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3. An application to nonholonomic mechanical systems

2



Classical Hamilton-Jacobi theory (geometric version)

The standard formulation of the Hamilton-Jacobi problem is

to find a function S(t, qA) (called the principal function) such that

∂S

∂t
+ h(qA,

∂S

∂qA
) = 0. (1)

If we put S(t, qA) = W (qA) − tE, where E is a constant, then W

satisfies

h(qA,
∂W

∂qA
) = E; (2)

W is called the characteristic function.

Equations (1) and (2) are indistinctly referred as the Hamilton-

Jacobi equation.

R. Abraham, J.E. Marsden: Foundations of Mechanics (2nd edi-

tion). Benjamin-Cumming, Reading, 1978.

J.F. Carinena, X. Gracia, G. Marmo, E. Martinez, M. Munoz-

Lecanda, N. Román-Roy: Geometric Hamilton-Jacobi theory.

Int. J. Geom. Meth. Mod. Phys. 3 (7) (2006), 1417-1458.
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Let M be the configuration manifold, and T ∗M its cotangent

bundle equipped with the canonical symplectic form

ωM = dqA ∧ dpA

where (qA) are coordinates in M and (qA, pA) are the induced ones

in T ∗M .

Let h : T ∗M −→ R a hamiltonian function and Xh the corre-

sponding hamiltonian vector field:

iXh
ωM = dh

The integral curves of Xh, (qA(t), pA(t)), satisfy the Hamilton

equations:

dqA

dt
=

∂h

∂pA
,
dpA
dt

= − ∂h

∂qA
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Let λ be a closed 1-form on M , say dλ = 0; (then, locally λ = dW )

Hamilton-Jacobi Theorem

The following conditions are equivalent:

(i) If σ : I →M satisfies the equation

dqA

dt
=

∂h

∂pA

then λ◦σ is a solution of the Hamilton equa-

tions;

(ii) d(h ◦ λ) = 0
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Define a vector field on M :

Xλ
h = TπM ◦Xh ◦ λ

T ∗M

πM

��

Xh // T (T ∗M)

TπM

��
Q

λ

@@

Xλ
h // TM

The following conditions are equivalent:

(i) If σ : I →M satisfies the equation

dqA

dt
=

∂h

∂pA

then λ ◦ σ is a solution of the Hamilton equations;

(i)’ If σ : I →M is an integral curve of Xλ
h , then λ◦σ is an integral

curve of Xh;

(i)” Xh and Xλ
h are λ-related, i.e.

Tλ(Xλ
h ) = Xh ◦ λ
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Hamilton-Jacobi Theorem

Let λ be a closed 1-form on M . Then the follow-

ing conditions are equivalent:

(i) Xλ
h and Xh are λ-related;

(ii) d(h ◦ λ) = 0

If

λ = λA(q) dqA

then the Hamilton-Jacobi equation becomes

h(qA, λA(qB)) = const.

and we recover the classical formulation when

λA =
∂W

∂qA
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Let L : TM −→ R a lagrangian subject to linear constraints

given by a distribution D on M . Denote by D̄ ⊂ T ∗M the image

of D ⊂ TM by the Legendre transformation, and by h the cor-

responding hamiltonian function on T ∗M . In that case, we have

proved the following result:

Hamilton-Jacobi Theorem

Let λ be a 1-form on M taking values into D̄

and satisfying dλ ∈ I(Do). Then the following

conditions are equivalent:

(i) Xλ
nh and Xnh are λ-related;

(ii) d(h ◦ λ) ∈ Do

Here, Xnh is the nonholonomic dynamics.

D. Iglesias, M. de León, D. Mart́ın de Diego: Towards a Hamil-

ton-Jacobi theory for nonholonomic mechanical systems, Preprint

(2007).

8



Basic tools in Classical Hamilton-Jacobi theory

TM
τTM //M  vector bundle over a manifold M

The canonical symplectic 2-form ωM in T ∗M ' The canonical

Poisson 2-vector ΛT ∗M on T ∗M  a linear bivector on the dual of

the vector bundle.

A hamiltonian function h : T ∗M −→ R  A function h defined

on the dual of the vector bundle

A section λ : M −→ T ∗M such that dλ = 0  A section of the

dual of the vector bundle which is closed with respect to the

“induced differential”.
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Geometric Hamilton-Jacobi Theory

Ingredients:

τD : D −→ M a vector bundle, and τD∗ : D∗ −→ M its dual

vector bundle.

