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INTRODUCTION 
 
 
Motivation: 
Constrained (nonholonomic) mechanical systems have been studied in 
classical mechanics for a long time but they still gather much 
attention, since numerous applications of nonholonomic systems make 
the research topic active. There is still a need for a theoretical base for 
applications. Wheeled vehicles and spacecrafts, or underactuated 
ground or underwater vehicles, are all nonholonomic systems. 
Dynamics of nonholonomic systems is the research topic itself but 
also it is an input to other areas, for example to nonlinear control.  
 
Modeling and control of robotic systems are good examples of areas 
where material and non-material constraints restrict and/or specify 
motion and a variety of tasks robots are to perform. 
 
 
 
 
A little bit of history: 
At the beginning of the XX century it was observed that for some 
systems, like electro-mechanical systems, motion equations do not 
have the form of Lagrange’s equations. A new trend has been noticed 
since that time, i.e. the trend of leaving Lagrange’s equations 
approach. 
It has been observed that constraints "that can be realized not through 
a direct contact" could be put on system motions - the earliest 
formulation of the non-material constraint is attributed to Appell, 
Mieszczerski and Beghuin. 
 
 
 
 
 

  



CONSTRAINTS IN MECHANICS AND 
MODELING OF MECHANICAL 

SYSTEMS 
 
 
 
The concept of constraints in classical approach is based on the 
assumption that constraints are given a priori and they are put upon a 
mechanical system through other bodies or physical systems. They are 
position and kinematic constraints referred to as material constraints 
and they are “known” and “given” by Nature.  
This understanding of the concept of constraints and their nature is 
reflected by a common assumption that nonholonomic constraints 
arise when bodies are in contact with each other and roll without 
slipping. 
 
One of general classifications divides constraints into unilateral 
constraints specified by inequalities, and equality constraints specified 
by equations.  
Constraints can be modeled as ideal or non-ideal.  
 
We address ideal equality constraints.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



MATERIAL CONSTRAINTS 
 
POSITION constraints are specified by algebraic equations: 
 

.0)q,...,q,t( n1 =αϕ                                    α=1,…,a , a<n 

 
a,...,1, =αϕα , are defined on a )1n( + -dimensional manifold and 

have continuous derivatives up to the second order at least.  
Usually, material position constraints are of the form 0)q(A = .  
Position constraints restrict velocities and accelerations of a system.  
Position constraints can be eliminated and the dimension of the 
problem reduced (this is not always reasonable–further applications) 
 
 
 

KINEMATIC (velocity) constraints are specified by first order 
differential equations: 
 

.0)q,...,q,q,...,q,t( n1n1 =&&βϕ                        β=1,…,b, b<n 

 

b,...,1, =βϕβ , are defined on a )1n2( + -dimensional 
manifold and have continuous derivatives. Usually they are 
presented as , where  is a b×1 vector.  0)q,q,t(B1 =& 1B
Most material kinematic constraints are of the form 

.  0)q,q(B1 =&
 

KINEMATIC constraints linear in velocities: 
 

0)q,t(bq)q,t(B 11 =+& , 
 

where is a (b×n) matrix and  is a b×1 vector.  )q,t(B1 )q,t(b1
Kinematic constraints also restrict accelerations.  
 

  



The classification above is not the only one that exists in the literature. 
In both mechanics and control there are constrained systems referred 
to as Chaplygin and non-Chaplygin. 
 
Nonholonomic constraint equations can be written in the form 
 

              i=m+1,...,n, m=n-k ,q)q,...,q(q j
m

1j
n1iji && ∑=

=
ϕ

 
where the first m out of n generalized velocities, in the number equal 
to the number of system’s degrees of freedom, are regarded as 
independent, (n-m) velocities are dependent, and )q,...,q( n1ijϕ  are 
smooth functions of their arguments. Generalized velocities can be 
partitioned in this way at least locally. 
 
 
Following the early work of Chaplygin (1897), if constraint functions 
satisfy certain symmetry properties, namely that they are cyclic in the 
last (n-m) generalized coordinates, we obtain Chaplygin 
nonholonomic constraint equations  
 

.q)q,...,q(q
m

1j
jm1iji ∑=

=
&& ϕ                          i=m+1,...,n  

 

Most of nonholonomic systems known in mechanics and control are 
Chaplygin. However, there is one system, not so well known, the so 
called Iszlinski example, which is non-Chaplygin  
 
 
E. Jarzębowska, N. H. McClamroch, "On Nonlinear Control of the Ishlinsky 
Problem as an Example of a Nonholonomic Non-Chaplygin System," in Proc. 
American Control Conf., Chicago, IL, 2000, pp.3249–3253. 
 
