(p) -

Consider the two-dimensional Lie algeldfa generated by the vector fields

0 0
Y p— p— —7 Y pr— p— _— s
= Xisvg, RsXeseg,
which satisfy
Y1, Y2] = —Y>,

and therefordV is a 2-dimensional non-Abelian Lie algebra. The other comatmn relations
among elements df andV" are determined by:

Vi, X3] = X3,  [Vi, Xa] = X, Y1, X5] = 0
[Y27X3] — 07 [Y27X4] — X5 — X17 [Y27X5] = — X

and thugW, V| C V, which shows thaX is a Quasi-Lie system.
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The corresponding set of transformations/@ associated witt is given by:

v=a(t)v + B(t)z’
x=xa

with a(t) # 0. These transformations allow us to transform the Quassigtem (20) into a new

system of first-order differential equations in which thmagidependent vector field determining

the dynamics can be written as a linear combination of thdgief\V at each time. More

explicitly, if p’ = (2’,v") then

X'(p',t) =d ) X1(p") + b' () X2(p") + ' (1) X3(p') + d' (£) X4(p') + €' (t) X5(p") (0.1)

with
/ B d(t) c — ﬂ
(0 = alt) = )~ S0 =50
o bO) B0 BB ) = (0
PO=20 T e T ) el ¢ (1) = B).
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The integral curves oK’ are the integral curves of:

v’ At b(t t 2 (¢ 3(¢
= (o008 + (S a0 23 - 20 - ) o
c(t) 1
i W_B
o = a(t) + B(t)a’

In the most general case, once the coefficign) has been fixed, the coefficiest) of a system
that can be reduced to a Lie-Ermakov system:

c(t) = K exp (— /t 2a(t’)dt’>

and thus, we can we write
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Then the most general differential equation of our type wedmscribe as a Quasi-Lie system is

p(t) K
exp(2F(t)) =3

p(H)E + p1(t)E + q(t)r =

where

F(t) _ /t pl(tl)dt/

p(t’)

and we recover in this way a Lie systems. In this case, we canseh

a(t) = exp(—F (1))

and from it we obtain

v’ i
Cfi_t = —q(t) exp(F(t))2’ + exp<—F<t>>f73
dx’
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Through thet-reparametrization

becomes:
dv’ q(?) / K
— = ——Z 2F(t —
- () exp(2F(t))x" + v
dr .

now we can consider the next integral for this Lie system:

/\ 2
I = (zv —v2')? + k2 (a’{)

X
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