D

τD

  A
AA

AA
AA

AA
AA

AA
AA

A D∗

τD∗

}}||
||

||
||

||
||

||
||

|

M

A linear bivector2 ΛD∗ on D∗ (not Jacobi identity is required).

We denote by { , }D∗ the corresponding almost-Poisson brack-

et.

h : D∗ −→ R a hamiltonian function.

This framework was used by J. Grabowski, P. Urbanski and K.

Grabowska to develop a general differential calculus on vector

bundles and geometric mechanics on Lie algebroids in several

recent papers.

2linear means that the bracket of two linear functions is a linear function

10



ΛD∗ is linear

⇓

Proposition 1

We have that:

(a) ξ1, ξ2 ∈ Γ(τD) V {ξ̂1, ξ̂2}D∗ is a linear function

on D∗,

(b) ξ ∈ Γ(τD), f ∈ C∞(M) V {ξ̂, f ◦τD∗}D∗ is a basic

function with respect to τD∗,

(c) f, g ∈ C∞(M) V {f ◦ τD∗, g ◦ τD∗}D∗ = 0

⇓
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Given local coordinates (xµ) in the base manifold M and a local

basis of sections of D, {eα}, we induce local coordinates (xµ, yα)

on D∗ and the bivector ΛD∗ is written as

ΛD∗ = ρµα
∂

∂yα
∧ ∂

∂xµ
+

1

2
Cγ
αβyγ

∂

∂yα
∧ ∂

∂yβ

The corresponding Hamiltonian vector field is

Xh = ]ΛD∗(dh)

or, in coordinates,

Xh = ρµα
∂h

∂yα

∂

∂xµ
−

(
ρµα
∂h

∂xµ
+ Cγ

αβyγ
∂h

∂yβ

)
∂

∂yα

Thus, the Hamilton equations are

dxµ

dt
= ρµα

∂h

∂yα
,
dyα
dt

= −
(
ρµα
∂h

∂xµ
+ Cγ

αβyγ
∂h

∂yβ

)
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Almost Lie algebroid structure on τD : D −→M

The linear bivector ΛD∗ induces the following structure on D:

an almost Lie bracket on the space Γ(τD)

[ , ]D : Γ(τD)× Γ(τD) −→ Γ(τD)

(ξ1, ξ2) 7−→ [ξ1, ξ2]D

where ̂[ξ1, ξ2]D = {ξ̂1, ξ̂2}D∗ ([eα, eβ]D = Cγ
αβeγ).

an anchor map ρD : Γ(τD) −→ X(M)

f ∈ C∞(M), ξ ∈ Γ(D)V ρD(ξ)(f ) ◦ τD∗ = {ξ̂, f ◦ τD∗}D∗
(in coordinates, ρD(eα) = ρµα

∂
∂xµ).
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Properties

a) [ , ]D is antisymmetric

b) [ξ1, fξ2]D = f [ξ1, ξ2]D + ρD(ξ1)(f )ξ2

In general, [ , ]D does not satisfy the Jacobi identity. In the

case when it satisfies the Jacobi identity, then (D, [ , ]D, ρD) is a

Lie algebroid.
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The almost differential dD : Γ(ΛkD∗) −→ Γ(Λk+1D∗)

Given Ω ∈ Γ(ΛkD∗) then dDΩ ∈ Γ(Λk+1D∗) and

dDΩ(ξ0, ξ1, . . . , ξk) =

k∑
i=0

(−1)iρD(ξi)(Ω(ξ0, . . . , ξ̂i, . . . , ξk))

+
∑
i<j

Ω([ξi, ξj]D, ξ0, . . . , ξ̂i, . . . , ξ̂j, . . . , ξk)

where ξ0, ξ1, . . . , ξk ∈ Γ(τD)

From the definition, we deduce that

(1) (dDf )(ξ) = ρD(ξ)(f ), f ∈ C∞(M), ξ ∈ Γ(τD)

(2) dDσ(ξ1, ξ2) = ρD(ξ1)(σ(ξ2))− ρD(ξ2)(σ(ξ1))− σ[ξ1, ξ2]D,

σ ∈ Γ(τD∗), ξ1, ξ2 ∈ Γ(τD)

(3) dD(Ω ∧ Ω′) = dDΩ ∧ Ω′ + (−1)kΩ ∧ dDΩ′, Ω ∈ Γ(ΛkD∗),Ω′ ∈ Γ(Λk′D∗)

In general (dD)2 6= 0 .