 
 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Ishlinsky example. 
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The material constraint equations are: 
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The roll rates of the first lower cylinder and of the upper cylinder are 
control variables: .u,u 211 ϕϕ && ==   
It is clear that the kinematic control model is non-Chaplygin  
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NON-MATERIAL CONSTRAINTS THAT 
COME FROM MODELING 

 
 
Modeling mechanical systems is goal oriented. Engineers like saying 
about the “art of modeling”. 
In mechanisms and manipulators modeling, the set of independent 
coordinates is not always the most suitable. The main problem with 
the independent coordinates is that they do not describe uniquely the 
positions of the system elements. Often we prefer an extended set of 
coordinates whose choice depends on further applications.  
There are three major types of coordinates:  
Relative coordinates, 
Reference point coordinates, 
Natural coordinates 
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One degree of freedom, there are multiple solutions – this generally 
occurs in multibody systems. 
 
 
 
 
 
 
 

  



In natural coordinates: 
They are Cartesian coordinates for points 1 and 2, i.e.  )y,x,y,x( 2211
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Rigid body condition results in three position constraint equations: 
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In relative coordinates: 
Relative coordinates produce no constraints for open chains. 
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For the closed chain the constraint equations are: 
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For more examples see J. Garcia de Jalon, E. Bayo, Kinematic and Dynamic 
Simulation of Multibody Systems, Mechanical Engineering Series, Springer-Verlag, 
New York, 1994 
 
 
Dependent coordinates add additional geometric position constraints. 
In dynamics, models of systems with geometric constraints are 
DAE’s. What can geometric constraints do? 
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Motion equations are DAE’s of index 3. 
 
 
 
In other fields like flight dynamics, there are specialized coordinates that facilitate 
dynamic modeling and their further applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



NON-MATERIAL CONSTRAINT 
SOURCES IN MECHANICS 

 

♣ The earliest formulation of the non-material constraints was given 
by Appell (1911). He described them as constraints "that can be 
realized not through a direct contact". The Appell example: 
A particle moves in space (x,y,z) and its motion is subjected to a 
constraint equation 
 

)z,y,x,t(g)t(z)t(y)t(x 222 α=−+ &&&  
 

α is a given constant and g is a known function. 
 
 
Material constraints are a significant class of motion limitations in 
engineering practice but there are many problems for which 
constraints are formulated in a different way. In design or operation 
problems constraints are formulated before a system is designed. 
Tasks are such constraints. They are specified first and then we 
develop dynamic or control models of systems with these constraints.  
 
 
 
 
 
 
 
 
 
 
 

  



Generally, sources of these constraints are not in other bodies and 
they may arise as performance, design, operation, control or 
safety requirements. They can be formulated in the form of 
algebraic or differential equations, or inequalities.  
First ideas were introduced by Mieszczerski at the beginning of the 
20-th century. Beghuin developed a concept of servo-constraints. 
These ideas were limited to first order constraint equations. These new 
“constraint sources” were a motivation to call constraint equations 
formulations like 
 

0)q,...,q,q,...,q,t( 11 =σσβϕ &&             σ=1,…,n, β=1,…,b, b<n.   

 

or , where  is a b-dimensional vector. 0)q,q,t(B1 =& 1B
 
 

♣ Galliulin and Korenev worked on missile control and guidance 
(1964). A concept of a program motion appears in the context of a 
trajectory tracking (tracking a moving target). 
Example of the problem of this type is: A target Q moves along ox a 
prescribed motion ξ(t). A following particle moves in the (x,y) plane 
in such a way that its velocity vector is directed towards Q. The 
constraint equation for the follower is  
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( ) 0yxxy =−+ && ξ . 
 
The follower will move along a curve of pursuit. 
 

  



♣ Grioli’s example (1972):  

 
Grioli’s theorem: necessary and sufficient conditions for a body to 
perform the pseudoregular precession are: 
 

( ) ( ) ( ) ,0qpqprqpqp
2/32222 =+−++− λ&&  

 
where ,r,q,p.,const ζηξ ωωωλ ====  
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and ϑψϕ ,,  are Euler angles. Inserting ω’s into the Grioli condition we obtain 
nonholonomic constraint equations of the second order 
 

( ) .0sin

cossincos2sinsin
2/322

232

=+−

++−

ϑϑψλ

ϑϑψϑϑψϑψϑϑϑψ

&&

&&&&&&&&&
 

 
 

♣ Hogan’s example (1984) - the third time derivative of a limb 
coordinate influences its motion smoothness 

  



CONSTRAINTS IN CONTROL THEORY 
 
 
1. Material constraints – rolling without slipping – wheeled vehicles, 

multifinger hands. 
 

2. Conservation laws – the angular momentum conservation for free 
floating space manipulators. 

 

3. Tasks (performance goals) – robots and manipulators do work and it 
may be described by tasks specified by the constraint equations 
(trajectory). 