15



A linear bivector ΛD∗ on D∗

⇓
An almost Lie algebroid structure ([ , ]D, ρD) on D

⇓
An almost differential dD : Γ(ΛkD∗) −→ Γ(Λk+1D∗) satisfying (1) and (2)
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The inverse process also works

An almost differential dD:Γ(ΛkD∗)→Γ(Λk+1D∗) satisfying(1)and (2)

⇓

An almost Lie algebroid structure ([ , ]D, ρD) on D

ρD(ξ)(f ) = dD(f )(ξ),

ω([ξ, ξ′]D) = −(dDω)(ξ, ξ′) + dD(ω(ξ′))(ξ)− dD(ω(ξ))(ξ′)

ξ, ξ′ ∈ Γ(τD), f ∈ C∞(D), ω ∈ Γ(τD∗)
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An almost Lie algebroid structure ([ , ]D, ρD) on D

⇓

A linear bivector ΛD∗ on D∗ with almost Poisson bracket { , }D∗

{ξ̂, ξ̂′}D∗ = [̂ξ, ξ′]D, {ξ̂, f ◦ τD∗}D∗ = ρD(ξ)(f ) ◦ τD∗,
{f ◦ τD∗, f ′ ◦ τD∗}D∗ = 0

f, f ′ ∈ C∞(M), ξ, ξ′ ∈ Γ(τD)
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In conclusion

A linear bivector ΛD∗ on D∗

m

An almost Lie algebroid structure ([ , ]D, ρD)on D

m

An almost differential dD:Γ(ΛkD∗)→Γ(Λk+1D∗)satisfying(1)and (2)
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Hamilton-Jacobi Theorem

Let ΛD∗ be a linear bivector on D and λ : M −→ D∗ be a section

of τD∗ : D∗ −→M

D∗

τD∗

��

Xh // TD∗

TτD∗

��

M

λ

??

Xλ
h // TM

We define Xλ
h = TτD∗ ◦Xh ◦ λ

It is easy to show that Xλ
h (x) ∈ ρD(Dx), ∀x ∈M

Indeed, look the local expressions

Xλ
h = ρµα

∂h

∂yα

∂

∂xµ
= ρ(

∂h

∂yα
eα)
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Hamilton-Jacobi Theorem

Assume that dDλ = 0.

(i) σ : I →M integral curve of Xλ
h ⇒ λ◦σ integral curve of Xh

m
(ii) dD(h ◦ λ) = 0
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For the proof, we will need the following preliminary results

(Propositions 2 and 3).

Proposition 2

Let λ : M −→ D∗ be a section of τD∗. Then, λ is

a 1-cocycle with respect to dD (i.e. dDλ = 0)

m

for all x ∈M the subspace

Lλ,D(x) = (Txλ)(ρD(Dx)) ⊆ Tλ(x)D
∗

is Lagrangian with respect to ΛD∗, that is,

]ΛD∗ (Lλ,D)o = Lλ,D

Remark: Proposition 2 is the generalization of the well-known

result for the particular case D = TM and ΛD∗ = ΛT ∗M :

“Let λ be a 1-form on M . Then, λ is closed if and only if

λ(M) is a Lagrangian submanifold of T ∗M .”
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Proposition 3

Let λ : M −→ D∗ be a section of τD∗ such that

dDλ = 0. Then

(ker ]ΛD∗)λ(x) ⊆ (Lλ,D)o , for all x ∈M

Remark: In the particular case when D = TM this Proposition

is trivial since

ker ]ΛT∗M = {0}
((T ∗M,ωM) is a symplectic manifold).

Remember that

]ΛD∗ : T ∗λ(x)D
∗ −→ Tλ(x)D

∗
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Proof of the Theorem

Let λ : M −→ D∗ be a section such that dDλ = 0.

(i) ⇒ (ii)

We assume that the integral curves of Xλ
h and Xh are λ-related,

that is, Xλ
h and Xh are λ-related.