 

4. Design or control constraints - manipulators and robots with 
underactuated degrees of freedom. 

 

5. Other design, control, operation constraints for robots and 
manipulators: 
- in navigation of wheeled mobile robots, to avoid the wheel 

slippage and mechanical shock during motion, dynamic 
constraints such as acceleration limits have to be imposed, 

- in path planning problems, for car-like robots, to secure motion 
smoothness two additional constraints are added: they are put on 
a trajectory curvature and its time derivative so additional 
constraints of the second and third order are imposed, 

- in manipulator trajectory tracking, jerk must be limited for 
reducing manipulator wear, improving tracking accuracy, for 
smoothed actuator load, for reducing the excitation of the 
resonant frequencies. Low jerk trajectories can be tracked faster 
and more accurately, 

- bounded linear velocity, 
- bounded angular velocity, 
- constraints on control inputs, 
 

  



- bounded lateral acceleration – e.g. path tracking experiments 
depend on the precision of the odometry. If the lateral 
acceleration of the vehicle is too large, the wheels can loose close 
contact to the ground and the odometry data is no longer 
meaningful, 

- others ….. 
 

6. Programmed constraint – a concept of a non-material constraint 
suitable to specify tasks and motion limitations by equations 
(Jarzębowska). 
- tracking a trajectory (a non-material constraint never 

incorporated into the system constrained dynamics), 
- robot motion with prescribed motion characteristics, 
- prescribed end-effector motion and many other TASKS. 

 

A UNIFIED CONSTRAINT 
FORMULATION 

 
Other examples of non-material constraints appear in development of 
mechanics models for control applications.  

The overview of constraint classifications in mechanics and a 
variety of requirements on system’s motions reported in the literature 
can be summarized as follows: 
1. Many problems are formulated as synthesis problems and motion 

requirements may be viewed as constraints put on a system before it 
is designed and put into operation. These constraints can be non-
material. 

2. Constraints that specify motion requirements may be of orders 
higher than one or two. 

3. Non-material constraints may arise in modeling and analysis of 
electromechanical and biomechanical systems. 

4. No unified approach to the specification of non-material constraints 
or any other unified constraint has been formulated. 

  



 
These conclusions were a motivation to present an extended concept 
of a constraint.  
 
Definition 1: A programmed constraint is any requirement put on a 
physical system motion specified by an equation. 
 
Definition 2: A programmed motion is a system motion that satisfies 
a programmed constraint.  
 
Based on definitions 1 and 2 we classify the programmed constraints 
as follows: 
1. Position programmed constraints: 
 

,0)q,...,q,t(f n1 =α                    na,a,...,1 <=α  
 
or  A,0q),(tA1 = 1 is an a-dimensional vector. The programmed 
constraints also restrict allowable velocities and accelerations. 
2. Kinematic programmed constraints: 
 

,0)q,...,q,q,...,q,t(f n1n1 =&&β                       nk,k,...,1 <=β  

 

or  where B,0)qq,,(tB1 =& B1 is a k-dimensional vector.  
Mathematical relations for the programmed constraints are the same as 
those for material constraints but their interpretation is absolutely 
different. The programmed constraints are put upon a system in order 
to specify its motion.  
 
 
 
 
 

  



3. High order programmed constraints: 
 

0)q,...,q,...,q,...,q,q,...,q,t(G )p(
n

)p(
1n1n1 =&&β ,          (*) 

 nk,k,...,1 <=β  
 
which we write as 
 

,0),...,qq(t,q,B (p) =&β  

 

where p is a constraint order and  is a k-dimensional vector. 

Equations (*) can be nonlinear in .  

βB
)p(q

Differentiation of (*) with respect to time, until the highest derivative 
of a coordinate is linear, results in constraint equations linear with 
respect to this highest coordinate derivative. Without loss of generality 
we assume that “p” stands for the highest order derivative of a 
coordinate which appears linearly in a constraint equation. It is 
possible that constraints are linear with respect to only one p-th order 
coordinate derivative. However, for simplicity of the development, we 
assume constraints linear in all p-th order derivatives of coordinates. 
Based on our assumption, instead of (*) we may write the constraints 
in the form: 
 

,0),...,qqs(t,q,)q,...,qqB(t,q, )1(p(p))1(p =+ −− &&           (**) 
 

where B is a (k×n)-dimensional matrix with n>k, and it is assumed to 
have full rank, and s is a (k×1)-vector.  
(**) is the unified constraint formulation. 
Integrability conditions for (**) can be found in  
Tarn T-J., Zhang M., Serrani A., New Integrability Conditions for Differential Constraints, 
Systems & Control Letters, 49, pp. 335-345, 2003. 
 
 

  



 
According to definitions 1, 2 and (**), driving and task 
constraints, performance goals or other requirements on a system 
motion to obtain its specified performance may be included into 
the “programmed constraints” class. They can get the unified 
name as they play the same role – they program the motion.  
They may be treated in the same way in dynamics and control. 
 
There are many possible programmed constraints. It has to be 
verified whether a programmed constraint formulated for a 
system is reachable for it. It can be done by inspection of solutions 
of equations of a programmed motion.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



TRANSITION FROM THE 
CONSTRAINED SYSTEM TO THE 

CONTROL SYSTEM 
 
 
“Control theory would be quite sterile without concrete connections to the 

natural world. The process of modeling is just as central to control 
engineering as is control theory itself. A control system design project does 
not begin when a control engineer is handed a model; it begins at the onset 

of model formulation” 
 
 
 

KINEMATIC CONTROL MODELS 
 
Constraint equations can be presented in the control form by viewing 
the independent generalized velocities as inputs. Kinematic control 
models take the form 
 

.u)q,...,q(q

,uq

j
m

1j
n1iji

jj

∑=

=

=
ϕ&

&

                         i=m+1,...,n 

 

Often, the above nonlinear control form is presented as 
 

,u)y,z(g~z

,uy

ii
m

1i

ii

∑=

=

=
&

&

                                               m≥2 

 

where q is partitioned as )y,z(q = , and  )q,...,q(z n1m+= is a (n-
m)-fiber vector, and  is a m- base vector.  )q,...,q(y m1=
 

  



If the Chaplygin assumption holds, kinematic control model of the 
Chaplygin system can be presented in the nonlinear control form as 
 

.u)q,...,q(q

,uq

j
m

1j
m1iji

jj

∑=

=

=
ϕ&

&

                                i=m+1,...,n 

 

The control system is Chaplygin if ijϕ  depend on the base vector but 
not on the fiber vector. Most systems with material nonholonomic 
constraints are Chaplygin and for this reason the latter kinematic 
control model is a focus of many theoretic control studies. The 
Chaplygin kinematic control systems can be presented in the so-called 
chained or power forms. Since chained and power forms are used to 
model nonholonomic systems of practical importance such as front-
wheel drive vehicles, multibody spacecraft, or tractors with trailers, it 
is no surprise that many studies are focused on these classes of 
systems. 
 
 
 
The high order constraint equations (**)  
 

,0),...,qqs(t,q,)q,...,qqB(t,q, )1(p(p))1(p =+ −− &&  
 
can be transformed into the state space representation. To this end, we 
introduce a new p-vector ),...,xx(x p1=  such that 

. We assume that t is not present 
explicitly in (*). If it is, we reorder coordinates, assigning 

p1p211 xx,...,xx,qx === −&&

tx0 = . 
With the new vector x (**) can be written as (p-1+k) first order 
equations 
 

  



)x,...,x(sx)x,...,x(B
,xx

::
::
,xx
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p1pp1

p1p

32

21
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=
=

−

&
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or                                          )b(xxC(x) =& , 
 

where C is a (p-1+k)×p matrix and b is a (p-1+k)- dimensional vector. 
Let f(x) be a particular solution so b(x)C(x)f(x)= . Let g(x) be a p×(n-
k) full rank matrix whose column space is in the null space of C(x), i.e. 

. Then, the solution is given by 0C(x)g(x)=
 

g(x)u(t)f(x)x +=&  
 

for any smooth vector u(t). The problem with the constraints (**) has 
been converted into a control problem for a system with high order 
constraints. In general, a drift term is present and the kinematic control 
model may be non-Chaplygin. It is the state space representation of 
the unified constraint formulation and we refer to it as a unified state 
space control formulation.  
 
This kinematic control model is only formally equivalent to the 
standard model 
 

,u)x(g)x(fx i
m

1i
i∑+=

=
&  

 

since , may not have a physical interpretation of 
velocities. They may be accelerations or their time derivatives.  

m,...,1i,ui =

  



DYNAMIC CONTROL MODELS 
 
Dynamic control models actually used, which we refer to as classical 
dynamic control models, are based on Lagrange’s equations with 
multipliers 

0q)q(J
,)q(E)q(J)q(D)q,q(Cq)q(M T

=
+=++

&

&&& τλ
 

 

where M(q) is a (n×n) positive definite symmetric inertia matrix, J(q) 
is a full rank (k n) matrix, × nkn2 <−≤ , λ is a k-dimensional vector 
of Lagrange’s multipliers, E(q)τ is a n-dimensional vector of 
generalized forces applied to a system, and τ is a r-dimensional vector 
of control inputs.  
For model-based control applications, the dynamic control model is 
to be transformed to the reduced-state form. It can be accomplished in 
several ways, e.g. we may start from Lagrange’s equations with 
multipliers which we write as 
 

,0q)q(J
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where we assume that )q,q(Q &  stands for all external forces applied 
to a system. 
To eliminate constraint forces we project the equations onto the linear 
subspace generated by the null space of )q(J . Since 

 Lagrange’s equations become 0q))q(J( T =⋅δλ
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where  and satisfies nRq∈δ 0q)q(J =δ .  