Moreover, we know that Xλ
h (x) ∈ ρD(Dx), ∀x ∈M .

Therefore, Xh(λ(x)) ∈ (Txλ)(ρD(Dx)) = Lλ,D(x), for all x ∈M .

From Proposition 1 (Lλ,D is lagrangian) we deduce that

Xh(λ(x)) = ]ΛD∗(ηλ(x)), for some ηλ(x) ∈ (Lλ,D)o

Moreover from the definition of hamiltonian vector field

Xh(λ(x)) = ]ΛD∗(dh(λ(x))

Thus,

ηλ(x) − dh(λ(x)) ∈ ker ]ΛD∗(λ(x)) ⊆ Lλ,D(x)o (by Proposition 2)

Then, dh(λ(x)) ∈ Lλ,D(x)o,∀x ∈M .

Finally, if ax ∈ Dx, then

dD(h ◦ λ)(x)(ax) = ρD(ax)(h ◦ λ) = (Txλ)(ρD(ax))(h)

= dh(λ(x))(Txλ)(ρD(ax)) = 0

24



(ii) ⇒ (i)

The condition dD(h ◦ λ) = 0 implies that

dh(λ(x)) ∈ Lλ,D(x)o,∀x ∈M

Then

XH(λ(x)) = ]ΛD∗(dh)(λ(x)) ∈ ]ΛD∗ (Lλ,D(x)o) = Lλ,D (Proposition 2)

= Txλ(ρD(Dx))

Therefore Xλ
h and Xh are λ-related and we conclude (i). 2
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Local expression of the Hamilton-Jacobi equations

Take local coordinates (xµ) in the base manifold M , a local

basis of sections of D, {eα}, and induced coordinates (xµ, yα) on

D∗. Then if

λ : (xµ) −→ (xµ, λα(x
µ)) ≡ (x, λ(x))

we have

dD(h ◦ λ) = 0

is locally written as

0 = dD(h ◦ λ)(eα)x

= ρD(x)(eα(x))(h ◦ λ)

= ρµα(x)
∂

∂xµ
(h ◦ λ)x

= ρµα(x)

[
∂h

∂xµ
(x, λ(x)) +

∂h

∂yβ
(x, λ(x))

∂λβ
∂xµ

(x)

]
, ∀α

The Hamilton-Jacobi Equations

ρµα(x)

[
∂h

∂xµ
(x, λ(x)) +

∂h

∂yβ
(x, λ(x))

∂λβ
∂xµ

(x)

]
= 0
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J. Cortés, M. de León, J.C. Marrero, E. Mart́ınez, D. Mart́ın de

Diego: A survey of Lagrangian mechanics and control on Lie alge-

broids and groupoids, Int. J. Geom. Meth. Mod. Phys. 3 (3) (2006),

509–558.

J. Cortés, M. de León, J.C. Marrero, E. Mart́ınez: Nonholo-

nomic Lagrangian systems on on Lie algebroids, Preprint (2006).
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Application: Mechanical systems with nonholonomic constraints

Let G : E ×M E → R be a bundle metric on a Lie algebroid

(E, [· , ·], ρ)
The class of systems that were considered is that of mechanical

systems with nonholonomic constraints determined by:

The Lagrangian function L:

L(a) =
1

2
G(a, a)− V (τ (a)), a ∈ E,

with V a function on M

The nonholonomic constraints determined by a subbundle D

of E

28



Consider the orthogonal decomposition E = D ⊕ D⊥, and the

associated orthogonal projectors

P : E −→ D

Q : E −→ D⊥

Take local coordinates (xµ) in the base manifold M and a lo-

cal basis of sections of E (moving basis), {eα}, adapted to the

nonholonomic problem (L,D), in the sense that

(i) {eα} is an orthonormal basis with respect to G
(that is G(eα, eβ) = δαβ)

(ii) {eα} = {ea, eA} where D = span{ea}, D⊥ = span{eA}.