Partition q and J(q) such that kkn
21 RR)q,q(q ×∈= − , 

 [ ],)q(J)q(JJ 21= kk
2 R)q(J ×∈  is invertible, and 
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These are the second order differential equations in terms of q.  
They can be simplified by reusing the constraint equation 

 to eliminate  and . Adding inputs τ11
1

22 q)q(J)q(Jq && −−= 2q& 2q&& i 
we obtain the dynamic control model. 
The evolution of  can be retrieved by reapplication of the constraint 
equations. The control part of the constrained dynamics is 

2q
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The dynamic control model based on Lagrange’s equations can be 
transformed to the state space form obtained by an extension of the 
kinematic control model as 
 

,v)q(g...v)q(gv)q(gq knkn11 −−++==&          i=1,…n-k, 
 2§n-k<n 

i
r
i uv i = , 

 

where  denote an order of time differentiation and v is the 
output of a linear system consisting of chains of integrators.  

mi r,...,r

This model is referred to as a dynamic control model since in 
applications from mechanics kn,...,1i,1ri −== , controls are 
typically generalized forces.  
The model consists of the constraint equation and the dynamic 
equations of motion, which reduce to .uv =&   
Indeed, equation 0q)q(J =&  constrains the velocity  at each q to the 
null space of 

q&
)q(J . Let the vector fields  form 

the basis for the null space of 
,knm,g,...,g m1 −=

)q(J  at each q, and let 
.  ))q(g),...,q(g()q(g m1=

Then 0)q(g)q(J =  for each q and the constraint equations can be 
presented as  
 

,v)q(g...v)q(gv)q(gq knkn11 −−++==&  
 
for some appropriately defined m-dimensional vector 

. Components of v may or may not have physical 
interpretations as velocities.  

)v,...,v(v m1=

By differentiating v)q(gq =&  we obtain 
 

.v)q(gv)q(gq &&&& +=  
 

  



Substituting the above into the motion equations and premultiplying 
by  we obtain )q(gT
 

,)q(E)q(g)q,q(Fv)q(g)q(M)q(g TT τ=+ &&  
 

in which .  [ ])q(D)q,q(Cv)q(g)q(M)q(g)q,q(F T ++= &&&
 

We assume that the map  is onto what means that we 
require that independent degrees of freedom of the system are 
actuated.  

)q(E)q(gT

Then, applying feedback linearization  such 
that ,  is a m-vector control, we obtain  

mnn RRR:)u,q,q(U ××&

uv =& )u,...,u(u m1=
 

ii uv =& . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



A class of dynamic nonholonomic systems for which the vector fields 
have a special form has been studied. The unicycle belongs to this 
class, for example. For this class of systems, it is possible to select a 
basis vector field for the null space of )q(J  such that g(q) can be 
 

,
I

)q(g~
)q(g

k
⎥⎦
⎤

⎢⎣
⎡=  

 

where )q(g~  is a k×(n-k) matrix and Ik is a (n-k)×(n-k) identity 
matrix. Partition of q as ),y,z(q =  where )z,...,z(z k1= , 

)y,...,y(y kn1 −=  results in the dynamic extension of the kinematic 
control model, which is  
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∑=

=
−

=

                                       i=1,…,n-k 

 
These equations are said to be in the dynamic Chaplygin form if 

)q(g~i , i=1,...,n-k, depend only on the base vector y but not on the 
fiber vector z.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



EXAMPLES OF CONSTRAINED 
SYSTEMS 

 
Example 1 
A unicycle model 
 
 

ϕx

θ 

(x,y) 

z
 
 
 
 y
 
 
 
 
 
 

A coordinate vector  
112 SOSOR,),,y,x(q ××=ΩΩ∈= θϕ

The wheel rolls without slipping 
 

.sinry,cosrx ϕθϕθ &&&& ==  
 
The kinematic control model: 
Select 3-1=2 control inputs ,u,uvr 21 ==== ωϕθ &&  

Then the constraint equations can be transformed to 
 

.
,sinvy
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ωϕ
ϕ
ϕ

=
=
=

&

&
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and  has the form ,u)q(gq i
m
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=
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Example 2 
Two-wheeled mobile platform  
 

 
 

a coordinate vector  
32

LR SOR,),,,y,x(q ×=ΩΩ∈= ϕϕϕ
 
The material constraint equations: 
 

.rbsinycosx
,rbsinycosx

,0dsinxcosy

lcc

rcc

cc

ϕϕϕϕ
ϕϕϕϕ

ϕϕϕ

&&&&

&&&&

&&&

=−+
=++
=−−

 

 
Not all constraints are nonholonomic; one is holonomic, i.e. 
 

( ) 1lr c
b2
r

+−= ϕϕϕ . 

For a real vehicle we can control )(),( llrr ϕωϕω &&  (or moments) 
 

d2
)(ru,

2
)(ru lr

2
lr

1
ϕϕϕϕ &&&& −

=
+

= . 

Additionally, formulate the programmed constraint equation for the 
robot motion i.e. we want it to move along a trajectory described by 
the equation 

 
2
p

2
c

2
c Ryx =+       and  .2.0t01.0Rp +=  

  



 
The constraints put on the robot motion are both material and non-
material. Both constraints can be presented in the unified constraint 
formulation (**). 
 
 
Model-based tracking (model-based tracking control strategy for 
programmed motion) using the Wen-Bayard control law 
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Take the programmed constraint on the rate of change of the trajectory 
curvature: 

2/32201
)yx(
yxyxF

&&

&&&&&&&&

+

−
+=Φ  

 

and ,  1tsin21 +=Φ
0F  does not contain third order coordinate derivatives.  

[Derivation: 

2/322 )yx(
yx
yx

)t(
&&

&&&&

&&

+
=Φ  

 
To specify a constraint on the rate of change of the curvature profile  this equation has to be differentiated  )t(Φ&
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y
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We assumed there were no external forces acted on the robot. 
Computed torque control algorithm 
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Example 3 
Snake board – a system with idle wheels 
 

 
The snake board performs undulatory motion.  
 

,SS)2(SE,),,,y,x(q 11 ××=ΩΩ∈= ϕψθ  
−),y,x( θ  position of the snake board, 

−),( ϕψ  shape variables. 
The constraint equations 
 

.0cosl)cos(y)sin(x
,0cosl)cos(y)sin(x

=+−+−−
=−+++−

ϕθϕθϕθ
ϕθϕθϕθ

&&&

&&&
 

 
Control torques ϕψ ττ , : 

- Controlling body motion - ψτ , 

- Controlling wheels (by appropriate motion of feet) - ϕτ . 
There are 5 coordinates, 2 constraint equations, 2 control inputs 
 
 
 
 
  



Example 4 
Roller - racer – a system with idle wheels 

 

Motion of the roller-racer is described by ,),,y,x(q Ω∈= ψθ  
 where ,S)2(SE 1×=Ω ),y,x( θ  describe a position, and ψ  is a shape 

variable. 
Platforms are connected with a rotary joint. The propulsion and 
steering come from a rotary motion at this joint.  
The roller-racer performs undulatory motion.  
A torque t applied as this joint is the only control input. 
Equations of nonholonomic constraints come form the assumption that 
the wheels do not slip, i.e. 
 

.0l)cos(lcosysinx
,0cosysinx

21 =+−++−
=−

ψψθθψψ
θθ

&&&&

&&
 

 

One control torque ψτ  (4 coordinates, 2 equations of constraints, 1 control input) 
 
The fundamental means of its propulsion is the pivoting of the steering handlebar around 
the joint axis and the nonholonomic constraints. The purely kinematic analysis of the 
roller-racer is not allowed. We cannot determine its global motion by just the shape 
variation, since it does not posses a sufficient number of nonholonomic constraint 
equations for this. Kinematics must be complemented with the system dynamics. 
The system is underactuated.  

  



An example of programmed motion tracking: 
 
Jarzębowska E.: Lewandowski R.: Modeling and Control Design using the Boltzmann-Hamel Equations: A Roller-
Racer Example. Proc. 8th Intern. IFAC Symposium on Robot Control, SYROCO 2006, Bologna, Italy, 2006. 
 
We developed the control dynamics for the roller-racer using the Boltzmann-
Hamel equations. Then, we applied a static state feedback linearization and 
designed a computed torque controller to track a desired maneuver for a roller-
racer. This maneuver consists of driving a circular trajectory with some desired 
velocity. A rider learns what value of this velocity is enough to start a 
“smooth” maneuver, and changes his orientation with respect to the world 
coordinates so we parameterize the desired trajectory in terms of  θ .  
 
For illustrative purposes, the desired θ  is given as )tt(2.0 1d −=θ  where 

 is the time at which a maneuver can start. We design a controller with 

respect to the quasi-velocity 
1t

2ω =θ& . 
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Desired trajectory tracking (no friction). 
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Desired trajectory tracking (with friction). 
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Magnification of the desired trajectory tracking 
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Control torque vs. time (with friction) 

  



Example 5 
Snake – like robot  
 
Roller - racer was the shortest snake – take a longer one 
 
 

 
 
 
The constraint equations are the same as for other wheeled vehicles – 
one constraint equation per segment. 
Kinematics must be complemented by the system dynamics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



Example 6 
A two-link planar manipulator model 
 
Jarzębowska E.: Control Oriented Dynamic Formulation of Robotic Systems with Program Constraints. Robotica, 
24,1:61-73, 2006. 
Jarzębowska E.: Tracking Control Design for Underactuated Constrained Systems. Robotica, 24,1: 591-593, 2006. 
 

 

 Θ2 

Θ1

x 

y 

O 

l1

l2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The planar two-link manipulator may move in the horizontal plane 
(x,y). Two degrees of freedom are described by 21 ,ΘΘ .  
The system is holonomic itself. 
The kinematic control model is trivial; the dynamic control model is not! This 
is a nonlinear control model for holonomic systems. 
 