-�
�

��3

6

D

D⊥

�
�

�
�

�
�

���
�

�
�

�
�

��
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Denoting by (xµ, yα) = (xµ, ya, yA) the induced coordinates on E,

the constraint equations determining D just read yA = 0. There-

fore we choose (xµ, ya) as a set of coordinates on D

D � � iD //

τD

  B
BB

BB
BB

BB
BB

BB
BB

B E

τ

~~}}
}}

}}
}}

}}
}}

}}
}}

M

In these coordinates we have the inclusion

iD : D −→ E

(xµ, ya) 7−→ (xµ, ya, 0)

and the dual map

i∗D : E∗ −→ D∗

(xµ, ya, yA) 7−→ (xµ, ya)

where (xµ, yα) are the induced coordinates on E∗ by the dual basis

of {eα}.
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Moreover, from the orthogonal decomposition we have that

P : E −→ D

(xµ, ya, yα) 7−→ (xµ, ya)

and its dual map

P ∗ : D∗ −→ E∗

(xµ, ya) 7−→ (xµ, ya, 0)

31



In these coordinates, the nonholonomic system

is given by

i) The Lagrangian L(xµ, yα) = 1
2

∑
α(y

α)2 − V (xµ),

ii) The nonholonomic constraints yA = 0.
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In this case, the Legendre transformation associated with L is

the isomorphism FL : E −→ E∗ induced by the metric G. There-

fore, locally, the Legendre transformation is

FL : E −→ E∗

(xµ, yα) 7−→ (xµ, yα = yα)

and we can define the nonholonomic Legendre transformation

FLnh = i∗D ◦ FL ◦ iD : D −→ D∗

FLnh : D −→ D∗

(xµ, ya) 7−→ (xµ, ya = ya)

Summarizing, we have the following diagram

E

P

��

FL //E∗

i∗D

��

D
?�

iD

OO

FLnh //D∗

P ∗

__
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The nonholonomic bracket
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(E, [ , ], ρ) is a Lie algebroid

⇓

ΛE∗ is a linear Poisson structure on E∗

If f1 and f2 are functions on M , and ξ1 and ξ2 are sections of E,

then:

{f1◦τE∗, g1◦τE∗}E∗ = 0, {ξ̂1, f1◦τE∗, }E∗ = (ρ(ξ1)) f1◦τE∗, {ξ̂1, ξ̂2}E∗ = [̂ξ1, ξ2]

In the induced coordinates (xµ, yα), the Poisson bracket rela-

tions on E∗ are

{xµ, xη}E∗ = 0, {yα, xµ, }E∗ = ρµα, {yα, yβ}E∗ = Cγ
αβyγ

In other words

ΛE∗ = ρµα
∂

∂yα
∧ ∂

∂xµ
+

1

2
Cγ
αβyγ

∂

∂yα
∧ ∂

∂yβ
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The nonholonomic bracket on D∗, { , }nh,D∗, is defined by

{F,G}nh,D∗ = {F ◦ i∗D, G ◦ i∗D}E∗ ◦ P ∗

for all F,G ∈ C∞(D∗)

The induced bivector Λnh,D∗ is

Λnh,D∗ = ρµa
∂
∂ya
∧ ∂

∂xµ + 1
2C

c
abyc

∂
∂ya
∧ ∂

∂yb

That is,

{xµ, xη}nh,D∗ = 0, {ya, xµ}nh,D∗ = ρµa, {ya, yb}nh,D∗ = Cc
abyc

Λnh,D∗ is a linear bivector on D∗, but in general, does not satisfy

Jacobi identity. So, we are in the case considered in the very

beginning.
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Particular cases

1. E = TM . Then the linear Poisson structure on E∗ = T ∗M is

the canonical symplectic structure. Thus, D is a distribution

on M and { , }nh,D∗ is the nonholonomic bracket studied by

A.J. Van der Schaft, B.M. Maschke, and others.

2. E = g, where g is a Lie algebra. E is a Lie algebroid over a sin-

gle point (the anchor map is the zero map). In this case, the

linear Poisson structure on E∗ = g∗ is the ± Lie-Poisson struc-

ture. Thus, if D = h is a vector subspace of g, we obtain that

the nonholonomic bracket (nonholonomic Lie-Poisson brack-

et) is given by

{F,G}nh,D∗±(µ) = ±
〈
µ, P

[
δF

δµ
,
δG

δµ

]〉
for µ ∈ h∗, and F,G ∈ C∞(h∗). In adapted coordinates

{ya, yb}nh,D∗± = ±Cc
abyc
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3. E = the Atiyah algebroid associated with a principal G-bundle

π : Q −→ Q/G

E = TQ/G

The linear Poisson structure on E∗ = T ∗Q/G is characterized

by the following condition: ”the canonical projection T ∗Q −→
T ∗Q/G is a Poisson epimorphism”

”the Hamilton-Poincaré bracket on T ∗Q/G”

(See J.P. Ortega and T. S. Ratiu : Momentum maps and

Hamiltonian reduction, Progress in Math., 222 Birkhauser,

Boston 2004)

D a G-invariant distribution on Q V D/G is a vector subbun-

dle of E = TQ/G

Thus, we obtain a reduced non-holonomic bracket { , }nh,D∗/G
(the non-holonomic Hamilton-Poincaré bracket on D∗/G)

38



We return to the general case

Taking the hamiltonian function H : E∗ −→ R defined by

H(xµ, yα) =
1

2

∑
α

(yα)
2 + V (xµ)

then we induce a hamiltonian function h : D∗ −→ R by taking

h = H ◦ P ∗. In coordinates,

h(xµ, ya) =
1

2

∑
a

(ya)
2 + V (xµ)
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The nonholonomic dynamics is determined on

D∗ by the linear bivector Λnh,D∗ and the hamil-

tonian function h : D∗ −→ R, that is

Ḟ = {F, h}nh,D∗

or, in coordinates, by the equations

ẋµ = ρµa
∂h

∂ya
= ρµaya

ẏa = −Cc
abyc

∂h

∂yb
− ρµa

∂h

∂xµ

= −Cc
abycyb − ρµa

∂V

∂xµ

⇓
we can apply Hamilton-Jacobi theory to

nonholonomic mechanics!
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An example: The mobile robot with fixed orientation

The robot has three wheels with radius R, which turn simulta-

neously about independent axes, and perform a rolling without

sliding over a horizontal floor.

Let (x, y) denotes the position of the centre of mass, θ the steering

angle of the wheel, ψ the rotation angle of the wheels in their

rolling motion over the floor. So, the configuration manifold is

M = S1 × S1 × R2
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The lagrangian L is

L =
1

2
mẋ2 +

1

2
mẏ2 +

1

2
Jθ̇2 +

3

2
Jωψ̇

2

where m is the mass, J is the moment of inertia and Jω is the

axial moment of inertia of the robot.
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The constraints giving the distribution D are induced by the

conditions that the wheels roll without sliding, in the direction

in which they point, and that the instantaneous contact point of

the wheels with the floor have no velocity component orthogonal

to that direction:

ẋ sin θ − ẏ cos θ = 0,

ẋ cos θ + ẏ sin θ −Rψ̇ = 0.

The vector fields

e1 =
1√
J

∂

∂θ

e2 =
1√

mR2 + 3Jω

[
R cos θ

∂

∂x
+R sin θ

∂

∂y
+

∂

∂ψ

]
are an orthonormal basis generating D.
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Moreover,

[e1, e2] =
1√

J(mR2 + 3Jω)

(
−R sin θ

∂

∂x
+R cos θ

∂

∂y

)
Therefore

[e1, e2]D = 0V C1
12 = C2

12 = 0

The linear bivector is

Λnh,D∗ =
1√
J

∂

∂y1
∧ ∂

∂θ
+

R cos θ√
mR2 + 3Jω

∂

∂y2
∧ ∂

∂x

+
R sin θ√
mR2 + 3Jω

∂

∂y2
∧ ∂

∂y
+

1√
mR2 + 3Jω

∂

∂y2
∧ ∂

∂ψ
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For any section λ : M −→ D∗:

(x, y, θ, ψ) 7−→ (x, y, θ, ψ, λ1(x, y, θ, ψ), λ2(x, y, θ, ψ))

the condition

dDλ = 0 ⇔ e1(λ2)− e2(λ1) = 0

Now it is trivial to show that taking λ1 = k1 and λ2 = k2 where

k1, k2 are constants then

dD(h ◦ λ) = 0

since

h =
1

2
(y2

1 + y2
2)

Then, to integrate the nonholonomic problem is equivalent to

integrate the vector fields on the configuration space:

Xλ
h = k′1

∂

∂θ
+ k′2

[
R cos θ

∂

∂x
+R sin θ

∂

∂y
+

∂

∂ψ

]
where (k′1, k

′
2) ∈ R2.
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