The programmed constraint may b formulated for the manipulator 
end-effector. It may specify writing, painting, scribing, e.t.c.  
Formulate a requirement that the manipulator end-effector is to move 
along a trajectory for which its curvature changes according to a 

specified function 
dt

)t(d* Φ
=Φ .  

For tracking control purposes the constraint equation is transformed 
from the task space coordinates (x,y) into the joint coordinates 

 by inserting ),( 21 ΘΘ )cos(lcoslx 21211 Θ+Θ+Θ=  and 
)sin(lsinly 21211 Θ+Θ+Θ= , and their time derivatives into the 

constraint equation. We obtain 
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214212
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&&&&&&&&&
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For Φ1=0.6+0.02t, applying the computed torque controller, the 
programmed motion looks like 
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Tracking by the computed torque 
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Torques applied to the joints are 
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EXAMPLE 7 
AN EQUATION OF A PROGRAMMED CONSTRAINT 
FOR A SPACE TWO-LINK MANIPULATOR 
 
 
 

θ2 

θ1

x 

y 

O 

l1

l2

f 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Take a free-floating two-link manipulator that consists of a base 
described by its moment of inertia J and f, which is the orientation of 
the base relative to a fixed axis in the plane. Let q1 be the angle of the 
first link of mass  and length  relative to the base, and q1m 1l 2 be the 
angle of the second link of mass  and length  relative to the first 
one. For simplicity we assume that link masses are concentrated at the 
ends of the links.  

2m 2l

In our model the manipulator base is pinned to the ground at its center. 
Pinning the base permits the body to rotate freely but prevents 
translation.  
 
 
 
 
 
 

  



For the manipulator the law of conservation of the angular 
momentum implies that moving the links causes the base body to 
rotate.  
The conservation law is viewed as a nonholonomic constraint 
on the system and it has the form 
 

[ ] [ ]
.0)22(cosllmlm

lml)mm(lml)mm(J

2122122
2
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2
121

2
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θθφθθ
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&&&&
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The holonomic constraint arising from the linear momentum 
conservation in a real space manipulator is replaced with holonomic 
pinned constraints in our model. Pinning the base body simplifies the 
model but does not remove any of its essential structure.  
 

Additionally, we wish to add a position programmed constraint, that 
specifies motion along a straight line for the end of the second link. 
This constraint has the form 
 

[ ]
[ ] ,0)cos()sin(l

)cos()sin(l

21212

111

=−++−+++
++−+

βφθθαφθθ
φθαφθ

 

 
where a and b specify the line position.  
Altogether, we have the nonholonomic constraint linear in velocities 
and a holonomic constraint. Both constraint equations can be 
transformed to the unified constraint form as follows: 
 

,0BBB 2211111 =++ θθϕ θθϕ
&&&  

where 
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and differentiate the programmed constraint with respect to time  
 

,0AAAA 12211111 =+++ σθθϕ θθϕ
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where 
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s is a positive constant that has to be selected to stabilize the 
constraint for simulation. 
All equations of constraints for the space manipulator are  
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EXAMPLE 8 
The two-link manipulator model that is 
underactuated. 
 
Jarzębowska E.: Tracking Control Design for Underactuated Constrained Systems. Robotica, 24,1: 591-593, 2006. 
 
Remove one control input (its broken) in the two-link planar 
manipulator - it is equipped with one actuator.  
Formulate the following tracking control objective: Its end-effector is 
to move according to a specified programmed motion and it is the only 
constraint put upon the manipulator. The first joint is actuated and the 
second is not.  
 

The manipulator control model with the first joint actuated is  
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where the equation for the unactuated joint is a second order 
nonholonomic constraint equation (the variable 2Θ  is present in the 
inertia matrix). The manipulator is a holonomic system for which the 
following transformations may be obtained 
 

[ ]2
12122 sin)cos(1

ΘΘ+ΘΘ+−=Θ &&&&& ββδ
δ

 

and  
 

.)cos(sin)2(sin

)cos(1)cos2(

12
2

2
1

2122

1
2

22

τβδ
δ

ββ

βδ
δ

βα

=Θ+
ΘΘ

−Θ+ΘΘΘ+

−Θ⎥⎦
⎤

⎢⎣
⎡ Θ+−Θ+

&
&&&

&&

 

 
 
 
 

  



Using the partial feedback linearizing controller 
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we obtain 
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These equations can be expressed in the state space control 
formulation by defining the following state variables: 

24132211 x,x,x,x Θ=Θ=Θ=Θ= && . Then, we obtain 
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which is 
 

 ,u)x(g)x(fx +=&  
 

where  
),/xsinx,0,x,x()x(f 2

2
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with  standard basis vector in  are the drift and control 
vector fields on .  

 the- 1e 1R
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Select the programmed constraint for the rate of change of the 
trajectory curvature and apply the PD controller. 
Tracking by the PD controller 
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Time histories of position tracking errors 
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COMPUTATION PROBLEMS 
 
 
There are computation problems with nonholonomic systems. 
 
 
Holonomic constraints, either material or programmed, are often 
differentiated with respect to time for modeling and control purposes 
and they are written in the form 
 

0q)q,t(A)q,t(A
dt

)q,t(dA
q1t1

1 =+= & , 

 

These velocity-level constraints are equivalent to the position 
constraints provided that the initial condition for a system )t(qq 00 =  
is a valid one, i.e. 0)q,t(A 001 = . To use this form of position 
constraints in computer simulations one must secure that a system 
starts from a valid initial condition. It may mean that one must 
numerically solve a system of nonlinear equations 0)q,t(A1 =  for 
the valid initial . If the initial condition is not valid, the holonomic 
constraints are violated in simulation and they cannot be enforced.  

0q

To remedy this problem, the differentiated constraints are replaced by 
 

0)q,t(Aq)q,t(A)q,t(A 1q1t1 =++ σ& . 

 

The positive constant σ is a convergence rate of the modified 
constraints to the original ones, when initial conditions do not satisfy 
the original constraints. It can be appropriately chosen based on 
specific applications.  
 
 
 
 

  



Often, position constraints have the form 0)q(A1 =  and kinematic 
constraints are linear in velocities, i.e. 0)q,t(bq)q,t(B 11 =+& . 
Then, position and kinematic constraints written together, take the 
form 
 

,0q),(tbqq),(tB *
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where 
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and  is assumed to be a full rank (a+k)×n matrix and 
 is a (a+k)-dimensional vector.  

)q,t(B*
2

)q,t(b*
2

This constraint form is equivalent to the unified constraint formulation 
for p=1.  
 
The situation changes when both material and programmed constraints 
of different orders are merged into one dynamic model ……… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 

EXPERIMENTS IN 
NONHOLONOMICITY (BUILDING 

NONHOLONOMIC SYSTEMS) 
 
 
There are more and more experiments with nonholonomic systems 
…… 
 

- ball on a rotating table 
- nonholonomic manipulator – to test control algorithms 

dedicated to nonholonomic systems, prototyping systems that 
consist of „nonholonomic modules”, 

- air spindle test bed – to test new control methods, 
- nonholonomic needle – to test whether a nonholonomic model 

may describe other phenomena, 
- desktop manipulator – mobipulator – “a nonholonomic desk 

cleaner”, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 

CONCLUSIONS 
 
Jarzębowska E.: Stabilizability and Motion Tracking Conditions for Mechanical Nonholonomic Control Systems, 
Mathematical Problems in Engineering, Hindawi Publ. Corp.. Vol. 2007 
 

Classification of nonholonomic constraints 
 

Kind of constraints Systems / Constraint equations Number of degrees of 
freedom (m), number 
of control inputs (l) 

LAS Tracking 

Car-like vehicles, mobile 
platforms with powered 
wheels, multi-fingered hands, 
nonholonomic manipulators, 
dexterous manipulation. 

m=n-k 
m=l 

- + 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

01 =)q,q(B &         (1) 
BB1 is a (k×n) full rank matrix, 
n>k. 

 

 
1. First order, material 
nonholonomic. 

Wheeled vehicles with idle 
wheels, nonholonomic toys, 
snake-like robots and 
manipulators.  
Constraints have the form (1), 
n>k. 
 

m=n-k 
m≥l 

 

- + 

2. First order, non-
material nonholonomic 
(conservation law). 

Space vehicles and robots, 
sportsman, falling cat. 

0)q(bq)q(B 22 =+&   (2) 
B

m=n-k May 
m¥l be 

 
B2 is a (k×n) full rank matrix, 

n>k 
 

+ 

  



 
 
 

Classification of nonholonomic constraints 
 

Manipulators, space 
s, underwater 

vehicles. 
system
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no gravity is present: 
m=n, 
m>l 

 

- + 3. Second order, non-
material nonholonomic, 
(underactuated). 

gravity is present: 
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3b) 

m=n, 
m>l 

 

+ + 

m=n-k, 
m≥l 

4. High order, non-
material nonholonomic 
(programmed). 

Task specifications for 
any system: 

,),...,qqs(t,q,
)q,...,qqB(t,q,
)(p

(p))(p

01

1

=+
+

−

−

&

&
 

May + 
be 

(4) 
B is a (k×n) full rank 
matrix, n≥k, s is a (k×1) 
vector. 
 

m=n-k, 5. Different types of 
constraints put on a 
system. 

Underactuated vehicles 
with idle wheels, 
manipulators and other 
systems with material 
and programmed 
constraints.  

May + 
be m≥l 

The unified constraint 
(4), n≥k. 
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